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Reinforcement learning models generally assume that a stimulus is pre-
sented that allows a learner to unambiguously identify the state of nature,
and the reward received is drawn from a distribution that depends on
that state. However, in any natural environment, the stimulus is noisy.
When there is state uncertainty, it is no longer immediately obvious how
to perform reinforcement learning, since the observed reward cannot be
unambiguously allocated to a state of the environment. This letter ad-
dresses the problem of incorporating state uncertainty in reinforcement
learning models. We show that simply ignoring the uncertainty and al-
locating the reward to the most likely state of the environment results in
incorrect value estimates. Furthermore, using only the information that is
available before observing the reward also results in incorrect estimates.
We therefore introduce a new technique, posterior weighted reinforce-
ment learning, in which the estimates of state probabilities are updated
according to the observed rewards (e.g., if a learner observes a reward
usually associated with a particular state, this state becomes more likely).
We show analytically that this modified algorithm can converge to correct
reward estimates and confirm this with numerical experiments. The algo-
rithm is shown to be a variant of the expectation-maximization algorithm,
allowing rigorous convergence analyses to be carried out. A possible neu-
ral implementation of the algorithm in the cortico-basal-ganglia-thalamic
network is presented, and experimental predictions of our model are
discussed.
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1 Introduction

Reinforcement learning is a technique that allows an individual to learn
based on rewards experienced through interaction with the environment. It
is inspired by animal behavior (Sutton, 1988) and can be used as a model for
learning tasks such as finding food, avoiding predation, or finding a mate
(Dayan & Abbott, 2001). The goal for a reinforcement learning method is to
estimate the expected reward associated with each state of the environment
(or each action). These estimates can then be used to inform action choice.

The most common models of reinforcement learning use the temporal
difference (TD) method, in which observed rewards are compared with
predicted rewards and the difference used to update the predictions for
the next time step (Sutton & Barto, 1998). Montague, Dayan, and Sejnowski
(1996) have proposed that during learning tasks, this algorithm is employed
in neural circuits of the basal ganglia, and in particular, the TD prediction
error is represented in the activity of neurons releasing neurotransmitter
dopamine. This theory has since been supported by large amounts of ex-
perimental data (Schultz, 1998; Frank, Seeberger, & O’Reilly, 2004; Ung-
less, Magill, & Bolam, 2004; Tobler, Fiorillo, & Schultz, 2005; D’Ardenne,
McClure, Nystrom, & Cohen, 2008).

In theoretical developments of reinforcement learning (see Sutton &
Barto, 1998) it is usually assumed that a learner is able to identify its state
unambiguously on the basis of a stimulus from the environment, and the
reward received is drawn from a distribution that depends on that state.
Hence, it is clear to which state of the environment a received reward should
be attributed and the TD update can be calculated.

However, in any natural environment, the stimulus is noisy and might
even be ambiguous. This situation is modeled in many experiments inves-
tigating the neural bases of decision making (Britten, Shadlen, Newsome, &
Movshon, 1992; Shadlen & Newsome, 1996, 2001; Roitman & Shadlen, 2002).
When there is state uncertainty, it is no longer immediately obvious how
to perform the TD update, since the observed reward cannot be unambigu-
ously allocated to a state of the environment.

This letter addresses the problem of incorporating the resulting state un-
certainty in reinforcement learning models. We show that simply ignoring
the stimulus uncertainty and allocating the reward to the most likely state
of the environment results in incorrect value estimates. Furthermore, using
only the state information that is available before observing the reward also
results in incorrect estimates. We therefore introduce a new technique in
which the estimates of state probabilities are updated according to the ob-
served rewards (e.g., if a learner observes a reward usually associated with
a particular state, this state becomes more likely). We show that this mod-
ified algorithm can converge to correct reward estimates. The technique
uses similar principles to the expectation-maximization (EM) algorithm
(Dempster, Laird, & Rubin, 1977), and in fact we show it to be a version of
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an online EM algorithm (Titterington, 1984; Wang & Zhao, 2006; Cappé &
Moulines, 2009). In the appendix, we show that even if the learner uses
an incorrect model of the probability distribution, the learned distributions
will minimize a standard measure of distance from the true data-generating
distribution. This provides robustness to the choice of probability model.

In the following section, we describe reinforcement learning and the
experimental setup in which stimulus uncertainty is present. In section 3 we
introduce three possible reinforcement learning schemes for such a model.
Section 4 discusses a more challenging environment in which the rewards
for each state are switched partway through the learning process, and it
outlines a modified learning algorithm that responds more successfully to
this change of reward. The proposed algorithm is shown, in section 5, to
be a version of an online EM algorithm; further analysis is provided in
the appendix. Section 6 suggests a possible neural implementation of the
proposed algorithm, and section 7 discusses experimental predictions of
the model.

2 Learning Environment

Consider a learning environment in which there is discrete set of states
{1, 2, . . . , N}. Associated with each state is a reward distribution; if the
environment is in state i at time t the learner receives a random reward
Rt drawn from a distribution with mean μ(i). We assume that, conditional
on the state at time t, the reward Rt is independent of the rewards and
states at all other times (this assumption is satisfied in typical behavioral
experiments). Note that the set of states {1, 2, . . . , N} could actually encode a
set of state-action pairs (s, a ), as in many reinforcement learning algorithms
(Sutton & Barto, 1998), but for the purpose of this letter we prefer not
to introduce this extra level of notational complexity (the issue of online
learning for action selection is discussed briefly in section 7.3).

This letter considers reinforcement learning algorithms that attempt to
learn the mean parameters μ(i) for each state of the environment. In stan-
dard reinforcement learning models, the learner knows unambiguously that
the state at time t is it . It is well known (see Sutton & Barto, 1998) that an
effective scheme in this case is to maintain estimates Qt(i) for i ∈ {1, . . . , N}
and, after observing reward Rt , update the estimates according to

Qt+1(i) =
{

Qt(i) + α
{

Rt − Qt(i)
}

if i = it ,
Qt(i) otherwise, (2.1)

where α ∈ (0, 1) is a learning rate parameter. The term Rt − Qt(i) is called
the temporal difference, since it is the difference between the predicted and
the received reward. Throughout the letter, vector quantities are denoted
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in bold. Thus, Qt denotes the vector (Qt(1), . . . , Qt(N)) of value estimates
that the learner maintains.

Note that, for proofs of the almost sure convergence of reinforcement
learning, one needs the learning rate parameter α to decrease over time
at a particular rate, as in the stochastic approximation literature (see, e.g.,
Kushner & Yin, 1997; Benaı̈m, 1999). However, for this letter, we retain
fixed small α > 0 and provide sketch proofs of convergence results. The
main intuition we will use is that the only valid points of convergence for
such a scheme are stochastic fixed points, where the expected change in
Qt(i) is 0 for each i . Thus, for the simple reinforcement learning scheme,
equation 2.1, we have

E[Qt+1(i) − Qt(i) | Qt] = E
[
I{it=i}α

{
Rt − Qt(i)

}]
=αP(it = i)

{
μ(i) − Qt(i)

}
,

where E denotes expectation, P denotes probability, and I denotes an in-
dicator function taking value 1 if the condition is true and 0 otherwise.
Hence, if P(it = i) is fixed and nonzero for each i , we would expect that
convergence can occur only to points Q∞(i) = μ(i).

