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Abstract
The capacity of human recognition memory was investigated by Standing, who presented
several groups of participants with different numbers of pictures (from 20 to 10 000), and
subsequently tested their ability to distinguish between previously presented and novel
pictures. The estimated number of pictures retained in recognition memory by different
groups when plotted as a logarithmic function of the number of pictures presented formed a
straight line, representing a power–law relationship. Here, we investigate if published models
of familiarity discrimination can replicate Standing’s results. We first consider a simplified
assumption that visual stimuli are represented by uncorrelated patterns of firing of visual
neurons providing input to the familiarity discrimination network. We show that for this case
three models (Familiarity discrimination based on Energy (FamE), Anti-Hebbian and Info-
max) can reproduce the observed power–law relationship when their synaptic weights are
appropriately initialized. For more realistic assumptions on neural representation of stimuli,
the FamE model is no longer able to reproduce the power–law relationship in simulations,
while the Anti-Hebbian and Info-max can reproduce it. Nevertheless, the slopes of the
power–law relationships produced by the models in all simulations differ from that observed
by Standing. We discuss possible reasons for this difference, including separate contributions
of familiarity and recollection processes, and describe experimentally testable predictions
based on our analysis.

Keywords: capacity, familiarity discrimination, recognition memory

Correspondence: Rafal Bogacz, Department of Computer Science, University of Bristol, Bristol, BS8 1UB, UK.

Tel: þ44-117-954-5141. Fax: þ44-117-954-5208. E-mail: R.Bogacz@bristol.ac.uk

ISSN 0954-898X print/ISSN 1361-6536 online/08/030161–182 � 2008 Informa UK Ltd.

DOI: 10.1080/09548980802412638

N
et

w
or

k 
D

ow
nl

oa
de

d 
fr

om
 in

fo
rm

ah
ea

lth
ca

re
.c

om
 b

y 
U

ni
ve

rs
ity

 o
f 

O
xf

or
d 

on
 0

2/
05

/1
4

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.



Introduction

Recognition memory is defined in psychology as a type of memory that allows us to

judge if a stimulus has been encountered before. From everyday experience we

know that our recognition memory has very high capacity, and we can often

recognize someone as familiar even if we cannot recollect the details, such as the

name, of that person. The question of the capacity of human recognition memory

has been investigated in psychology for many decades (Nickerson 1965; Shepard

1967; Standing et al. 1970). But the most detailed and surprizing results were

provided by Standing (1973). We focus on these results in this article.

Standing presented different numbers of natural images to different groups of

participants. One group was presented with 10 000 pictures. Each picture was

presented only once for 5 s. Two days after learning, each participant performed a

recognition test. On each trial the participant was shown two pictures and had to

decide which was novel and which was presented before. The participants who saw

10 000 pictures achieved an accuracy of 83%. Furthermore, Standing estimated the

number of pictures retained in memory R from the following formula:

R ¼ Pð1� 2EÞ: ð1Þ

In Equation 1, P denotes the number of stimuli presented during learning, and E

denotes the error rate on test (note that if participants guess, then E¼ 0.5, and

Equation 1 gives R¼ 0). The solid line in Figure 1 shows the number of pictures
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Perfect memory
Standing’s experimental results
Familiarity

Figure 1. Number of items retained (R) in memory as a function of the number presented (P)
during learning in Standing’s experiment (Standing 1973). The dashed line corresponds to
perfect recognition memory, where all of the presented stimuli are retained. The solid line
corresponds to the experimental results found by Standing. The leftmost experimental data
point overlaps with the perfect memory line, since for very few presented stimuli participants
were able to discriminate familiarity perfectly. For larger numbers of stimuli, the proportion
of presented stimuli that are retained is reduced. The dotted line is an example of a relation
predicted by the FamE model with randomly initialized weights. The arrow indicates where
the predictions do not match experimental data (see text).

162 Z. Androulidakis et al.

N
et

w
or

k 
D

ow
nl

oa
de

d 
fr

om
 in

fo
rm

ah
ea

lth
ca

re
.c

om
 b

y 
U

ni
ve

rs
ity

 o
f 

O
xf

or
d 

on
 0

2/
05

/1
4

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.



retained (R), as a function of the number of pictures presented (P) to each group of

participants. In Figure 1 the axes are logarithmic, and the relation between R and P

forms a straight line, implying a power–law relation. The straight line in Figure 1

also suggests that there is no sign of saturation in human recognition memory even

after seeing 10 000 pictures (Standing 1973).

Since Standing’s study, great advances have been achieved in understanding

recognition memory. First, it has been proposed that recognition involves two

separate processes, recollection and familiarity (Mandler 1980), and this dual-

process model is supported by a large number of behavioural studies (for review, see

Yonelinas 2002). Furthermore, many experimental studies strongly indicate that the

recollective component is dependent on the hippocampus, while the familiarity

component is dependent on the perirhinal cortex (for reviews, see Eichenbaum et al.

1994; Brown and Xiang 1998; Murray and Bussey 1999; Brown and Aggleton

2001). Thus participants can use two strategies to recognize a stimulus as previously

seen: they can recollect the episode of seeing the stimulus (dependent on the

hippocampus), or have a feeling of familiarity (dependent on the perirhinal cortex).

Computational models have been developed both for the hippocampus and the

perirhinal cortex, and their storage capacities for recollection and familiarity,

respectively, have been calculated. In particular, a fully connected neural network

with N neurons has capacity for recollection proportional to N (Amit 1989), while a

network of the same size specialized for familiarity discrimination can perform it for

an order of N2 stimuli (Bogacz et al. 2001). This difference can be intuitively

understood by noticing that familiarity is a much easier task than recollection. For

example, if one wants to recollect some details of an encountered person, this

information may be represented in an auto-associative memory by N neurons, so

will contain an order of N bits of information. By contrast, if one instead wants to

determine the familiarity of an encountered person, one only makes a binary

decision (novel or familiar), and hence only one bit of information is required.

