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Neurophysiological studies have identified a number of brain regions
critically involved in solving the problem of action selection or deci-
sion making. In the case of highly practiced tasks, these regions include
cortical areas hypothesized to integrate evidence supporting alternative
actions and the basal ganglia, hypothesized to act as a central switch
in gating behavioral requests. However, despite our relatively detailed
knowledge of basal ganglia biology and its connectivity with the cor-
tex and numerical simulation studies demonstrating selective function,
no formal theoretical framework exists that supplies an algorithmic de-
scription of these circuits. This article shows how many aspects of the
anatomy and physiology of the circuit involving the cortex and basal
ganglia are exactly those required to implement the computation defined
by an asymptotically optimal statistical test for decision making: the
multihypothesis sequential probability ratio test (MSPRT). The result-
ing model of basal ganglia provides a new framework for understanding
the computation in the basal ganglia during decision making in highly
practiced tasks. The predictions of the theory concerning the properties
of particular neuronal populations are validated in existing experimental
data. Further, we show that this neurobiologically grounded implementa-
tion of MSPRT outperforms other candidates for neural decision making,
that it is structurally and parametrically robust, and that it can accommo-
date cortical mechanisms for decision making in a way that complements
those in basal ganglia.

1 Introduction

Recent experimental results have established that both the cortex and the
basal ganglia are involved in decision making between alternative actions
(Chevalier, Vacher, Deniau, & Desban, 1985; Deniau & Chevalier, 1985; Med-
ina & Reiner, 1995; Redgrave, Prescott, & Gurney, 1999; Schall, 2001; Shadlen
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& Newsome, 2001; Smith, Bevan, Shink, & Bolam, 1998). However, it is nec-
essary to distinguish between two phases of developing task competence
(Ashby & Spiering, 2004; Shadmehr & Holcomb, 1997). In the acquisition
or learning phase, actions appropriate in a given behavioral state (i.e., a
combination of ongoing behavior and stimulus) are being developed that
are usually driven by external reward. In this phase, the main difficulty lies
in finding the optimal policy: the mapping between states and actions that
maximizes reward (Sutton & Barto, 1998). Consistent with this requirement,
there is a great deal of evidence that the basal ganglia act as a substrate for
reinforcement learning (O’Doherty et al., 2004; Samejima, Ueda, Doya, &
Kimura, 2005; Schultz, Dayan, & Montague, 1997), and several models for
this process have been proposed (Doya, 2000; Frank, Seeberger, & O’Reilly,
2004; Montague, Dayan, & Sejnowski, 1996).

In contrast, in the proficient phase, the mapping between stimulus and
an appropriate response is well established, and the requirement is one of
performing action selection or decision making. This consists of identifying
the current behavioral state and executing the known appropriate action as
soon as a certain level of confidence in the identification is reached (Gold
& Shadlen, 2001, 2002). There is a great deal of evidence (reviewed below)
for the involvement of the basal ganglia in action selection.

We view the hypotheses that basal ganglia perform reinforcement learn-
ing and that they perform action selection as complementary. Thus, at any
particular time, the basal ganglia perform action selection proficiently with
respect to a suite of alternatives that have already been learned. Subsequent
learning phases will modify that suite of alternatives and shape the profile
of selections that can be made. In this article, we focus on the neural mech-
anisms underlying decision making in the proficient phase. As such, this
is the phase under discussion if no qualifier is specified. We return to the
relation of our work to task acquisition and the learning phase in section 6.

1.1 Action Selection and Decision Making. Experimental data show
that during the decision process in visual discrimination tasks, neurons in
cortical areas representing alternative actions gradually increase their firing
rate, thereby accumulating evidence supporting these alternatives (Schall,
2001; Shadlen & Newsome, 2001). Hence, the models of decision making
based on neurophysiological data (Shadlen & Newsome, 2001; Wang, 2002)
assume that there exist connections from neurons representing stimuli to
the appropriate cortical neurons representing actions (these connections
may develop during the months of training the animals undergo before
these experiments). These cortical connections are assumed to encode the
stimulus-response mapping.

However, even in simple, highly constrained laboratory tasks, there will
be more than one possible response, and so there is a problem of action selec-
tion in which the representation for the correct response has to take control
of the animal’s motor plant. In natural, ethological settings, this problem is
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exacerbated because, under these circumstances, there are usually multiple,
complex sensory streams demanding a variety of behaviors.

The problem of action selection was recently addressed by Redgrave
et al. (1999), who conceived of it as the resolution of conflict between com-
mand centers throughout the brain competing for behavioral expression.
These authors examined the problem from a computational perspective and
argued that competitions between brain centers vying for expression were
best resolved by a central switch examining the urgency or salience of each
action request, and that anatomical and physiological evidence pointed to
the basal ganglia as the neural substrate for this switch. Thus, the basal
ganglia receive widespread input from all over the brain (Parent & Hazrati,
1995a) and, in their quiescent state, send tonic inhibition to midbrain and
brain stem targets implicated in executing motor actions, thus blocking cor-
tical control over these actions (Chevalier et al., 1985; Deniau & Chevalier,
1985). Actions are supposed to be selected when neurons in the output
nuclei have their activity reduced (under control of the rest of the basal
ganglia), thereby disinhibiting their targets (Chevalier et al., 1985; Deniau
& Chevalier, 1985).

The selection hypothesis for basal ganglia has been tested in biologically
realistic computational models in a variety of anatomical contexts by several
authors (Brown, Bullock, & Grossberg, 2004; Frank, 2005; Gurney, Prescott,
& Redgrave, 2001a, 2001b; Humphries & Gurney, 2002).

In sum, the research reviewed above indicates that during decision mak-
ing among alternative actions, cortical regions associated with the alterna-
tives integrate evidence supporting each one and that the basal ganglia act
as a central switch by evaluating this evidence and enabling those behav-
ioral requests that are best supported (most salient).

1.2 Scope of the Letter. We have argued that between bouts of
learning—that is, during proficient phases of activity—the primary compu-
tational role of the basal ganglia is to act as an action selection mechanism,
mediating resolution of the action selection problem by gating behavioral
requests. It is this mode of basal ganglia operation that we address in this
article.

Biologically realistic network models (Gurney et al., 2001a, 2001b) have
shown how the basal ganglia could perform the required selection compu-
tation. However, such models fail to elucidate possible analytic descriptions
of the computation (i.e., selection) that provide it with a theoretical ground-
ing. This letter provides an analytic description of function of a circuit
involving cortex and basal ganglia by showing how an optimal abstract
decision algorithm maps onto the anatomy and physiology of this circuit.

The main goal of this letter is to provide a new algorithmic framework for
understanding the computation in the basal ganglia in the proficient phase.
The algorithm relates to computations being performed at the systems level
of description of the basal ganglia, that is, considering the circuit to be a
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set of interacting neuronal populations described by their overall firing rate
(Dayan, 2001). This does not preclude the possibility that computations
may be performed at other levels of description (Gurney, Prescott, Wickens,
& Redgrave, 2004) dealing with microcircuits, membranes, or molecular
signalling pathways. However, as far as computation performed by virtue
of the organization of the basal ganglia in toto is concerned, we argue that
this will have an integrity apparent at the systems level, while acknowledg-
ing that it must ultimately be consistent with lower-level models. In view
of these methodological considerations, we therefore deliberately do not
attempt to incorporate the overwhelming amount of knowledge available
for the basal ganglia at the microanatomical, physiological, and molecular
levels of description.

The letter is organized as follows. Section 2 reviews relevant background
material concerning the neurobiology and theory of decision making in
cortex and basal ganglia. Section 3 deals with the central technical argument
and proposes how the basal ganglia may perform action selection in an
optimal way. Section 4 shows how the specific experimental predictions of
the theory are verified by existing data. Section 5 compares the performance
of the proposed model against other models of decision making. Section 6
discusses the relation of this work to other theories of action selection and
published experimental data.