In this letter, however, we consider an environment where individuals
do not know the state it unambiguously. Such environments are often used
in psychological experiments to show that humans and animals are unable
to discriminate between ambiguous stimuli with 100% accuracy (Usher &
McClelland, 2001). These studies show that, as the time allowed to observe
the stimuli increases, the discrimination accuracy initially increases but
then reaches an asymptotic level which depends on the difficulty of the
discrimination (Usher & McClelland, 2001). On the basis of the analysis of
behavioral data, it has been proposed that when humans are presented with
ambiguous stimuli they accumulate noisy evidence until the integrated
evidence reaches a fixed threshold (Ratcliff, 1988, 2006). This theory has
been recently supported by neural activity recorded in monkeys (Kiani,
Hanks, & Shadlen, 2008). Other recent evidence (Kepecs, Uchida, Zariwala,
& Mainen, 2008) suggests that rats have a neural correlate of confidence.
Thus, it is reasonable to consider models in which the learner is aware of
their confidence level.

Inspired by this theory, we construct a model in which, at each trial t,
the learner identifies one state st as the true state, and there is probability
ρ > 1/N that this identification is correct. Moreover, the learner knows
this probability ρ, and thus ρ can be interpreted as the learner’s level of
confidence. For simplicity of exposition, we assume that all states other than
that identified by the learner are equally likely to be the true state, so that

P(it = i | st) = ρt(i) :=
{

ρ if i = st ,
1−ρ

N−1 otherwise.
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While this assumption will not be satisfied in most natural environments,
it is not important for our results and simplifies the mathematical exposi-
tion. We furthermore assume that st is equally likely to take any value in
{1, . . . , N}. Again, this simplifying assumption is not important.

3 Reinforcement Learning Models

The standard model of reinforcement learning in equation 2.1 cannot be
applied directly when there is uncertainty about the stimulus that has been
presented since it is not known. In this section, we present several possible
solutions to the problem.

3.1 Winner Takes All. The simplest algorithm we consider is simply to
ignore the fact that stimulus uncertainty exists. We do this by implementing
a “winner-takes-all” strategy where the state st with the highest confidence
is assumed to be responsible for the observed reward. This results in a
reinforcement learning scheme under which

Qt+1(i) =
{

Qt(i) + α
{

Rt − Qt(i)
}

if i = st ,

Qt(i) otherwise.
(3.1)

Note that this is identical to the basic scheme, equation 2.1, except that the
update is applied to Qt(st) instead of Qt(it). One could ask if the incorrect
reward allocations introduced as a result of this strategy will average out,
resulting in correct estimates Qt(i), albeit with higher variance than when
the state information is unambiguous.

To address this question, consider a situation where there are two states
of the environment, so that P(st = 1) = P(st = 2) = 1

2 independently of all
other random variables. The expected change of Qt(1) is given by

E[Qt+1(1) − Qt(1) | Qt]

= E
[
I{st=1}α

{
Rt − Qt(1)

} | Qt
]

= αP(st = 1)
{
E[Rt | st = 1] − Qt(1)

}
= α

2

{
ρμ(1) + (1 − ρ)μ(2) − Qt(1)

}
.

Hence the stochastic fixed point of Qt(1) is Q∞(1) = ρμ(1) + (1 − ρ)μ(2).
Similarly, the stochastic fixed point of Qt(2) is Q∞(2) = ρμ(2) + (1 − ρ)μ(1).
This linear dependence of the fixed point Q∞(i) on the confidence level ρ

is illustrated in Figure 1. Note that unless either μ(1) = μ(2) or ρ = 1, it is
not the case that Q∞(i) = μ(i), so if this algorithm converges, it will not be
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Figure 1: Final estimates found by winner-takes-all reinforcement learning in
a two-state environment with different confidence levels. The circles show the
final estimates for state 1 with actual expected reward 6 and the stars show the
final estimates for state 2 with actual expected reward 2 (see text for simula-
tion details). The dashed lines show the theoretically-calculated stochastic fixed
points, and the dotted lines show the true state values.

to correct estimates of the action values. In the general situation with N > 2
states, an equivalent calculation shows that

Q∞(i) = ρμ(i) + 1 − ρ

N − 1

N∑
j=1; j �=i

μ( j).

To illustrate the performance of this algorithm, consider the following
simple experimental setup with N = 2 states. The rewards in state 1 have a
normal distribution with expected value μ(1) = 6 and variance 1, whereas
the rewards in state 2 have a normal distribution with expected value
μ(2) = 2 and variance 1. A learning episode consists of 2000 iterations of
the learning algorithm, with initial values Q1(1) = Q1(2) = 1

2 (μ(1) + μ(2)).
The learning parameter α is taken to be 0.05 throughout. Figure 1 shows
the final estimates in 50 learning episodes, with a different confidence level
ρ ∈ [0.5, 1] for each trial. The stochastic fixed points are also plotted. It is
clear that the experimental results correspond well with the theory, but
neither results nor theory match the correct estimates except when ρ = 1.

3.2 Confidence Weighted Reinforcement Learning. Clearly the
winner-takes-all procedure is inadequate, since it simply estimates a
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weighted average of the rewards for the different states. However, in sec-
tion 2 we noted that the learner may be able to estimate their confidence
level ρ. Hence, it may be possible to alter the learning rule used in response
to this confidence level.

A simple approach that could be taken to incorporate the confidence into
learning is to weight the update rule for Qt(i) with the confidence in the
stimulus:

Qt+1(i) = Qt(i) + αρt(i)
{

Rt − Qt(i)
}

for i = 1, . . . , N. (3.2)

Note that if ρ < 1, the estimate Qt(i) is updated for each state in every trial.
However, this scheme is the same as that in equation 2.1 if ρ = 1.

Consider again the experimental setup of the previous section with only
two states, each of which is sampled with equal probability independently
at each trial. We see that

E[Qt+1(1) − Qt(1) | Qt]

= 1
2

{
E[Qt+1(1) − Qt(1) | Qt, st = 1] + E[Qt+1(1) − Qt(1) | Qt, st = 2]

}
= 1

2

{
E[αρ{Rt−Qt(1)}| Qt, st = 1]+E[α(1−ρ)

{
Rt−Qt(1)

} | Qt, st = 2]
}

= α
2

{
ρE[Rt | st = 1] + (1 − ρ)E[Rt | st = 2] − Qt(1)

}
= α

2

{
ρ[ρμ(1) + (1 − ρ)μ(2)] + (1 − ρ)[(1 − ρ)μ(1) + ρμ(2)] − Qt(1)

}
= α

2

{
(1 − 2ρ + 2ρ2)μ(1) + 2ρ(1 − ρ)μ(2) − Qt(1)

}
.

Equating this to 0 shows that the stochastic fixed point of Qt(1) is

Q∞(1) = (1 − 2ρ + 2ρ2)μ(1) + 2ρ(1 − ρ)μ(2).

There is a similar solution for Q∞(2). In the general case with N > 2 states,
an equivalent calculation shows that the quadratic dependence on ρ is
retained.

