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Psychological experiments have shown that the capacity of the brain for
discriminating visual stimuli as novel or familiar is almost limitless.
Neurobiological studies have established that the perirhinal cortex is
critically involved in both familiarity discrimination and feature extrac-
tion. However, opinion is divided as to whether these two processes are
performed by the same neurons. Previously proposed models have been
unable to simultaneously extract features and discriminate familiarity
for large numbers of stimuli. We show that a well-known model of vi-
sual feature extraction, Infomax, can simultaneously perform familiarity
discrimination and feature extraction efficiently. This model has a sig-
nificantly larger capacity than previously proposed models combining
these two processes, particularly when correlation exists between inputs,
as is the case in the perirhinal cortex. Furthermore, we show that once the
model fully extracts features, its ability to perform familiarity discrimi-
nation increases markedly.

1 Introduction

Familiarity discrimination is concerned with determining whether a stim-
ulus is novel or has been previously encountered. Investigations into the
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capacity of the human brain for familiarity discrimination have shown
that even after single-trial presentations of 10,000 pictures, participants
were able to discriminate their familiarity with an average accuracy of 83%
(Standing, 1973).

Results obtained using various experimental techniques (including stud-
ies of amnesic patients, lesion studies, fMRI, single neuron recording, and
gene expression) have established that familiarity discrimination is critically
dependent on a part of the medial temporal lobe called the perirhinal cortex
(for reviews, see, Brown & Aggleton, 2001; Brown & Xiang, 1998; Eichen-
baum, Yonelinas, & Ranganath, 2007; Murray & Bussey, 1999). Further-
more, these data indicate that a fraction of perirhinal neurons are capable
of discriminating novel and familiar visual stimuli by a difference in firing
rate—namely, the neurons have a reduced firing rate for stimuli that have
previously been seen (Brown, Wilson, & Riches, 1987; Brown & Xiang, 1998;
Fahy, Riches, & Brown, 1993; Li, Miller, & Desimone, 1993; Miller, Li, & Desi-
mone, 1993; Riches, Wilson, & Brown, 1991; Sobotka & Ringo, 1993; Xiang &
Brown, 1998). Such neurons are called novelty neurons, and they have been
found in the perirhinal and neighboring cortices (Brown & Xiang, 1998).

As well as familiarity discrimination, the perirhinal cortex is also in-
volved in visual processing, and experiments suggest that neurons in this
area represent conjunctions of features of visual stimuli (Bussey, Saksida,
& Murray, 2005; Murray & Bussey, 1999). Recordings from neurons in the
inferotemporal cortex, of which the perirhinal cortex is part, have revealed
that they alter their patterns of responsiveness to sets of familiar stimuli
after the addition of novel stimuli (Kobatake, Wang, & Tanaka, 1998; Rolls,
Baylis, Hasselmo, & Nalwa, 1989). This finding shows that representations
of stimuli in the perirhinal cortex are not constant but change to incorpo-
rate new information. This is a strong indicator that feature extraction is
taking place. A model of the medial temporal lobe has been proposed that
incorporates the perirhinal cortex in this role (Bussey et al., 2005).

Given these findings, models have been proposed that attempt to com-
bine the perceptual and mnemonic roles of the perirhinal cortex (Norman,
Newman, & Perotte, 2005; Norman & O’Reilly, 2003; Sohal & Hasselmo,
2000). However, it has been shown that simplified versions of two of these
models, both based on Hebbian learning (Norman & O’Reilly, 2003; Sohal
& Hasselmo, 2000), have a greatly reduced capacity for familiarity discrim-
ination when the inputs to the networks are correlated (Bogacz & Brown,
2003; see section 3.1 for details of patterns used in these testing these mod-
els), a condition shown to be realistic in the perirhinal cortex (Erickson,
Jagadeesh, & Desimone, 2000). It has also been shown (Bogacz & Brown,
2003) that these two “combined” models (Norman & O’Reilly, 2003; Sohal
& Hasselmo, 2000) fail to extract independent features. The model of Nor-
man et al. (2005), which combines Hebbian and anti-Hebbian learning, can
achieve high capacity for familiarity discrimination, but we are not aware
of any published analysis of its ability to extract features.
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Another model that has high capacity for familiarity discrimination (pro-
portional to the number of synapses in the network) is based on anti-
Hebbian learning (Bogacz & Brown, 2003). Additionally, this model repro-
duces the reduced neuronal response to familiar stimuli seen in recordings
from perirhinal neurons. However, this model is specialized in familiarity
discrimination, positing that a separate network of perirhinal neurons per-
forms feature extraction. Until now, it has not been known if it is possible to
efficiently perform familiarity discrimination and feature extraction within
a single neural network.