Estimates of the capacity of the human perirhinal cortex based on the

computational models show that it could potentially discriminate familiarity for

thousands of times more stimuli than the hippocampus could recollect (Bogacz and

Brown 2003). The estimates of the capacity of the human perirhinal cortex suggest

that humans should be able to discriminate familiarity even for numbers of stimuli

orders of magnitude higher than those tested by Standing (Bogacz and Brown

2003). Besides its potentially greater capacity, familiarity discrimination is typically

less effortful than recall, hence it is plausible to assume that the participants of

Standing’s experiment relied primarily on the familiarity process when discriminat-

ing 10 000 pictures. Given this assumption, it is interesting to investigate whether

models of familiarity discrimination reproduce the power–law relation shown in

Figure 1. This is the question addressed in this article.

The determination of whether models of familiarity discrimination can reproduce

Standing’s power–law relation, should verify (or falsify), constrain and help to

distinguish between currently proposed models. So far, eight1 such models have

been published (Brown and Xiang 1998; Sohal and Hasselmo 2000; Bogacz et al.

2001; Bogacz and Brown 2003; Norman and O’Reilly 2003; Meeter et al. 2005;

Norman et al. 2005; Lulham et al. 2006). These models have similar levels of detail

of description (at the network level), but differ in the proposed rules for synaptic

plasticity, and the way the familiarity signal is read out from the network.
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Five of these models have been compared in detail with respect to their

performance and consistency with experimental data, including mechanisms of

synaptic plasticity and responses of perirhinal neurons (Bogacz and Brown 2003).

One important factor that has proved a stumbling block for some of the models was

that real input patterns to the perirhinal network are likely to have a correlation

structure (Erickson et al. 2000). Introducing such correlation greatly reduces the

capacity of some of the models. The ability to fit Standing’s data has not previously

been investigated and may further distinguish between the current models.

The analysis of this article makes a number of counterintuitive experimental

predictions which are described in the Discussion. Since the following ‘Methods’

and ‘Results’ sections are technical we here summarize these sections, to allow

Readers without a background in neural network modelling to follow the

predictions in the ‘Discussion’.

Summary of results

We simulated performance in Standing’s experiment for three computational

models: (i) FamE (Bogacz et al. 2001) – an abstract model whose simplicity allows

mathematical analysis, (ii) Anti-Hebbian model (Kohonen et al. 1974; Brown and

Xiang 1998; Bogacz and Brown 2003) – a model that uses synaptic weakening, and

which achieved the best performance on realistic inputs in the comparison study of

Bogacz and Brown (2003) and is consistent with experimental data (Brown and

Bashir 2002), (iii) Info-max (Bell and Sejnowski 1995, 1997) – a well-known feature

extraction model, that has been recently shown to also perform familiarity

discrimination efficiently (Lulham et al. 2006). The Anti-Hebbian and Info-max

models were chosen, as these models achieved the best performance in our previous

studies, and hence have most potential to reproduce Standing’s results, and were

compared to the analytically tractable FamE model. In the first set of tests

uncorrelated input patterns were used. The models were then tested using

correlated patterns.

In initial simulations using uncorrelated patterns, the Anti-Hebbian and Info-max

models, but not FamE, reproduced Standing’s power law. We identified that the

element of the FamE model that prevented it from reproducing the power law was

its over-simplistic initialization of synaptic weights. When the weights in FamE were

initialized as in other models, it also reproduced the power law.

The relation between the numbers of stimuli retained (R) and presented (P) for

FamE with proper weight initialization is well approximated by:

R ¼ Pf ð�Þ: ð2Þ

In Equation 2, � denotes the learning rate, i.e. the magnitude of synaptic weight

modification after a presentation of a stimulus during learning, and f denotes a

monotonic function (f(�)¼ 0 for �¼ 0, and then f(�) increases towards 1, as �
increases to infinity). Equation 2 is satisfied for larger numbers of neurons (N). In

particular, it is satisfied for N� 300 for P up to 10 000. Note that N in the human

perirhinal cortex is much larger.

Equation 2 implies that the number of stimuli retained is linearly proportional to

the number of stimuli presented. This comes from the following property of the

FamE model: for a given stimulus presented there is a probability that the weights
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are modified sufficiently to recognize it as familiar, and this probability depends on �
but not on P. The independence of this encoding probability from P implies that

other stimuli presented during learning do not interfere with the memory of the

given stimulus. Although the FamE model includes interference, its capacity for

uncorrelated patterns is so large that the effect of the interference is negligible.

To obtain the relation between R and P in Figure 1 with logarithmic axes, we take

the logarithm of Equation 2,

log R ¼ log P þ log f ð�Þ: ð3Þ

Equation 3 implies the power law relation produced by the FamE model has a slope

of 1, as shown by the dotted line in Figure 1. Furthermore, the position of the line is

changed by the learning rate, i.e. it is shifted up by increasing �, and shifted down by

decreasing �.

Despite this qualitative match between experimental and simulated results, the

slope of the stimulated results produced by the FamE model could not be matched

to that of standing’s data. Compare the solid and the dotted lines in Figure 1,

corresponding to experimental data and model predictions, respectively. Although

the lines overlap for large P, for lower P experimental participants achieved better

performance than predicted by the model, as indicated by an arrow in Figure 1. This

is because the participants made fewer errors for low P, while in the FamE model

the error rate is independent of P.

The error rate of the Anti-Hebbian and Info-max models does increase with P, but

to a much lower extent than in the experimental data. Hence the interference between

stimuli in these models, although small, cannot be ignored. Consequently, these

models produce the power law with a slope slightly closer to the experimental data.

