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a b s t r a c t

Experimental data indicate that simple motor decisions in vertebrates are preceded by integration of
evidence in certain cortical areas, and that the competition between them is resolved in the basal
ganglia. While the occurrence of cortical integration is well established, it is not yet clear exactly how
the integration occurs. Several models have been proposed, including the race model, the feed forward
inhibition (FFI) model and the leaky competing accumulator (LCA) model. In this paper we establish
qualitative and quantitative differences between the above mentioned models, with respect to how they
are able to initiate the integration process without integrating noise prior to stimulus onset, as well as the
models’ ability to terminate the integration after a decision has been made, to ensure the possibility of
subsequent decisions. Our results show that the LCA model has advantages over the race model and the
FFI model in both respects, leading to shorter decision times and an effective termination process.

© 2009 Elsevier Ltd. All rights reserved.
1. Introduction

In simple decision tasks where a subject has to make a
choice based on a visual stimulus, experimental data show that
populations of sensory neurons represent evidence supporting
alternative choices in their firing rate. For example, in tasks in
which an animal has to decide the direction of prevailingmotion in
a stimulus, the activity of medial temporal (MT) neurons is higher
if the motion in the stimulus moves in the neuron’s preferred
direction. Thus the firing rate of MT neurons provides information
useful formaking the decision, andwe refer toMT firing rate in this
task as the evidence.
However, this representation of sensory evidence is often noisy

due to the noise present in the stimulus and the sensory path-
ways (Britten, Shadlen, Newsome, & Movshon, 1993). Conse-
quently, in order to correctly evaluate the evidence, there is a need
to accumulate the evidence over time, and the longer the time, the
greater the chance of making the correct choice.2 The data also
indicate that such an evidence accumulation occurs in certain
cortical neuron populations, and that these neurons representing
alternative responses integrate the evidence supporting corre-
sponding choices over time (Gold & Shadlen, 2001; Huk &
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Shadlen, 2005; Kim & Shadlen, 1999; Mazurek, Roitman, Dit-
terich, & Shadlen, 2003; Roitman & Shadlen, 2002; Schall, 2001;
Shadlen&Newsome, 2001). Furthermore, the data from these two-
alternative choice tasks show that: (i) The activities of these inte-
grator neurons are at a base level before stimulus onset. (ii) After
stimulus onset, the activity of both integrators increase, but while
the integrator neurons corresponding to the strongest alternative
continue to increase, the activity of neurons corresponding to the
weaker alternative drops to the base level. (iii) After a decision has
been made, both activity levels settle back to the base level. The
experimental findings (i) and (ii) are apparent in Fig. 1, but (iii) can
only be seen in an experiment wheremeasurements are continued
after the response is given (e.g. Figure 2 in Shadlen and Newsome
(1996)).
Several models have been proposed to describe the integration

and decision making process, including the race model (Vickers,
1970), the Feed Forward Inhibition (FFI) model (Shadlen &
Newsome, 2001) and the Leaky Competing Accumulator (LCA)
model (Usher & McClelland, 2001). These models differ in their
inhibitory connections, as shown schematically in Fig. 2 and
described in detail in the next section. The race model, which
lacks inhibitory connections altogether, predicts that neurons
integrating evidence for the winning alternative, as well as those
integrating for the losing alternative, should increase their firing
rate throughout the duration of the stimulus presentation, and
thus is inconsistent with the observation that neuronal activity
supporting the weaker alternative decreases during the decision
process. Since this makes the race model biologically implausible,
its inclusion in this paper is for comparison and engineering
reasons, as it might be favourable to find the simplest model that
gives the same performance, whether it is implemented in the
brain or not.
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Fig. 1. Time course of target discrimination of a visuomovement cell in the Frontal Eye Field after trials were separated into short (top), middle (middle) and long (bottom)
saccade latency groups. In A and B the data are aligned on stimulus presentation andmovement initiation respectively. A left and B left show the neuron activity when either
the target or a distractor was present in the measured cell’s Response Field (RF). A right and B right are divided into Discrimination Duration (DD) and Motor Duration (MD)
time.
Source: Reproduced with permission from Thompson et al. (1996).
In contrast, both FFI and LCA models (and their spiking neuron
equivalents mentioned in the next section) have been shown to
be consistent with both behavioural and neurophysiological data
from decision making tasks (Mazurek et al., 2003; Shadlen & New-
some, 2001; Usher & McClelland, 2001; Wang, 2002), though the
most successful model in describing human behavioural data from
two alternative choice tasks is the diffusion model (Ratcliff, 1978;
Ratcliff &McKoon, 2008). In the diffusionmodel a single integrator
integrates the difference in evidence between the competing alter-
natives towards a decision threshold, either positive or negative.
The diffusion model is not directly implementable, but since the
integrators in the FFI model also integrate the differences between
sensory evidence, the linear version of the FFI model is equivalent
to the diffusion model (Bogacz, Brown, Moehlis, Holmes, & Cohen,
2006). The LCA model can also closely approximate the diffusion
model for certain values of its parameters (Bogacz et al., 2006).
The FFI and LCA models make different experimental predictions,
as described in the Discussion, but the experiments testing them
have not been performed yet. Therefore, on the basis of existing
experimental data it is still unclear which of these two models is
the more biologically plausible.
However, from an ecological point of view, a model allowing

better performance would give an evolutionary advantage, and if
such a model fulfils other requirements, such as energy efficiency
and biological plausibility, it may be more likely to have been
chosen in the course of evolution. Although it is known that ani-
mals and humans do not always employ optimal strategies (Kah-
neman & Tversky, 1984), such an ecological approach has been
proved to be very successful in generating experimental predic-
tions in psychology, biology and neuroscience (Anderson, 1990;
Belovsky, 1984; Olshausen & Field, 1996; Salinas, 2006). There-
fore, in this articlewe compare the performance of decisionmaking
models in which sensory evidence is cortically integrated accord-
ing to FFI, LCA, a recently proposed improved version of the race
model (Stafford, Humphries, & Chambers, 2005) and a novel ver-
sion of the FFI model with an integration threshold, and describe
the predictions of this analysis. In particular, we compare how the
above models are able to integrate sensory evidence without inte-
grating noise before stimulus onset and after stimulus offset.
As a measure of performance, we use decision time for a given