Here we show that a well-known model of visual feature extraction,
Infomax (Bell & Sejnowski, 1995), can simultaneously perform familiarity
discrimination and feature extraction efficiently. This and similar algorithms
have been applied to modeling visual feature extraction in the primary
visual cortex and have been shown to result in neurons with receptive fields
similar to those observed experimentally (Bell & Sejnowski, 1997; Bogacz,
Brown, & Giraud-Carrier, 2001a; Olshausen & Field, 1996, 1997). A similar
algorithm has been also used to model feature extraction in later stages of
ventral visual stream (Waydo & Koch, 2008). The Infomax model includes
an anti-Hebbian term in its learning rule, and its capacity for familiarity
discrimination scales with network size in a similar way to the anti-Hebbian
model. Since Infomax is a relatively abstract model, we do not propose
that it describes the details of information processing in neural circuits
of the perirhinal cortex, but rather that it suggests general computational
principles that could be employed by this cortex to achieve high-efficiency
familiarity discrimination combined with feature extraction.

In section 2 we give details of the Infomax model. Sections 3 and 4
then describe simulations performed to test the capacity of the Infomax
model, first for familiarity discrimination alone and then for familiarity
discrimination combined with feature extraction. In section 5, we discuss
possible future directions for investigating how the Infomax model could
be implemented in the perirhinal cortex and the relationship of the model
to experimental data.

Simulations establishing model capacity for familiarity discrimination
and feature extraction can be replicated using the familiarity discrimina-
tion toolbox, which can be downloaded from http://www.cs.bris.ac.uk/
Research/MachineLearning/FamTool/.

2 The Infomax Model

The Infomax model is implemented in a fully connected network with N
neurons in each layer, as shown in Figure 1. The weights wi j of the con-
nections between input j and novelty neuron i are initialized by randomly
generated numbers from a uniform distribution between −0.5 and 0.5 and
then normalized such that for each novelty neuron i, the standard deviation
of the associated weights is 1 and the mean is 0. We assume that all stimuli
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Figure 1: Architecture of the Infomax model. Circles denote neurons, and ar-
rows denote connections. The network is fully connected, with a layer contain-
ing novelty neurons receiving feedforward projections from a layer of input
neurons.

are represented as patterns of activity of the input neurons (i.e., vectors
of length N). During the learning phase, the activation values x j of input
neurons are set to the pattern being learned, and the synaptic inputs of the
novelty neurons are computed from

hi =
N∑

j=1

wi j x j . (2.1)

The activation values yi of the novelty neurons are then computed as

yi = tanh (hi ). (2.2)

The weights wi j determine how inputs x j are encoded in the activity of
novelty neurons yi . The Infomax algorithm finds the values of wi j for which
yi maximizes the information about x j (hence the name of the algorithm).
The information is maximized when activities of different novelty neurons
are independent. If the activity of two neurons is correlated, they carry less
information (in the extreme case of two neurons having fully correlated, i.e.,
identical, activity, they carry the same amount of information as a single
neuron). Hence, Infomax can be used to extract independent features.

In the original formulation of the Infomax algorithm (Bell & Sejnowski,
1995), after presentation of each input pattern x j , the weights of the connec-
tions between neurons are modified according to the following rule so as to
optimally improve the information carried by yi about x j (i.e., modification
is proportional to the gradient of the information over the weights):

�wi, j = η

N

(
(wT )−1

i, j − 2yi xj
)
. (2.3)
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Here η represents the learning rate. To understand why the Infomax model
can be used for familiarity discrimination, let us consider the second term
on the right-hand side, −2yi xi . It is an anti-Hebbian term, so called be-
cause it works in the opposite way to the Hebbian learning rule (Hebb,
1949): the minus sign means that the weights between coactive neurons
are weakened rather than strengthened. This tends to cause a response
closer to zero for familiar stimuli, because when a stimulus is repeated, less
input is received through the weakened weights. This property is impor-
tant because it allows the model to discriminate familiarity on the basis
of neuronal responses (as described toward the end of this section). Such
an anti-Hebbian term has been used in previous models of familiarity dis-
crimination (Bogacz & Brown, 2003; Brown & Xiang, 1998; Kohonen, 1989).
Anti-Hebbian weakening of synaptic weights between coactive neurons is
biologically plausible because homosynaptic LTD can be demonstrated in
the perirhinal cortex (Brown & Bashir, 2002).

