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Abstract
Much evidence indicates that the perirhinal cortex is involved in the
familiarity discrimination aspect of recognition memory. It has been previously
shown under selective conditions that neural networks performing familiarity
discrimination can achieve very high storage capacity, being able to deal with
many times more stimuli than associative memory networks can in associative
recall. The capacity of associative memories for recall has been shown to be
highly dependent on the sparseness of coding. However, previous work on the
networks of Bogacz et al, Norman and O’Reilly and Sohal and Hasselmo that
model familiarity discrimination in the perirhinal cortex has not investigated
the effects of the sparseness of encoding on capacity. This paper explores
how sparseness of coding influences the capacity of each of these published
models and establishes that sparse coding influences the capacity of the different
models in different ways. The capacity of the Bogacz et al model can be
made independent of the sparseness of coding. Capacity increases as coding
becomes sparser for a simplified version of the neocortical part of the Norman
and O’Reilly model, whereas capacity decreases as coding becomes sparser for
a simplified version of the Sohal and Hasselmo model. Thus in general, and
in contrast to associative memory networks, sparse encoding results in little or
no advantage for the capacity of familiarity discrimination networks. Hence
it may be less important for coding to be sparse in the perirhinal cortex than
it is in the hippocampus. Additionally, it is established that the capacities of
the networks are strongly dependent on the precise form of the learning rules
(synaptic plasticity) used in the network. This finding indicates that the precise
characteristics of synaptic plastic changes in the real brain are likely to have
major influences on storage capacity.
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1. Introduction

Work in monkeys has established that discrimination of the relative familiarity or novelty of
visual stimuli (i.e. determining whether a stimulus has been previously encountered or not)
is dependent on the perirhinal cortex, and this finding is consistent with studies of amnesic
patients (Eichenbaum et al 1994, Aggleton and Shaw 1996, Murray 1996, Brown and Xiang
1998, Buffalo et al 1998, Murray and Bussey 1999, Aggleton and Brown 1999, Brown and
Aggleton 2001). Thus damage to the perirhinal cortex results in impairments in recognition
memory tasks that rely on discrimination of the relative familiarity of objects (Murray 1996,
Brown and Aggleton 2001). Moreover, within the monkey’s perirhinal cortex, ∼25% of
neurons respond strongly to the sight of novel objects but respond only weakly or briefly when
these objects are seen again (Brown et al 1987, Riches et al 1991, Fahy et al 1993, Li et al
1993, Miller et al 1993, Sobotka and Ringo 1993, Brown and Xiang 1998, Xiang and Brown
1998).

Storage capacity for familiarity discrimination is defined as the number of presented
stimuli for which a network can discriminate familiarity with an accuracy of 99%. Bogacz et al
(1999, 2001) showed that neural networks performing familiarity discrimination can achieve
very high storage capacity, much larger than similarly sized associative memory networks
achieve for associative recall. The reason for this difference in capacities is that the familiarity
discrimination networks need only to provide a binary answer (novel or familiar—one bit
of information), while the associative memories have to recall the whole pattern of neuronal
activity representing the associated stimulus (many bits of information). If the perirhinal cortex
worked akin to the model of Bogacz et al (2001), it alone could discriminate the familiarity of
many more stimuli than current neural network models indicate could be recalled (recollected)
by all the remaining areas of the cerebral cortex. This efficiency and speed of detecting novelty
provides an evolutionary advantage, thereby providing a reason for the existence of a familiarity
discrimination network in addition to networks used for recollection.

It has been previously shown that the sparseness of coding is a major factor determining the
capacity of associative memory networks. The sparseness of coding is the proportion of neurons
active after presentation of a single visual stimulus. Sparse representation greatly increases
the capacity of associative memories (Buhmann et al 1989, Amit 1989, Palm and Sommer
1992), and this has been suggested to be a reason for expecting sparseness of representation
in the hippocampus (Marr 1971, Barnes et al 1990, Treves and Rolls 1994). Therefore, it
might be expected that sparseness of coding would also influence the capacity of familiarity
discrimination networks.

However, previous calculations of the capacity of familiarity discrimination networks have
not systematically investigated the influence of sparseness of coding on capacity. Capacity
calculations for the Bogacz et al (1999, 2001) model were performed under the simplifying
assumption that there was an equal number of active and inactive neurons after presentation of
each visual stimulus. Two other models of familiarity discrimination in the perirhinal cortex
(Norman and O’Reilly 2001, Sohal and Hasselmo 2000) have also been proposed, but although
these models have been simulated, their capacity has not been established for either sparse or
non-sparse coding.

This paper establishes how sparseness of coding influences the capacity of each of the
published models of familiarity discrimination in the perirhinal cortex under the simplifying
assumption that the responses of the neurons providing input to the network are uncorrelated.

It is shown that the sparseness of coding influences the capacity of the different familiarity
discrimination networks in different ways. It is shown that the influence of the sparseness
of coding upon capacity depends also on the precise form of the learning rules and decision
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functions. Therefore, the types of learning rule for synaptic weight modification that allow the
different models to achieve high storage capacity are also analysed.

In the next section 2 all the previously proposed models of familiarity discrimination in
the perirhinal cortex, and one new model based on anti-Hebbian learning, are introduced and
reviewed. Section 3 analyses the influence of the sparseness of coding on capacity of each of
the models. Section 4 discusses the consequences of these results.

The derivations of capacity are contained in the appendices. Accordingly, the main text
of the paper contains only the mathematical description of the models and the results of
capacity calculations. The paper focuses on modelling computations performed by ‘novelty’
neurons. These neurons comprise ∼10% of perirhinal neurons that respond strongly to the
first presentations of novel stimuli but only briefly or weakly to presentations of familiar
stimuli (Xiang and Brown 1998). This paper is not concerned with comparing the biological
plausibility of the models, nor the efficiency of the models in the case when responses of
neurons providing input to the networks are correlated: an analysis of these issues may be
found elsewhere (Bogacz 2001, Bogacz and Brown 2002).