2 Review of the Neurobiology and Theory of Decision Making

This section reviews the material critical for an understanding of our model.
The theory of optimal decision making in perceptual tasks has hitherto
been grounded almost exclusively in cortical mechanisms. In contrast, we
develop the theory of decision making in this article with respect to the
neural circuit involving both the cortex and the basal ganglia. Thus, in
proposing a neural mechanism for optimal decision making, we link two
strands of research: that dealing with putative cortical decision mechanisms
and that dealing with action selection in the basal ganglia. Elements from
both areas are therefore required background material. First, we present the
theory of optimal decision making, and then, we review those aspects of
basal ganglia anatomy and physiology critical for the model.

2.1 Decision Making and Cortical Integration. The neural basis of
decision making in cortex has been studied extensively using single-cell
recordings (Britten, Shadlen, Newsome, & Movshon, 1993; Kim & Shadlen,
1999; Schall, 2001). Typically these studies have used a direction of motion
discrimination task using fields of drifting random dots, with response via
saccadic eye movements. During these experiments, the mapping between
dot movement direction and required response was kept constant for many
weeks of the training, so that these studies describe the proficient phase of
task acquisition. After stimulus onset, neurons in cortical sensory areas (e.g.,
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area MT in the visual motion task) respond if their receptive fields encounter
the stimulus and are appropriately tuned to the overall direction of motion
(Britten et al., 1993; Kim & Shadlen, 1999). However, the instantaneous
firing rates in MT are noisy, probably reflecting the uncertainty inherent in
the stimulus and its neural representation. Further, this noise is such that
decisions based on the activity of MT neurons at a given moment in time
would be inaccurate, because the largest firing rate does not always indicate
the direction of coherent motion in the stimulus. Therefore, a statistical
interpretation is required. An often used hypothesis (Gold & Shadlen, 2001,
2002) is that populations of neurons in MT encode evidence for a particular
perceptual decision.

To formalize this, denote the evidence supporting decision i, (i is “left”
or “right”) provided at time t, by xi (t). Then, under the neural encoding
hypothesis, xi (t) corresponds to the total activity of MT neurons selective
for direction i at time t. The decision-making process can be defined as one
of finding which xi (t) has the highest mean (Gold & Shadlen, 2001, 2002). To
solve it, it appears that subsequent cortical areas are invoked to accumulate
evidence over time. Thus, in the motion discrimination task, neurons in the
lateral intraparietal area (LIP) and frontal eye field (FEF) (which are impli-
cated in the response via saccadic eye movements) gradually increase their
firing rate (Schall, 2001; Shadlen & Newsome, 2001) and could therefore be
computing

Yi (T) =
T∑

t=1

xi (t) (2.1)

over the temporal interval [1,T] (where we assume for simplicity a discrete
representation of time). The accumulated evidence Yi (T) may now be used
in making a decision about which xi (t) has the highest mean.

2.2 Modeling the Decision Criterion. The above description of cortical
integration leaves open a central question: When should a neural mech-
anism stop the integration and execute the action with the highest accu-
mulated evidence Yi (T)? A simple solution to this problem is to execute an
action as soon as any Yi (T) exceeds a certain decision threshold, yielding the
so-called race model (Vickers, 1970). However, this model does not perform
optimally. For example, in case of decision between two alternatives, it is
more efficient to compute the difference between the accumulated evidence
supporting the two alternatives and execute action as soon as this difference
crosses a positive or a negative decision threshold. This procedure is known
as a random walk (Laming, 1968; Stone, 1960) or a diffusion (Ratcliff, 1978)
model, and it may be shown to implement a statistical decision test known
as the sequential probability ratio test (SPRT) (Barnard, 1946; Wald, 1947).
The SPRT is optimal in the following sense: among all decision methods
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allowing a certain probability of error, it requires the shortest period of
sampling the xi —that is, it minimizes decision time (Wald & Wolfowitz,
1948).

2.3 The MSPRT. For more than two alternatives, there is no single opti-
mal test in the sense that SPRT is optimal for two alternatives, but there are
tests that are asymptotically optimal; that is, they minimize decision time for
a fixed probability of error when this probability decreases to zero (Dragalin,
Tertakovsky, & Veeravalli, 1999). These tests are the so-called multihypoth-
esis SPRTs (MSPRT’s) (Baum & Veeravalli, 1994; Dragalin et al., 1999), and
for two alternatives, they simplify to the SPRT. While it has been shown that
MSPRT may be performed in a two-layer connectionist network (McMillen
& Holmes, 2006), the required complexities in this model mitigate against
any obvious implementation in the brain (and, in particular, the cortex).

We now introduce the MSPRT (Baum & Veeravalli, 1994). A decision
among N alternative actions can be formulated in the same way as for the
case of the two alternatives described in section 2.1. That is, it amounts
to finding which xi (t) has the highest mean (Gold & Shadlen, 2001, 2002).
Let us define a set of N hypotheses Hi such that roughly speaking, each
Hi corresponds to xi (t) having the highest mean. More precisely, we define
Hi analogous to its definition for two alternatives (Gold & Shadlen, 2001,
2002); Hi is the hypothesis that xi (t) come from independent and identi-
cally distributed (i.i.d.) normal distributions with mean µ+ and standard
deviation σ , while xj �=i (t) come from i.i.d. normal distributions with mean
µ− and standard deviation σ , where µ+>µ−.

Bearing in mind that we are integrating evidence up until some time
T , denote the entirety of sensory evidence available up to T by input(T) =
{xi (t) : 1≤ i ≤ N, 1≤ t ≤ T}. The MSPRT (Baum & Veeravalli, 1994) is equiv-
alent to the following decision criterion at time T : for each alternative i ,
compute the conditional probability of hypothesis Hi given sensory inputs
so far, Pi (T) = P(Hi |input(T)), and execute an action as soon as any of the
Pi (T) exceeds a certain decision threshold. Hence, sensory information is
gathered until the estimated probability of one of the inputs having the
highest mean exceeds the decision threshold.

Appendix A describes how Pi (T) can be computed on the basis of sensory
evidence. In particular, it shows that the logarithm of Pi (T), which we
denote by Li (T), is given by

Li (T) = yi (T) − ln
N∑

k=1

exp(yk(T)) (2.2)

where yi (T) is proportional to the accumulated evidence supporting action
i . In particular, yi (T) = g∗Yi (T), where Yi (T) is the accumulated evidence
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supporting action i (see section 2.1) and g∗ is a constant. We will refer to
yi (T) as the salience of action i .

Thus, MSPRT implies that an action should be selected as soon as any
of the Li (T) exceeds a fixed decision threshold. Equation 2.2 is the basis
for mapping MSPRT onto the basal ganglia. However, before we proceed
with this process, we describe some of the intuitive properties of MSPRT,
as implemented in equation 2.2.

The right-hand side of equation 2.2 has two terms. The first term yi (T)
is simply the salience and, on its own, describes a race model (Vickers,
1970). This term therefore incorporates information about the absolute size
of the salience of the currently “winning” alternative. The second term in
equation 2.2 occurs in subsequent analysis throughout the article, and we
denote it by S(T) where,

S (T) = ln
N∑

k=1

exp (yk (T)). (2.3)

The term S(T) includes summation over all alternatives and does not de-
pend on i . S(T) therefore decreases the value of all Li (T) by the same
amount, thereby increasing the minimum salience required for an action to
be selected. It may therefore be thought of as representing response conflict,
because its value is increased by more actions having high salience. In this
way, S(T) allows incorporation of information about the difference between
the salience of the currently winning alternative and its competitors. The
degree of scaling of the salience required for action selection implied by the
particular form of S(T) is critical for optimal decision making; it allows a
much lower average decision time for fixed accuracy than when the scaling
is not present (i.e., race model), as will be shown in section 5.