The first term of equation 2.3, (wT )−1
i, j , involves the calculation of an

inverse matrix, which is computationally expensive; hence, in our simula-
tions, the weights are updated using the following extended learning rule
(Lee, Girolami, & Sejnowski, 1999):

�wi, j = η

N

(
wi, j − (yi + hi )

N∑
k=1

hkwk, j

)
. (2.4)

This rule uses the natural gradient weight update (Amari, Cichocki, & Yang,
1996) and was specially designed for patterns generated by combining
features so that each feature occurred in only a small fraction of patterns.
The patterns we used in our simulations have this property (see section 3.1),
and hence in this letter, we present the results obtained with this extended
rule.

Since in the Infomax model, the responses of novelty neurons tend to be
closer to zero for repeated stimuli, a decision on the familiarity of a pre-
sented stimulus may be reached by measuring the overall response of nov-
elty neurons. Hence, familiarity discrimination is simulated in the model
in the following way. The activities of input neurons are set to the pattern
being discriminated. The synaptic inputs are computed from equation 2.1,
and the total response of the network on presentation of a stimulus x is
computed as

d(x) =
N∑

i=1

|hi |, (2.5)

where || denotes the absolute value. We refer to d as the decision function. If
the decision function is above a certain threshold (determined as described
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in section 3.1), the pattern is classified as novel. Otherwise, it is classified as
familiar.

3 Capacity of the Infomax Model for Familiarity Discrimination

3.1 Simulation Method. In order to compare models, Bogacz and
Brown (2003) developed benchmark tests for measuring the capacity of
models for familiarity discrimination. These tests have been used to com-
pare and contrast a number of previous models of familiarity discrimina-
tion, so for comparison, the same tests were used here.

The capacity is defined as the number of stored patterns P for which
the familiarity discrimination error rate is equal to 1%. We search for this
capacity by evaluating error rate for different values of P in the following
way. For a given value of P, a set of 2P stimuli is generated. Each stimulus
is a pattern of activity of N input neurons (a vector of length N). This set of
stimuli is split, and each pattern from the first P of the stimuli is presented
once to the model. These P training stimuli should then be “familiar” to
the network, so that if we present them again, the values of the decision
function for each of them should be lower than for the novel, untrained
stimuli.

The network is then tested by presenting all 2P of the stimuli—both
trained and untrained—to the network and evaluating the decision func-
tion for each. A threshold value that best separates the decision function
values of the two groups is then found numerically. The number of incorrect
decisions divided by the total number of stimuli gives the error rate.

It is necessary to establish the resistance of models to correlation between
input neurons, since it has been shown that this type of correlation exists
in the perirhinal cortex (Erickson et al., 2000). We tested the Infomax model
on two types of patterns with such correlations. The first type of patterns
(type 1) were those previously used by Bogacz and Brown (2003) to test
the capacity of other models’ familiarity discrimination. These patterns are
generated by introducing a specified amount of correlation between each
pair of input neurons. This is done by first generating an initial template
pattern, xtemp, by randomly assigning each of its bits xtemp

j to 1 or –1. Sub-
sequent patterns are then generated such that the bit at position j is equal
to xtemp

j with probability 1/2 + 1/2b, or is equal to –xtemp
j with probability

1/2 – 1/2b. The parameter b controls the similarity between patterns and the
template, and it determines the amount of correlation between the activities
of input neurons, as b2 is equal to the absolute value of correlation |ri j |
between xi and x j across the patterns (in particular, ri j = b2 if xtemp