2. Description of the models

This section provides a review of all the published networks for familiarity discrimination in the
perirhinal cortex and describes one new network. For ease of explanation and mathematical
analysis, the networks are introduced using a simple model of neurons (similar to that of
McCulloch and Pitts (1943)). This model does not consider changes of neurons’ membrane
potentials in time. We assume that each visual stimulus is represented by a specific pattern of
activity of the neurons providing input to the familiarity discrimination network. We further
assume that the neurons providing input to the network may be in one of two states: active
or inactive. For example, after presentation of a visual stimulus the active state of an input
neuron corresponds to an increase in its activity, i.e. a response, the inactive state to no increase,
i.e. to no response. However, as demonstrated previously (Bogacz et al 2001), it is possible
to extend a model of a perirhinal network based on binary neurons to a model based on
more realistic spiking neurons (Gerstner 1998) with the operational principles, capacity and
efficiency remaining essentially unchanged.

All the models reviewed here have a similar architecture: the essential element of each
model is a layer of novelty neurons which receive projections from input neurons. Synaptic
weight modifications result in the novelty neurons having on average lower activity for familiar
than for novel stimuli. Hence the familiarity of a stimulus is represented by and can be measured
from the distribution of the responses of the novelty neurons. The models differ in their assumed
types of synaptic plasticity and in details of their operation. Each will be now described.

2.1. Hebbian model

The model of Bogacz et al (1999, 2001) assumes that a proportion of perirhinal neurons form
a network specialized just for familiarity discrimination, and will be here called the Hebbian
model. It is first introduced intuitively and then its formal description is given.

2.1.1. Introduction of the Hebbian model. A proportion of neurons in the perirhinal cortex
have weaker responses after presentation of familiar stimuli than novel stimuli (Brown et al
1987, Xiang and Brown 1998, Li et al 1993, Sobotka and Ringo 1993). A number of
synaptic and network mechanisms may underlie this decrease of response; figure 1(a) shows
the mechanism employed in the ‘Hebbian model’ (Bogacz et al 1999, 2001) based on Hebbian
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a)

novel familiar

b)

Figure 1. The Hebbian model. In each panel, the triangle represents an excitatory novelty neuron
(Xiang and Brown 1998) and the circle represents an inhibitory interneuron. Lines on the left side of
each panel denote inputs to the network, which are axons of neurons whose activity encodes visual
stimuli. ‘Spikes’ over the lines indicate that the corresponding neuron is active, a lack of spikes
that it is inactive. The thickness of the lines indicates the strength of the synaptic connections.
The left column of panels illustrates synaptic weights and neuronal responses for a novel stimulus,
and the right column of panels when this stimulus is presented again (i.e. for a familiar stimulus).
(a) Synaptic plasticity in a single neuron. (b) Synaptic weight modification in the network. For
simplicity the inhibitory neurons (mentioned in the text and shown in panel (a) are not shown in
(b)). After presentation of a novel stimulus, the number of active novelty neurons is limited (only
the upper one is active), for example by connections with high synaptic weights (denoted by double
lines). The synaptic weights of the active novelty neurons are modified as in panel (a), while the
weights of the inactive neurons are modified in the opposite way, e.g. the synaptic weight from the
active input to the inactive novelty neuron is decreased as if by homo-synaptic LTD.

synaptic plasticity. After presentation of a novel stimulus, synaptic weights from active inputs
are increased as if by long-term potentiation (LTP) (Bliss and Collingridge 1993),while weights
from inactive units are decreased as if by hetero-synaptic long-term depression (LTD) (Ito 1989,
Kemp and Bashir 2001). These changes produce an initially higher response of novelty neurons
for familiar stimuli than for novel. However, in the network, the novelty neurons project to
inhibitory neurons; this results in a higher level of inhibition for familiar than for novel stimuli,
and the increased inhibition results in a smaller neuronal response for familiar stimuli than for
novel (see figure 1(a)).

In the Hebbian model, the response of novelty neurons is lower for familiar stimuli due to
inhibition. However, this model requires that the activity of novelty neurons should be higher
for familiar stimuli in the brief initial interval before the response is suppressed by inhibition.
Nevertheless, simulations (Bogacz et al 2001, Bogacz 2001) show that this interval may be
very brief (e.g. 10 ms) and, due to temporal jitter, the increase in firing rate for familiar stimuli
is not readily visible in peristimulus time histograms of simulated neuronal responses. For the
same reason no increase could be expected to be (and is not) observable in the peristimulus-time
histograms of the responses of real perirhinal neurones.

If each novelty neuron makes its own decision about stimulus familiarity, the overall
response (‘answer’) of the network is encoded in the population activity of the novelty neurons.
It is necessary to ensure that individual novelty neurons remain independent assessors of
familiarity if the information storage capacity of the network is to be maximized (Bogacz
et al 2001). Otherwise, should all the novelty neurons be active after the presentation of
each of a series of novel stimuli, then the synaptic weights of each of the novelty neurons
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would be modified in the same way, and hence all the novelty neurons would come to have
highly correlated weights. Thus, eventually, they would all be active or inactive together and
the whole network would have the same capacity as a single novelty neuron. To avoid this
problem, the number of novelty neurons active for any one stimulus must be limited, i.e. only
a subset of novelty neurons must respond to any given stimulus.

There are at least two means of limiting the number of active novelty neurons. The
first means is inhibitory competition: only the fraction of neurons with the highest membrane
potentials are selected to be active, the activity of the remainder being suppressed by inhibition,
and only these most active neurons have their weights modified. This method of limiting the
number of active novelty neurons is used in the Norman and O’Reilly (2001) model and will
be described in section 2.2.

The second method of ensuring this selectivity of response of the novelty neurons is to
provide specific connections with high synaptic weights from the network inputs to subsets of
novelty neurons. Although this method requires the additional assumption of the existence of
specialized connections (and hence may seem less plausible), it makes mathematical analysis
of network behaviour simpler. Therefore, the Hebbian model as analysed in this paper
assumes that the number of active neurons is limited by specific connections with high synaptic
weights. As the more plausible models which limit the number of active novelty neurons by
competition are much more difficult to analyse, for such models only approximate expressions
for capacity may be found mathematically. However, many of the properties which may be
proved mathematically for the Hebbian model with strong connections are also valid for other
familiarity discrimination networks (as will be shown in simulations in section 3).

When a network rather than a single neuron is considered in the Hebbian model described
by Bogacz et al (2001), another synaptic change is introduced: the weights of connections
between active inputs and inactive novelty neurons are reduced as if, for example, by homo-
synaptic LTD; see figure 1(b). This decrease is required for the decision of the network to be
given by its total activity rather than a more complex function (this will be discussed in detail
in section 3.2).