error rate, as the ability to make faster decisions for any given er-
ror rate has been shown mathematically to maximize reward rate
(Bogacz et al., 2006), because the ability to make faster rewarded
decisions leads to more reward per unit of time. This measure of
performance has also been used in previous studies comparing de-
cisionmakingmodels (Bogacz & Gurney, 2007; Bogacz et al., 2006;
Bogacz, Usher, Zhang, & McClelland, 2007; McMillen & Holmes,
2006).
For a choice between two alternatives based on noisy evidence,

the optimal performance is achieved by the decision rule defined
by the Sequential Probability Ratio Test (SPRT) (Wald, 1947).
This test is optimal in that for any accuracy in a two alternative
task, the SPRT gives the fastest decision time compared with any
other statistical test (Wald & Wolfowitz, 1948). A decision maker
employing SPRT will therefore maximise the rate of receiving
rewards for correct choices in a wide range of tasks involving a
choice between two alternatives (Bogacz et al., 2006).
There exists a generalization of SPRT for choices between mul-

tiple alternatives, called Multihypothesis SPRT (MSPRT) (Dragalin,
Tartakovsky, & Veeravalli, 1999). In a choice between multiple al-
ternatives, MSPRT was shown in McMillen and Holmes (2006) to
achieve better performance than simple networks, including the
race model and the LCA model. However, the decision processes
of the brain do not necessarily rely solely on networks with sim-
ple architectures as in Fig. 2. It has been proposed that while the
cortical regions integrate evidence supporting various alternatives,
the basal ganglia resolves the competition between the alterna-
tives (Frank, 2006; Gurney, Prescott, & Redgrave, 2001; Redgrave,
Prescott, &Gurney, 1999). It has been shown recently thatmany as-
pects of the network involving the cortex and basal ganglia are ex-
actly those required to implementMSPRT (Bogacz&Gurney, 2007).
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(a) The race model. (b) The feed forward inhibition
model.

(c) The leaky competing
accumulator model.

Fig. 2. The architectures of the race (a), the feed forward inhibition (b) and the leaky competing accumulator (c) models for two alternatives. Arrows indicate excitatory
connections, dots indicate inhibitory connections. In each panel, the left column of circles corresponds to populations of neurons providing sensory evidence for the two
alternatives, while the right column of circles corresponds to populations of cortical integrator neurons.
Bogacz and Gurney (2007) showed that the circuit of basal
ganglia and cortex can implement the MSPRT for different cortical
integrative networks including the race model (Vickers, 1970), the
FFI model (Shadlen & Newsome, 2001) and the LCA model (Usher
& McClelland, 2001). These networks were originally proposed
as complete models of a decision process, but with the MSPRT
evaluating whether sufficient evidence has been integrated, they
only handle the evidence integration. Since the MSPRT ensures
optimal decisions, the model of the cortico-basal ganglia circuit
achieves exactly the same decision time (for given error rate) no
matter which of the models (race, FFI, LCA) is used to describe the
cortical integration, and hence none of the integrative networks
should have an evolutionary advantage over the other.
The problem with this comparison is that in any realistic

system, there is a period before the integration where no evidence
is presented to the integrators, and if nothing is done to prevent it,
noise will be integrated in this period thereby altering the starting
point of the actual evidence integration. This means that even
though two models have the same performance when integrating
evidence, they might behave differently before the integration,
thereby having different overall performances.
A similar problemarises at the end of a decision. Once a decision

has beenmade, the neural integrators need to reduce the firing rate
to a base firing rate to allow for subsequent decisions.
In the following article, we investigate which of the proposed

models of cortical integration provides themost efficient initiation
and termination for the integration processes, thereby having an
evolutionary advantage over the others. We will consider these
cortical models as a part of a decision network also involving the
basal ganglia.
Although the decision network involving cortical integrators

and the basal ganglia can optimise the choice between multiple
alternatives, for simplicity of explanation, we analyse the choice
between two alternatives, because this is the only case in which
the dynamics of cortical integration models can be visualised in
two-dimensional state-space and can be easily understood. Nev-
ertheless, our results naturally generalise to multiple alternatives.

2. Review of decision models

This section first describes the experimental paradigms that
decision making models seek to characterise. Then it describes
the models of the two parts of the brain’s decision making
network: cortical models of evidence integration, and the model
of competition resolution in the basal ganglia.

2.1. Experimental paradigms

Many of the two alternative choice experiments are variations
of the same basic setup: A visual stimulus is presented to a subject
and after some time, a choice based on the stimulus must be
indicated. In these experiments the stimulus is designed in such a
way that there is a continuous flow of evidence to be evaluated. A
typical stimulus consists of a display of randomlymoving dotswith
some dots coherentlymoving in one direction (Britten et al., 1993).
The task is then to decide the direction of the prevalent motion.
There are two main variations of this paradigm. In the interro-

gation – or response signal paradigm – the subject has to give the
response at a particular time (usually indicated to the subject by
an additional stimulus), while in the free response paradigm they
are free to respond at any time. In this article, we focus on the free
response paradigm.

2.2. Models of evidence integration

The models reviewed in this subsection were originally
proposed as models for the entire decision process, i.e., to describe
both evidence integration and competition resolution. However,
since in this article we assume that the competition resolution is
implemented in the basal ganglia, we only review the evidence
integration of the models.
In this subsection we focus on the population level models

describing the average activity of neuronal populations rather
than of individual neurons. Consequently, all these models in-
clude cortical integrators with activity denoted by yi accumulat-
ing evidence supporting alternative i. In their original descriptions,
these models assume that at the beginning of the integration pro-
cess the starting point of integration is y1(0) = y2(0) = 0.
The models can also be classified as Sequential Sampling Mod-
els (Ratcliff & Smith, 2004) as they assume that new evidence is
added to the evidence accumulated so far as it is presented.
In all models described in this subsection we additionally as-

sume that the activity levels of the integrators cannot be negative,
so that if yi + dyi < 0, then yi is set to 0.