Figure 2 demonstrates this quadratic dependence on ρ, both theoretically
and using the same experimental setup as for Figure 1. Perhaps surprisingly,
this more sophisticated approach, which takes the uncertainty into account,
results in estimates that are even further from the correct values than those
achieved by simply ignoring the fact that the state information is noisy.

3.3 Posterior Weighted Reinforcement Learning. In the previous sec-
tion, we saw that a simple attempt to use the confidence level in deciding
allocation of reward to states resulted in worse performance than simply
ignoring the uncertainty. However, at the point at which the allocation of
the reward to states is made, there is more information available to the
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Figure 2: Final estimates found by confidence-weighted reinforcement learning
in a two-state environment with different confidence levels. The circles show
the final estimates for state 1 with actual expected reward 6, and the stars show
the final estimates for state 2 with actual expected reward 2. The dashed lines
show the theoretically calculated stochastic fixed points, and the dotted lines
show the true state values.

learner than simply the probability distribution ρt = (ρt(1), . . . , ρt(N)). In
particular the reward has also been observed, and this provides additional
information about the true state. In this section, we introduce a new tech-
nique that weights the update to the estimate Qt(i) with the resulting pos-
terior probability that the state is i .

To calculate a posterior probability, the learner must have a model for the
distribution of the rewards. If the state is i and the estimate of the expected
reward in state i is Q(i), then the probability density of the reward is given
by f (r; i, Q(i)). (We use the language of continuous random variables here,
although the probability mass function can be substituted directly in the
case of discrete reward distributions.) Since the prior probability (i.e., the
probability after stimulus observation but before the reward delivery) that
the state was i is ρt(i), the posterior probability that the state is i once the
reward Rt has been observed is given by Bayes’ rule:

P(it = i | Rt, Qt, ρt) = f (Rt; i, Qt(i))ρt(i)∑N
j=1 f (Rt; j, Qt( j))ρt( j)

. (3.3)

Our proposed posterior weighted reinforcement learning (PWRL)
scheme is similar to the confidence-weighted scheme in equation 3.2, but
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now the weights are simply the posterior confidence levels once the re-
ward has been observed instead of the prior confidence levels that do not
incorporate this extra information. The update equation becomes

Qt+1(i) = Qt(i) + α
f (Rt; i, Qt(i))ρt(i)∑N

j=1 f (Rt; j, Qt( j))ρt( j)

{
Rt − Qt(i)

}
for i = 1, . . . , N. (3.4)

Note that given ρt , the density of the reward is
∑N

j=1 f (r; j, μ( j))ρt( j).
Hence, the expected change in Qt(i) is given by

E[Qt+1(i) − Qt(i) | Qt, ρt]

= α

∫ [
f (r; i, Qt(i))ρt(i)∑N

j=1 f (r; j, Qt( j))ρt( j)

{
r − Qt(i)

}]

×
⎡
⎣ N∑

j=1

f (r; j, μ( j))ρt( j)

⎤
⎦ dr. (3.5)

If Qt(i) = μ(i) for all i = 1, . . . , N, we find that

E[Qt+1(i)−Qt(i) | Qt = μ, ρt] = αρt(i)
∫

f (r; i, μ(i))
{
r − μ(i)

}
dr = 0.

Hence Q∞(i) = μ(i) for i = 1, . . . , N is a stochastic fixed point of the system.
For normal random variables with unit variance, the update scheme

reduces to

Qt+1(i) = Qt(i) + α
φ(Rt − Qt(i))ρt(i)∑N

j=1 φ(Rt − Qt( j))ρt( j)

{
Rt − Qt(i)

}
for i = 1, . . . , N, (3.6)

where φ(x) = 1√
2π

exp(− x2

2 ) denotes the standard normal density function.
A particularly biologically relevant example is the case of Bernoulli ran-

dom variables, where the learner gets a unit reward with probability μ(i)
and no reward with probability 1 − μ(i) (where μ(i) ∈ (0, 1)). Bernoulli re-
wards provide less information than normal rewards (since an observation
is merely the presence or absence of reward instead of a reward value),
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(a) (b)

Figure 3: Final estimates found by posterior weighted reinforcement learning
in a two-state environment with different confidence levels. (a) Rewards were
sampled from normal distributions with means at 2 and 6 (b) Rewards were
sampled from Bernoulli distributions with means at 0.2 and 0.8. The dashed
lines show the theoretically calculated stochastic fixed points, which in this case
coincide with the true state values.

so this may be considered a particularly difficult case in which to estimate
values. In this case, the update for each i is

Qt+1(i) =

⎧⎪⎪⎨
⎪⎪⎩

Qt(i) + α
Qt(i)ρt (i)∑N

j=1 Qt( j)ρt ( j)

{
1 − Qt(i)

}
if Rt = 1,

Qt(i) + α
(1−Qt(i))ρt (i)∑N

j=1(1−Qt( j))ρt ( j)

{
0 − Qt(i)

}
if Rt = 0.

(3.7)

The results for the same experiments as presented in the previous two
sections are shown in Figure 3a, where it is clearly seen that the final es-
timates in this case are correct at most confidence levels ρ. Errors occur
only for low ρ values, where the final estimates are sometimes swapped:
Qfinal(1) ≈ μ(2) and Qfinal(2) ≈ μ(1) (e.g., note the stars in the top left cor-
ner of Figure 3a). This happens when the stimulus is incorrectly identified
in early trials, and subsequently the likelihood terms f (r; i, Q(i)) dominate
the prior values ρ(i). We discuss this more fully in the next section and
the appendix. Figure 3b shows similar results but for Bernoulli rewards,
where μ(1) = 0.8, μ(2) = 0.2. In this experiment we take α = 0.02 since the
absolute value of the estimates is much lower than in the normal case. It
is clear that the estimates also converge to the correct values in this more
difficult example.

Note that to calculate the posterior probability P(it = i | Rt = r, Qt, ρt)
requires the choice of a parameterized reward model f (r; i, μ(i)) for each
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state of the environment (the model will usually be the same for each
source, but there is no theoretical need for this restriction). In the appendix
we show that even if the learner uses an incorrect model of reward distri-
bution, the learned distribution will be close to the true distribution, in the
sense that it will minimize the expected Kullback–Leibler divergence from
the true data-generating distribution. This provides robustness to the choice
of probability model.

4 Switching Reward Distributions

It is important for animals to be able to respond to a change in the envi-
ronment. In the case of a reinforcement learning task, this corresponds to
the reward distributions changing partway through the learning process. In
this section, we consider performance in a learning episode with two states,
in which the reward distributions are normal with variance 1 and means 2
and 6, depending on which state is presented. For the first 500 iterations, the
reward in state 1 has expected value 2, and the reward in state 2 has expected
value 6. On iterations 501 through to the end of the episode at iteration 2000,
these switch, so that in state 1, the expected reward is 6, whereas in state
2, the expected reward is 2. (A similar switch is carried out in the experi-
ment with Bernoulli rewards.) Traditional reinforcement learning models,
including those of sections 3.1 and 3.2, should respond to this switch and
adjust their estimates to the new values by the end of the episode (although
recall that with state uncertainty, these estimates will not be correct). How-
ever, we will see that the formulation of posterior weighted reinforcement
learning in section 3.3 can suffer from difficulties. This is because the allo-
cation of observations to states depends on the current estimates Qt , and
the likelihood terms f (r; i, Qt(i)) can dominate the prior confidence levels
ρt(i), particularly in the case of light-tailed distributions such as the normal
distribution. If this occurs, the learner will continue to have high posterior
probability that rewards Rt ≈ Qt(i) are from state i , reqardless of the prior
information ρt .