2.1.2. Description of the Hebbian model. This section gives the mathematical description of
the Hebbian model whose principles were introduced above. The description of the Hebbian
model differs in detail from the original description given by Bogacz et al (2001), where sparse
coding was not assumed. The original equations have been adapted to take into consideration
sparse coding. Thus a constant representing the sparseness of coding has been introduced
into the equations in a way similar to that in which the equations for associative memories are
adapted when sparse coding is used (Amit 1989). The notation in this paper is similar to that
used in previous work on auto-associative memories (Amit 1989). Let the active state of an
input neuron be denoted by 1 and the inactive state by 0. Assume that the network consists
of N novelty neurons, receiving information from N input neurons whose activity pattern
represents a visual stimulus. For simplicity assume that each novelty neuron is connected to
all the input neurons and denote the strength of the synaptic connection between input neuron
j and novelty neuron i by wi j . Denote the activity of input neuron j by x j , and define the
membrane potential of novelty neuron i as

hi =
N∑

j=1

wi j x j . (2.1)

The number of active novelty neurons in the Hebbian model must be limited (see section 2.1.1),
so assume for simplicity of calculation that novelty neuron i may be active only if input neuron
i is also active. This would correspond to the existence of strong non-modifiable connections
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between a novelty neuron and a corresponding input, such that input through this connection is
necessary for the novelty neuron to be active. This assumption is made for simplicity of notation
and to allow mathematical analysis of the properties of the model. Limiting the number of
active novelty neurons may be alternatively achieved by strong connections between groups
of neurons rather than between pairs of neurons, or by competition (Bogacz et al 2001).

The strong connections ensure that the initial network response in the Hebbian model
is equal to the response (proportional to the membrane potential) of neurons receiving input
through these strong connections (i.e. xi = 1) (Bogacz et al 2001):

d(x) =
N∑

i=1

xi h
′
i =

N∑
i, j=1
i �= j

xiwi j x j . (2.2)

Thus d(x) is a dot product of the input pattern and a vector of membrane potentials. The
detailed explanation of how such a function may be calculated by a biologically plausible neural
network can be found in Bogacz (2001). In equation (2.2), h′

i denotes the membrane potential
of novelty neuron i as a result of activity in all connections except the strong connection wii

(the strong connections are assumed to be non-modifiable, hence their weights do not encode
occurrences of the stimuli):

h′
i =

N∑
j=1
j �=i

wi j x j . (2.3)

Due to the Hebbian weight modifications produced by previous occurrences, d is higher for
familiar patterns than for novel. In the Hebbian model, d regulates the level of inhibition and
hence population activity in the network after a brief period of greater excitatory spiking, and
the familiarity of stimuli may be discriminated reliably by evaluating d . Function d is called
a decision function in the remainder of the paper.

According to equation (2.2) the decision about stimulus familiarity is based on the activity
of the most active neurons. This type of decision function is called ‘act win’ by Norman and
O’Reilly (2001) and this name will be also used in the remainder of this paper for similar
decision functions.

Denote the number of presented stimuli (previously stored patterns) by P and the activity
of input neuron j after presentation of stimulus µ by xµ

j , so stimulus µ is represented by the
pattern of activity of the input neurons given by vector xµ. Denote the sparseness of coding
by a, and assume for simplicity of calculations that it is equal for each pattern, i.e.

N∑
j=1

xµ

j = a N. (2.4)

Later in section 3.1, it is shown how this assumption may be relaxed. In our analysis we will
also assume that a � 0.5.

Let us denote the pattern of activity of the novelty neurons after presentation of stimulus
µ by yµ. Let us assume that yµ

i is equal to 1 when the activity of novelty neuron i is positive
and equal to 0 when neuron i is inactive. Hence, yµ

i is equal to 1 only if novelty neuron i
receives activation through its strong connection, thus yµ = xµ.

The Hebbian weight modifications (figure 1) after presentation of stimulus µ may be
expressed by modifying every synaptic weight by the following term (for i �= j ; as for
associative memories; Amit, 1989):

�wi j = (yµ

i − a)(xµ

j − a) = (xµ

i − a)(xµ

j − a). (2.5)
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In the rule of equation (2.5), the weights of all the neurons are modified, hence let us call this
type of weight modification rule ‘mod all’. In the rule of equation (2.5), synaptic weights are
changed according to the activity of the pre-synaptic input neuron xµ

j and the post-synaptic
novelty neuron yµ

i : LTP for yµ

i = 1, xµ

j = 1; hetero-synaptic LTD for yµ

i = 1, xµ

j = 0;
homo-synaptic LTD for yµ

i = 0, xµ

j = 1; practically no change (for small a) for yµ

i = 0,
xµ

j = 0.
The learning rule of the Hebbian model includes a small increase in the weights between

inactive neurons (yµ

i = 0, xµ

j = 0). Although there is no obvious known biological mechanism
that could produce such a change of weights between inactive neurons, this change is introduced
to the model in order to make the decision function simple. Hence the change of weights
between inactive neurons has been introduced to simplify the model, in the same way as for
other memory models (Hopfield 1982, Amit 1989). The change of weights between inactive
neurons is very small for sparse representations. For example, for a = 0.1, this change is 81
times smaller than the change between active neurons. Moreover, it will be shown in section 3.2
that this change is not a critical element of the Hebbian model. It is no longer needed if a more
complex decision function is used.

Note that since we assumed that the sparseness of coding a is always constant for all
patterns, the parameter a in the weight updating rule is fixed and hence the rule is locally
determinable (i.e. all the terms in the weight updating rule are determinable at the individual
synapses). Since the Hebbian model assumes that the neurons providing input to the novelty
neurons are excitatory, the weights between input and novelty neurons should be positive,
but let us assume for simplicity of analysis that all these synaptic weights of novelty neurons
are initialized to 0 (a more realistic modification of the Hebbian model with positive wi j ,
i.e. initialized to a positive constant, is described by Bogacz et al (2001)). The weights after
presentation of P stimuli are equal to (for i �= j )

wi j = 1

Na2(1 − a)2

P∑
µ=1

((yµ

i − a)(xµ

j − a) − ε)

= 1

Na2(1 − a)2

P∑
µ=1

((xµ

i − a)(xµ

j − a) − ε). (2.6)

Although the term preceding the summation in equation (2.6) contains a, the term is just a
multiplicative constant introduced to simplify the derivation of capacity (similar to the constant
used for associative memories; Amit (1989)).