2.4 Basal Ganglia Connectivity. The basal ganglia connectivity used
in our study contain the major pathways known to exist in basal ganglia
anatomy and was based on that used in the model of Gurney et al. (2001a).
Figure 1A shows this connectivity for rat in cartoon form (for reviews
of basal ganglia anatomy, see Gerfen & Wilson, 1996; Mink, 1996; Smith
et al., 1998). Cortex sends excitatory projections to the striatum (Nakano,
Kayahara, Tsutsumi, & Ushiro, 2000) and subthalamic nucleus (STN) (Smith
et al., 1998). The striatum is the largest basal ganglia nucleus and is di-
vided into two populations of projection neurons differentiated, inter alia,
by their anatomical targets and preferential dopamine receptor type (Ger-
fen & Young, 1988). The neurons in one striatal subpopulation send focused
inhibitory projections to the basal ganglia output nuclei: the substantia ni-
gra pars reticulate (SNr) and entopeduncular nucleus (EP) (the homologue
of primate globus pallidus internal segment (GPi)). These striatal neurons
are associated with D1-type dopamine receptors (Smith et al., 1998) and,
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A

B

Figure 1: Comparison of connectivity of basal ganglia and a network imple-
menting the multihypothesis sequential probability ratio Test (MSPRT). (A)
Connectivity of basal ganglia nuclei and its cortical afferents in the rat (mod-
ified from Gurney et al., 2001a). Connections and nuclei denoted by dashed
lines are not essential for the implementation of MSPRT. (B) Architecture of the
network implementing MSPRT. The equations show expressions calculated by
each layer of neurons.
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together with their targets (SNr, EP), constitute the so-called “direct path-
way” (in section 3 we associate this direct pathway with first term yi (T) in
equation 2.2). Neurons in the other striatal population are also inhibitory,
send focused projections to the globus pallidus (GP) (globus pallidus exter-
nal segment or GPe in primate), and are associated with D2-type dopamine
receptors (Smith et al., 1998). Neurons in the STN are glutamatergic and
send diffuse excitatory projections to SNr/EP and GP (Parent & Hazrati,
1993, 1995a). The GP sends inhibitory connections to the output nuclei (Be-
van, Smith, & Bolam, 1996). This second striatal population therefore gives
rise to an indirect pathway to the output nuclei via GP and STN (in sec-
tion 3, we propose that the nuclei traversed by the indirect pathway are
involved in computation of term S(T)). The output nuclei send widespread
inhibitory connections to the midbrain, brain stem (Faull & Mehler, 1978;
Kha et al., 2001), and thalamus (Alexander, DeLong, & Strick, 1986).

2.5 Neuronal Selectivity in the Basal Ganglia. There is much evidence
(reviewed below) pointing to a topographic representation of functionality
within basal ganglia and its associated thalamocortical circuitry, leading
to the hypothesis that these circuits support a range of discrete channels
associated with different actions. This concept will be important for the
model; in section 3, we associate each channel with a term Li (T).

At the largest scale of organization, Alexander et al. (1986) divided the
loops from cortex, through basal ganglia, thalamus, and back to cortex,
into five parallel, segregated circuits (cf. Nakano et al., 2000) associated
with different functionality. Since this article treats the problem of action
selection, we focus on motor and oculomotor circuits and return to con-
sider information processing in the limbic and two prefrontal circuits in
section 6.

Within the motor circuit, studies of awake primates in behavioral tasks
have established that all basal ganglia nuclei have somatotopic organiza-
tion. Thus, Crutcher and DeLong (1984a, 1984b) have shown that neurons
selective for arm, leg, and face are located within different parts of the
striatum. Further, within each body part, there are clusters of neurons re-
sponding selectively before and during movement of individual joints (of-
ten only in single direction) (Crutcher & DeLong, 1984a, 1984b). Similarly,
Georgopoulos, Delong, and Crutcher (1983) found neurons in other basal
ganglia nuclei (STN, GP, EP) that were selective to the direction and speed
of individual movements. These observations led Alexander et al. (1986) to
propose that “the motor circuit may be composed of multiple, parallel sub-
circuits or channels concerned with movement of individual body parts,”
which traverse all nuclei of basal ganglia.

The notion of channels was incorporated into the computational model of
Gurney et al. (2001a), who proposed that each action is associated anatom-
ically with a discrete neural population within each nucleus. Channels are
therefore defined at the input nuclei (striatum and STN) as populations
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innervated by the cortical afferents associated with each action. Channel
populations in other nuclei (GP, EP, SNr) are then defined by focused pro-
jections from corresponding striatal populations.

3 The Basal Ganglia Implements Selection Using MSPRT

We now show how the MSPRT test defined by equation 2.2 may be per-
formed in a biologically constrained network model of the basal ganglia.
For simplicity of explanation, we first show how equation 2.2 maps onto
a model of basal ganglia including only a subset of the known anatom-
ical connections (we exclude the connections marked by dotted lines in
Figure 1A). Subsequently we demonstrate the mapping onto the model
with the complete set of connectivity. The mapping between equation 2.2
and the network is shown graphically in Figure 1B. In our decomposition,
each channel (see section 2.5) is associated with an action i and a term Li (T)
in the MSPRT. Hence, we assume that there is a finite number N of available
actions represented in a discrete (or “localist”) fashion (the topic of action
representations is dealt with further in section 6).

We note first that the Li (T) are always negative or equal to 0, because
Li (T) = lnPi (T), and Pi (T) are probabilities. Thus, by definition, Pi (T) ≤
1, and so lnPi (T) ≤ ln1 = 0. Therefore, the Li (T) themselves cannot be
represented as firing rates in neuronal populations (since neurons cannot
have negative firing rates). This may be overcome by assigning the network
output OUTi to –Li (T), that is,

OUTi (T) = −yi (T) + ln
N∑

k=1

exp(yk(T)). (3.1)

The decision is now made whenever any output decreases its activity below
the threshold. Notice that this is consonant with the supposed action of basal
ganglia outputs in performing selection by disinhibition of target structures
(Chevalier et al., 1985; Deniau & Chevalier, 1985).

As described in section 1, we propose, along with others (Schall, 2001;
Shadlen & Newsome, 2001), that quantities like yi (T), representing salience,
are computed in cortical regions that project to basal ganglia. In the motion
discrimination example (described in section 2.1), yi (T) would be computed
in FEF, which is known to innervate the basal ganglia (Parthasarathy, Schall,
& Graybiel, 1992). Since yi (T) is the product of the raw accumulated evi-
dence Yi (T) and a scaling factor, g∗, we interpret g∗ as the gain that cortex
introduces in computing the salience (Brown et al., 2005). As shown in
appendix A, the MSPRT algorithm specifies g∗ exactly. Thus, there is an
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optimal gain:

g∗ = µ+ − µ−

σ 2 , (3.2)

where µ+, µ−, σ parameterize the cortical inputs (see section 2.3). We return
to the question of parametric robustness with respect to gain later.

Equation 3.1, describing the activity of the basal ganglia output nuclei,
includes two terms, the first of which we propose is computed within the
direct pathway, while the second term is within the pathway traversing
STN and GP. The first term in equation 3.1, –yi (T), is an inhibitory compo-
nent and cannot be supplied by cortex since its efferents are glutamatergic.
We argue therefore that one function of the population of GABAergic stri-
atal projection neurons with D1 receptors (see Figure 1A) is to provide an
inhibitory copy of the salience signal to the output nuclei.

Turning to the second term in equation 3.1, this is S(T) (defined in
equation 2.3) which supplies an excitatory contribution to the output nuclei.
A key aspect of S(T) is that it involves summing over channels. The source
of excitation in the basal ganglia is the STN, which sends diffuse projections
to the basal ganglia output nuclei (Parent & Smith, 1987). Thus, each output
neuron receives many afferents from widespread sources within STN, and
so it is plausible that they are performing a summation over channels. In the
network model, this is reflected in the fact that neurons in each channel i of
the output nuclei compute the quantity OUTi (T) = −yi (T) + �(T), where:

�(T) =
N∑

i=1

STNi (T). (3.3)

The model then implements MSPRT if �(T) = S(T). We now show, first
in outline and then more rigorously, how the form of STNi (T) required in
order to ensure �(T) = S(T) may be enabled by the interaction between
STN and GP and the characteristic transfer functions of their neurons.