When tested on patterns with a realistic value of correlation between inputs

(Erickson et al. 2000), the FamE model was unable to reproduce Standing’s power

law. By contrast, the performance of Anti-Hebbian and Info-max models was little

affected by the patterns correlation.

Methods

Models of familiarity discrimination

In this section, we describe the three models simulated in this work.

FamE. It is an abstract model of familiarity discrimination whose basic description

is given below. It does not reproduce known data on the neurobiology of perirhinal

cortex, but equivalent computations can also be performed by a biologically

plausible network (details given in Bogacz et al. 2001, not restated here). In this

abstract model the familiar patterns are stored in a Hopfield (1982) network, and

the discrimination of familiarity of a test pattern is performed by computing the

value of the energy of the network for the test pattern, as we describe in detail below.

The Hopfield network is a fully connected recurrent neural net consisting of N

neurons. The activations of these neurons are denoted by xi and can take the values

1 or �1 for active or inactive states, respectively. It is assumed that the stimuli are

represented by binary patterns of length N. The stored patterns (corresponding to
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the familiar stimuli presented during learning) are denoted by �� and their number

by P. Finally, the weight of a connection between neurons i and j is denoted by wij

and computed from the Hebb rule (Hertz et al. 1991)2:

wij ¼

1

N

XP

�¼1

��i �
�
j , for i 6¼ j,

0, for i ¼ j

:

8><
>: ð4Þ

During familiarity discrimination of a test pattern the states of the Hopfield network

xi are set to this pattern and the energy function (Hopfield 1982) is computed:

HðxÞ ¼ �
1

2

XN
i¼1

xi

XN
j¼1

xjwij : ð5Þ

Note that in the FamE model (unlike in the Hopfield model) relaxation of the

network is not performed.3 The value of the energy function is lower for stored

patterns than others (Hopfield 1982): in particular, its average is equal to �N/2 for

stored and to 0 for novel patterns.

The Anti-Hebbian. This model was originally proposed as an engineering solution

for the novelty detection problem (Kohonen et al. 1974), long before its potential

neural bases were discovered. It was then proposed as a model for the perirhinal

cortex (Brown and Xiang 1998) and later formalized (Bogacz and Brown 2002,

2003).

The Anti-Hebbian model is a fully connected feed-forward network, shown in

Figure 2. During the weight initialization, all the weights wij are randomly generated

from a uniform distribution between �0.5 and 0.5 and then normalized such that

for each neuron the average is 0 and the Euclidian length of the vector of weights is

1. During the learning phase, input neurons x are set to the pattern being learnt and

the membrane potentials of the novelty neurons are computed from:

hi ¼
XN
j¼1

wijxj : ð6Þ

The activities of the neurons are determined using the ‘k-winners’ method with

k¼N/2 (Bogacz and Brown 2003). In particular, the activation values yi of the half

Input layer Novelty layer

x1

x2

y1

y2

xN yN

… …

Figure 2. Architectures of the Anti-Hebbian and Info-max models. Circles denote neurons
and arrows denote connections. The network is fully connected, with a layer containing
novelty neurons receiving feed-forward projections from a layer of input neurons.

166 Z. Androulidakis et al.

N
et

w
or

k 
D

ow
nl

oa
de

d 
fr

om
 in

fo
rm

ah
ea

lth
ca

re
.c

om
 b

y 
U

ni
ve

rs
ity

 o
f 

O
xf

or
d 

on
 0

2/
05

/1
4

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.



of the neurons with the highest membrane potential hi are set to 1 and all other

activation values are set to �1.

After computing activities, all the weights in the network are updated. The main

feature of the Anti-Hebbian model is that the weights that connect two active

neurons are decreased (and hence the name of the model). In particular, the weights

are modified according to the following learning rule which makes the weights

between two active neurons smaller and between one active output neuron and one

inactive input neuron larger (if both of the neurons are inactive there is no change):

�wij ¼ �
�

2N
ðyi þ 1Þxj : ð7Þ

Recall that � denotes the learning rate. After learning a pattern, all the weights are

renormalized.

The weight modification of Equation 7 reduces the average response of the

neurons during following presentations of pattern x, which is the main response

property of perirhinal novelty neurons (Brown et al. 1987; Li et al. 1993; Sobotka

and Ringo 1994; Brown and Xiang 1998). Thus the total activity level of the

neurons can be used to determine if a presented pattern is novel or familiar.

Accordingly, familiarity discrimination of a test pattern is achieved by setting the

network input to this pattern, computing the activity of the neurons, as described

above, and evaluating the following decision function:

dðxÞ ¼
XN
i¼1

yihi: ð8Þ

This decision function is lower for familiar patterns than for novel ones.

Info-max. It was originally proposed as an iterative algorithm performing

Independent Component Analysis (ICA) (Bell and Sejnowski 1995). ICA finds

the underlying features of a set of mixed signals, which can then be used to unmix

them. More recently, it has been shown that using an Info-max learning rule in a

fully connected feed-forward network, as shown in Figure 2, its algorithm can also

be used non-iteratively to perform familiarity discrimination (Lulham et al. 2006).

The weights of the network are initialized as for the Anti-Hebbian model. All the

weights wij are randomly generated from a uniform distribution between �0.5 and

0.5 and then normalized such that for each neuron the standard deviation (SD) of

the weights is 1 and the mean is 0. During the learning phase input neurons x are set

to the pattern being learnt, the membrane potentials of the novelty neurons are

computed from Equation 6, and the activities of the neurons are computed as

yi¼ tanh(hi). Subsequently, the weights of the neurons are modified according to

the following rule:

�wij ¼
�

N
wT

ij

h i�1

�2yixj

� �
: ð9Þ

The second term on the right-hand side is an ‘Anti-Hebbian’ term, since it causes

connections between active input neurons and active output neurons to be

weakened. It also causes connections between inactive input neurons and active

novelty neurons to be strengthened, again as in the Anti-Hebbian model. Hence the
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two models are similar. Info-max is additionally able to perform feature extraction, a

process also believed to occur in the perirhinal cortex (Murray and Bussey 1999).