2.2.1. Race model
Although earlier Sequential Sampling Models had been pro-

posed (e.g. LaBerge, 1962), the Accumulator Model (Vickers, 1970)
and the Poisson Counter Model (Pike, 1966) were the first models
that were able to correctly predict the skewed shape of reaction
time (RT) distributions (Ratcliff & Smith, 2004). In both of these
models (and in LaBerge, 1962, as well), two separate integrators yi
are accumulating evidence supporting competing responses (see
Fig. 2(a)). This can be described in the continuous time limit as

dy1 = x1dt + cdW1 (1)
dy2 = x2dt + cdW2

where dyi is the change in accumulated evidence in integrator
i during time dt , xi is the mean level of evidence supporting
alternative i, dWi is an independent noise process withmean 0 and
variance dt , and c describes the amount of noise. We refer to the
model described in the above equation as the race model.
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2.2.2. Race model with threshold
The racemodel suffers from the problem that it integrates noise

even in the absence of evidence because it has no method for
initiating the integration. This happens even though the noise is
Gaussian with mean 0, because the activity levels of integrators
are not allowed to be negative, and the integration therefore has
a boundary at 0 which results in an average increase in activity.
This results in a variance of the starting point of integration
(y1(0), y2(0)) that is proportional to the time allowed to elapse
before the stimulus onset. As a solution to this problem, a decay
of activity (described by parameter k) can be introduced to the
race model when the activity level of integrators is below a
certain integration threshold, θint , thereby creating a race model
with threshold (RwT). This model is a simplified version of work
presented in Stafford et al. (2005).

dyi =
{
(x1 − ky1)dt + cdW1 if y1 < θint ,
x1dt + cdW1 if y1 ≥ θint

(2)

dy2 =
{
(x2 − ky2)dt + cdW2 if y2 < θint ,
x2dt + cdW2 if y2 ≥ θint .

This mechanism ensures that the model integrates evidence
only if the input is sufficiently high to push the activity level of
an integrator above the integration threshold θint . The introduction
of a leak only for weakly active neurons is not biologically
plausible, but the model was originally formulated by Stafford
et al. (2005) in a biologically plausible way. In particular, in their
original model, each integrator has a constant leak, and sends
excitatory feedback to itself which balances the leak and thus
allows perfect integration. However, the feedback is provided via
another neuronal population which transmits the feedback only
when the activity of integrator yi ≥ θint , thus it results in a leaky
integration when yi < θint .

2.2.3. Feed forward inhibition model
In the FFI model, each integrator, in addition to accumulating

evidence from the appropriate input, receives inhibition from the
competing input channels (see Fig. 2(b))

dy1 = (x1dt + cdW1)− v(x2dt + cdW2) (3)
dy2 = (x2dt + cdW2)− v(x1dt + cdW1)

where v is the weight of the inhibitory connection, set to v = 1 in
the original description of the model (Shadlen & Newsome, 2001).
A spiking neuron version of this model has also been devel-

oped (Mazurek et al., 2003), and has been shown to successfully
describe both the responses of integrator neurons in the lateral in-
traparietal (LIP) area and the reaction times in a motion discrimi-
nation task (see Section 2.1) (Mazurek et al., 2003).

2.2.4. Feed forward inhibition model with threshold
The FFI model has the same problemwith integration initiation

as the race model, and in a similar attempt to resolve it, a leak can
be introduced whenever the activity of the integrators are below a
threshold.

dy1 =
{
((x1 − ky1)dt + cdW1)− v(x2dt + cdW2) if y1 < θint ,
(x1dt + cdW1)− v(x2dt + cdW2) if y1 ≥ θint

(4)

dy2 =
{
((x2 − ky2)dt + cdW2)− v(x1dt + cdW1) if y2 < θint ,
(x2dt + cdW2)− v(x1dt + cdW1) if y2 ≥ θint .

2.2.5. Leaky competing accumulator model
In the LCA model two leaky integrators accumulate evidence

in support of the alternatives, and they inhibit each other (see
Fig. 2(c)). A two alternative LCA is described by
dy1 = (x1 − wy2 − ky1)dt + cdW1 (5)
dy2 = (x2 − wy1 − ky2)dt + cdW2

where k is the leak from the integrators andw is the weight of the
inhibitory connection between the two integrators.
Due to the leak from integrators, the LCA model has an inher-

ent initiation process that ensures that noise is not integrated sig-
nificantly in the absence of stimuli (Brown et al., 2005), as will be
described in detail in Section 4.2.
A spiking neuron model of integration has been proposed

by Wang (2002), in which the integrator neurons project to a
population of inhibitory neurons which inhibit all integrators. This
model has also been demonstrated to successfully describe the
responses of integrator neurons in the area LIP. It has been shown
that a population-level model with the architecture of the Wang
model predicts approximately the same dynamics of integration
process as the LCA model (Bogacz et al., 2006). Due to the close
relation of theWangmodel to the LCAmodelwe do not analyse the
Wangmodel in this paper separately, but we note that we consider
theWangmodel as a possible biologically realistic implementation
of the LCA model.

2.3. Model of competition resolution in basal ganglia

This subsection briefly reviews the involvement of the basal
ganglia in decision making and how the MSPRT is related to
the disinhibition of motor actions. The basal ganglia is a set
of subcortical nuclei connected with one another and with the
cortex. The output nuclei in their default state send inhibition
to the thalamus and the brainstem thus blocking execution of
motor actions, and the actions are selected when the activity of
corresponding neurons are decreased (Chevalier, Vacher, Deniau,
& Desban, 1985; Deniau & Chevalier, 1985). On the basis of
these properties, Redgrave et al. (1999) have suggested that the
basal ganglia acts as a ‘‘central switch’’ resolving the competition
between cortical regions which vie for behavioural expression.
Gold and Shadlen (2001) formulated the goal of the decision

process as choosing the alternative with the highest mean
evidence (Gold & Shadlen, 2001, 2002). Hence the problem of
decision making between N alternatives can be formulated in
statistical terms as a choice between N hypotheses Hi. Each
hypothesis Hi states that of all the alternatives, the sensory input
supporting alternative i has the highest mean (Bogacz & Gurney,
2007; Gold & Shadlen, 2001, 2002). In the original formulation of
the MSPRT (Baum & Veeravalli, 1994), at each moment of time and
for each alternative, the probability Pi of the hypothesis Hi given
the sensory evidence observed so far is evaluated, and the decision
is made as soon as any Pi exceeds a decision threshold.
It has been proposed that the basal ganglia is organised into

channels defined as groups of neurons representing individualmo-
tor actions, and these channels traverse all basal nuclei (Alexander,
Crutcher, & DeLong, 1990). Bogacz and Gurney (2007) proposed
that in the case ofmotor decisions, the firing rate of channel i of the
output nuclei of the basal ganglia is proportional toOUTi = −log Pi.
Hence the decision needs to bemade as soon as anyOUTi decreases
below a decision threshold, which is consistent with the selection
by disinhibition mentioned above. Computing −log Pi from Bayes
theorem gives (Bogacz & Gurney, 2007)