The experimental results in this case are shown in Figure 4. It is clearly
seen that the winner-takes-all and confidence-weighted schemes respond
to the switch in reward distributions (although they do not converge to
the correct estimate). In contrast, the PWRL scheme fails to switch when
the rewards are sampled from normal distributions, although in the case
of the Bernoulli distributions, the reward estimates successfully switch.

Consider the following example, which explains the failure to switch. As-
sume that the correct estimates have been learned in the first 500 iterations,
so that Q500(1) = 2 and Q500(2) = 6. The means then switch. Suppose on
the 501th iteration, we have ρt(1) = 0.9 = 1 − ρt(2) and, further, that Rt = 6
(corresponding to the true state being 1, and the reward being exactly the
new expected reward for that state). The posterior probability that the state
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Figure 4: Estimates over trials when rewards switch after trial 500. Each panel
shows estimates from a different model, labeled at the top of the panel. Each
model is simulated with confidence ρ = 0.8. In all panels except the bottom
right panel, the rewards were sampled from normal distributions with means
2 and 6 and the learning parameter α = 0.05, while in the bottom right panel,
the rewards were sampled from Bernoulli distributions with means 0.2 and 0.8
and the learning parameter α = 0.02.

is 1 is actually given by

ρt(1)φ(Rt − Qt(1))
ρt(1)φ(Rt−Qt(1)) + ρt(2)φ(Rt−Qt(2))

= 0.9×1.34×10−4

0.9×1.34×10−4 + 0.1×0.399

= 0.003. (4.1)

The very small likelihood value for state 1 given current estimates (1.34 ×
10−4) means that the prior confidence is essentially irrelevant.
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This effect is less significant in the case of Bernoulli random vari-
ables, since the likelihood is not exponentially decreasing (as shown in
Figure 4, in this case the reward estimates switch to the correct val-
ues). The problem could be somewhat alleviated in the continuous case
by the use of heavy-tailed distributions, such as the t distribution, in-
stead of normal distributions in the calculation of the posterior allocation
probabilities.

Instead we focus on a different approach and additionally estimate vari-
ance terms for the normal distributions. When received rewards differ sig-
nificantly from the predictions, we expect that the variance estimates will
become large, thus making the likelihood less light-tailed and allowing the
prior to direct the allocation of rewards to states. The update equations
become:

Qt+1(i) = Qt(i) + αP(it = i | Rt, ρt, Qt, V t)
{

Rt − Qt(i)
}
,

Vt+1(i) = Vt(i) + αP(it = i | Rt, ρt, Qt, V t)
{
(Rt − Qt(i))2 − Vt(i)

}
,

where

P(it = i | Rt, ρt, Qt, V t) = ρt(i)φ((Rt − Qt(i))/
√

Vt(i))/
√

Vt(i)∑N
j=1 ρt( j)φ((Rt − Qt( j))/

√
Vt( j))/

√
Vt( j)

.

With this enhancement, the PWRL scheme is significantly less likely
to make the initial allocation mistakes observed in Figure 3, since it es-
timates large variances early in the learning episode, and the prior con-
fidence levels ρt have more influence (compare Figures 5a and 5b). It
also handles switches in the rewards more successfully than the original
PWRL scheme (compare Figures 5c and 5d) although it still fails for low
ρ. Note that the switch of states is a particularly problematic scenario for
the PWRL scheme; if one or both states changed so that their distribution
was completely different to a current state reward distribution, then the
likelihoods for both states will be small, and this would allow the prior
to have more influence, whereas simply switching the state distributions
means that the likelihood for the incorrect state is high, while the like-
lihood for the correct state is very low. If the μ(i) change gradually, the
PWRL algorithm is able to track the changes much more easily. We note in
the appendix that swapped estimates (with Q(2) = μ(1) and Q(1) = μ(2))
correspond to a local minimum of a potential function for the PWRL algo-
rithm. This explains both why convergence to this point can occur and why
switching the reward distributions is a particularly difficult scenario for
PWRL.
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(a) Fixed μ, fixed V=1
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(b) Fixed μ, estimated V
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(c) Switching μ, fixed V=1
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(d) Switching μ, estimated V

Figure 5: The percentage of correct final estimates in a two-state environment
for different confidence levels. For each confidence level, simulations with 2000
trials were repeated 100 times. The crosses indicate the fraction of simulations
in which the final estimate Q2000(1) was closer to μ(1) than to μ(2). In all
simulations, rewards were sampled from normal distributions with means 2
and 6, and with variance 1, and the learning parameter was set to α = 0.05. In
panels a and b the means did not change over trials, while in panels c and d
the means were switched after trial 500. Panels a and c show results for PWRL
without variance estimation, while panels b and d show results for PWRL with
variance estimation.

5 Expectation-Maximization

In this section, we return to reward distributions that are fixed through
time and relate our algorithm to a standard statistical procedure. The prob-
lem posed in this letter is the estimation of some parameters (the expected
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reward in each state) in the presence of unobserved information (the true
state when each observation is made). A standard algorithm for the general
problem of parameter estimation in the presence of unobserved information
is the EM algorithm (Dempster et al., 1977). We will show that the PWRL
scheme is closely related to an online version of the EM algorithm (Titter-
ington, 1984; Wang & Zhao, 2006; Cappé & Moulines, 2009) designed for
estimation when data arrive incrementally, as in the reinforcement learning
problem. This allows us, in the appendix, to give convergence results for
the PWRL scheme. It also shows how to apply the PWRL algorithm in a
principled manner to reward distributions other than those considered in
this letter.

We now consider a general probability model f (r; θ (i)) for the reward
distribution in state i , with θ (i) a parameter vector that may have more than
one entry (thus allowing us to use a unified notation for the algorithms
based on the mean, the algorithm that also estimates the variance, and
further generalizations). We write p(r, i; θ , ρ) = ρ(i) f (r; θ (i)) for the joint
density of state and reward given parameters θ = (θ (1), . . . , θ (N)) and con-
fidence vector ρ, and write p(r; θ , ρ) = ∑N

i=1 p(r, i; θ , ρ) for the density of R.
Titterington (1984) suggests the following modified Fisher scoring algo-

rithm,

θ t+1 = θ t + α [Ic(θ t, ρt)]
−1 ∇θ t log(p(Rt; θ t, ρt)), (5.1)

and relates it to the EM algorithm. The complete data Fisher information
matrix Ic used in this update is given by

Ic(θ , ρ) = −E
[∇2

θ log(p(R, i; θ , ρ))
]
.

In the case of normal random variables with unit variance, where θ (i)
is the expected value in state i , we have p(r, i; θ , ρ) = ρ(i) 1√

2π
e−(r−θ (i))2/2.