A first correspondence between equations 2.3 and 3.3 involves summa-
tion over channels. Second, since STN receives input yi (T) from the cortex,
this suggests that the STN firing rate should be proportional to the exponent
of its input. We also propose that the logarithm in equation 2.3 comes from
interactions between STN and GP. The log transform may be thought of as
a compression of the range of STN activity, plausibly derived from GP inhi-
bition, since this is, in turn, under STN control. Thus, rather than supplying
a fixed decrement in STN activity through a fixed level of inhibition, GP
increases its inhibition in response to increased activity in STN.

We now formalize these requirements, resulting in quantitative pre-
dictions about the input-output relations of STN and GP neurons. First,
we require that the firing rate of neurons in STN is proportional to an
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exponential function of its inputs:

STNi (T) = exp (yi (T) − GPi (T)) . (3.4)

Since STN projects diffusely to GP (Parent & Hazrati, 1995b), we assume
that the STN input to GP channel i is �(T) rather than STNi (T). The required
log transform is obtained by supposing that the firing rate of GP channel i,
GPi (T), is given by

GPi (T) = �(T) − ln (�(T)) , (3.5)

since, substituting equation 3.5 into equation 3.4, summing over i , and
solving for �(T) then yields �(T) = S(T).

In summary, an implementation of MSPRT defined by equations 3.1 to 3.5
may be realized by a subset of basal ganglia anatomy, defined in Figure 1B,
if the behavior of neurons in STN and GP follows equations 3.4 and 3.5.

As described so far, the model lacks two known pathways within basal
ganglia that were shown in Figure 1A. First, the GP functionality defined in
equation 3.5 omits afferents from striatal projection neurons associated with
D2-type dopamine receptors. Second, GP projections to the output nuclei
have not been included in equation 3.1. It has been proposed that these
pathways play a critical role in the learning phase, when they block actions
that have been punished (Frank et al., 2004). This function is not included
in our model, because we address only the computation in the proficient
phase. Appendix B shows that incorporation of these pathways into an
anatomically more complete scheme still admits a model of basal ganglia
that supports MSPRT. Therefore, the model with all pathways shown in
Figure 1A also achieves the optimal performance of the MSPRT.

4 Predicted Requirements for STN and GP Physiology Are Validated by
Existing Data

In this section we compare the predictions of equations 3.4 and 3.5 con-
cerning the firing rates of STN and GP neurons as a function of their input,
with published experimental data. In order to make this comparison, model
variables (e.g., yi (T), STNi (T), GPi (T)) are assumed to be proportional to
experimentally observed neuronal firing rates. Note, however, that propor-
tionality constants are not uniquely specified by the model because a change
in any such constant for a particular nucleus can be absorbed by rescaling
the weights in projections from this nucleus to other areas. (The use of in-
terpathway weights is illustrated in the anatomically more complete model
described in appendix B.)

The forms for STN and GP functionality given in equations 3.4 and 3.5
were derived on the basis of the known anatomy of the basal ganglia and the
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assumption that the network involving cortex and basal ganglia implements
MSPRT. Since we did not use the physiological properties of STN and GP
neurons in deriving equations 3.4 and 3.5, these equations represent predic-
tions of the model for the physiological properties of STN and GP, thereby
providing an independent means for testing the model. These predictions
are very strong; in particular, the theory of section 3 implies that the firing
rate of STN neurons should be proportional to the exponent of its input.
Such a relation is highly unusual in most neural populations. Furthermore,
such a relation is very different from the STN input-output relations as-
sumed by other models: Gurney et al. (2001a) assume a piecewise linear
relation, while Frank et al. (2005) assume a sigmoid relation.

The response properties of STN neurons have been studied extensively
(Hallworth, Wilson, & Bevan, 2003; Overton & Greenfield, 1995; Wilson,
Weyrick, Terman, Hallworth, & Bevan, 2004). Typically they have nonzero
spontaneous firing and can achieve unusually high firing rates. Our pro-
posed exponential form for firing rate as a function of input (see equa-
tion 3.4) explains these features since, in the absence of input, the model
gives nonzero (unity) output and exp(.) is a rapidly growing function yield-
ing potentially high firing rates. In order to test the prediction of equation 3.4
quantitatively, we fitted exponential functions to firing rate data in the lit-
erature. Figure 2H shows the pooled results of this exercise based on two
studies (Hallworth et al., 2003; Wilson et al., 2004). The fit to an exponential
function is a good one, consistent with the prediction in equation 3.4.

Second, the theory makes predictions, defined by equation 3.5, con-
cerning the firing rate of GP. First, we show that the function defined
by equation 3.5 is roughly linear if we make the reasonable assumption
that N (the number of channels or available actions) is large. Thus, since
yi (T) > 0, then from equation 2.3, S(T) is bounded below by ln(N), so that
S(T) increases with N. Now, for large S(T), S(T) >> ln(S(T)), so that the lin-
ear term in equation 3.5 dominates, and GPi (T) becomes an approximately
linear function of its input S(T).

We therefore predict that GP neurons display a roughly linear relation
between input and firing rate, and two studies validate this. Nambu and
Llinas (1994) have established that for those GP neurons that are most
influential on the population firing rate, their firing rate is indeed well
approximated by a linear function of the injected current (see Figure 2I), a
result that is in agreement with an earlier study by Kita and Kitai (1991). In
any case, a model in which GP neurons obey an exactly linear input firing
rate relation departs little in performance from the model in which GP is
described by equation 3.5 (see section 5.3).

Finally, it is intriguing to note that GP also includes two types of neurons
whose input-output properties are logarithmic (Nambu & Llinas, 1994).
Thus microcircuits within GP making use of intranucleus inhibitory col-
laterals (Nambu & Llinas, 1997) could also support the exact computation
required by equation 3.5 for MSPRT.
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Figure 2: Firing rates f of STN and GP neurons as a function of input current
I . (A–D) The panels replot data on the firing rate of STN neurons presented
in Hallworth et al. (2003) in Figure 4b, 4f, 12d, and 13d respectively (control
condition). (E–G) The panels replot the data from STN presented in Wilson
et al. (2004) in Figures 1c, 2c, 2f respectively (control condition). Only firing
rates below 135 Hz are shown. Lines show best fit of the function f = a exp(b I ).
(H) Scaled data from A–G ( f j /a,bI j ) plotted on the same axes for all neurons.
(I) Number of spikes n produced by a GP neuron of type II (Nambu & Llinas,
1994) in a 242 ms stimulation interval using current injection I . (The data used
in this figure, kindly provided by Atsushi Nambu, come from the same neuron
analyzed in Figure 5g of Nambu and Llinas, 1994.)

5 Performance of MSPRT Model of the Basal Ganglia and Its Variants

The performance of the algorithmically defined model described in section
3 was investigated in simulation.
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5.1 Simulation Methods. In all numerical experiments described in
this section, we simulated a decision process between N alternative actions,
with plausible parameters describing sensory evidence. The evidence xi (t)
was accumulated in integrators Yi in time steps of δt = 1ms. For the cor-
rect alternative i , evidence xi (t) was generated from a normal distribution
with mean µ+δt and variance σ 2δt, while for other alternatives, xj (t) was
generated from a normal distribution with mean µ−δt and variance σ 2δt.
It transpires, in fact, that we require only the values of the signal µ+ − µ−,
rather than individual means themselves (see appendix A). This was esti-
mated from a sample participant in experiment 1 from the study of Bogacz,
Brown, Moehlis, Holmes, and Cohen (2006), that is, µ+ − µ− = 1.41. An
estimate of σ was taken from the same experiment to be 0.33. For each set
of parameters, a decision threshold was found numerically that resulted in
an error rate of 1% ± 0.2% (SE); this search for threshold was repeated 10
times. For each of these 10 thresholds, the decision time was then found in
simulation and their average used to construct the data points.