i = xtemp
j ,

and ri j = –b2 if xtemp
i �= xtemp

j ). Simulations were performed for values of b
between 0 and 0.9 at intervals of 0.1. In order to ensure each bit position is on
average equally active, it is necessary to invert half of them after generating
patterns.
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Figure 2: An example showing how a feature-based pattern is generated. The
matrix inside the dashed square is a sample feature matrix. Each column in
this matrix is a feature, and empty and filled squares denote bits equal to 0
and 1, respectively. For simplicity, only the first bits of a few first features are
shown. The vector at the bottom of the figure indicates which features are used
to create the pattern (it is the source vector). In particular, its second, third, and
fifth bits are equal to 1, which implies that the pattern is created by adding the
second, third, and fifth features. The resulting pattern is shown on the right, and
different shades of gray denote different values of xi (0 = white, light gray = 1,
dark gray = 2, black = 3). Thus, for example, x1 = 3 because the first bit is equal
to 1 in all three features from which the pattern is composed. Analogously, x2

= x3 = 0 because the second and third bits are equal to 0 in the three features,
while x4 = 1 because the fourth bit is equal to 1 only in the third feature.

The second type of patterns (type 2) is generated by combining multiple
features and was previously used by Bogacz and Brown (2003) to assess the
ability of models to perform feature extraction. The patterns are generated
in the following way. First, a set of M sparse features, f, described by binary
vectors of length N, is generated independent of one another. These features
are used as building blocks to construct the patterns, x. Each pattern is
formed by mixing a fixed number of randomly chosen features from the
feature set. Let f j,i be the jth bit of feature i. Let si,μ indicate if feature i is
present in pattern μ. The patterns are generated according to

xj,μ =
M∑

i=1

f j,i si,μ. (3.1)

Figure 2 illustrates how a sample pattern is formed. We refer to f j,i

and si,μ as features and sources, but sometimes they are referred to in the
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literature as factors and loadings, respectively. We fix the number of ones
in each source vector sμ to N/10, meaning that each pattern generated
contains N/10 features. The number of bits switched on in each feature is
set to 30 (the model is, however, robust to changes in this parameter). Input
neurons are also constrained to be active for an equal number of features
(i.e.,

∑M
i=1 f j,i = const).

3.2 Results. Figure 3a shows the simulated capacity of the Infomax
model for patterns similar to a template (i.e., type 1) with different levels of
similarity b and numbers of neurons per layer, N. For comparison, Figure
3b shows the capacity of the anti-Hebbian model (Bogacz & Brown, 2003).
Although there are quantitative differences between the two models, it can
be seen from Figures 3a and 3b that the Infomax and anti-Hebbian models
show qualitatively similar dependence of capacity on b and N. This is to be
expected due to the similarity in the learning rules for these two models.

We investigated how the capacity of the Infomax model scales with net-
work size, for a realistic level of correlation between input neurons. Erickson
et al. (2000) found the mean correlation between distant pairs of neurons in
the perirhinal cortex to be 0.04. As Bogacz and Brown (2003) showed, two
previously published combined models were unable to perform familiarity
discrimination efficiently at this level of correlation. Figure 3c shows the
capacity of the Infomax model if we fix the similarity at b = 0.2 (equivalent
to a correlation of 0.04) and vary the network size. The capacity of the model
is shown together with the closest quadratic fit to the results of simulations,
given by the following equation:

P = 0.0046N2 + 0.66N − 0.74. (3.2)

Bogacz and Brown (2003) have shown that the capacity of the anti-Hebbian
model scales quadratically with network size (P = O(N2 )). Here we see the
same is true of the Infomax model.

Figure 3d shows the capacity of the Infomax model for the feature-based
patterns (type 2) as a function of the network size, together with the closest
linear and quadratic fits. The quadratic fit provides a better match for the
data (p < 10−5, F-test for nested models) and is given by the following
equation:

P = 0.0034N2 + 1.2N − 96. (3.3)

In summary, Figures 3a to 3c show that the capacity of the Infomax model
scales similarly to that of the anti-Hebbian model. Furthermore, the Info-
max model is also resistant to correlated firing between input neurons, in
particular at realistic levels.
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Figure 3: Capacity for familiarity discrimination. Solid lines show the number
of patterns the network could successfully discriminate with an error rate of ≤
1%, as found by simulations. (a) The capacity of the Infomax model for three
different network sizes (N) for different values of the similarity of the input
patterns to the template. Error bars are not shown (the maximum standard
error was 4.2). (b) The capacity of the anti-Hebbian model. Data taken from
Figure 5d of paper by Bogacz and Brown (2003). (c) The capacity of the Infomax
model as a function of network size for patterns with a similarity to template
equal to 0.2. (d) The capacity of the Infomax model as a function of network
size for feature-based patterns.