OUTi = −yi + ln
N∑
k=1

exp yk (6)

where yi is the integrated evidence supporting alternative i,
which can be computed using the various models presented in
Section 2.2. Eq. (6) includes two terms, the first (−yi) describing
the amount of integrated evidence supporting alternative i, and
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the second describing the amount of conflict between alternatives
(as it involves the summation over all alternatives). Thus the more
conflict between alternatives, the higher yi needs to be for OUTi
to decrease below the decision threshold. The details of how the
computation of Eq. (6) could be performed in the cortico-basal
ganglia circuit can be found in Bogacz and Gurney (2007).
Note that in this model the cortex and basal ganglia do not

operate sequentially, but rather in parallel: the cortical neurons
integrate sensory evidence, while the basal ganglia continuously
monitor whether sufficient information has been accumulated.
Such a parallel involvement of the cortex and basal ganglia
is supported by experimental data showing that basal ganglia
neurons gradually change their firing rate during the decision
process long before the response is initiated (see Samejima, Ueda,
Doya, and Kimura (2005) or Williams, Neimat, Cosgrove, and
Eskander (2005), Figure 5).

3. Methods of simulation

To assess the integration of evidence in RwT, FFI, FFIwT and
LCA models we compare the performance of decision networks
in which evidence is integrated according to one of these models
and the competition is resolved by the MSPRT model of the basal
ganglia.
The models were simulated using the Euler method with an

integration constant of 0.001s. The performance of these decision
networks is described by error rate (ER) – defined as a proportion
of trials in which the alternative with lower xi is chosen, and
decision time (DT) – defined as the interval from stimulus onset
until decrease of any OUTi below the decision threshold. In the
models simulated, there always exists a speed-accuracy trade-
off controlled by the decision threshold. Hence, to be able to
compare the DT of different networks, it is necessary to ensure
that they produce the same ER. This is done by altering the
decision threshold until the desired ER is met with the desired
precision (Bogacz et al., 2006; McMillen & Holmes, 2006). In the
simulations described in this article, DT is compared for ER = 1%.
For a given tested value of the decision threshold, the simulated
decision process is repeated until it is established whether this
decision threshold results in ER = 1% with confidence intervals
±0.2%.
Due to the noisy nature of the simulations, there is an inherent

possibility that the decision threshold will not be crossed in finite
time. This possibility is usually marginal, but with decreasing
decision threshold the probability increases. For this reason the
simulations are implemented with a time limit of 14 s that if
exceededwill terminate that particular simulated decision, and the
trial is discarded.
In all our simulations, the number of alternatives (and thus the

number of basal ganglia channels, N) is 2, and with x1 > x2 we
assume that the first alternative is the correct choice. In all the
simulations, each trial is divided into an initial time and a decision
time as shown in Fig. 3. At the beginning of the initial time, the
integrators are set to y1(0) = y2(0) = 0. In the initial time the
input parameters are: x1 = 0, x2 = 0, c = 0.33, and in the decision
time the input parameters are: x1 = 4.5, x2 = 3, c = 0.33.
These values are estimated from a representative subject of an
experiment described by Bogacz et al. (2006), and kept fixed for
all simulations.

4. Results

This section starts with an analysis of dynamics of the
integration models which helps with the understanding of the
comparison of performance presented in Section 4.2. Then the
ability of themodels to terminate the decision process is compared.
Fig. 3. Changes of input parameters x1 , x2 and c with stimulus onset dividing
a simulated trial into an initial time without stimulus, and a decision time with
stimulus.

4.1. Dynamics of integration process

In order to get an understanding of the models’ behaviour,
it is useful to analyse their potential fields (vector fields) in the
different stages of decision making. Fig. 4 compares the potential
fields of the RwT ((a), (e)), the FFI ((b), (f)), the FFIwT ((c), (g)) and
the LCA ((d), (h)) models before and after stimulus onset. The axes
describe the levels of activity in each of the two integrators, y1
and y2. The vector field in each panel shows how the integration
process would behave on average (i.e., without noise) in a current
state. Each arrow shows how the integrators would, on average,
change their activity from that particular state. The lengths of
the arrows denote the relative strength of the activity change but
cannot be compared between panels.
The black line in each of the panels shows the development

of the activity in the integrators during a single simulation of an
integration process.

4.1.1. Before stimulus onset
The upper row of panels in Fig. 4 illustrates the dynamics of the

models when there is no stimulus input (x1 = x2 = 0).
In this case the integrators in the race model will have no

preferred direction of change (as according to Eq. (1), E(dy1) =
E(dy2) = 0), and will exhibit random walk behaviour based on
the noise levels. This is also the case in the RwT model when
both integrators are above the integration threshold (there are no
arrows in top right part of Fig. 4(a)). However, in the RwT model
each integrator will have a preferred direction of change towards
0 for yi < θint as shown in Fig. 4(a). This means that even though
noise might raise the activity of an integrator by chance, it will,
provided the activity has not crossed θint , drift back towards 0,
thereby limiting the possible starting points of integration.
The FFI model does not have an integration threshold, and the

integrators have no preferred direction of change. Fig. 4(b) shows
that even though the integrators on average have no preferred
direction, they only change along diagonal lines with the same
slope. This is due to the fact that the slope of each step of the
integration path is dy2dy1 and from Eq. (3) it is equal to

dy2
dy1
= −1 for

v = 1. This is the case for all inputs and is therefore independent
of the noise. The sum of activity of integrators only increases when
the integrator that receives the least input is at 0 and therefore
unable to drop any further.
The integration path in the FFIwT follows roughly the same

diagonal lines as FFI without a threshold, even though due to the
leak, the slope will not always be −1. When comparing Fig. 4(b)
and (c) it can be seen that the leak ensures that the activity is kept
closer to (0, 0) thereby constraining the potential starting points.
In the LCA model without a stimulus, each of the integrators

has an inherent drift towards 0 (Brown et al., 2005) due to leak of
activity, as can be seen in Fig. 4(d). This is effectively ensuring that
the starting point of integration will be kept close to (0, 0).
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(a) RwT no stimulus. (b) FFI no stimulus. (c) FFIwT no stimulus. (d) LCA no stimulus.
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(e) RwT stimulus on. (f) FFI stimulus on. (g) FFIwT stimulus on. (h) LCA stimulus on.