The term ε inside the summation is a constant added to the weights during each
modification to keep the average strength of synaptic weights constant. Since it was assumed
that in every pattern representing a visual stimulus, there are exactly a N bits not equal to 0,
there is a very small negative covariance, equal to ε = −a(1 − a)/(N − 1), between the
activities of the inputs. If the assumption of equation (2.4) were not made, then xµ

i and xµ

j
would be independent and the average value of �wi j would be equal to 0. Thus subtracting ε

is necessary only when the assumption of a constant number of active inputs is made. Hence
it is not a critical element of the Hebbian model. This constant is very small (and may be
shown to be too small to have any effect on capacity) and will be discarded in all derivations
(the average value of �wi j is derived in Bogacz (2001)). In the other models described in
later sections, the activities of input (x) and novelty (y) neurons are statistically independent
so that the constant ε does not need to be introduced.

It is shown in appendix A.1 that in the Hebbian model the average value of the decision
function d (equation (2.2); d corresponds to the initial network response) is equal to N for
familiar stimuli and to 0 for novel stimuli. Therefore, by taking as the threshold the middle
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value N/2, we can define a familiarity discrimination criterion; namely, if d > N/2 then the
stimulus is considered familiar, otherwise it is novel.

2.2. Combined competitive model

Li et al (1993) suggested that the reduction of the number of perirhinal neurons active after
presentation of familiar compared to novel stimuli was caused by the learning of a sparse
representation of the stimuli. After presentation of a novel stimulus, synaptic weights are
modified such that neurons that do not represent features of the stimulus very well will not be
active during subsequent presentations of the stimulus. Thus during the process a more precise
and sparse representation of a familiar stimulus is formed (Li et al 1993).

The above idea is implemented in models of Norman and O’Reilly (2001) and Sohal and
Hasselmo (2000)—the essential mechanisms underlying familiarity discrimination in these
two models are described in this and the next section.

Norman and O’Reilly (2001) proposed a detailed model of hippocampal and neocortical
contributions to human recognition memory, explaining many psychological observations.
Here we analyse a simplified network derived from the neocortical part of the Norman and
O’Reilly (2001) model; we call it the combined competitive model. The combined competitive
model is similar to the Hebbian model (figure 1), except for three features.

First, the limitation of the number of active novelty neurons is achieved not by special
strong connections, but by inhibition and competition: the active novelty neurons are those
which have the highest membrane potentials. In the original Norman and O’Reilly (2001)
model, the competition and inhibition were simulated explicitly. However, for simplicity
during simulations described here, the membrane potentials of the novelty neurons are
evaluated after delivery of a pattern (according to equation (2.1)) and the exactly a N neurons
with the highest membrane potentials are selected to be active by the simulator program. The
pattern of activity of the novelty neurons after presentation of a stimulus µ is denoted by
yµ (i.e. yµ

i = 1 if neuron i belongs to the group of the neurons with the highest membrane
potential; otherwise yµ

i = 0).
Second, only the weights of active novelty neurons are updated after presentation of a

novel stimulus, i.e. there is no homo-synaptic LTD as illustrated in figure 1(b) for the Hebbian
model. The weights of the novelty neurons are updated according to a rule developed from
Norman and O’Reilly (2001) and given by

�wi j = η

Na(1 − a)
yµ

i (xµ

j − a). (2.7)

In equation (2.7), η denotes the learning rate—a parameter determining the magnitude of
weight modification. Its optimal value depends on N and a (so for a given network η may
be fixed, e.g. encoded genetically, and hence the learning rule can be locally determinable).
The values of η that resulted in the highest capacity in simulations in figure 7 comparing the
efficiency of the models ranged from 0.15 to 0.6 (detailed values are given in Bogacz (2001)).
The term η was not introduced explicitly when describing the Hebbian model, but comparing
equations (2.6) and (2.7) one can see that η is equal to 1/a(1−a) for the Hebbian model. Such
a value of η simplifies derivations of the capacity of the Hebbian model, and has been used in
all simulations of the Hebbian model except those of figure 7.

The expression 1/Na(1−a) in equation (2.7) is a simplifying proportionality constant—as
used in associative memories (Buhmann et al 1989, Amit 1989).

In the rule of equation (2.7), only the weights of active neurons are modified, this type of
learning rule will be called ‘mod win’ in this paper.
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a) novel

b) familiar

activation
threshold

plasticity
threshold

h

h

Figure 2. Intuitive explanation of the double-threshold model. The two panels show the distribution
of membrane potentials for (a) a novel and (b) a familiar stimulus. The horizontal axis denotes
membrane potential (h) and the vertical axis the number of neurons with a given membrane
potential. Dashed lines show two thresholds: the activation threshold, above which neurons are
active, and the plasticity threshold separating neurons whose synaptic weights are modified in
different ways.

Third, although the decision about stimulus familiarity is based on the initial response of
the novelty neurons, a learning rule of type mod win is used. Hence a more complex decision
function must be used if the capacity is to be maximized. It will be introduced in section 3.2.

2.3. Double-threshold model

Sohal and Hasselmo (2000) proposed a model to explain the responses of perirhinal neurons
during recognition memory tasks. Two separate mechanisms were proposed for long-term
and short-term recognition memory. Since this paper is concerned with long-term recognition
memory, only a model simplified from the part of the Sohal and Hasselmo (2000) model
concerned with long-term familiarity discrimination is analysed here. It is termed the double-
threshold model.

The double-threshold model also employs Hebbian rules of learning, but the decrease in
the number of neurons active for familiar stimuli is not caused by inhibition. The way in which
this network discriminates familiarity is illustrated in figure 2. After presentation of a novel
stimulus, the membrane potentials of the novelty neurons may be assumed to follow a normal
distribution (figure 2(a)). The proportion of neurons with membrane potentials which are
higher than a certain value, denoted as the plasticity threshold in figure 2, have their synaptic
weights modified as for active novelty neurons in the Hebbian model (see figure 1(a)): the
weights from active inputs are increased and the weights from inactive inputs are decreased.
The weights of neurons with membrane potentials below the plasticity threshold are modified
as for inactive novelty neurons in the Hebbian model (see the inactive neuron in figure 1(b)):
the weights from active inputs are decreased. In the double-threshold model, the weights of
all neurons are modified, i.e. a rule of type mod all is used.