4 Simultaneous Familiarity Discrimination and
Feature Extraction

We know that Infomax in its original, iterative form is a feature extrac-
tion algorithm. However, it remains to be tested whether the algorithm can
perform both familiarity discrimination and feature extraction simultane-
ously, or even whether it can still perform feature extraction when used in
a single-trial fashion. Both of these questions are resolved in this section.
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4.1 Method of Simulation. In order to measure how many features
a model can extract, we again use the feature-based patterns (type 2, de-
scribed in section 3.1). The generated patterns are presented to the network
in training blocks of 5000. After each training block, the familiarity dis-
crimination of the network is tested using t novel patterns (generated from
the same feature matrix) and the t most recent familiar patterns, where
t ∈ {500, 5000}. This test is carried out as described in section 3.1 and pro-
duces an error rate value (or, equivalently, an accuracy value). Unlike in
the previous familiarity discrimination simulations, we do not search for a
capacity giving a 1% error rate.

We then test the number of features extracted. In order to understand
the method used, it is important to note that equation 3.1 can be expressed
in matrix form as

X = F × S. (4.1)

F, S, and X are matrices composed of columns of features f j , sources sμ, and
patterns xμ, respectively. The goal of feature extraction is then to modify
network weights so that on presentation of any pattern xμ, the synaptic
inputs of novelty neurons reflect the respective source sμ. In matrix form,
this can be expressed as

W × X = Pπ × S, (4.2)

where W is the weight matrix. Since in feature extraction it does not matter
which novelty neuron corresponds to which source si (e.g., hi does not
need to be equal to si , but there should exist a k such that hk = si ), the
source matrix S in equation 4.2 is multiplied by a permutation matrix Pπ

(in which each row and each column contains a single 1 and is otherwise
filled with zeros, so that Pπ × S is equivalent to the matrix S but with
permuted rows). Substituting equation 4.1 into equation 4.2, canceling S,
and post-multiplying by the inverse of F gives us

W = Pπ × F −1. (4.3)

Equation 4.3 is the basis for how feature extraction is assessed. If features
have been fully extracted, the weight matrix should be a row permutation
of the inverse of the feature matrix.

We use the following technique to measure feature extraction. For each
row in the inverse feature matrix, we find the most correlated row in the
weight matrix (using the absolute values of Pearson correlation coefficients)
and then take the mean of these absolute values of correlation. For perfect
feature extraction, this mean value will equal 1. For the initial (randomly
generated) weights, the expected value of the feature extraction measure
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depends on network size and is equal to 0.21 for N = 100, 0.16 for N = 200,
and 0.12 for N = 300.

We continue presenting blocks of training patterns until 500 blocks (2.5
× 106 patterns) have been presented. The tests were repeated for a range of
learning rates and network sizes.

4.2 Results. Figure 4 shows the results of the simultaneous familiarity
discrimination and feature extraction simulations for two learning rates
and three network sizes. For all parameters shown, the measure of feature
extraction always asymptotes. The number of presented patterns required
for convergence is larger for larger networks, since the number of features
increases with network size so the problem becomes more difficult. For the
higher learning rate (see Figure 4, right panels), the convergence of feature
extraction is much faster than for the lower learning rate (see Figure 4, left
panels), but the value to which the feature extraction converges is always
lower, indicating convergence to a poorer quality set of features.

Across learning rates and test sizes, the accuracy for familiarity discrim-
ination increases with increasing network size. It is also higher for 500 test
patterns than for 5000, due to forgetting; since in the model, the information
about all familiar patterns is stored in the same set of synapses, the informa-
tion about older patterns may be overwritten by newer ones. For the higher
learning rate (see Figure 4, right panels), forgetting happens more rapidly
than for the lower learning rate (see Figure 4, left panels), as shown by the
larger loss in accuracy for the larger compared to the smaller test size.

For the lower learning rate (see Figure 4, left panels), the familiarity
discrimination accuracy increases once features have been extracted. This
indicates that accurately extracting underlying features can in some cases
boost accuracy for familiarity discrimination.