Fig. 4. The potential fields before stimulus onset and with stimulus for the race with threshold (RwT) ((a), (e)), the feed forward inhibition (FFI) ((b), (f)), the feed forward
inhibition with threshold (FFIwT) ((c), (g)) and leaky competing accumulator (LCA) ((d), (h)) models respectively. The paths show the evolution of the models in a single
simulated trial. The following parameters of the models were used: RwT: θint = 0.33, k = 10. FFI:v = 1. FFIwT: v = 1, θint = 0.33. LCA: k = 10,w = 10.
4.1.2. With stimulus
The lower row of panels in Fig. 4 illustrates the dynamics of the

models when the stimulus is present. Recall from Section 3 that
we choose x1 > x2 thus we assume that the first alternative is the
correct choice.
Once the stimulus is presented, each of the integrators in the

RwT model increases its activity. As the activity increases, change
in activity decreases until the leak and the evidence input evens
out (i.e., xi − kyi = 0). If the integration threshold θint is situated
before this point (where yi =

xi
k = 0.3 for the losing alternative in

our simulations), the integrationwill continuewithout boundaries,
as seen in integrator y1 in Fig. 4(e), but if the integration threshold
is situated after this point, the integration may saturate, as seen in
integrator y2 in Fig. 4(e). Once θint has been crossed, the change in
activation is constant, only depending on the evidence input.
The FFI model’s crossed inhibitory connections from inputs to

the integrator units will result in the level of activity in the losing
integrator decreasing towards 0. This is the desired behaviour, as
it mimics the behaviour of integrating neurons observed in the
brain. To ensure that the activity of the losing integrator decreases
towards 0, the weight of the inhibition (v) must obey v ≥ x2/x1,
where x2 is the mean input to the incorrect alternative. For this to
be true for all x1 > x2, the inhibition weight must be 1. As in the
case before stimulus, the model changes its state only along a line
with a slope of−1, or along one of the axes.
The FFIwT has the same behaviour as described for the FFI and

must also have v = 1 in order for the losing alternative to decrease
its activity towards 0. In addition to this, the integration threshold
must be positioned low enough to allow the integrator for the
winning alternative to drift across the threshold. Otherwise, the
model would be equivalent to adding a leak to the integrators
without the threshold. To allow for this, the threshold must be set
less than or equal to x1−x2k = 0.15. In Fig. 4(g) the threshold is
set higher to illustrate the problem. Note that although the RwT
model is simulated for the same parameters as the FFIwT model,
the former is able to cross θint (Fig. 4(e)) while the latter is not
(Fig. 4(g)).
When the stimulus is presented to the LCAmodel, an attracting

line (the diagonal line in Fig. 4(h)) with a slope of−1 appears in the
state space and it is situated a distance x1+x2√

2·(k+w)
from (0, 0) (Bogacz

et al., 2006). The intuition for the existence of this line is the follow-
ing.When the stimulus is turned on, both integrators increase their
activity levels, which corresponds to movement towards the at-
tracting line. However, when they are sufficiently active, the inhi-
bition starts to play a bigger role, so that if one increases, the other
needs to decrease, which corresponds to the movements along the
attracting line. The average direction of evolution along the attract-
ing line depends on which of the alternatives has higher mean
input, resulting in integration saturation at the point in the state
space where the losing integrator is 0 and the value of the winning
integrator is defined by the attracting line, see Fig. 4(h). Thus in
the LCA model the integration reaches a natural saturation point,
which does not happen in the other models.

4.2. Performance with initial time

In this subsection we compare the performance of decision
making models in which evidence is integrated according to the
RwT, FFI, FFIwT or LCA model, and the competition is resolved
in the MSPRT model of basal ganglia. By introducing an initial
time, we also introduce the possibility that on stimulus onset the
starting point of integration is not at 0. Such a distribution of
the starting points will increase ER for a given decision threshold.
Since we compare the performance for the same ER, the decision
thresholdwill need to be adjusted,whichwill give longerDTs. If the
distributions of the starting points are different for the fourmodels,
they will have different DTs for the same ER.
The performance of decision networks also depends on the

parameters of the integration models (i.e., k, θint , v, w). In order
to make a fair comparison between the models of integration,
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Fig. 5. Decision times (DTs) for decision making networks in which the competition resolution is implemented in MSPRT model of basal ganglia and the integration is
performed by one of the followingmodels: (a) race with threshold, (b) feed forward inhibition and (c) leaky competing accumulator. DTs are shown for initial times between
0 and 1500 ms, and different values of the parameters of integration models.
Fig. 6. Comparison of decision times for varying leak and integration threshold in
the Feed Forward Inhibition with Threshold model with v = 1, initial time 500 ms
and error rate 1%.

we need to compare the models for their best parameters; hence
before we perform the comparison we first find the optimal
parameters for each model of integration.

4.2.1. Optimal parameters for the RwT model
When simulating the RwT model, there are two parameters to

optimise; the leak (k) and the integration threshold (θint ). However
simulations (not shown here) show that as long as the θint is set
accordingly, there is no difference in performance for different
values of k, as long as it is of amagnitude comparable to the inputs.
Thus in simulations of decisionswith integration by the RwTmodel
in Fig. 5(a) the leak is fixed at 10.
Fig. 5(a) show that the optimal value of the integration

threshold is around 0.3–0.35. When the integration threshold is
set at this level, the initial time before stimulus onset does not
influence the DT, which can be seen as the ‘‘valley’’ in Fig. 5(a). The
intuition for why the integration threshold should be around 0.3
can be provided by an analysis of the potential field for the RwT
model (Fig. 4(e)). It can be seen that when y2 = 0.3, the potential
field is perpendicular to y2. This happens because at this point
x2 = y2 · k and the leak therefore balances the input, hindering
any further integration. The higher above x2/k the threshold is set,
the lesser is the chance of y2 crossing the threshold, but this also
slows down the integration of the winning channel.
If the integration threshold is set too low, the losing integrator
will drift across the integration threshold. If the integration
threshold is set too high, none of the integrators will cross the
integration threshold. This suggests that the optimal integration
threshold is between x1/k and x2/k. From a biological point of
view, it does not seem likely for a system to use such a specific,
input dependent parameter unless there is some automatic setting
procedure.
It is also worth noting in Fig. 5(a) that if there is no initial time,

increasing the integration threshold increases DT. This follows
from the fact that the leak in the RwT model introduces forgetting
of information, hence the higher the integration threshold, the
more early evidence is discarded by the model, necessitating
longer DT to gain required accuracy.