Hence,

∂

∂θ (i)
log(p(r; θ , ρ)) = p(i, r; θ , ρ)

p(r; θ , ρ)

{
r − θ (i)

}
= P(it = i | Rt = r, θ t = θ , ρt = ρ)

{
r − θ (i)

}
,

and Ic(θ , ρ) is a diagonal matrix with diagonal equal to the confidence
vector ρ. Titterington’s update, equation 5.1, becomes

θt+1(i) = θt(i) + α
1

ρt(i)
P(it = i | Rt, θ t, ρt)

{
Rt − θt(i)

}
. (5.2)

This update is identical to the PWRL update, equation 3.6, but with the
temporal difference divided by the confidence level ρt(i).
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In the case of Bernoulli random variables, where θ (i) is the probability
of reward in state i , we have p(r, i; θ , ρ) = ρ(i)θ (i)r (1 − θ (i))1−r . Hence,
recalling that r is either 0 or 1,

∂

∂θ (i)
log(p(r; θ , ρ)) = ρ(i)(−1)r+1

p(r; θ , ρ)
,

and Ic(θ , ρ) is a diagonal matrix with i ith entry:

ρ(i)
θ (i)(1 − θ (i))

Plugging these into Titterington’s formula, equation 5.1, gives

θt+1(i) = θt(i) + α
1

ρt(i)
ρt(i)(−1)r−1θt(i)(1 − θt(i))

p(Rt; θ t, ρt)

= θt(i) + α
1

ρt(i)
P(it = i | Rt, θ t, ρt)

{
Rt − θt(i)

}
. (5.3)

This is again the PWRL update, equation 3.6, but with the temporal differ-
ence divided by ρt(i).

In the appendix we show that the PWRL update is related to Tittering-
ton’s method for a wide class of probability distributions. In particular we
show that for all distributions in the exponential family (Barndoff-Nielsen,
1978) that are parameterized by the mean, Titterington’s method results in
the same update as equations 5.2 and 5.3.

Note that a recognized problem with Titterington’s method is that divi-
sion by ρt(i) may take the estimates out of the valid parameter space (e.g.,
the probability of a reward in the Bernoulli case may be estimated to be neg-
ative or greater than 1). The PWRL scheme, by choosing not to divide by
the prior confidence level, removes this problem. We show in the appendix
that convergence proofs are still valid in the presence of this modification.

6 Possible Neural Implementation of PWRL

To implement PWRL based on the update in equation 3.4, the posterior
state probabilities need to be computed on the basis of the prior probabil-
ities (i.e., the estimates based on stimulus) and the reward value. Recently
Bogacz (2009) proposed that the cortico-basal-ganglia-thalamic circuit per-
forms an analogous computation during perceptual decisions in which the
information on the identity of noisy stimuli needs to be gathered over time.
In particular, he proposed that when a new piece of information on stimulus
identity arrives, this circuit computes the posterior probabilities of stimuli
on the basis of the prior probabilities (i.e., the estimates based on informa-
tion obtained earlier within a choice trial) combined with the new piece of
information.
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In this section, we propose a possible neural implementation of PWRL.
We first write the posterior probability, equation 3.3, in a form easier for
biological implementation. Then we review the model of cortico-basal-
ganglia-thalamic circuit (Bogacz, 2009) and show how it could compute
these posterior probabilities. Finally, we discuss how this may allow for the
updating of the Qt(i) in equation 3.4.

We start by taking logarithms of both sides in equation 3.3 and rewriting
it in the equivalent form:

log P(it = i | Rt, Qt, ρt) = Y(i) − log

⎧⎨
⎩

N∑
j=1

exp Y( j)

⎫⎬
⎭ , (6.1)

where

Y(i) = log ρt(i) + log f (Rt; i, Qt(i)). (6.2)

This makes the computation of the logarithm of the posterior probability
actually quite simple: one needs to add log f (Rt; i, Qt(i)) to the logarithm
of the corresponding prior probability and then normalize by subtracting
the expression given in the second term of equation 6.1.

We will demonstrate that this computation can be performed in a model
of the cortico-basal-ganglia-thalamic circuit (Bogacz, 2009). Its basic archi-
tecture, shown in Figure 6a, includes cortical integrators (that accumulate
the information on stimulus identity), basal ganglia, and thalamus con-
nected in a loop. The integrators also receive input from sensory neurons
that provide information on stimuli, but these inputs are not shown in
Figure 6a for simplicity; the integrators add the new input from the sen-
sory neurons to the thalamic feedback. Within each area included in the
model are neuronal populations selective for different stimuli indicated by
different shades in Figure 6a. This is a system-level model that describes
the activity levels of neuronal populations rather than individual neurons,
and it includes only a subset of known connectivity of this circuit. We will
demonstrate the computations in the circuit at three points in time: be-
fore reward delivery, at the time of the reward delivery, and after reward
delivery.

Let us denote the activity of a population of cortical integrator neurons
selective for stimulus i by y(i). Bogacz (2009) considers a model without
any rewards, which corresponds to the first time point—before a reward has
been delivered. He shows that after stimulus presentation, the activities of
cortical integrators are proportional to the logarithms of the estimated state
probabilities. Thus, after stimulus presentation and before reward delivery,
we have

y(i) = log ρt(i) + c1. (6.3)
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log t(i) + c1

-log t(i)

Striatum STN/GP 

Output
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Basal ganglia 

Reward likelihoods 

Thalamus

log t(i) + c1

log f(Rt;i,Qt(i)) + c2

-log P(it=i)

(a) (b)

Figure 6: Cortico-basal-ganglia-thalamic circuit that could compute the poste-
rior probabilities in PWRL. Black and gray circles denote neural populations
selective for the first and the second stimuli. Arrows denote excitatory con-
nections, and lines ending with circles denote inhibitory connections. STN:
subthalamic nucleus. GP: globus pallidus in rodents or globus pallidus exter-
nal segment in primates. Output: output nuclei of the basal ganglia: substantia
nigra pars reticulate and entopeduncular nucleus in rodents or globus pallidus
internal segment in primates. (a) The state of the network between stimulus
offset and reward delivery. (b) The state when reward information is provided.

(The constant c1 is added to make this expression positive because a prob-
ability is, by definition, less than or equal to 1 so log ρt(i) ≤ 0.)

The basal ganglia are modeled as in Bogacz and Gurney (2007). In par-
ticular, the total activity of the subthalamic nucleus is proportional to

STN = log

⎧⎨
⎩

N∑
j=1

exp y( j)

⎫⎬
⎭ (6.4)

= log

⎧⎨
⎩

N∑
j=1

ρt( j) exp c1

⎫⎬
⎭ = c1. (6.5)
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Bogacz and Gurney (2007) describe in detail how equation 6.4 is computed
in a model of a network including the subthalamic nucleus and globus pal-
lidus. They argue that existing neurobiological data suggest that these nuclei
have suitable patterns of connectivity and input-output transfer functions to
perform the calculation. The result in equation 6.5 comes from substituting
equation 6.3 and noting that

∑N
j=1 ρt( j) = 1.