The first term in the learning rule requires the computation of the inverse of a matrix

containing all of the synaptic weight information for the network, which would be

difficult to perform within a biologically plausible network. Nevertheless, several

models have been proposed which converge to the same weights as Info-max, while

having more biologically plausible learning rules (Olshausen and Field 1996; Amari

and Cichocki 1998; Waydo and Koch 2008).

A decision on the familiarity of a given stimulus is based on the average activity of

the novelty neurons (the decision function is equal to the sum of the absolute values

of the hi). Consistent with biological constraints, this value is large for novel stimuli

and small for familiar stimuli.

Simulation methods

A MATLAB toolbox for performing the simulations of Standing’s experiment has

been developed, and is available online at http://www.cs.bris.ac.uk/home/lulham/

toolbox/. Included with the toolbox are MATLAB implementations of all of the

models of familiarity discrimination that have been tested here.

For each of the models described in the ‘Models of Familiarity Discrimination’

section we simulated the tests that Standing (1973) performed with human

participants, making eight simulations corresponding to the eight groups of

participants in the experiment.

In the learning phase, the number of input patterns P used during each simulation

was the same as Standing used in his experiment (20, 40, 100, 200, 400, 1000, 4000

or 10 000 patterns). The learning phase consists of three stages, which are repeated

for each pattern. First, the pattern is presented to a given network. Second, the

membrane potentials of novelty neurons are computed, and from these the activities

of neurons can be determined. Finally, the weights from inputs to novelty neurons

are modified according to the learning rule.

In the test phase, the number of simulated test trials was the same as in Standing’s

experiment (20, 40, 80, 80, 80, 80, 160 and 160 patterns). At each trial a pattern

from the learning phase and a novel one were used. The network computed the

decision or energy function for each one of the patterns and the two were compared

in order to decide which of the two patterns was more familiar. At the end of the test

phase an error rate was computed.

To get a closer estimate of mean error rates, the above procedure was repeated 40

times for each of the models. Then for each model and for each simulated group of

participants (indexed by t) we computed the average error rate in the test phase

�ðEt
SimulationÞ and the SD of the error rates across repetitions �ðEt

SimulationÞ.

Methods of pattern generation

Two types of patterns were used when testing the recognition capacity of the

models, which will herein be referred to as uncorrelated and correlated. Both types

comprise of vectors of length N with entries equal to 1 or �1. However, the

uncorrelated patterns are randomly and independently generated.
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The correlated patterns are biased towards a randomly generated binary

template pattern, in order to introduce correlation between input neurons. For

each bit of a pattern, the probability of that bit equalling the corresponding

template bit is ½þ½b, where b is the parameter controlling the bias. For patterns

generated in this way, the correlation rij between a pair of inputs is equal to b2 or

�b2 (Bogacz and Brown 2003). All correlated patterns used here have bias 0.2,

corresponding to an absolute correlation value of 0.04. This correlation value was

chosen because Bogacz and Brown (2003) estimate that it corresponds to the level

of correlation between distant perirhinal neurons observed by Erickson et al.

(2000).

Estimation of learning rate

The error rates produced by the Anti-Hebbian and Info-max models depend on the

value of the learning rate parameter �. For each model the value of � chosen was that

giving the best fit to Standing’s data. In particular, � was chosen to minimize the

following cost function (Bogacz and Cohen 2004):

Cost ¼
X8

t¼1

Et
Standing � � Et

Simulation

� �
� Et

Simulation

� �
 !2

: ð10Þ

In Equation 10, Et
Standing is the error rate in Standing’s experiment for group t.

Simulations that gave average error rate �ðEt
SimulationÞ ¼ 0 for any P > 20 were not

evaluated because they were considered implausible. Simulations that gave

�ðEt
SimulationÞ> 0 for P > 20 and any �ðEt

SimulationÞ for P¼ 20 were accepted as

plausible, since it is very easy for the network to obtain 100% accuracy in the P¼ 20

case. If a model achieved 100% accuracy for P¼ 20, we did not take the simulations

for P¼ 20 into consideration in the cost function.

Results

FamE

In this section, we derive analytically the average number of items retained in

memory by the FamE model when presented with uncorrelated patterns. To

simplify calculation we define a new decision function d(x)¼�2H(x). Now we

calculate the probability of correct discrimination on a single test trial of a simulated

version of Standing’s experiment.

Bogacz et al. (2001) have shown that after presentation of a sample familiar

pattern, the decision function has an approximately normal distribution with mean

N and SD equal to
ffiffiffiffiffiffi
2P
p

, which we denote dð�1Þ ¼ �ðN ,
ffiffiffiffiffiffi
2P
p
Þ; for a novel pattern

dðxnewÞ ¼ �ð0,
ffiffiffiffiffiffi
2P
p
Þ.