The double-threshold model represents a simplified version of the Sohal and Hasselmo
(2000) model. The original equation for the weight updating rule in their model is very
complex; the simplifications made below do not change the operational principles of the model
and hence its capacity, while making possible its mathematical analysis. In the simplified
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version of the model analysed here, the weights are updated according to the following rule:

�wi j = η

Na(1 − a)
(yµ

i − a)(xµ

j − a). (2.8)

yµ

i is equal to 1 if the membrane potential of neuron i (calculated from equation (2.1)) is above
a plasticity threshold, and is 0 otherwise. Again, η denotes the learning rate. In the original
Sohal and Hasselmo (2000) model the plasticity threshold is fixed. But here, for simplicity
of analysis, it is assumed that the exactly a N novelty neurons with the highest membrane
potentials are above the plasticity threshold. This would mean that the plasticity threshold
is chosen for each stimulus such that the above criterion is satisfied. This criterion might be
achieved in the brain via competitive inhibition. It acts to increase rather than decrease the
capacity of the network (in a way analogous to the assumption about the constant number of
active input neurons analysed in section 3.1).

These weight modifications mean that when the initially novel stimulus is subsequently
re-presented, the membrane potentials are even higher for the neurons which were above the
plasticity threshold on the first presentation (they follow the change indicated by the right
arrow connecting figures 2(a) with (b)), while the membrane potentials for other neurons are
even lower (they follow the left arrow in figure 2). In the double-threshold model there is
an activation threshold—neurons with membrane potentials above this threshold are active—
which is smaller than the plasticity threshold (see figure 2). If the activation threshold is set
appropriately (for example by inhibition within the network—its optimal value is derived in
appendix C), more neurons are active for novel than for familiar stimuli (compare the areas
under the distribution density curves to the right of the activation threshold in figures 2(a) and
(b). The number of active novelty neurons can thus be used as the familiarity criterion.

2.4. Anti-Hebbian model

The anti-Hebbian model is based on the ideas of Brown and Xiang (1998), and Kohonen et al
(1974), but its full mathematical description is introduced for the first time in this paper. The
anti-Hebbian model (like the Hebbian model) assumes that a proportion of perirhinal neurons
forms a network specialized for familiarity discrimination. In the anti-Hebbian model, the
neurons are selected to be active as in the combined competitive models: i.e. the a N neurons
with the highest membrane potential are selected, and their pattern of activity is denoted by y
(see section 2.2).

However, by contrast to all previously described models in which the synaptic weights
are modified according to Hebbian rules, in the anti-Hebbian model they are modified in the
opposite way. Figure 3 shows the modification of the weights of the most active novelty
neurons for a sample pattern. After presentation of a novel stimulus the synaptic weights
of connections from active input neurons are decreased as if by homo-synaptic LTD. This
synaptic modification decreases the sum of the synaptic weights of the novelty neuron. Hence
to maintain the overall excitability of the neuron, the synaptic weights of connections from
inactive input neurons must be increased (see figure 3). When the same stimulus is presented
again, the membrane potential of the novelty neuron will be lower (because the weights of
synapses of inputs that were active for this stimulus have been reduced) and the novelty neuron
will be inactive (or, more generally, less active). Thus the neuron responds more strongly to
novel than familiar stimuli.

Hence, in the anti-Hebbian model, after presentation of each stimulus, the weights are
updated according to the following rule:

�wi j = − η

Na(1 − a)
yµ

i (xµ

j − a). (2.9)
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novel familiar

Figure 3. Modification of synaptic weights of active novelty neurons in the anti-Hebbian model.
Notation as in figure 1.

In equation (2.9), η again denotes the learning rate. According to equation (2.9), the weights
between active inputs and active novelty neurons (yµ

i =1, xµ

j =1) are decreased as if by homo-
synaptic LTD and, to balance the neurons’ excitability, the weights between inactive inputs and
active novelty neurons are increased (yµ

i = 1, xµ

j = 0). This latter change could be achieved
simply by increasing the strength of the other synapses of a given neuron following homo-
synaptic LTD at some of its synapses, in such a way as to maintain the neuron’s excitability.

In the rule of equation (2.9), only the weights of active neurons are modified, hence this
is a rule of type mod win. If the weights of inactive neurons had also to be modified (i.e. a
rule of type mod all were used), then for the anti-Hebbian model, modification of the weights
of inactive novelty neurons would have to be according to a most unlikely rule: the weights
between active inputs and inactive novelty neurons would have to be increased. There is no
known biological synaptic modification mechanism to achieve such a change. Furthermore,
there is no obvious compensatory mechanism by means of which the necessary change could
be effected, as it must apply to only certain synapses on the inactive neurons (as opposed to a
general increase in excitability). Therefore, the anti-Hebbian model is biologically plausible
only if the weight modification rule is of type mod win; a rule of type mod all is not plausible
for the anti-Hebbian model.

Synaptic plasticity, as illustrated in figure 3, decreases the responses of novelty neurons for
familiar stimuli; hence the decision about stimulus familiarity may be based on the population
activity of the novelty neurons. The precise form of the decision function will be introduced
in section 3.2.

3. Influence of the sparseness of coding on capacity

This section analyses the influence of the sparseness of coding on capacity of the different
models with the simplifying assumption that activities of all the novelty neurons and the
network inputs are uncorrelated. This is an oversimplification of the situation in the real
perirhinal cortex (see Erickson et al 2000). However, analysing the efficiency of familiarity
discrimination networks when inputs are not independent is very difficult. Hence, it is useful
first to analyse the influence of the sparseness of coding on the capacity of the models for the
simple case of uncorrelated neuronal responses (as has been done for other memory networks,
e.g. (Buhmann et al 1989, Amit 1989, Palm and Sommer 1992)).