The output nuclei in the model receive inhibition from cortical integra-
tors via the striatum and excitation from the subthalamic nucleus, so that

OUT(i) =−y(i) + STN (6.6)

=− log ρt(i).

In the Bogacz (2009) model, the thalamus receives inhibition from the
output nuclei and constant excitatory input c1, so the activities of the tha-
lamic units are log ρt(i) + c1 (as indicated by labels in Figure 6a). Hence,
the inputs to the cortical integrators from the thalamus are equal to the
integrators’ original levels of activity, and so these levels are maintained.

We now show that when the reward information is provided to the
integrators, the estimated state probabilities are updated as in PWRL. Labels
in Figure 6b illustrate the state of the network at the second time point—
the moment of reward delivery. The feedback from the thalamus is still
proportional to the logarithm of the prior probabilities. We now hypothesize
that certain neuronal populations are able to calculate log f (Rt; i, Qt(i)) +
c2, where the constant c2 is added to make the values positive. (We come
back to the plausibility of calculating the logarithm of the likelihoods below.)
We label these neuronal populations “reward likelihoods” in Figure 6b and
assume that they project to the integrators. If the integrators treat these
inputs the same as inputs from sensory neurons, and therefore add these
reward likelihoods to the thalamic feedback, their activities become

y(i) = log ρt(i) + c1 + log f (Rt; i, Qt(i)) + c2 = Y(i) + c1 + c2 (6.7)

where Y(i) is as defined in 6.2. Substituting 6.7 into 6.4 we get

STN = c1 + c2 + log

⎧⎨
⎩

N∑
j=1

exp Y( j)

⎫⎬
⎭ . (6.8)

Substituting 6.7 and 6.8 into 6.6 and using 6.1 we get

OUT(i) = −Y(i) + log
N∑

j=1

exp Y( j) = − log P(it = i | Rt, Qt, ρt).
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Hence the activities of the thalamic units become proportional to the loga-
rithms of the posterior probabilities.

At the third time point, after the reward has been received and the new
thalamic feedback arrives, we assume that the cortical integrators do not
receive any other input. Hence, for the same reasons as with the prior prob-
abilities, the logarithms of the posterior state probabilities are maintained
in the circuit.

Current reinforcement learning theories usually assume that the Qt(i)
are represented in synaptic weights of cortico-striatal synapses and that the
weights between coactive cortical and striatal neurons are modified propor-
tionally to the prediction error (Rt − Qt(i)) represented by the concentration
of dopamine released in the striatum (see Doya, 2007, for a review). Since
only the weights between active cortical and striatal neurons are modified,
the magnitude of the Qt(i) modification depends on the activity of cortical
neurons. Furthermore since, in the model, these activities are proportional
to the logarithms of the posterior probabilities, these probabilities may influ-
ence the magnitude of Qt(i) modification, as needed for the PWRL model.

The element of the above model with the least clear neural basis is the
computation of log f (Rt; i, Qt(i)) by the units labeled “reward likelihoods”
in Figure 6b. We do not want to speculate how such computation could
be performed, except to point out that this expression is not as difficult to
compute as it may seem. For example, for normally distributed rewards
(with unit variance),

log f (Rt; i, Qt(i)) = log
1√
2π

− 1
2

(Rt − Qt(i))2.

Note that the first term is the same for all i , so it can be incorporated into
constant c2 (the precise value of this constant is unimportant, as it cancels
out). Thus the “reward likelihoods” units only need to have activities that
relate to the squares of the prediction errors for each of the stimuli. Fur-
thermore, for the case of Bernoulli rewards, the calculation is even simpler:

log f (Rt; i, Qt(i)) =
{

log(Qt(i)) if Rt = 1, and
log(1 − Qt(i)) if Rt = 0.

Since we already postulate that the Q values can be stored and logarithms
can be calculated, this requires no additional processing capability.

7 Discussion

We have shown that in the presence of ambiguous state signals the rein-
forcement learning problem is not straightforward. Simply allocating re-
ward to the most likely state of nature results in incorrect value estimates.
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Furthermore, taking account of state uncertainty in a simple way can
result in even worse estimates. Weighting the allocation of reward to states
using the posterior probability that a state was the true state, given both
the prior confidence level and the observed reward, results in correct value
estimates in the settings considered in this letter. In this section, we discuss
approaches to related problems and address some areas for further research.

7.1 Alternative Approaches to Noisy and Switching Environments.
When the reward distributions switch during learning, the PWRL approach
can fail to react. This is especially true if a light-tailed distribution is used
to model the rewards, in which case the prior can have virtually no influ-
ence over the posterior probabilities. We introduced variance estimation
to give PWRL an opportunity to react by adjusting the variance estimates.
However, for low confidence levels, we observed that PWRL with variance
estimation is still unable to correctly learn the new rewards after they switch.
In particular, for the problematic example described in section 4, the calcu-
lation in equation 4.1 remains correct even when variances are estimated.

Other work has been carried out to investigate learning rewards under
changing environments. Behrens, Woolrich, Walton, & Rushworth (2007)
studied a Bayesian learner to predict how the learning rate should be modi-
fied based on the rate of change of the underlying state rewards (the volatil-
ity of the environment). Their results have the opposite requirement to that
of PWRL: under larger uncertainty, the learning rate should increase, not
decrease. The reasoning is that if a subject is confident that the environment
is not changing, random fluctuations should not be a concern, and static
behavior through low learning rate should therefore be promoted, whereas
if the environment is changing, a larger learning rate is more appropriate.
However, this is valid only if the uncertainty is about the underlying ex-
pected reward, and not if the uncertainty is about the underlying state,
and their experiment was indeed based on choosing unambiguously col-
ored rectangles. In spite of the differences between PWRL and the volatility
model, both rely on estimating the variance or volatility and modifying
their learning rate accordingly.

Alternative solutions, addressing both types of uncertainty, will be
sought in future work. As well as the Behrens et al. (2007) approach, this
may include some notion of state dynamics by incorporating a prior belief
that, with some fixed probability, the reward distributions may change, as
in Yu and Cohen (2009), or incorporating the expected and unexpected un-
certainty framework of Yu and Dayan (2003). There might also be a need to
extend this framework to incorporate other uncertainties such as stimulus
uncertainty or reward rate uncertainty. Calculating these joint uncertainties
may well be far from trivial (Dayan & Yu, 2003).

A further promising approach to dealing with switching environments is
to formally test for whether the environment has switched. One technique
to make this decision would be to use a version of the sequential probability
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ratio test. In its log-likelihood formulation, this test is hypothesized to be
the method by which the prior probabilities ρ are formed (Bogacz, 2009).
Use of this test to decide whether rewards have switched would result in a
cumulative sum approach in which, if sufficient evidence of switching ac-
cumulates (such as frequent mis-match of prior information with estimated
parameters), the estimation process is restarted.