In each simulated test trial of Standing’s experiment, the model has to decide

which of the two pictures is familiar and which is novel. The probability (Pr) of

the model making the correct choice is equal to the probability of the decision

function for a novel pattern, which is sampled from �ð0,
ffiffiffiffiffiffi
2P
p
Þ, being smaller
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than the decision function for a familiar pattern, which is sampled from

�ðN ,
ffiffiffiffiffiffi
2P
p
Þ:

PrðcorrectÞ ¼ Pr � 0,
ffiffiffiffiffiffi
2P
p� �

< � N ,
ffiffiffiffiffiffi
2P
p� �� �

: ð11Þ

Using elementary properties of random variables, we obtain:

PrðcorrectÞ ¼ Pr � 0,
ffiffiffiffiffiffi
2P
p� �

� � N ,
ffiffiffiffiffiffi
2P
p� �

< 0
� �

¼ Pr � �N ,
ffiffiffiffiffiffi
4P
p� �

< 0
� �

¼ Pr � 0,
ffiffiffiffiffiffi
4P
p� �

< N
� �

¼ Pr �ð0, 1Þ <
Nffiffiffiffiffiffi
4P
p

� �

¼ normcdf
Nffiffiffiffiffiffi
4P
p

� �
: ð12Þ

In Equation 12, normcdf denotes the normal standard cumulative distribution

function. Since the error rate, E¼ 1�Pr(correct), we can substitute Equation 12

into Equation 1 and obtain:

R ¼ P 2normcdf
Nffiffiffiffiffiffi
4P
p

� �
� 1

� �
: ð13Þ

Figure 3 plots the number of patterns retained by the FamE model computed from

Equation 13 and from simulations. It shows that the predictions of Equation 13

match the simulations very closely. However, the relationship between R and P of

this model differs qualitatively from Standing’s results. For small P all patterns are

retained in memory (note that the model curves initially overlap with perfect

memory), before the memory saturates. As N increases, the number of patterns P
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Analytical approach N =100
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Simulation results N = 400
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Figure 3. Number of items retained in the memory predicted by the FamE model. The model
is trained and tested on uncorrelated patterns. Dashed-dotted lines show predictions of
Equation 13, and stars show results of simulations (the predictions of Equation 13 match
simulations very closely). For comparison, solid lines show Standing’s result and dashed lines
correspond to perfect recognition memory. (a) and (b) correspond to network of 100 and 400
neurons, respectively. As the size of the networks increases, the model converges to give
perfect recognition memory.
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after which the network starts to make mistakes also increases. For large N (the

biologically more realistic case), the FamE model predicts that all of the 10 000

stimuli should be retained in memory (Figure 3b), and participants should not make

any mistakes at all. This result is clearly inconsistent with Standing’s data.

Anti-Hebbian

We could not derive R analytically for the Anti-Hebbian model, because Equation 7

describing the weight update is iterative (it includes term yi which depends on

previous learning iterations) and, consequently, it is not possible to derive a simple

analytical formula for weights after multiple learning episodes (unlike for FamE,

which is given by Equation 4). For this reason, Figure 4 only includes the numbers

of stimuli retained by the Anti-Hebbian model as obtained from simulations.

Figure 4(a) shows that for uncorrelated patterns, Standing’s results are not

reproduced by networks with few neurons. However, the network with 500 neurons

can reproduce the power law of Standing’s experiment in an accurate way

(Figure 4b), and the relationship between R and P produced by the Anti-Hebbian

model forms a straight line.

It has also been shown that as the learning rate grows, the number of stimuli

retained in memory increases and converges to the number of the items presented

during learning (results not given here, but see Androulidakis 2007).

Info-max

As for the Anti-Hebbian model, it is not trivial to derive R analytically for

the Info-max model since it also uses an iterative weight update equation.
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Figure 4. Number of items retained in the memory predicted by the Anti-Hebbian model.
The model is trained and tested on uncorrelated patterns. Stars show results of simulations.
For comparison, solid lines show Standing’s result and dashed lines correspond to perfect
recognition memory. (a) and (b) correspond to networks of 200, and 500 neurons,
respectively. The learning rates for (a) and (b) were 0.21 and 0.10, respectively. (b) shows
that for small P the model performs worse than experimental participants, but for large P the
model performs better (indicated by arrows).
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Therefore, Figure 5 gives only simulation data and we draw our conclusions about

the model from these.

As with the Anti-Hebbian model, we see that networks with few neurons are

unable to reproduce Standing’s power law. However, there is again a trend towards

the power law as the number of neurons in the network is increased. For a network

of 500 neurons, we see a straight line except for the final point in the graph. We

surmize that for networks of biologically realistic size, the relationship between P

and R will converge to a power law.

FamE with initialized weights

The FamE and Anti-Hebbian models differ in a number of aspects, including

weight initialization, and weight renormalization after learning (present only in the

Anti-Hebbian model). It is of interest to determine which aspect is critical for fitting

Standing’s data. The effect of the two aspects on the fit of the FamE model has been

investigated (Androulidakis 2007). It was found that only one of them – weight

initialization – improved the fit of the FamE model.

In its original description the weights of the FamE model are initialized to 0

(Equation 4), which is an implausible assumption as it would correspond to

participants’ recognition memory stores being empty at the start of the experiment.

Here we analyse a modified version of the FamE model in which the initial weights

are set to values sampled from a normal distribution with mean 0 and SD 1.

Additionally, we assume that after presentation of each learning pattern, the weights

are modified in proportion to a learning rate �. Thus, the weights w0 in the modified

FamE model are equal to:

w0ij ¼ �wij þ �ð0, 1Þ: ð14Þ

Perfect memory
Standing’s experimental results
Simulation results N = 200

Perfect memory
Standing’s experimental results
Simulation results N = 500
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Figure 5. Number of items retained in the memory predicted by the Info-max model. The
model is trained and tested on uncorrelated patterns. Stars show results of simulations. For
comparison, solid lines show Standing’s result and dashed lines correspond to perfect
recognition memory. (a) and (b) correspond to networks of 200 and 500 neurons
respectively. The learning rates for (a) and (b) were 0.0036 and 0.0012, respectively. The
model performs worse than experimental participants for both small and large values of P.
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In Equation 14, w denotes the weights of the original FamE model (Equation 4). In

the modified model, the decision function after presentation of pattern x is given by:

d0ðxÞ ¼
XN
i¼1

xi

XN
j¼1

xjw
0
ij

¼ �
XN
i¼1

xi

XN
j¼1

xjwij þ
XN
i¼1

XN
j¼1

xixj� 0, 1ð Þ: ð15Þ

The bottom line of Equation 15 includes two terms. The first term is equal to the

value of the decision function in the original FamE model scaled by the learning

rate. The second term is a sum of N2 random variables with mean 0 and SD 1 (note

that xixj is equal to 1 or �1, so does not influence mean or SD). Hence according to

the central limit theorem, the second term has normal distribution with mean 0 and