3.1. Hebbian model

Appendix A.1 shows that a fully connected Hebbian network of N neurons may discriminate
the familiarity with 99% accuracy for the following number of patterns:

Pmax = 0.023N2. (3.1)
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Appendix A.1 shows that the capacity of the Hebbian model is the same (i.e. expressed by
equation (3.1)) for any sparseness of coding. Hence the capacity of the Hebbian model does not
depend on the sparseness of coding. This fact is unexpected as sparse representation greatly
increases the capacity of associative memories (Amit 1989). Figure 4 shows that the capacity
of the Hebbian model obtained in simulations matches the theoretical prediction and confirms
the lack of dependence of the model’s capacity on the sparseness of coding.

In section 2.1.3, equation (2.4), it was assumed for simplicity of calculation that in each
pattern there were exactly a N bits not equal to 0. It would be more realistic to assume that
the patterns have different numbers of active bits, and a is the probability of a given bit being
active. In this case, the term ε in the weight modification rule of equation (2.6) is not necessary
because the bits in the patterns are truly independent and hence there is no correlation to be
counterbalanced by this term. Appendix A.2 shows that when the numbers of active inputs
differ between patterns, the capacity is given by

P = (1 − a)2

(
0.023N2 − N(1 − a)

a

)
. (3.2)

Figure 5 compares the prediction of equation (3.2) with the results of simulations of the
Hebbian network with different numbers of active inputs. For larger N , the second term in
the bracket in equation (3.2) becomes insignificantly small in comparison to the first, and may
be discarded. Hence in practice, for large N , when the number of active bits in patterns may
differ, the capacity converges to 0.023N2(1 − a)2, and sparse coding slightly increases the
capacity. This effect becomes visible in figure 5 in larger networks, e.g. note that in figure 5(c)
(for N = 300 neurons) in series ‘d = hx’, the capacity for a = 0.2 is larger than for a = 0.5.

Relaxing the assumption about there being a constant number of bits in the patterns does
not decrease the capacity significantly for sparse representations, because (1 − a)2 ≈ 1. But it
decreases the capacity for less sparse representations; e.g. for a = 0.5, the capacity decreases
fourfold. However this decrease may be avoided in at least two ways.

First, if the weights are modified according to equation (3.3) (instead of equation (2.6),
then it can be shown, analogously to the derivation of appendix A.1, that the capacity remains
approximately equal to 0.023N2. This is consistent with the results of simulations shown in
figure 5 in series ‘d = hx, w(a)’. In equation (3.3), aµ is the sparseness of pattern µ, defined
as the number of bits equal to 1 in pattern µ:

wi j =
P∑

µ=1

1

N(aµ)2(1 − aµ)2

(
(xµ

i − aµ)(xµ

j − aµ) +
aµ(1 − aµ)

N − 1

)
. (3.3)

Note that although the rule of equation (3.3) is more complex than that of equation (2.6), it is
still locally determinable, i.e. the values of all the variables in equation (3.3) are determinable
by novelty neuron i . According to equation (3.3), the novelty neuron must determine aµ, the
sparseness of the activities of the input neurons. This information could be provided to the
neuron for example by feed-forward inhibition (i.e. inhibitory neurons receiving projections
from the input neurons, that then inhibit the novelty neurons in proportion to the number of
active inputs, see Bogacz et al (2001)). In particular, note that it is possible to implement the
rule without the need to provide information from other novelty neurons.

A second method of avoiding the decrease in capacity was proposed by Bogacz et al
(2001), and involves modification of the thresholds of the novelty neurons (for details see
Bogacz et al (2001)). However, this other method is less effective: it avoids the effect due to
different numbers of active inputs, but not the effect due to different numbers of potentially
active novelty neurons. Therefore, when this other method is used and a = 0.5, the capacity
is halved to 0.012N2 (Bogacz et al 2001). This difference explains the difference in capacity
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Figure 4. Comparison of capacity for familiarity discrimination and associative recall. The
following convention is used in figures 4–8. Capacities are shown for fully connected networks
of 100, 200 and 300 neurons (panels (a)–(c)). The sparseness of representation is shown on the
x-axes; the capacity is shown on the y-axes. Black lines denote the results of simulations and
grey lines show the theoretical predictions. The capacities (Pmax) of the Hebbian model and its
variants are denoted by solid lines, and the capacities of the other models by dashed lines. Methods
of simulation as in Bogacz et al (1999, 2001). For each number of neurons N , and for each
number of previously stored patterns P , the behaviour of the network was tested repeatedly with
sets of random patterns until it had been tested with 5000 previously presented patterns and 5000
random (novel) patterns. Namely, during each repetition, P patterns were presented to the network,
and then accuracy was tested on all the presented patterns in the list and equal number of novel
(i.e. random) patterns. Tests were repeated a number of times, such that the network was tested
altogether with 5000 previously presented patterns and 5000 novel patterns, e.g. for P = 100,
the simulations were repeated 50 times. The average accuracy is entered. For each number of
neurons N , the network error was tested for different numbers of stored patterns P starting from
P = 1 until the network error exceeded 1%. P was increased with different steps: for P < 10
every integer value of P was tested (step = 1); for P ∈ (10, 50) every even value of P was tested
(step = 2); for P ∈ (50, 200), step = 5; for P ∈ (200, 1000), step = 10; for P > 1000, step = 20.
Pmax is taken as the maximum number of stored patterns P for which the error rate is �1%.
To illustrate the precision of the simulation process, for one data point (100 neurons, sparseness
0.5), the capacity was estimated ten times using the above method. The standard deviation of the
estimated capacities was +/−5.4 (i.e. about 2.5% of the mean). The capacity for associative recall
is taken as 0.145 × N/(4 × sparseness) (Amit 1989).

given here and in Bogacz et al (2001). It highlights the importance to capacity of the precise
learning rule.
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Figure 5. Capacity of the various versions of the Hebbian model when input patterns differ in
the numbers of active inputs (varying sparseness across patterns). Capacities are shown for fully
connected networks of 100, 200 and 300 neurons (panels (a)–(c)). The average sparseness of
representation (a) is shown on the x-axes; the capacity (Pmax) is shown on the y-axes. The series
marked ‘d = hx’ shows the capacity for the standard decision function of equation (2.2) (the
theoretical values are calculated according to equation (3.2)). The series marked ‘d = hx , w(a)’
shows the capacity for the standard decision function, when the weights are updated according to
equation (3.3) (the theoretical values according to equation (3.1)). The method of simulation is as
for figure 4. Note the important influence of the combination of learning rule and decision function
on capacity. In particular, in series ‘d = hx’, for larger networks capacity increases for sparser
representations; for example for N = 300, the capacity for a = 0.2 is larger than for a = 0.5
(but this is not the case in figures 5(a) and (b)); although the capacity for a = 0.1 is zero for the
networks presented in the figure, in larger networks the capacity is likely to be larger than for less
sparse patterns. In series ‘d = hxw(a)’, although for N = 100 neurons the capacity obtained in
simulations is lower than the above theoretical prediction, for larger networks (panels (b), (c)) the
capacity in simulations converges upon the theoretical prediction.