7.2 Relationship with Partially Observable Markov Decision Pro-
cesses. State uncertainty is a key feature of the large body of work on
partially observable Markov decision processes (POMDPs; see Kaelbling,
Littman, & Cassandra, 1998). In contrast with the objective in this letter,
many reinforcement learning approaches in POMDPs generally focus on
attributing reward directly to belief states (which are analogous to our con-
fidence levels ρ) instead of learning the value of the underlying states of
nature (e.g., Jaakkola, Singh, & Jordan, 1995). Cao and Guo (2004) point
out that observations of received reward provide information about the
underlying state, which may be useful in selecting actions, but they do
not demonstrate how to implement the idea; the results in this letter par-
tially solve their problem. The same idea is used (less explicitly) by Poupart
and Vlassis (2008), although their approach is restricted to rewards drawn
from a discrete distribution. We note in passing that reinforcement learning
and POMDPs also interact in the frameworks of Duff (2003) and Poupart,
Vlassis, Hoey, and Regan (2006), where a POMDP is used to model the learn-
ing of a Markov decision process in order to optimally balance exploration
and exploitation. Thus, although POMDPs have a similar basic challenge
to the model studied here, much of the research in the area addresses the
problem in a very different way from this letter.

7.3 Online Learning for Action Selection. Note that, in this letter, we
have considered learning the values of states of the environment. However,
as observed in section 2, it is easy to generalize these results to learning the
values of state-action pairs (s, a ) where s is the (partially observed) state of
nature and the action a is selected by the learner (see Sutton & Barto, 1998).
We here clarify this claim.

Suppose a learner is given prior information ρ̃t about states s = 1, . . . , S
and has a fixed action-selection policy mapping prior state information ρ̃

to a distribution over actions a . Once action at has been selected but before
the reward has been observed, the distribution over state-action pairs is
given by

ρ(s, a ) = ρ̃(s)Ia=at .

The analysis then goes through exactly as before so long as E[ρ(s, a )] > 0
for all state-action pairs. This is the policy evaluation problem discussed at
length by Sutton and Barto (1998).
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However, the main problem of interest in this context is that of online
learning, where an individual’s action-selection strategy depends not only
on the state information, but also on current estimates of state-action val-
ues. An important question is whether the imperfect knowledge of state
can lead to poor action selection, which in turn results in poor value es-
timation; we believe that since the states are sampled independently on
different time points and are not affected by action selection, this should
not occur. Other questions to address include how to specify a sensible
action-selection policy to balance exploration and exploitation when true
state information is not available, and how the action selection policy will
influence the convergence analysis in the appendix. This analysis of online
learning introduces extra complexity that goes beyond the scope of this
letter. However, note that provided that E[ρt(s, a ) | θ t] > 0 for all t and other
technical conditions ensuring sufficient exploration, we expect standard
stochastic approximation results from the machine learning literature (in
particular, Singh, Jaakkola, Littman, & Szepesvari, 2000) to apply.

7.4 Experimental Validation. Finally, we address the question of
whether any of the models introduced in this letter could be employed
in the brain. The confidence-weighted reinforcement learning model (see
section 3.2) is unlikely to be selected by evolutionary pressure because it has
poorer performance and is more complicated to implement than the simple
winner-takes-all model (see section 3.1). However from an evolutionary
point of view, it is more difficult to choose between the winner-takes-all
and the PWRL models, because the first has the virtue of simplicity and
adaptability to environmental changes, while the second can achieve more
accurate value estimation.

To distinguish between the winner-takes-all and PWRL models, one
could perform an experiment with human participants that was simulated
in Figures 1, 2 and 3a. At the end of the experiment the participants could
be asked about the average reward associated with each stimulus (Budescu,
Weinberg, & Wallsten, 1988). (To increase the reliability of the verbal report
of their estimate, they can be told that the payment they receive will depend
on how closely their estimates match the true values (Hertwig & Ortmann,
2001).) The PWRL model predicts that their estimates will be close to the
true mean rewards, while the winner-takes-all model predicts that the par-
ticipants will be underestimating the better option and overestimating the
poorer option, with the difference between the model predictions being
greater for low confidence levels ρ.

Another experiment could also be performed in which rewards for the
two stimuli are swapped in the middle of the experiment (as in the simu-
lations of Figure 4). If any participants reported the mean reward values
as they were before the switch, which of course is likely only if the con-
fidence level ρ is small, this would indicate that human learners exhibit
the deficiencies of the PWRL model, and thus would provide a support for
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this model. Again, the power of the experiment to differentiate between the
models will be greatest if the confidence level ρ is small and will decrease
as ρ increases.

Appendix: Additional Material

In this appendix we consider a general formulation of the PWRL scheme
and its convergence properties. In particular, we consider a general scheme
that is a modification of Titterington’s (1984) algorithm to remove division
by the prior confidence weights:

θ t+1 = θ t + α diag(ρt) [Ic(θ t, ρt)]
−1 ∇θ t log p(Rt; θ t, ρt), (A.1)

where diag(ρt) is the diagonal matrix with diagonal equal to ρt . As seen
in section 5, this results in the PWRL scheme in the normal and Bernoulli
examples.

A.1 Exponential Families. Consider now algorithms that estimate the
(scalar) mean parameter θ of a probability distribution from the exponential
family (Barndoff-Nielsen, 1978). Distributions in the exponential family
have a density function (or mass function)

f (r; θ ) = h(r ) exp
{
rη(θ ) − b(θ )

}
,

where h, η, and b are functions. This family of distributions includes the
Bernoulli and normal random variables previously considered, as well as
exponential and Poisson random variables. Since we assume that the pa-
rameterization (i.e., choice of η and b) is such that E[R; θ ] = θ , the standard
formula for exponential family distributions tells us that

θ = E[R ; θ ] = b ′(θ )
η′(θ )

. (A.2)

As in section 5, we calculate the partial derivatives of the likelihood and the
complete data information matrix:

∂

∂θ (i)
log p(r; θ , ρ) = P(it = i | Rt = r, θ t = θ , ρt = ρ)

× {
rη′(θ (i)) − b ′(θ (i))

}
∂2

∂θ (i)2 log p( j, r; θ , ρ) = I{i= j}
{
rη′′(θ ( j)) − b ′′(θ ( j))

}
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(Ic(θ , ρ))i i =−E

[
∂2

∂θ (i)2 log p(it, Rt; θ , ρ)
∣∣∣∣ θ t = θ , ρt = ρ

]

=−ρ(i)
{
E
[
Rt

∣∣ it = i, θ t = θ, ρt = ρ
]
η′′(θ (i)) − b ′′(θ (i))

}
=−ρ(i)

{[
b ′(θ (i))
η′(θ (i))

]
η′′(θ (i)) − b ′′(θ (i))

}

= ρ(i)η′(θ (i))
∂

∂θ (i)

(
b ′(θ (i))
η′(θ (i))

)

= ρ(i)η′(θ (i))
∂

∂θ (i)
θ (i)

= ρ(i)η′(θ (i)),

where we have twice used equation A.2. Hence, for all exponential family
distributions parameterized by the mean, we have an update

θt+1(i) = θt(i) + αρt(i)
1

ρt(i)η′(θt(i))
P(it = i | Rt, θ t, ρt)

× {
Rtη

′(θt(i)) − b ′(θt(i))
}

= θt(i) + αP(it = i | Rt, θ t, ρt)
{

Rt − θt(i)
}
. (A.3)

A.2 Convergence. The Kullback-Liebler (KL) divergence is a natu-
ral and commonly used measure of similarity of probability distributions.
Along similar lines to the results of Titterington (1984), Wang and Zhao
(2006), and Cappé and Moulines (2009), we will show that the stochastic
fixed points of the PWRL algorithm are minima of the expected KL diver-
gence from the true data-generating model to the model space used to esti-
mate the rewards. This shows that parameter estimates converge to points
that make the fitted reward distributions as close as possible to the true
reward distributions. Note that this result not only provides a justification
for the use of the scheme when the correct model of reward distributions is
used. It also provides a robustness property, showing that when an incorrect
model is used, the resulting estimated parameters correspond to fitted mod-
els that are as close a fit to the truth as is possible in the selected model class.