SD N; thus:

d0ðxÞ ¼ �dðxÞ þ �ð0,NÞ: ð16Þ

In Equation 16, d(x) denotes the value of the decision function of the original FamE

model. Recall from ‘FamE’, that d(x) has distribution �ðN ,
ffiffiffiffiffiffi
2P
p
Þ for familiar

patterns and �ð0,
ffiffiffiffiffiffi
2P
p
Þ for novel. Thus, the decision function of the modified FamE

model has the following distribution for a familiar pattern:

d �1
� �
¼ �� N ,

ffiffiffiffiffiffi
2P
p� �

þ �ð0,NÞ ¼ � �N ,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2P�2 þN2

p� �
: ð17Þ

Analogously, for a novel pattern:

d xnewð Þ ¼ � 0,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2P�2 þN2

p� �
: ð18Þ

As in the ‘FamE’ section, we can compute the probability of correct discrimination

at test:

PrðcorrectÞ ¼ Pr � 0,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2P�2 þN2

p� �
< � �N,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2P�2 þN2

p� �� �
: ð19Þ

Using the same manipulations as in Equation 12, we obtain:

PrðcorrectÞ ¼ normcdf
�Nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4P�2 þ 2N2
p

 !
: ð20Þ

Consequently, the number of items retained becomes:

R ¼ P 2normcdf
�Nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4P�2 þ 2N2
p

 !
� 1

 !
: ð21Þ

Figure 6 plots the number of uncorrelated patterns retained by the modified FamE

model computed from Equation 21 and from simulations. It shows that the

simulations match the predictions of Equation 21 very closely. Furthermore, the

relation between R and P of the modified FamE model matches that of Standing’s

experiment.

Moreover, for larger N, the relation between R and P becomes a straight line with

slope 1 (i.e. parallel to the perfect memory line). This fact can be shown analytically.
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For large N, the term 2N2 in the denominator of Equation 21 becomes much larger

than 4P�2, and hence the latter may be ignored. Then, Equation 21 simplifies to:

R ¼ P 2normcdf
�ffiffiffi
2
p

� �
� 1

	 

: ð22Þ

Thus, the relation between R and P has a general form given in Equation 2 which, as

described in the Introduction, leads to a straight line with slope 1 on a plot with

logarithmic axes (Equation 3).

Furthermore, as the learning rate increases, the line relating R and P moves up,

and it converges to the line R¼P for large �. This happens because the content of

the square brackets in Equation 22 is a monotonously increasing function of �,
which converges towards 1 for large �.

Differences between model predictions and data

Although the Anti-Hebbian, the Info-max and the modified FamE models produce

straight lines for larger numbers of neurons (Figures 4b, 5b and 6b), the

performance of the models differs from that observed experimentally. In particular,

the models retain lower numbers of stimuli than participants for low P, as indicated

by an arrow in the bottom left corner of Figure 4(b). Conversely, the Anti-Hebbian

and the modified FamE models retain more stimuli than participants for large P, as

indicated by an arrow in the top right corner of Figure 4(b).

To investigate this difference in more detail, Figure 7(a) compares the error rates

of the models with those observed in Standing’s experiment. In the experiment, the

error rate increased for larger P (see solid line in Figure 7a). By contrast, the error
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Figure 6. Number of items retained in the memory predicted by the FamE model with
randomly initialized weights. The model is trained and tested on uncorrelated patterns.
Dashed-dotted lines show predictions of Equation 21, and stars show results of simulations
(the predictions of Equation 21 match simulations very closely). For comparison, solid lines
show Standing’s result and dashed lines correspond to perfect recognition memory. (a) and
(b) correspond to networks of 100 and 500 neurons, respectively. The learning rates for (a)
and (b) were 2.37 and 1.62, respectively. (b) shows that for small P the model performs worse
than experimental participants, but for large P the model performs better.
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rate of the modified FamE model did not significantly depend on P (the correlation

between log P and E was not significant). As mentioned in ‘Summary of results’,

this is a significant qualitative difference between predictions of the modified FamE

model and experimental data.

The error rate of the Anti-Hebbian model does depend on P (the significance of

correlation between log P and E: p < 10�4). This difference between the FamE and

the Anti-Hebbian models results from the fact that the patterns are stored in the

FamE model independently from one another (note that Equation 4 implies that the

order in which patterns are presented does not matter). By contrast, in the Anti-

Hebbian model, after each presentation, the weights are renormalized which

weakens memory traces of stimuli presented earlier. Although the predictions of

Anti-Hebbian model are qualitatively more similar to the data, nevertheless the

extent to which error rate varies with P is clearly much lower than observed

experimentally.

The error rate of the Info-max model also varies with P (the significance of

correlation between log P and E: p < 0.01). This variation seem to be larger than in the

case of the Anti-Hebbian model, but as speculated in the end of the ‘Info-max’

section, the high error rate of Info-max for very large P may be a particular property of

the network of the size tested (i.e. N¼ 500) and may be reduced for larger networks.