Importantly, the model simultaneously discriminates familiarity with
high accuracy and extracts features. In particular, for 300 neurons and a
learning rate of 0.05 (bottom-left panel), not only are features fully ex-
tracted, but the familiarity discrimination accuracy for 500 test patterns, is
100%, and for 5000 test patterns, it is in excess of the 83% accuracy found
experimentally for humans presented with 5000 stimuli (Standing, 1973).

5 Discussion

We have shown that the Infomax model is able to perform familiarity dis-
crimination efficiently and is resistant to correlated firing between input
neurons (in particular, to levels of correlation shown to be prevalent in
the perirhinal cortex). Elsewhere it has also been shown that the Infomax
model is able to reproduce Standing’s presented and retained familiar-
ity discrimination power law (Androulidakis, Lulham, Bogacz, & Brown,
2008). Moreover, the model is able to simultaneously perform familiarity
discrimination and feature extraction.
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Figure 4: Simultaneous familiarity discrimination and feature extraction. For
each panel, accuracy is shown by dashed and dotted lines and percentage
feature correlation by a solid line. The top row of panels shows results for a
network of 100 neurons, the middle row shows results for 200 neurons, and the
bottom row for 300 neurons. Panels in the left column use a lower learning rate
of 0.05, whereas panels in the right column use a higher learning rate of 0.2. For
all panels, the dotted line shows the accuracy when testing on the 5000 most
recently presented patterns, whereas the dashed line shows the accuracy when
testing on the 500 most recently presented patterns. Patterns were generated
with 30 bits per feature and N/10 features per pattern.

5.1 How Is Simultaneous Familiarity Discrimination and Feature Ex-
traction Possible? Simultaneous familiarity discrimination and feature ex-
traction is intuitively a particularly challenging task, since the requirements
for the two goals are seemingly conflicting. Familiarity discrimination
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requires fast one-shot learning, whereas feature extraction requires gradual
learning over multiple stimulus presentations. Nevertheless, it appears that
with Infomax, learning rates exist for which the two processes are mutually
compatible.

If biological feature extraction networks are to be adaptive to changes in
an environment, they need to extract features throughout the animal’s life,
and hence their learning rates should never decay to zero. The learning rate
η does not decay in our model; hence, the weights in the network never
converge, even if our measures of feature extraction are very close to 1 (as in
the bottom-left panel of Figure 4). Instead, the weights fluctuate around the
values required for perfect feature extraction (see equation 4.3) because they
are modified after each pattern presentation. These small departures from
equation 4.3 encode information sufficient to discriminate which patterns
have been presented to the network.

5.2 Influence of Feature Extraction on Familiarity Discrimination.
Our simulations also demonstrate that once the features are extracted, the
accuracy of familiarity discrimination may improve. We now discuss a
possible reason for this observation. Before the weights converge to the
vicinity of the values of equation 4.3, after each pattern presentation they
are modified such that they are moved closer to the values of equation 4.3,
and they encode information specific to the presented pattern. By contrast,
once the weights are in the vicinity of the values of equation 4.3, after each
pattern presentation, they are modified such that they encode information
specific to the presented pattern. Thus, in the latter case, a larger proportion
of weight modifications encodes information specific to individual patterns,
which potentially increases the accuracy of familiarity discrimination.

One can observe in Figure 4 that just before the measure of feature extrac-
tion asymptotes, the familiarity discrimination accuracy slightly decreases
before again increasing toward the value at asymptote. This nonmonotonic
behavior of the accuracy is particularly visible in the bottom-left panel of
Figure 4, and we now discuss a possible reason for this behavior. The mag-
nitude of weight modification after each stimulus presentation is likely to
be higher when the weights are far from the values required for perfect
feature extraction (see equation 4.3) than when the weights approach these
values (because the gradient of the information maximized by Infomax is
likely to be steeper further from the maximum). Thus, as the weights start
to approach equation 4.3, less information about the presented stimuli is
encoded in the weights than was encoded for the preceding stimuli (for
which the weight modifications were larger). Hence, the preceding stimuli
interfere with recently presented ones, and the familiarity accuracy for the
recently presented stimuli starts to decrease (this aspect of the model has
potential parallels in the well-documented effects of proactive interference
in reducing the memory performance of subjects). As learning progresses,
the memory of these preceding stimuli decays, so they no longer interfere
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with newly acquired stimuli. Due to this reduced interference and the re-
duced weight changes associated with feature extraction described in the
previous paragraph, the familiarity accuracy increases.