5.2 MSPRT in the Basal Ganglia Outperforms Alternative Decision
Mechanisms. It is instructive to see quantitatively how the performance
for the MSPRT model compares with that of two other standard models of
decision making in the brain: the race model (Vickers, 1970) and a model
proposed by Usher and McClelland (2001) (henceforth, the UM model).
While the MSPRT has been shown to be asymptotically optimal as the
error approaches zero, its performance with finitely large errors has to be
evaluated numerically. To do this, we conducted simulations for differing
numbers of competing inputs, N, for all three models, with a 1% error rate.

Figure 3A shows that the MSPRT consistently outperforms both the UM
and race models (especially in the more realistic large N regime). This result
is in agreement with recent work by McMillen and Holmes (2006) (who also
showed another feature in Figure 3A—that as N increases, the performance
of UM model asymptotically approaches that of the race model). For N = 2,
the performance of the MSPRT and UM models is very similar since, in this
instance, the latter approximates SPRT (Bogacz et al., 2006; Brown et al.,
2005).

5.3 The Model is Parametrically Robust. As previously noted, MSPRT
specifies a unique value of the cortical gain parameter g∗ if MSPRT is to
be faithfully implemented. We now analyze the performance of the model
with different values of gain g �= g∗ in a general cortical integrator rela-
tion yi (T) = gYi (T) (instead of yi (T) = g∗Yi (T)). Equation 3.2 implies that
the optimal value of gain g∗ depends on the parameters of the inputs to
the cortical integrators (µ+, µ−, σ ). These parameters are task specific and
are therefore unlikely to be known to any neural decision system. It is
therefore essential for any biologically realistic implementation of MSPRT
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Figure 3: Comparison of decision times (DT) of various models described in the
text. Simulation details for the MSPRT model are given in section 5.1. (A) Com-
parison of DT of MSPRT model, the Usher and McClelland (2001) (UM) model
and race model (Vickers, 1970) for different numbers of alternative actions. The
standard error of the mean decision time estimation (SEM.) was always lower
than 7.3 ms. The inhibition and decay parameters of the UM model were set
to 100. The isolated filled triangles show DTs for the linearized GP model with
two parameter pairs (g, a ) (see section 5.3). The triangle pointing up shows DT
for default values g = g* and a = 1, and the triangle pointing down for optimal
values g = 0.4g* and a = 0.84. The isolated square shows the DT for a version
of MSPRT model in which simple cortical integrators are replaced by a UM
model with both decay and inhibition parameters equal to 10. (B) Robustness
of MSPRT model under variation in the gain parameter. The solid line shows
the dependence of DT for N = 10 alternatives on the value of parameter g (ex-
pressed via its ratio g∗). Error bars indicate SEM. The dashed line shows the
decision time of the UM model.
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that this mechanism does not significantly deviate from optimality under
variation of the gain g from its optimal value, g∗.

Figure 3B shows that the model is indeed robust to changes in g. If
g > g∗, the decision time does not increase, while if g < g∗, the decision
time does increase, but it never exceeds that of the UM model (see appendix
C). Hence, even if the parameters of the inputs to the cortical integrators
are not known, the performance may be optimized by setting g as high as
possible.

Turning to the functionality of GP, we evaluated the decrease in perfor-
mance under an exact linearization of GP with respect to that shown in
Figure 3A, for N = 10 alternatives. To do this, suppose the firing rate of a
neuron in GP is a linear function of its input from STN with proportionality
constant a :

GPi (T) = a
N∑

j=1

STN j (T) = a S (T) . (5.1)

Substituting equation 5.1 into equation 3.4 and summing over i yields

ln (S (T)) + a S (T) = ln

(
N∑

i=1

exp (yi (T))

)
. (5.2)

equation 5.2 does not have a closed-form solution for S(T), and so this is
found by solving equation 5.2 numerically.

Decision times (DT) were contingent on the values of parameters g and
a . With default values, g = g* and a = 1, DT = 607 ms (with SEM. = ±
3 ms), which is better than the UM model (DT = 628 ms) or race model
(DT = 676 ms). A parameter search yielded optimal performance, with
DT = 545 ms (±3 SEM.), with g = 0.4 g∗ and a = 0.84.

5.4 Competition May Occur in Both Cortex and Basal Ganglia. The
UM model (as well as the model of cortical decision making in area LIP by
Wang, 2002) assumes that cortical integrators not only integrate evidence (as
in the MSPRT model) but also actively compete with one another. Appendix
D shows that if the cortex performs a computation equivalent to the UM
model, then the activity levels of the basal ganglia output nuclei are exactly
the same as in the original MSPRT model. As a consequence, the decision
times remain the same, and the system as whole still achieves optimal
performance. This is illustrated in Figure 3A, where an isolated open square
symbol shows the DT for the model augmented with UM-based cortical
processing; this DT is the same as for the original MSPRT model.
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6 Discussion

6.1 Summary. Our main result is that a circuit involving cortex and
the basal ganglia may be devoted to implementing a powerful (asymptoti-
cally optimal) decision mechanism (MSPRT) in a parametrically robust way.
Further, our results suggest a division between a core functional anatomy
(shown in Figure 1B) and additional pathways (incorporated in the anatom-
ically complete model) that may serve other purposes (e.g., enhancement
of robustness and learning) without compromising MSPRT. In addition,
the MSPRT model was shown to outperform other decision mechanisms.
While the UM and race models avail themselves of simple network imple-
mentations, the sophisticated architecture and neural functionality of the
basal ganglia appear to have evolved to support the more powerful MSPRT,
allowing the brain to make accurate decisions substantially faster than the
simpler mechanisms. The model also made several predictions about the
physiological properties of STN and GP neurons, which, while consistent
with existing data, provide a challenge for further experimental studies to
test them in vitro and in vivo with synaptic input.

6.2 Relationship to Other Models of Decision Making

6.2.1 Action Selection in Basal Ganglia. The model described in this article
has exactly the same architecture (shown in Figure 1A) as a previous model
of action selection in the basal ganglia in the proficient phase (Gurney et al.,
2001a). This architecture has been shown before to exhibit appropriate ac-
tion selection and switching properties in a computational model (Gurney
et al., 2001b). The underlying architecture has also been shown to be func-
tionally robust (from a selection perspective) in a variety of settings. Thus, it
has also been shown to perform these functions within the anatomical con-
text supplied by associated thalamocortical loops (Humphries & Gurney,
2002), under the addition of further circuitry intrinsic to the basal gan-
glia (Gurney, Prescott, et al., 2004), when embodied in a complete, behav-
ing autonomous agent (Prescott, Montes-Gonzalez, Gurney, Humphries,
& Redgrave, 2006) and in spiking neuron models (Humphries, Stewart, &
Gurney, in press; Stewart, Gurney, & Humphries, 2005), which are con-
strained by significantly more physiological detail than their systems-level
counterparts.

The model of Gurney et al. (2001a) and the MSPRT model are consistent in
proposing similar functions of individual nuclei. In particular, we suppose
here that the GP plays a crucial role in limiting STN activity (via a log
transform). This function is similar to that proposed for GP in Gurney et al.
(2001a), in which GP automatically limits the excitation of basal ganglia
output nuclei in order to allow network mechanisms to perform selection.
This work differs from Gurney et al. (2001a) in that it provides an analytic
description for the computation performed during the selection, thereby
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providing a new framework for understanding why the basal ganglia are
organized in the way they are.

The function of STN in our model is similar to that posited by Frank
(2005), who proposed that it “can dynamically modulate the threshold for
executing responses depending on the degree of response conflict present.”
The novelty of our work lies in specifying precisely how STN should mod-
ulate this threshold to optimize the performance.

6.2.2 Bayesian Decision Making. MSPRT can be viewed as a Bayesian
method of decision making, as it is based on evaluating conditional proba-
bilities using the Bayes theorem (see appendix A). Recently Yu and Dayan
(2005) proposed a Bayesian model of attentional modulation of decision
making. In this model, the final layer of an abstract neural network per-
forms a computation equivalent to that accomplished by the outputs of the
MSPRT model of basal ganglia presented here (i.e., each output unit com-
putes exponents of Li (T)). The novelty of our work lies in showing how
this computation may be performed by an identified, biological network of
neurons, the basal ganglia.