To summarize, this section shows that the number of stimuli for which the Hebbian model
may discriminate familiarity with probability of error 1% is equal to 0.023 times the number
of modifiable synapses in the network, and can be made independent of the sparseness of
coding. This capacity is achieved when the number of active bits is equal in each input pattern
representing stimuli. When this assumption is not satisfied, the capacity may decrease slightly
(up to fourfold, for a = 0.5), but this decrease may be avoided by a potentially biologically
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implementable modification of the weight change rule. For simplicity, in the following sections
of this paper it will be assumed that the number of active inputs in each pattern is equal (i.e. as
constrained by equation (2.4)).

3.2. Role of modifying weights of inactive neurons

To observe the importance of the modification of the synaptic weights of inactive novelty
neurons, we will analyse what happens if only the weights of active novelty neurons are
modified after presentation of a novel stimulus. Let us consider a modification of the Hebbian
model, in which the weights are modified according to a rule of type mod win. The synaptic
weights after presentation of P stimuli in this modified version of the Hebbian model are given
by

wi j = 1

Na2(1 − a)2

P∑
µ=1

yµ

i (xµ

j − a) = 1

Na2(1 − a)2

P∑
µ=1

xµ

i (xµ

j − a). (3.4)

Appendix B shows that if the above learning rule of type mod win is used (with the standard
decision function of type act win; equation (2.2), the capacity decreases dramatically to

Pmax ≈ 0.046N2

Na2 + (1 − a)2
. (3.5)

For large N , the term Na2 in the denominator is much larger than (1 − a)2 and the capacity
becomes proportional to N rather than N2. In practice, this means that the capacity is
much lower than in the case of the standard weight modification rule of type mod all
(equation (2.6)), where the weights of inactive novelty neurons are also modified. The less
sparse the representation, the larger this decrease. Sample results of simulations and theoretical
predictions are shown in figure 6 (series labelled ‘d = hx’). For larger values of a (e.g. values
of 0.5 and 0.2 in figure 6) the results of simulations match the theoretical predictions of
equation (3.5).

When a approaches 0, then the capacity expressed by equation (3.5) converges to 0.046N 2,
a value twice as high as the capacity of the standard Hebbian model (equation (3.1)). The reason
for this is that the calculations of appendix B assume that the weights are not symmetric,
i.e. wi j �= w j i . However for a approaching 0, the weight modification rule of equation (3.4)
converges to the standard weight modification rule of the Hebbian model of equation (2.6),
and the weights become symmetric. As explained by Bogacz et al (1999, 2001), the symmetry
of the weights halves the capacity (intuitively, when the weights are symmetric, there are pairs
of weights storing the same information, thus the amount of information that can be stored
in a given number of weights is half that of the case where the weights do not need to be
symmetric; for a formal explanation see Bogacz et al (1999, 2001). Hence, for a approaching
0, the capacity of the modification of the Hebbian model with the weight updating rule of
equation (3.4) converges to 0.023N 2 rather than 0.046N2. For small values of a, the predictions
of capacity of equation (3.5) are higher than the results of simulations (e.g. value of 0.05 in
figure 6).

To avoid the decrease in capacity due to using a learning rule of type mod win, one can
use the following decision function:

d(x) =
N∑

i=1

(xi − a)h′
i =

N∑
i, j=1
i �= j

(xi − a)x jwi j . (3.6)
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Figure 6. Capacity of the familiarity discrimination networks in which only the weights of active
novelty neurons are modified during learning (i.e. for mod win learning rules). Capacities are
shown for fully connected networks of 100, 200 and 300 neurons (panels (a)–(c)). The sparseness
of representation is shown on the x-axes; the capacity is shown on the y-axes. The method of
simulation is as for figure 4 (see also section 3.3 for the method of simulation of the combined
competitive and the anti-Hebbian models). Note that the reduction in capacity due to the mod win
learning rules can be prevented by using an act dif decision function.

Let us note that equation (3.6) may be rewritten as

d(x) =
N∑

i=1

xi h
′
i − a

N∑
i=1

h′
i . (3.7)

Hence the decision function of equation (3.6) is equal to the decision function of type act win
(the first summation in equation (3.7)) decreased by the sum of the membrane potentials
of all the novelty neurons multiplied by the sparseness of coding (the second summation in
equation (3.7)). Therefore the decision function of equation (3.6) may be calculated by a
biologically plausible neural network. An example of such a network is given in Bogacz
(2001).

Since the decision function of equation (3.6) is based on the difference between the
activities of the most and the least active neurons, decision functions of this type will be
called ‘act dif’ in the remainder of this paper.
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Figure 7. Comparison of the capacity of familiarity discrimination networks for random patterns.
The combined competitive model is a simplified version of the neocortical part of the Norman and
O’Reilly (2001) model, and the double-threshold model is a simplified version of the Sohal and
Hasselmo (2000) model. Capacities are shown for fully connected networks of 100, 200 and 300
neurons (panels (a)–(c)). The sparseness of representation is shown on the x-axes; the capacity
is shown on the y-axes. The method of simulation is as for figure 4; see also section 3.3. For
comparison, the capacity for the Hebbian model is also shown. It is slightly lower than in figure 4,
because of the use of a different weight modification rule and normalization (see section 3.3). In the
results for the double-threshold network, for sparseness a = 0.5, the activation threshold was −0.4
(not −a/2; see appendix C) because it resulted in the highest capacity. Note that the sparseness of
coding increases the capacity of the combined competitive and the anti-Hebbian models, while it
decreases the capacity of the double-threshold model.