Consider the model of section 5 where p(r, i; θ , ρ) = ρ(i) f (r; θ (i)), and
we do not assume that θ (i) is a scalar. The complete data information matrix
Ic is now block diagonal (since the θ (i) is a vector instead of a scalar) with
ith block,

−E

[
∇2

θ (i) log p(it, Rt; θ , ρ)
]
= −ρ(i)E

[
∇2

θ (i) f (Rt; θ (i)) | it = i
]

= ρ(i)I f (θ (i))
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where I f is the positive definite information matrix corresponding to the
non-mixture density f . Similarly

∇θ (i) log p(r; θ , ρ) = ρ(i)∇θ (i) f (r; θ (i))
p(r; θ , ρ)

= ρ(i) f (r; θ (i))
p(r; θ , ρ)

∇θ (i) f (r; θ (i))
f (r; θ (i))

= P(it = i | Rt = r, θ t = θ , ρt = ρ)∇θ (i) log f (r; θ (i)).

(A.4)

Hence the PWRL update (equation A.1) is given by

θt+1(i) = θt(i) + αP(it = i | Rt, θ t, ρt)
[
I f (θt(i))

]−1 ∇θt (i) log f (Rt; θt(i)).

We formalize our learning environment to allow more rigorous study.
Assume that at each time instant, a probability vector ρt is sampled, then
a state is sampled according to ρt , and finally a reward is sampled from
a distribution that depends on only the state. The sampling at time t is
identical to and independent of the sampling at any other time point. We
denote by π the joint distribution of ρt and Rt , and π(· | ρ) the distribution
of Rt conditional on the event ρt = ρ. Note that the (non-switching) exper-
imental framework described in the main body of the letter is included in
this formal model.

Stochastic approximation theory tells us to consider the mean field F (θ )
with ith component

F (θ )(i) = E
[
α−1(θt+1(i) − θt(i)) | θ t = θ

]
= Eπ

[
P(it = i | Rt, θ , ρt)

[
I f (θ (i))

]−1 ∇θ (i) log f (Rt; θ (i))
]

= [
I f (θ (i))

]−1
Eπ

[
P(it = i | Rt, θ , ρt)∇θ (i) log f (Rt; θ (i))

]
. (A.5)

A Lyapunov function for the system is a function V(θ ) such that the scalar
product

〈F (θ ),∇θ V(θ )〉 ≤ 0

with equality only when ∇θ V(θ ) = 0. If such a function exists then when
conditions are placed on the learning parameters α the convergence of θ t to
stationary points of V can be proved (Kushner & Yin, 1997; Benaı̈m, 1999).
We do not provide the technical details in this letter since they are closely
related to the proof by Wang and Zhao (2006). Similar to the approach of
Wang and Zhao, we will consider the KL divergence, conditional on ρt ,
from the reward distribution under π to the fitted reward distributions,
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then take an expectation over ρt . The resulting function will be shown to
be a Lyapunov function.

The conditional KL divergence is defined as

v(θ , ρ) := K L(p(· | θ , ρ) ‖ π (· | ρ))

= Eπ (· | ρ)

[
log

(
π (Rt | ρt)

p(Rt | ρt, θ )

) ∣∣∣∣ ρt = ρ

]

= Eπ (· | ρ)
[
log π (Rt | ρt) | ρt = ρ

]
− Eπ (· | ρ)

[
log p(Rt | ρt, θ ) | ρt = ρ

]
.

Taking expectation over ρ gives the expected KL divergence

V(θ ) := Constant − Eπ

[
log p(Rt | ρt, θ )

]
.

To show that this is a Lyapunov function for the PWRL model, take the
derivative with respect to θ (i) to give

∇θ (i)V(θ ) = −Eπ

[∇θ (i) log p(Rt | ρt, θ )
]

= −Eπ

[
P(it = i | Rt, θ , ρ)∇θ (i) log f (Rt; θ (i))

]
,

as in equation A.4. Comparing with (equation A.5) we see that ∇θ (i)V(θ ) =
−I f (θ (i))F (θ )(i). Hence, taking the scalar product gives

〈F (θ ),∇θ V(θ )〉 = −
N∑

i=1

〈
F (θ )(i), I f (θ (i))F (θ )(i)

〉
≤ 0

since each I f (θ (i)) is positive definite. Equality holds only when each
F (θ (i)) = ∇θ (i)V(θ ) = 0, which is at stationary points of the expected
KL divergence from the true data-generating distribution π to the fitted
models.

We now consider the Lyapunov function corresponding to the experi-
ments of sections 3 and 4, with the original formulation of PWRL (i.e., no
variance estimation). Figure 7a shows the Lyapunov function for pairs of Q
values when the confidence level ρ = 0.9. The saddle shape of this potential
surface indicates that there is actually a local minimum where Q(1) = μ(2)
and Q(2) = μ(1), as well as the previously calculated global minimum at
Q(1) = μ(1) and Q(2) = μ(2). This local minimum corresponds to the situa-
tion where the estimates are “swapped” (see section 3.3). To investigate this
phenomenon further, we plot, for different ρ values, the value of the ex-
pected KL divergence along the line Q(2) = μ(1) + μ(2) − Q(1) (which joins
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Figure 7: Plots of the Lyapunov function for normal rewards with μ(1) = 2 and
μ(2) = 6, with variance fixed to 1 throughout.

the two minima). In Figure 7b we see that for ρ = 0.99, the local minimum
is not present. On the other hand, for ρ = 0.6, the local minimum is very
pronounced, and indeed the Lyapunov function at the swapped estimates
is very nearly as low as at the correct estimates.

These plots also give us further insight into the difficulties the algorithm
suffered in section 4 when the reward distributions were switched partway
through the experiment. If the estimates are approximately correct at the
time of switching, this effectively corresponds to placing the estimates at
the (incorrect) local minimum of this Lyapunov function. Hence, to learn the
correct estimates, the Q values must climb out of the local minimum before
converging to the global minimum corresponding to correct estimates. From
Figure 7b it is clear that if ρ is small, the two potential wells are very similar,
and moving the estimates from one to the other is highly unlikely. However,
when ρ is large, the local minimum is in a shallow potential well, and it is
easy for the estimates to escape and converge to the correct values at the
global minimum.

Note that this analysis also provides clear justification for our claim that
switching is the hardest kind of distributional change that can occur for this
algorithm. When the switch occurs, we are essentially placing the estimates
at the incorrect local minimum. Any other change in the distributions would
place the estimates somewhere else on the potential surface, from which it
would be easier to converge to the new global minimum.
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