6.2.3 Cortical Decision Making. From the theoretical perspective, the use
of integrated evidence leaves open the possibility that the cortex may op-
erate as the first stage of a two-stage decision process, in which cortical
mechanisms of the kind posited in the UM model (for example) make a
first-pass filter for actions with small saliences, thereby preventing these
requests from propagating to the basal ganglia for further processing. This
possibility was confirmed by mathematical analysis and simulation, where
identical results were obtained after incorporation of a first stage consist-
ing of a UM network (rather than the simple integration implied in equa-
tion 2.1).

6.2.4 Integration of Evidence. The model presented here assumes that cor-
tical neurons integrate evidence in support of alternative actions. Several
mechanisms have been proposed for how this may occur; for example,
Wang (2002) proposed that the integration occurs via excitatory connec-
tions in the cortex. However, if the basal ganglia model presented here is to
be a universally applicable solution to the problem of action selection, then
the appearance of accumulated evidence must be guaranteed at its inputs
under all circumstances, irrespective of the specific action request and brain
system generating it. Anatomically, the basal ganglia form a component of
loops consisting of projections from cortex to basal ganglia, then to thala-
mus and back to cortex (Alexander & Crutcher, 1990). In a computational
study of basal ganglia and cortex, Humphries and Gurney (2002) showed
that cortical regions receiving thalamic input had their activity levels am-
plified beyond those of sensory areas that did not. This raises the intriguing
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possibility that the feedback in these loops could serve to bootstrap evidence
accumulation in cortex so that no separate mechanism is required.

6.2.5 Reinforcement Learning. As stated in section 1, this article focuses on
the proficient phase of task acquisition. However, during learning, it is still
necessary to identify the behavioral state (stimulus and ongoing behavior)
and represent the stimulus response mapping in some way. Both processes
are aspects of the decision-making process discussed in this article, and so
it is useful to speculate how it might be possible to unify the accounts of
decision making and learning into a single coherent framework.

To develop these ideas, we consider a version of the motion discrimina-
tion task described in section 2.1 in which the stimulus-response mapping is
constantly modified and hence must be learned by the animal. In this case, it
is unlikely that the stimulus-response mapping would be represented in the
connections between MT and FEF, because these connections would have
to be rapidly and continuously modified. Many models based on experi-
mental data would assume that in this experiment, the stimulus-response
mapping would be stored in much more plastic synapses in the prefrontal
cortex or the striatum (Doya, 2000; Miller & Cohen, 2001; O’Doherty et al.,
2004). This is also the kind of scheme considered by Ashby, Alfonso-Turken,
and Waldron (1998) in the context of category learning with motor response.
Here, early stimulus-response mappings are learned in the basal ganglia,
while slower consolidation takes place in direct mappings between sensory
and motor cortices.

Further, we note that behavioral state identification during learning
could rely on integration of information, just as it does during the proficient
phase in the theory presented here. However, in the case of learning, the
integration may occur in regions different from those used during the pro-
ficient phase. For example, Gold and Shadlen (2003) have shown that in the
version of the motion discrimination task in which the mapping between
stimulus and direction of saccade is not known during the information
integration, the integration does not occur in FEF.

If a unified framework encompassing action selection and learning could
be developed along the lines outlined above, it would simultaneously al-
low predictions of the probabilities of taking alternative actions, as well as
the probability distributions of onsets of action initiations (reaction times).
However, before such a unified account is developed, a number of questions
must be answered, in particular, where in the brain the evidence supporting
alternative actions is computed in the learning phase. To address this ques-
tion, we look forward to studies of neuronal responses in cortex and basal
ganglia in the version of the motion discrimination task described above.

6.2.6 Working Memory. O’Reilly and Frank (2006) have proposed that the
basal ganglia gate access to working memory and decides whether a newly
presented stimulus should be stored in the working memory. According to
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Alexander et al.’s (1986) multiple loop scheme, this kind of decision would
be performed by the dorso-lateral prefrontal circuit. As noted in section
2.5, this letter focuses on motor and oculomotor circuits. It would there-
fore be interesting to investigate whether the basal ganglia implementing
MSPRT could also optimize selection within working memory and, indeed,
cognitive selection in general.

6.3 Relationship to Other Experimental Data

6.3.1 Psychological Data. A model of decision making must be consistent
with the rich body of psychological data concerning reaction times (RT).
Other psychological models are consistent with these data (Ratcliff, Van
Zandt, & McKoon, 1999; Usher & McClelland, 2001), and consistency in this
respect will therefore not distinguish our model in favor of these alternatives
but, rather, is a necessary requirement for its psychological plausibility.
Our model is indeed completely consonant with the account of RT data in
two alternative choice paradigms given by the diffusion and SPRT models
(e.g., Ratcliff et al., 1999), since, under these circumstances, MSPRT reduces
to SPRT. For more than two alternatives, it is interesting to note that the
decision time of the MSPRT model (shown in Figure 3A) is approximately
proportional to the logarithm of the number of alternatives (cf. McMillen
& Holmes, 2006), thus following the experimentally observed Hick’s law
(Teichner & Krebs, 1974) describing RT as a function of number of choices.
Further support for the basal ganglia as a psychologically plausible response
mechanism is provided in recent work by Stafford and Gurney (2004, in
press).

6.3.2 The Neural Representation of Actions. In this letter, we assumed for
simplicity that there was an anatomically separate channel for each possible
action. However, this raises the question of what constitutes a separate
action. For example, is moving one’s hand 10 cm to the left a different
action from moving it 15 cm to the left? If not, then how are these actions
differentiated? If they are different actions (with respect to basal ganglia
selection), then the number of actions is potentially infinite, and the basal
ganglia are confronted with the seemingly impossible task of representing
an infinite number of discrete channels.

Neurophysiological data provide a clue to a possible answer to these
questions. Georgopoulos et al. (1983) studied neuronal responses in basal
ganglia in a task (akin to the example above) in which different stimuli
required an animal to move its hand in the same direction with three differ-
ent amplitudes. They noticed that some hand-selective neurons had activ-
ity proportional to movement amplitude, while other neurons had activity
inversely proportional to the amplitude (they responded most for short
movements). This suggests that although movements of different joints
may be represented by the separate neuronal populations (channels), the
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fine tuning of the movement is represented in a distributed fashion within
a channel.

It will therefore be of interest to extend the current theory to incorporate
coding by distributed representations. The current MSPRT model describes
activity of a neuronal population selective for each alternative within each
nucleus by a single variable (corresponding to activity in a localist unit).
Recently Bogacz (2006) has shown how to map linear localist decision net-
works into computationally equivalent distributed decision networks and
derived the parameters of decision networks with distributed representa-
tions implementing SPRT. Although this network mapping process cannot
be directly applied to the MSPRT model (because it includes nonlinear pro-
cessing in STN), it is likely that a similar approach for particular types of
nonlinearities present in the MSPRT model may be developed.

6.3.3 Responses of Striatal Neurons. As noted in section 1, the MSPRT
model aims to provide a general framework for understanding computation
in the basal ganglia as a whole during action selection in the proficient
phase. Therefore, the model does not aim to incorporate all known data
on basal ganglia neurons and, in particular, does not aim to explain data
relating to the learning phase (during which the striatum is know to play
a prominent role). However, it is of interest to see whether the behavior
of the population of striatal projection neurons in the proficient phase is
consistent with our ideas.

In the MSPRT model, we assume, in accordance with experimental obser-
vations (Crutcher & DeLong, 1984b; Georgopoulos et al., 1983), that during
the proficient phase, the activity of striatal neurons encoding certain actions
reflects the activity in corresponding cortical motor or oculomotor regions.
Note that the above assumption does not prevent striatal neurons selective
for particular actions to be modulated by expected reward in the proficient
phase, as it has been shown that the cortical integrators are modulated by
expected reward in the study by Platt and Glimcher (1999) in which the
stimulus-response mapping was kept constant for many weeks of training
and experiment.