Capacity for correlated patterns

The number of correlated patterns that can be retained in memory according to

the FamE model with initialized weights can also be derived analytically. Bogacz

and Brown (2003) have shown that after training the FamE model on correlated
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Figure 7. Comparison of error rates of participants of Standing’s experiment with values
predicted by the models with N¼ 500 neurons. Solid lines show Standing’s experimental
results, and error bars describe standard error. (a) Error rates of modified FamE, Anti-
Hebbian and Info-max models for uncorrelated patterns. They are shown in non-solid lines
and correspond to the data also visualized in Figures 6b, 4b, and 5b, respectively. (b) Error
rates for the Anti-Hebbian and Info-max models for correlated patterns. The magnitude of
the correlation used was |rij|¼ 0.04. The learning rates for the Anti-Hebbian and Info-max
models were 0.098 and 0.0012, respectively.
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patterns, the value of the decision function for a familiar pattern has the

distribution:

dð�1Þ ¼ � N þNr2P ,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2P þ 4Nr3P2

p� �
, ð23Þ

where r is the mean of the absolute value of correlation coefficients. For a novel

pattern,

dðxnewÞ ¼ � Nr2P ,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2P þ 4Nr3P2

p� �
: ð24Þ

Following the same logic as before, the probability of correctly discriminating a

familiar stimulus from a novel one becomes:

PrðcorrectÞ ¼ Pr � �Nr2P,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2P�2 þ 4NP2�2r3 þN2

p� ��
� � �N þ �Nr2P ,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2P�2 þ 4NP2�2r3 þN2

p� ��
:

ð25Þ

Using the same manipulations as in Equation 20, we obtain:

PrðcorrectÞ ¼ normcdf
�Nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4P�2 þ 8NP2�2r3 þ 2N2
p

 !
: ð26Þ

So the number of items retained for correlated patterns equals:

R ¼ P 2normcdf
�Nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4P�2 þ 8NP2�2r3 þ 2N2
p

 !
� 1

 !
: ð27Þ

Figure 8 plots the number of correlated patterns retained by the modified FamE

model computed from Equation 27 and from simulations. Again, the simulations

match the predictions closely. It can also be seen that the modified version of FamE

is not able to reproduce the power law. Equations 21 and 27 differ by just one

denominator term, but for r > 0 this term is significant.

From the analytic formula for R (Equation 27), we can infer the relationship

between R and P for the modified FamE model with a much larger number of

neurons than we could simulate. Doing this shows that the FamE model predicts a

line with slope 1 only for N larger than about 400 000. This value is only one order

of magnitude lower than an estimated number of novelty neurons in the perirhinal

cortex, i.e. N¼ 4 000 000 (there are �40 000 000 neurons in the human perirhinal

cortex (Insausti et al. 1998), but only �10% of them are novelty neurons in

monkeys (Brown and Xiang 1998), so we assume that there will be a similar

proportion in humans). But note that we do not consider several biological

properties of real familiarity discrimination networks, e.g. sparse connectivity

between neurons, noise in neuronal processing and in synaptic plasticity, all of

which decrease the performance of the networks (Bogacz and Brown 2003; Zhang

2007). Thus, it may be unlikely for a biologically realistic familiarity discrimination

network of the size of human perirhinal cortex working according to the FamE

model to achieve as high accuracy for large P as the participants of Standing’s

experiment.

Unlike the modified FamE model, the Anti-Hebbian and Info-max models were

unaffected by the introduction of correlation to input patterns. The plots showing
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the number of correlated patterns retained by these models look indistinguishable

from Figures 4 and 5, and hence are not reproduced here. Instead, Figure 7(b)

shows the error rates of the models. For the Anti-Hebbian model, the error rate for

correlated patterns Ec does not vary with P to a significantly larger extent than the

error rate for uncorrelated patterns Eu (the correlation between log P and Ec�Eu

was not significant). For the Info-max model, Ec seems to vary with P to a larger

extent than Eu (significance of the correlation between log P and Ec�Eu: p¼ 0.01).

Discussion

In summary, we have shown that when uncorrelated patterns are used, three models

of familiarity discrimination are able to reproduce the power law observed by

Standing, as long as the synaptic weights are properly initialized. For larger numbers

of neurons in the network, the models produce a relationship between R and P

which forms a straight line in a graph with logarithmic axes. The intercept of this

line is controlled by the learning rate, and the line moves up towards perfect

recognition memory as the learning rate increases. The slope of this line is equal to 1

for the FamE model, while it is slightly closer to experimental data for Anti-Hebbian

and Info-max models, but still all the models retain fewer stimuli than participants

in Standing’s experiment for low P. When correlated patterns are used, the FamE

model is no longer able to reproduce the power law in simulations even when

weights are properly initialized, while the performance of the other two models

tested was affected very little by introducing correlation to input patterns.
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Figure 8. Number of items retained in the memory predicted by the FamE model with
randomly initialized weights. The model is trained and tested on patterns produced by
correlated inputs. The magnitude of the correlation used was |rij|¼ 0.04. The dashed-dotted
line shows the prediction of Equation 27 and stars show results of simulations. For
comparison, solid lines show Standing’s result and dashed lines correspond to perfect
recognition memory. (a) and (b) correspond to networks of 100 and 400 neurons,
respectively. The learning rates for (a) and (b) were 2.56 and 2.30, respectively. For small P
the performance of the model is very similar to that of the experimental participants.
However, as P increases, the proportion of presented stimuli that are retained decreases.
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In this section we discuss possible reasons why the slope in Standing’s data is

different from that predicted by the models of familiarity, why the participants in his

experiment did not achieve perfect recognition memory, and relationships to other

work on modelling familiarity discrimination.

Slope of the relationship

Figure 1 illustrates that the slope of the relationship between R and P produced by

the models of familiarity is higher than in Standing’s data. We discuss possible

reasons for this difference.