4.2.2. Optimal parameters for the FFI model
There is only one parameter to set when simulating the FFI

model, and that is the weight of the inhibitory connections. How-
ever, we have argued that to get the desired behaviour of the inte-
grator neurons, the inhibition weight has to be 1. This is however
not the optimal parameter when there is an initial time and the
output from FFI projects to the MSPRT model of the basal ganglia.
Simulations for input parameters given in Section 3 shows that the
inhibition weight that gives the shortest DTs for the FFI model is
approximately 0.6 (see Fig. 5(b)).

4.2.3. Optimal parameters for the FFIwT model
The motivation for introducing the threshold to the FFI model

was to decrease the variation in starting points while maintaining
near perfect integration, thereby improving on the performance
with initial time. Because there are two parameters to set in the
FFIwT model (θint and k), we find the optimal parameter setting
by fixing the initial time to 500 ms and, through an exhaustive
parameter search, compare the decision times for all values of θint
and k in a range tested. Note that the points where either θint = 0
or leak = 0 corresponds to the FFI model without threshold.
However, as can be seen in Fig. 6, the optimal performance is

achieved for the parameters that reduce the FFIwTmodel to the FFI
model. This shows that there is no performance gain by introducing
the leak. The reason for this is that the integration threshold
(θint ) needs to be set low to allow for the winning alternative to
drift across it, but this low threshold is not enough to constrain
the starting point sufficiently. Recall from Section 4.1 that the
highest θint that can be exceeded by integrators after stimulus
onset without the help of noise is given by x1k in the RwT model,
and by x1−x2k in the FFIwT model, so to allow effective evidence
integration after stimulus onset, θint needs to be set to a lower value
in the FFIwT model than in the RwT model. But setting θint to a
lower value impairs noise suppression in the initial time, which
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(a) Fixed error rate. (b) Fixed decision time.

Fig. 7. Comparison of decision times and error rates for varying initial times for leaky competing accumulator (LCA), feed forward inhibition (FFI) and race with threshold
(RwT) models, each using its optimal parameters found in Section 4.2. Figure (a) shows the decision times for a 1% error rate. Figure (b) compares error rates for a fixed
decision time of 220 ms. To simulate the response-signal paradigm, the integration process was stopped 220 ms after stimulus onset, and the alternative corresponding to
the integrator with the highest activity level was chosen.
explains why the RwT, but not the FFIwT, can suppress the noise
effectively.
Comparing Fig. 5(b) (for initial time 500ms) and 6 (note that the

scale of the decision time axis is different between Figs. 5 and 6)
one can observe that there is no performance gain associated with
this addition to the model, hence we will not discuss the FFIwT
model further.

4.2.4. Optimal parameters for the LCA model
When simulating the LCA model, there are two parameters

that can be optimised, the leak (k) and the weight of the mutual
inhibition (w). However, as shown by Bogacz et al. (2006) the LCA
model shows best performance if it is balanced, i.e., the mutual
inhibition weight, w, is equal to the integrators own decay, k. The
LCA model is therefore only tested with the balanced parameters.
Simulations show that the optimal value for k and w is ≈10,

as seen in Fig. 5(c). It shows that the ‘‘valley’’ in this parameter
space is much wider than with the RwTmodel, suggesting that the
LCA model is a more robust model when it comes to parameter
variations.

4.2.5. Comparison of performance
Fig. 7(a) compares DTs for the models with their best parame-

ters found from Fig. 5. It shows that the LCA model is significantly
faster than the RwT model with the DT of the FFI model growing
rapidly with increasing initial time. Comparing the LCA and the
RwT models performances across different values of initial times
with a paired t-test confirms that the LCA model is significantly
(with a p-value of 3.1× 10−11) faster than the RwT model.
Fig. 7(b) compares the three models with respect to another

performance criterion, the error rate for fixed decision time, and
thus simulates the subjects’ performance in the response-signal
paradigmdescribed in Section 2.1 (see caption for details). It shows
the same results as Fig. 7(a), i.e., that the LCAmodel is significantly
more accurate than the RwT model, with the FFI model having a
steady rise in error rate with increasing initial time.
Since the FFI model does not include any mechanisms prevent-

ing noise integration in the initial time, it is not surprising that its
performance isworse than those of the LCA and RwTmodels. How-
ever, it is worth discussing the reasons for the difference between
the LCA and RwT models. As mentioned in Subsection Optimal pa-
rameters for the RwT model, the decay in the RwTmodel introduces
forgetting information presented before exceeding the integration
threshold, which has detrimental effects on performance. By con-
trast, in the LCA model, the decay of information can be balanced
by mutual inhibition preventing the forgetting of information (Bo-
gacz et al., 2006; Usher & McClelland, 2001), as we now explain. In
the LCAmodel, the position along the attracting line (diagonal line
in Fig. 4(h)) expresses the difference between the activities of inte-
grators a = y1−y2 (Bogacz et al., 2006; Usher &McClelland, 2001).
When k = w, the changes in a can be computed by subtracting
Eq. (5):

da = dy1 − dy2 = x1 + c · dW1 − x2 − c · dW2. (7)

Thus the position along the attracting line accumulates the
difference between the inputs to the integrators without the decay
of information. The information decays only if the activity of one of
the integrators decreases to 0, but this is likely to happen only in
the initial time (Fig. 4(d)) or when high confidence in the choice
has been reached (Fig. 4(h)).
Thus in summary, the decision network integrating information

with the LCA model achieves shortest DT, because it is likely to
discard information in the initial time and at the end of decision
process but not during the critical period after stimulus onset.