We assumed that in the proficient phase, the neurons in striatum se-
lective for actions should reflect the activity of cortical integrators. This
predicts that in the motion discrimination task described in section 2.1, stri-
atal neurons selective for alternative directions of eye movements should
exhibit gradually increasing firing rates similar to those in the cortex. This
prediction may seem to contradict the observation that striatal neurons are
bistable (Wilson, 1995) with an active “up” state, and an inactive “down”
state. However, Okamato, Isomura, Takada, and Fukai (2005) have shown
recently that even if neurons are bistable, and if the probability of the onset
of the up state depends on the magnitude of input, these neurons may im-
plement information integration, and their activity averaged across trials
may be linearly increasing.
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6.3.4 Dopaminergic Modulation. In this article, we do not analyze the in-
fluence of dopamine on basal ganglia computation. However, there are two
types of dopamine release within the basal ganglia. First, phasic release
(brief pulses of dopamine) is associated with salient or unexpected behav-
ioral events. In particular, it has been proposed that the phasic dopamine
signal represents a variable in temporal difference reinforcement learning,
namely, the reward prediction error (i.e., the difference between the actual
and the predicted levels of expected reward) (Montague et al., 1996; Schultz
et al., 1997). Since we do not address learning here, we do not consider
phasic release further.

A second type of dopamine release provides tonic or background lev-
els, severe lowering of which can result in Parkinson’s disease (Obeso
et al., 2000). A recent modeling study of the basal ganglia circuit (Gurney,
Humphries, Wood, Prescott, & Redgrave, 2004) has indicated that tonic
levels of dopamine may influence the speed-accuracy trade-off in making
responses. This is consistent with experimental results showing that the
level of tonic dopamine influences RTs (Amalric & Koob, 1987; Amalric,
Moukhles, Nieoullon, & Daszuta, 1995). It will be interesting to determine
theoretically to what extent the tonic dopamine level can influence the
speed-accuracy trade-off while still preserving the optimality of MSPRT
and whether this mechanism can play a role in finding the speed-accuracy
trade-off that maximizes the rate of reward acquisition in tasks including re-
peating sequences of choices (Bogacz et al., 2006; Simen, Cohen, & Holmes,
2006).

Appendix A: The MSPRT

This section supplies details of the derivation of equation 2.2. Noting the
definition in the main text Pi (T) = P(Hi |input(T)), then, from Baye’s theo-
rem,

Pi (T) = P (input (T) |Hi ) P (Hi )
P (input (T))

. (A.1)

Notice that the hypotheses Hi are mutually exclusive (as xi cannot si-
multaneously have mean µ+ and µ−). Further, we assume that the set of
hypotheses Hi covers all possibilities concerning the distribution of sensory
inputs (a standard assumption is statistical testing). Then the denominator
of equation A.1 can be written as

P (input (T)) =
N∑

k=1

P (input (T) ∧ Hk), (A.2)
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but from the definition of conditional probability, P(input(T) ∧ Hk) =
P(input(T)|Hk)P(Hk), so that equation A.1 can be written as

Pi (T) = P(input(T)|Hi )P(Hi )∑N
k=1 P(input(T)|Hk)P(Hk)

. (A.3)

We assume that we do not have any prior knowledge about which of the
hypotheses is more likely, so all prior probabilities must be equal to each
other, that is, P(Hi ) = 1/N, and hence they cancel in equation A.3 and we
obtain the original form of MSPRT given by Baum and Veeravalli (1994):

Pi (T) = P(input(T)|Hi )∑N
k=1 P(input(T)|Hk)

. (A.4)

We now compute the logarithm of Pi , defined by equation A.4:

Li (T) = ln Pi (T) = ln P(input(T)|Hi )

− ln
N∑

k=1

exp(ln P(input(T)|Hk)). (A.5)

Equation A.5 already has a form similar to that in equation 2.2. We
now show how to obtain equation 2.2 exactly. We first compute the term
ln P(input(T)|Hi ) that occurs in equation A.5:

ln P (input (T) |Hi ) = ln
T∏

t=1


 f(µ+,σ ) (xi (t))

N∏
j=1
j �=i

f(µ−,σ )
(
xj (t)

)



=
T∑

t=1

ln f(µ+,σ ) (xi (t)) +
T∑

t=1

N∑
j=1
j �=i

f(µ−,σ )
(
xj (t)

)
,

where f(µ,σ ) denotes the probability density function of a normal distribu-
tion with mean µ and standard deviation σ . Therefore,

ln P(input(T)|Hi ) =
T∑

t=1

(
ln

1√
2πσ

− (xi (t) − µ+)2

2σ 2

)

+
N∑
j=1
j �=i

T∑
t=1

(
ln

1√
2πσ

− (xj (t) − µ−)2

2σ 2

)
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= NT ln
1√

2πσ
+ 1

2σ 2

(
−T

(
(µ+)2 + (N − 1) (µ−)2)

+
N∑

j=1

T∑
t=1

(−x2
j (t) + 2µ−xj (t)

)) + µ+ − µ−

σ 2

T∑
t=1

xi (t).

The first two terms on the right-hand side do not depend on i,and so,
denoting their sum by C,we have

ln P(input (T) |Hi ) = C + g∗ Yi (T) , (A.6)

where g∗ = (µ+ − µ−)/σ 2, and Yi (T) is defined in equation 2.1. Hence sub-
stituting equation A.6 into A.5, we obtain:

Li (T) = C + g∗Yi (T) − ln

(
exp (C)

N∑
k=1

exp (g∗Yk (T))

)

= g∗Yi (T) − ln
N∑

k=1

exp (g∗Yk (T))

which gives equation 2.2.

Appendix B: Basal Ganglia Model, Including All Major Pathways

To accomplish inclusion of all pathways shown in Figure 1A, we introduce
a model with weighted connection strengths. For simplicity, we assume that
all the excitatory weights are equal to 1 and denote the inhibitory weight
from nucleus A to nucleus B by wA→B . Denote the striatal projection neurons
whose dopaminergic receptors are predominantly of D1 and D2 types by
S1 and S2, respectively. The activity levels of basal ganglia nuclei in the
network of Figure 1A are then given by:

GPi =
N∑

j=1

STN j − ln


 N∑

j=1

STN j


 − wS2→GP yi (B.1)

STNi = exp(yi − wGP→STNGPi ) (B.2)

OUTi = −wS1→OUT yi +
N∑

j=1

STN j − wGP→OUT GPi . (B.3)
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We now derive constraints on the weights that must be satisfied so
OUTi (T) = −Li (T) as defined by equation 2.2. Substituting equation B.1
into B.2.,

STNi = exp

(
yi (1 + wGP→STNwS2→GP)

−wGP→STN

N∑
j=1

STN j + wGP→STN ln


 N∑

j=1

STN j





 .

Summing over i and rearranging terms, we get

N∑
i=1

STNi =
N∑

i=1

exp (yi (1 + wGP→STNwS2→GP))

× exp

(
wGP→STN

N∑
i=1

STNi

)−1

·
(

N∑
i=1

STNi

)wGP→STN

.