First, according to dual-process models, recognition memory involves two

processes: familiarity and recollection (Eichenbaum et al. 2007), and so far we have

only considered the contribution of the familiarity process. Thus it is possible that

familiarity indeed contributes the number of retained items shown by the dotted line

in Figure 1, while the additional number of stimuli retained (corresponding to the

area between the solid and dotted lines in Figure 1) is provided by the recollection

process. This hypothesis is plausible as the recollection process is highly accurate

but has limited storage capacity (Norman and O’Reilly 2003). Accordingly, the

recollection process can retain almost all presented stimuli for low P, but not for

high P. Thus the difference in slope as P increases would arise from the reducing

contribution of an additional, recollective process used by real participants. This

hypothesis predicts that for very large P the slope should change to that of the

models. Indeed, the line between the last two points in Standing’s data has the same

slope as predicted by the models (Figure 1) but further experimental tests of this

prediction with even larger P would be impractical.

The above hypothesis makes two testable predictions. First, patients with damage

to the hippocampus, who have an impaired recollection process, should produce a

relationship between R and P with slope close to 1 in Standing’s paradigm. Or

equivalently, their discrimination error rate E should be similar for low P and for

high P (as models of familiarity have low memory interference due to their high

capacity).

Second, for healthy participants the shapes of the ROC curves should be different

for low P and high P. If the contribution of recollection becomes negligible for high

P, the discrimination will be based solely on familiarity: for such decisions,

participants produce a symmetric ROC curve (Yonelinas 2002). For low P, healthy

participants make decisions based on both familiarity and recollection: this produces

an asymmetric ROC curve.

Alternatively, one could assume that the difference in slope is caused by

participants adaptively setting a higher learning rate for small P and a lower learning

rate for high P. This hypothesis makes opposite predictions to the previous one.

Namely, hippocampal patients should have different Es for low and for high P, and

healthy participants should have ROC curves indicating similar contributions for

recollection and familiarity for different P.

A further hypothesis presumes that the learning rate changes within the

experiment, being higher for the first few study items, and then decreasing. The

decrease in learning rate would result in a higher average learning rate for lower P,

and hence higher accuracy at low P. This hypothesis makes similar predictions to
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the immediately previous one, but in addition predicts a primacy effect, i.e. the first

study items should have a higher probability of recognition at test.

Finally, it is also possible that the lower accuracy for higher P observed by

Standing is a result of an aspect not simulated in any of our models, e.g. some kind

of synaptic decay occurring during learning new stimuli.

Learning rate

We have shown that for large familiarity networks, as the learning rate increases, the

number of items retained increases towards perfect memory. Thus one could ask

why the participants of Standing’s experiment did not have a higher learning rate

that could have resulted in even better memory. We hypothesize three possible

answers to this question.

First, it may not be optimal from an ecological point of view to retain all visual

stimuli in recognition memory, as synaptic plasticity costs metabolic energy. This

hypothesis is supported by the results of another condition in Standing’s (1973)

experiment, in which he presented up to 1000 ‘vivid’ pictures (containing striking

images). In this condition, he obtained even higher accuracies on test, which could

suggest that participants adaptively set a higher learning rate for more relevant

stimuli.

Second, it has been proposed that familiarity discrimination is carried out by the

same network which also performs visual feature extraction (Li et al. 1993)

(the perirhinal cortex is the last area in the ventral visual stream). This idea has been

implemented in a number of models of familiarity discrimination (Sohal and

Hasselmo 2000; Norman and O’Reilly 2003; Norman et al. 2005; Lulham et al.

2006). These models use the same learning rate for feature extraction and learning

familiarity. But since feature extraction is a gradual process requiring learning over

many trials, intuitively we can see that to extract features efficiently, the learning rate

needs to be low.

Third, fatigue during the experiment may have caused the learning rate to drop

off for human subjects for large P. If a high learning rate requires high attention but

produces fatigue so that it cannot be sustained, this provides an explanation for

having high learning rates for small sets and lower for larger.

Relationship to other work on modelling familiarity

We claim that there is little interference between memories stored in models of

familiarity networks. This statement may seem to contradict the findings of Norman

and O’Reilly (2003), who showed that familiarity networks are much more sensitive

to interference with similar patterns than the hippocampal recollection network.

However, Norman and O’Reilly tested interference for patterns that were very

similar to one another, because they simulated the behavioural paradigm in which

some of the test items are carefully chosen to overlap semantically with learning

items (Roediger III and McDermott 1995). By contrast, Standing presented

randomly chosen pictures; thus it is likely that their neural representations had a

similar level of correlation as patterns used in our simulations, for which the level of
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correlation was estimated from the experiment of Erickson et al. (2000) who also

presented random images to monkeys.

As mentioned in the ‘Introduction’, several other models of familiarity

discrimination have been proposed in addition to those tested in our study. We

have also investigated how well two other models (Norman and O’Reilly 2003;

Sohal and Hasselmo 2000) (simplified as described by Bogacz and Brown 2003)

with N¼ 500 fit Standing’s data, and we found they have a poor fit for correlated

patterns. The simulations described in this article for two other proposed models

(Meeter et al. 2005; Norman et al. 2005) would take an impractical amount of time

due to the complexity of these models. Thus before simulating the performance of

these models in Standing’s experiment they need to be simplified, which is a current

subject of our work.
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Notes

[1] A computational model of a neural circuit involved in recognition memory has also

been described by Hasselmo and Wyble (1997). But in this model the recognition is

based on the activity in a hippocampal network, thus this model is more connected

with the recollective component of recognition memory rather than the familiarity

component, and hence we do not consider it further in this article.

[2] The weights of a single neuron given by Equation 4 may have both positive and

negative values, which is biologically unrealistic. In the biologically plausible

implementation of the FamE model (Bogacz et al. 2001) the weights defined in

Equation 4 are increased by a constant (so all have positive values), and inhibitory

neurons are introduced to balance this increase in neurons’ excitability.

[3] The relaxation does not take place in the biologically plausible implementation of

the FamE model (Bogacz et al. 2001) because the network has a feed-forward

architecture (rather than recurrent).
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