4.3. Sensitivity to parameter variations

Even though the LCA model performs better under optimal
parameter settings, it is unlikely that these exact parameters will
be implemented biologically. In this section we will therefore
test how sensitive the FFI and the LCA models are to the
parameter settings. We will test the FFI model with unequal
forward inhibition weights, i.e., where the weight of the inhibitory
connection from sensory neuron 1 to integrator 2 (v1) is different
from the weight of the inhibitory connection from sensory neuron
2 to integrator 1 (v2). We also test the LCA model with unequal
mutual inhibition weights i.e., where the weight of the inhibitory
connection from integrator 1 to integrator 2 (w1) is different
from the weight of the inhibitory connection from integrator 2 to
integrator 1 (w2); with unequal inhibition (w) and leak (k) weights
to test how well the LCA model performs when the parameters
are not balanced for optimality; as well as with different evidence
input for the losing alternative (I2) to testwhether the performance
is a result of a specific level of conflict.
In these simulations it makes a difference whether the stronger

weights are afferents to the winning or the losing alternative, and
it is therefore necessary to randomize which alternative is correct,
and change the simulations accordingly.
The results are shown in Fig. 8. Fig. 8(a) and (b) show that the FFI

and the LCA model both produce robust results for small changes
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Fig. 8. Decision times for decisionmaking networks inwhich the competition resolution is implemented in anMSPRTmodel of basal ganglia and the integration is performed
with varying parameters. Figures (a) and (b) shows the decision times with unequal inhibition weights when using the Feed Forward Inhibition model and Leaky Competing
Accumulator (LCA)model respectively. Figure (c) shows the decision times for the LCAmodel with unequal leak and inhibition, and (d) for different levels of evidence.Where
nothing else is mentioned, the following parameters are used: I1 = 4.5, I2 = 3, w = 10, k = 10.
(≈10%) in the inhibitionweights. Fig. 8(c) show that the LCAmodel
is very robust for changes in the relative strength of the leak and
the inhibition weight. Only when the leak is 50% larger compared
to the inhibition weight, is there an increase in decision times.
Fig. 8(d) shows that even though the decision times of the

balanced LCA model increases for more similar inputs, it remains
invariant of initial time, suggesting that it suppresses noise
effectively for a wide range of input parameters.

4.4. Termination

Whereas the role of the integration initiation is to optimise the
DT of a single decision, the role of the integration termination is
to optimise a series of decisions by lowering the firing rate of the
neural integrators, allowing similar subsequent decisions as fast as
possible.
There are two basic models for lowering the activity of inte-

grators following a decision: (i) a decision triggered signal is sent
to appropriate neural areas inhibiting firing, thereby ensuring that
the integration level drops off, (ii) the firing rate of integrators de-
cays after stimulus offset due to neuronal leak. In this subsection
we assume the latter model and we come back to the first model
in the Discussion.
To test themodels’ ability to terminate after a decision, we have

made simulations where the stimulus is turned off (x1 = x2 = 0)
after a decision is made.
Fig. 9(a) shows that the RwT model is not capable of termina-

tion, as the activity levels of integrators do not drop off after the
stimulus is turned off. In the RwT model, there is no decay above
the integration threshold, hence, as Fig. 4(e) shows, there is no net
drift above the integration threshold when there is no stimulus in-
put. This results in the activity of the winning integrator undergo-
ing a random walk starting from the point where the decision is
made. As mentioned earlier, the FFI model will exhibit exactly the
same termination behaviour due to the lack of decay.
It can be seen in Fig. 9(b) that the winning integrator of the LCA

model drops off after the decision has beenmade. This is due to the
fact that the decay of activity is always present in this model, and
even though the leak is relatively small (10), the integrator is at the
baseline after around 100 ms, showing that the ability to make a
fast termination does not impair the ability to make fast decisions.

5. Discussion

In this article we compared the performance of decision
networks in which evidence was integrated according to the RwT,
FFI, FFIwT and LCA models and the competition was resolved in
the MSPRT model of the basal ganglia. We demonstrated that the
LCA model provides the most efficient initiation and termination
capabilities to the decision network. It includes the mechanism
preventing noise integration before stimulus onset (Brown et al.,
2005), does not suffer from decay of information during the
decision process (Bogacz et al., 2006; Usher & McClelland, 2001),
and allows decay of activity of integrators after stimulus offset.

5.1. External initiation and termination signals

There exists a possibility that initiation and termination of
a decision process is caused by external signals that reset the
integrators.
An argument for the existence of a reset signal on stimulus

onset is the dip in activity reported in both LIP (Roitman & Shadlen,
2002) and FEF (Sato & Schall, 2001) that seems to reset the
integrators to a baseline level. This is not inconsistent with the
LCA model as there is a small variation in starting point, and the
dip might help even faster decisions to be made. One candidate
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Fig. 9. Decision process for the race with threshold (a) and the leaky competing accumulator (b) models. After an initial time of 500 ms, stimulus of x1 = 4.5 and x2 = 3 is
turned on. Once enough evidence is integrated to make the decision with 99% certainty, the decision is made and the stimuli is turned off. The end of termination is set to
be the point where the activity drops to a level comparable to the activity level reached during the initial time.
for a reset signal prior to a decision is the burst of activity seen in
MT neurons on stimulus onset (e.g. Osborne, Bialek, & Lisberger,
2004). However it has been proposed that the dip is rather a result
of the subjects change in attention from target stimuli (present
before stimulus onset in themotion discrimination experiment) to
motion stimuli (Wong, Huk, Shadlen, & Wang, 2007).
Bullock (2004) describes a computational model of competitive

queuing of actions that replicates neuron measurements of
serial movements presented in Averbeck, Chafee, Crowe, and
Georgopoulos (2002) by implementing an inhibiting connection
between a choice layer and a planning layer. It is possible that such
a mechanism is implemented in the decision process described
in this paper, so that when a decision is made, inhibition is sent
to the integrator responsible for that particular action, thereby
taking away the need for an inherent termination in the integration
model.
However, in serial reaction time tasks, an inhibition signal to

the winning integrator would most likely lead to this alternative
being less likely to be chosen in a quickly succeeding trial, since the
integration would have to overcome the inhibition signal. What is
actually observed is that subjects are more likely to repeat their
decision in a fast serial reaction time (Soetens & Notebaert, 2005),
which is consistent with the uninhibited termination of the LCA
model.
If such a signal resets the integrators prior to, and/or after a

decision, FFI and LCA models would indeed be able to perform
equally well. However, the FFI model would still integrate before
stimulus onset, which would lead to much more variation in the
starting point of integration than is observed in Fig. 1(b). To prevent
it, the reset signal would have to be applied all the time except
during the decision, which would be energy inefficient.
Furthermore, note that the problem of when to apply the reset

signal is a difficult decision task in itself, and thuswould potentially
require an additional circuit to make this decision.
Moreover, even if reset signals exist, it will not radically change

the performance of the LCA model. Therefore, if the initiation and
termination of an integration process can be efficiently realised in
the LCA model itself, it seems that the alternative, of a separate
energy inefficient circuit making additional decisions on whether
or not to reset, would bring an evolutionary disadvantage.