Taking the logarithm of both sides and rearranging terms,

ln

(
N∑

i=1

exp (yi (1 + wGP→STNwS2→GP))

)
= (1 − wGP→STN) ln

(
N∑

i=1

STNi

)

+wGP→STN

N∑
i=1

STNi . (B.4)

Now substitute equation B.1 into B.3:

OUTi =−yi (wS1→OUT − wGP→OUTwS2→GP)

+ (1 − wGP→OUT)
N∑

j=1

STN j + wGP→OUT ln


 N∑

j=1

STN j


 . (B.5)

Comparing equations B.4 and B.5, we note that if the following condition
is satisfied,

wGP→OUT = 1 − wGP→STN, (B.6)
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then we can substitute equation B.4 into B.5 and obtain

OUTi = −yi (wS1→OUT − wGP→OUTwS2→GP)

+ ln


 N∑

j=1

exp(yj (1 + wGP→STNwS2→GP))


 . (B.7)

In order to satisfy OUTi (T) = −Li (T), the two coefficients of yi in equa-
tion B.7 must be equal, and the gain coefficient must be modified accord-
ingly. Thus, the following must be satisfied:

wS1→OUT − wGP→OUTwS2→GP = 1 + wGP→STNwS2→GP. (B.8)

Substituting the constraint B.6 into B.8 gives

wS1→OUT = 1 + wS2→GP. (B.9)

The optimal value of the gain must be modified and becomes

g∗ = 1
1 + wGP→STNwS2→GP

µ+ − µ−

σ 2 .

Note that with the additional pathways, the optimal gain g∗ is less than
that required without these pathways. In summary, the network in Fig-
ure 1A implements MSPRT if the inhibitory weights satisfy constraints B.6
and B.9.

Appendix C: Performance for Nonoptimal Values of Parameter g

This section describes the performance of the basal ganglia model when
parameter g has nonoptimal values. Section C.1 shows that if g > g∗, the
decision time does not increase since, as g → ∞, the model converges to
the other asymptotically optimal test MSPRTb . Section C.2 shows that if
g < g∗, the decision time does increase, but it never exceeds that of the UM
model (Usher & McClelland, 2001) because as g → 0, the proposed model
converges to an approximation of the UM model.

C.1 Overestimation of Gain. We first describe the other asymptotically
optimal test MSPRTb (Dragalin et al., 1999) and go on to show that as
g → ∞, the model approximates MSPRTb . In this test, after each sample,
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the following ratios are computed (Dragalin et al., 1999):

RBi (T) = P (input (T) |Hi )
max
1≤k≤N

k �=i

P (input (T) |Hk)
.

The decision is made whenever one of the ratios exceeds a threshold.
From equation A.6, the logarithms of the above ratios for the hypotheses
defined in the main text become

L Bi (T) = g

(
Yi (T) − max

1≤k≤N
k �=i

Yk (T)

)
. (C.1)

The decision is made whenever one of LBi (T) exceeds a threshold. Let
Ym1(T), Ym2(T), . . ., Ymi (T), . . ., YmN(T) be the ordered sequence of Yi (T) with
Ym1(T) the largest member. Then, according to equation C.1, the decision
is made whenever Ym1(T) − Ym2(T) exceeds a threshold. We now show that
the basal ganglia model in the main text works in just this way, as g → ∞.
The log-ratio Li (T) in equation 2.2 of the main text is equal to

Li (T) = gYi (T) − ln


exp (gYm1 (T)) + exp (gYm2 (T)) +

N∑
j=3

exp(gYmj (T))




= gYi (T) − ln

(
exp (gYm1 (T))

(
1 + exp (g (Ym2 (T) − Ym1 (T)))

+
N∑

j=3

exp
(
g

(
Ymj (T) − Ym1 (T)

))))

= gYi (T) − gYm1 (T) − ln

(
1 + exp (g (Ym2 (T) − Ym1 (T)))

+
N∑

j=3

exp
(
g

(
Ymj (T) − Ym1 (T)

)))
.

A decision will be made when the largest among Li (T) exceeds a thresh-
old z, that is, when

gYm1 (T) − gYm1 (T) − ln

(
1 + exp (g (Ym2 (T) − Ym1 (T)))

+
N∑

j=3

exp
(
g

(
Ymj (T) − Ym1 (T)

)))
> z.
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Two first terms cancel. Taking the negative, applying the exp(.) function,
and subtracting 1 gives

exp (g (Ym2 (T) − Ym1 (T))) +
N∑

j=3

exp(g(Ymj (T) − Ym1 (T))) < z′,

where z′ is another threshold. After some manipulation, we have

exp (g (Ym2 (T) − Ym1 (T)))


1 +

N∑
j=3

exp(g(Ymj (T) − Ym2(T)))


 < z′. (C.2)

Since Yi (T) are sums of samples from continuous normal distributions,
then Ym2(T) > Ym3(T) with probability 1 for T > 0. Therefore, as g → ∞,
the expressions g(Ymj (T) − Ym2(T)) → −∞, and the content of the square
brackets in equation C.2 converges to 1. Thus, taking the logarithm and
dividing by −g gives

Ym1 (T) − Ym2 (T) > z′′

(where z′′ is also a threshold). Hence, as g goes to infinity, the proposed
model makes a decision whenever the difference between the two largest
Yi (T) exceeds a threshold, which is equivalent to MSPRTb.

C.2 Underestimation of Gain. In this section we show that as g → 0,
the model converges to an approximation of the UM model. This model
consists of N mutually inhibiting leaky integrators whose dynamics are
described by

u̇i (T) = xi (T) − kui (T) − w

N∑
j=1
j �=i

u j (T), ui (0) = 0, (C.3)

where k determines a leakage rate constant and w is the weight of inhibitory
connections between the integrators. McMillen and Holmes (2005) showed
that the performance of the UM model is optimized when k = w and both
go to infinity. In this case, putting Yi (T) = ∫ T

o xi (t)dt, the decision is made
whenever any of the following differences,

LUMi (T) = Yi (T) − 1
N

N∑
j=1

Yj (T),
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exceeds a decision threshold (McMillen & Holmes, 2006). We now show
that exactly the same criterion for a decision applies in the proposed basal
ganglia model when g → 0.

For small g, we may approximate the right-hand side of equation 2.2
of the main text by retaining only linear terms in Taylor expansions. Thus,
working on the exponential

Li (T) → gYi (T) − ln

(
N∑

k=1

(1 + gYk (T))

)
= gYi (T) − ln

(
N + g

N∑
k=1

Yk (T)

)

and then the ln() function,

Li (T) → gYi (T) − ln N − g
1
N

N∑
k=1

Yk (T).

A decision will be made whenever any Li (T) exceeds a threshold z, that
is, when

gYi (T) − ln N − g
1
N

N∑
k=1

Yk (T) > z.

Subtracting ln N and dividing by g, we get the following condition for
decision:

Yi (T) − 1
N

N∑
k=1

Yk (T) > z′.

Hence, as g → 0 the proposed basal ganglia model makes a decision
under the same conditions as the UM with optimal values of inhibition and
decay (w = k, and w, k → ∞).

Appendix D: Model with Competing Cortical Integrators

Let us consider the UM model described in section C.2, in which decay is
equal to inhibition (w = k, it is one of the conditions required for optimal
performance of UM model—see above) and the integrators have optimal
gain. Then equation C.3 becomes

u̇i (T) = g∗xi (T) − w

N∑
j=1

u j (T), ui (0) = 0. (D.1)
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Note that in the above case, all the integrators receive exactly the same
inhibition; hence, in the limit of intervals between samples going to 0, the
relationship between variables yi of the MSPRT model and ui of the UM
model becomes

∀i yi (T) = ui (T) + c (T) ,

that is, the variables differ by a term c(T), which, although it differs over
time (it will typically be negative), is the same for all integrators. However,
we now show that if the same term c(T) is added to the cortical firing rate
of all integrators, the activity of output nuclei does not change. Thus,

OUTi (T) = − (yi (T) + c (T)) + ln


 N∑

j=1

exp(yj (T) + c (T))




= −yi (T) − c (T) + ln


exp (c (T))

N∑
j=1

exp(yj (T))




= −yi (T) + ln


 N∑

j=1

exp(yj (T))


 .

Since the activity of the output nuclei does not change, a version of
MSPRT model in which simple cortical integration is replaced by UM model
of equation D.1 achieves the same decision times (for any fixed error rate)
as the original MSPRT model.

The above also explains a correspondence problem that arises in the
MSPRT model because it assumes that at the beginning of the decision pro-
cess, yi = 0, whereas the baseline firing rate of cortical neurons is nonzero.
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