5.3 Relationship to Experimental Data. If a similar algorithm were
used for feature extraction throughout the visual stream, then earlier vi-
sual areas should also be capable of familiarity discrimination. However,
neurons in early visual areas have small receptive fields and are typically
activated by simpler visual features; they might therefore be expected to dis-
criminate between novel features rather than complex stimuli. The simpler
the type of feature, the less likely it is that a novel one will be encountered
and, correspondingly, the role of that part of the network in familiarity
discrimination will diminish.

Apart from novelty neurons, neurons with other types of response have
also been recorded in the perirhinal cortex (Xiang & Brown, 1998). Recency
neurons have a weakened response to stimuli that were recently presented
but a strong response to other stimuli (regardless of how familiar the stimuli
are to the animal). These pose a new problem when modeling the perirhi-
nal cortex as a whole. Are these neurons part of a separate system, or a
subsystem of familiarity discrimination (Bogacz, Brown, & Giraud-Carrier,
2001b)? Whether or not a subset of neurons in the Infomax model behaves
as recency neurons (i.e., they have responses closer to zero for recently
presented patterns) is currently unclear, but one potential future direction
would be to inspect and classify each neuron during the testing phase. If
recency neurons were not found, introducing shorter-term plasticity into
the model might enable recency neurons to emerge. Alternatively, a sepa-
rate system with the same learning rule but a higher rate of learning could
accurately replicate these recency neurons, but it is unclear what feature
extraction would mean in this context.

The Infomax model does not assume any spatial arrangement of the nov-
elty neurons, and hence it cannot account for the data showing an increase
in correlation between adjacent neurons for familiar stimuli (Erickson et al.,
2000). To address such data, the learning rule would have to be extended
so that adjacent neurons represent similar features (as in Cowell, Bussey,
& Saksida, 2006), and this would be an interesting direction for future
work.

5.4 How Might Infomax Be Implemented in the Perirhinal Cortex?
Another important piece of future work that is beyond the scope of this
letter would be to investigate how the computational principles of the
Infomax model could be implemented by real neurons in the perirhinal
cortical network. A number of different feature extraction models could
be explored here. For example, the model of Olshausen and Field (1996)
performs similar computations to Infomax but is more easily neurally im-
plemented because “the dynamics . . . as well as the learning rule . . . have
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a local network implementation” (p. 608). Thus, future work could involve
investigating whether such more biologically plausible models of feature
extraction could also discriminate familiarity efficiently and how the neu-
ronal activity that these models predict in recognition memory tasks relates
to neurophysiological data.

In the Infomax model, the synaptic weights of a single neuron can take
both positive and negative values and the level of neuronal activity can
be negative, which is not biologically plausible. Furthermore, these two
properties allow the neurons to encode the presence of a feature in negative
activity. When developing a model of feature extraction and familiarity
discrimination in the perirhinal cortex, it will be important to constrain
it such that the presence of a feature can be encoded only by increased
(rather than decreased) activity of neurons representing this feature. In
such a model, in which the levels of neuronal activity will be constrained to
positive values, the decision function of equation 2.5 will express the total
level of neuronal activity (because |hi | = hi for hi ≥ 0). Thus, such a model
would be able to produce reduced levels of neuronal activity for familiar
patterns, seen in the perirhinal cortex (see section 1).

6 Conclusion

Work in psychology and neuroscience suggests that there exists a sepa-
rate familiarity discrimination process in addition to recollection (Brown
& Aggleton, 2001; Yonelinas, 2002). Computational models have addressed
the question of why the brain would include such an additional famil-
iarity process. Bogacz, Brown, and Giraud-Carrier (2001c) showed that
a neural network can perform familiarity discrimination for many more
stimuli than could be recollected by an associative memory network of
the same size. This suggests that relatively few resources are required to
support familiarity discrimination. Here we demonstrate that theoretically,
familiarity discrimination can be efficiently performed by the same net-
work that underlies feature extraction. Therefore, the benefits of familiarity
discrimination might potentially be achieved with almost no additional
resources.
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