5.2. Alternative mechanism for initiation of integration

Recently, Wong et al. (2007) presented an alternative mecha-
nism preventing integration of noise in the initial time in a model
with architecture similar to the LCAmodel.Wong et al. assume that
the input to the integrators in the initial time is larger than in the
decision time.3 By contrast we make the opposite assumption, see
Fig. 3.
Their initiation mechanism relies on saturation of NMDA-

currents inside the integrator neurons during the initial period.
Thus Wong et al. predict that the mean of the integrators’ activity
before stimulus onset should not be lower than the mean activity
across integrators during decision time (see Figure 2 inWong et al.
(2007)). By contrast, the assumption about inputs made by us in
Fig. 3 predict that themean activity of integrators in the initial time
should be lower than during the decision time.
First, we compared these predictions with published data

(Figure 7a in Roitman and Shadlen (2002) and Churchland, Kiani,
and Shadlen (2008), Huk and Shadlen (2005), Thompson, Hanes,
Bichot, and Schall (1996)) from experiments under the free-
response paradigm that is the focus of both our and Wong et al.’s
work. In all these experiments the average firing rate in the initial
time was lower than during the decision time, exactly as predicted
by our model. One example of integrator activity during a free-
response task is shown in Fig. 1 of this article, note that the levels
of activity at stimulus onset are near 0, and the mean at decision
time is much higher than the mean at stimulus onset.
Second, we compared the predictions with published data

from experiments under the response-signal paradigm (Figure 9
in Roitman and Shadlen (2002) and Kiani, Hanks, and Shadlen
(2008), Shadlen and Newsome (2001)). In all these experiments
the mean activity of integrators during initial time and decision
time were fairly similar. Nevertheless, one could speculate that
in the response-signal paradigm, additional mechanisms operate
that stop the integrators from achieving higher firing rates during
decision time to prevent premature responses before the response
signal is presented.

5.3. Predictions and comparison with existing data

Due to the evolutionary pressure for speed and accuracy of de-
cisions, the analysis in this article suggests that the integration of
evidence in the cortex should follow the LCA model. Therefore, in
this subsection we compare themodels with existing data and dis-
cuss the experimental predictions that could distinguish whether
the neural integration follows the LCA or other models, most no-
tably the FFI model. Note that in this paper we only consider ev-
idence integration in decision making, and even though there is

3 Wong et al. assume that during the initial time, subjects focus their attention
on the target stimuli present in themotion discrimination task. These target stimuli
are in the receptive fields of the neural integrators, hence Wong et al. assume that
they provide strong input to the integrators.
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evidence suggesting that both feed-forward and lateral inhibition
are present in the brain, there is currently no neurophysiological
evidence for excluding either of the models (Burle, Vidal, Tandon-
net, & Hasbroucq, 2004).

5.3.1. Comparison with existing data
One way of distinguishing between the LCA and the FFI

model would be a direct examination of the neurobiological
network including themotion detecting neurons (areaMT) and the
integrator neurons (e.g., area LIP). What makes this comparison
difficult is that the networks required for making a plausible
implementation of each model are very similar. In each of
the models the integrator neurons will receive excitatory input
from the sensory neurons and inhibitory inputs from a pool of
local interneurons. The difference is in the input to the pool of
interneurons; in the FFI model the input should come from the
sensory neurons, in the LCA model from the integrator neurons.
However, since both distal and local connections to the inhibitory
interneurons exist (Shepherd, 2004), both models are plausible
from a neurobiological perspective, and until the inhibitory pool
of interneurons has been localized, distinguishing between the
models must be done in a different way.
In a comparison of sequential sampling models for two-

choice decisions, Ratcliff and Smith (2004) showed that the
LCA model could explain the experimental data from a signal
detection experiment, a lexical decision experiment and a study-
test recognition memory experiment. The LCA model could, with
reasonable success, be fitted to the experimental reaction time
data, capturing the initial skewness of the RT distribution, as well
as the change in distribution with varying difficulty. Though it was
not the only model capable of explaining the data, the others were
of the closely related diffusion model type.
It isworth noting that for both the FFI and the FFIwTmodels, the

potential field for the losing alternative will result in the activity
of the losing alternative’s integrator moving towards 0 following
stimulus onset,whichmakes predictions that are inconsistentwith
the data shown in Fig. 1, where the activity of the losing integrators
initially increase.

5.3.2. Predictions
In the LCA model, the integration process has a natural

saturation point (Fig. 4(h)) which is not the case in the FFI model.
Thus if the stimulus is left on as in the interrogation paradigm
(see Section 2.1) with long interrogation times, the FFI models
predict that the neural integrator for the winning alternative
should continue to integrate until it reaches a biological limit for
neural firing rate, while the LCAmodel predicts that it will saturate
at a much lower firing rate. The existing experimental data agrees
with the prediction of the LCA model, as for example the mean
activity of LIP neurons saturated at levels around 25 Hz in the
study of Shadlen and Newsome (2001) (as shown in Figure 8 in
their article), which is much lower than the biological limit. To
account for these data within the FFI model, Mazurek et al. (2003)
introduced an additional assumption to the FFI model, that the
activity levels of the integrators are frozen in the interrogation
paradigm, when the decision threshold (in the basal ganglia) is
reached.
However, the LCA model additionally predicts that the satura-

tion of the activity of the winning integrator should happen when
the losing integrator reaches zero (the FFI model with the addi-
tional assumptions (Mazurek et al., 2003) does not make such a
prediction). This prediction is difficult to test as it requires an anal-
ysis of neural activity on individual trials.
There is a prediction that could be used as the basis for an

experiment differentiating between the LCA and FFI models. The
FFI model predicts that the firing rate of integrator neurons should
only depend on the difference between the inputs but not on
the sum of the inputs. By contrast, the LCA model predicts that
the firing rate of the integrator neurons should also depend on
the sum of inputs, which influences the position of the attracting
line (Bogacz et al., 2006). In an experiment testing this prediction
one could use stimuli in which the amount of evidence supporting
both alternatives can be varied independently (e.g. including dots
moving in two directions or more (Niwa & Ditterich, 2008)), and
record the integrator neurons.
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