If a decision function of type act dif (defined as in equation (3.6), and not act win as
in equation (2.2)) is used together with a learning rule of type mod win, equation (3.4), the
network achieves a capacity of 0.023N2, the same as for the standard Hebbian model. This
result follows as both the signal and noise under these new rules have exactly the same values
as in appendix A.1. Sample results of simulations for the decision function of equation (3.6)
with the learning rule of equation (3.4) are shown in figure 6 (series labelled ‘d = (x − a)h’).

Although it is difficult to show analytically, simulations confirm that the above principles
apply to the other models as well as the Hebbian model. In particular, the combined competitive
and the anti-Hebbian models use learning rules of type mod win (see equations (2.7) and (2.9)).
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Table 1. Relative capacity achieved by familiarity discrimination networks for different
combinations of learning rule and decision function. ‘High capacity’ denotes combinations where
the capacity is proportional to the number of synapses in the network; ‘low capacity’ is where the
capacity is proportional to the number of neurons in the network (for large networks).

Learning rule
Decision
function mod all mod win

act win High capacity Low capacity
act dif High capacity High capacity

When the combined competitive and the anti-Hebbian models use the decision function of
equation (3.8), which is of type act win, then these models also have only a very low storage
capacity (as for the Hebbian model), as is shown in figure 6:

d(x) =
N∑

i=1

yi hi . (3.8)

Therefore, in the combined competitive and the anti-Hebbian models analysed in this paper it
is important to use the following decision function, which is of type act dif:

d(x) =
N∑

i=1

(yi − a)hi . (3.9)

The capacity of the combined competitive and the anti-Hebbian models, when using the
decision function of equation (3.9) is analysed in the following sections.

To summarize, this section has calculated the capacity of familiarity discrimination
networks when the weights of only active novelty neurons are modified (which may be
necessary for a plausible implementation of the anti-Hebbian model; see section 2.4). In
this case, the capacity becomes very low when the familiarity judgement is based on the
population activity of novelty neurons (act win). A high capacity may be achieved when the
familiarity judgement is based on the difference between the responses of the more active and
the responses of the less active neurons (act dif).

Table 1 summarizes which types of learning rule and decision function allow familiarity
discrimination networks to achieve a high storage capacity. The magnitudes of the effects
upon capacity establish that only certain combinations provide plausible solutions.

3.3. Method of simulation of the models which use competition

The capacities of the combined competitive, the double-threshold and the anti-Hebbian models
have been found in simulations. This section introduces the method used to generate these
simulations.

In these simulations, the synaptic weights of the novelty neurons were initialized to
random values. After each weight modification (following simulated stimulus presentations)
the weights were normalized such that for each neuron the mean of its weight was 0 and the
sum of the weights squared was 1, i.e. the following constraints are forced for each neuron i :

N∑
j=1

wi j = 0 and
N∑

j=1

w2
i j = 1. (3.10)
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This normalization ensures equal chances of activation for each neuron. However, the
normalization also means that stimuli presented initially were not as well remembered as
ones presented subsequently. To avoid this problem, the stimuli were presented twice during
training in each simulation session, the second presentation being in the reverse order to the
first presentation. The effect of such normalization and double presentation was also simulated
for the Hebbian model (see series ‘Hebbian’ in figure 7): capacity was decreased by ∼20%.

The learning rate η (see equation (2.7)) influences the familiarity discrimination threshold
of the decision functions (which also depends on N and a). The value of the threshold was
taken in simulations as the average of the mean decision function values for novel and familiar
stimuli.

3.4. Combined competitive model

The combined competitive model (simplified version of the neocortical part of the Norman
and O’Reilly (2001) model) operates in a similar way to the Hebbian model, hence they have
similar capacity when the inputs are independent (figure 7). The fact that in the combined
competitive model the active neurons are chosen as those with the highest membrane potential
(rather than those receiving stronger connections in the Hebbian model) affects the capacity
in two ways.

First, a different subset of neurons may have the highest membrane potential, and hence
be chosen to be active, for the first and second presentations of a stimulus (because of weight
modifications produced by the occurrences of intervening novel stimuli). This decreases the
capacity (because it reduces the signal term in the decision function; the signal term is defined
in appendix A.1).

This effect of change in representation is less prominent for sparse representations,making
the pattern of activity of the novelty neurons more stable for a given stimulus for such cases;
i.e. for sparse representations, it is more likely that the same novelty neurons are activated
during the first and the second presentations of a given stimulus. This may be explained by
the following analogy with hetero-associative memories. The Hebbian learning rule of the
combined competitive model strengthens the associations between xµ and yµ in a way similar
to that in which the Hebbian learning rule of hetero-associative memories strengthens the
associations between pairs of stored patterns. The associations are more stable in the hetero-
associative memories for sparse coding (and they achieve higher capacity Amit (1989)) and,
similarly, the associations between xµ and yµ, in the combined competitive model are more
stable for sparse coding. Therefore, the effect of change in representation is less prominent
for sparse coding, and the capacity of the combined competitive model is larger for sparse
representations.

Second, for very sparse representations (e.g. a = 0.1), when only a small proportion of
the novelty neurons are selected to have their weights modified, each neuron is selected to be
active for relatively similar patterns (i.e. patterns that share some proportion of bits or share
the same features); this follows because the novelty neurons are activated for the patterns most
similar to their weight vectors (such patterns result in the highest membrane potentials for the
neurons; see equation (2.1)). Consider the case when a novelty neuron is selected to be active
for a given pattern A, and the weight modification resulted in its membrane potential for pattern
A being increased. Then, it is likely that the weight modifications caused by other, subsequent
patterns (which are somewhat similar to A) for which the neuron is active will result in a yet
further increase in the membrane potential of the neuron during the next presentation of A.
This follows as the weights of the neuron become more and more correlated with the features
shared by the patterns for which the neuron was activated. The increase in the membrane
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potential during the second presentation of A contributes to the increase in the value of the
decision function. Therefore, the result of repeated activation of a novelty neuron by relatively
similar patterns is to increase the storage capacity for uncorrelated input patterns.

For less sparse representations the first effect of a decrease in capacity due to the change in
representation prevails. Hence the combined competitive model has a slightly lower capacity
than the Hebbian model for less sparse representations (e.g. a = 0.2 or 0.5 in figure 7).
However, for very sparse representations the second effect of an increase in capacity due to
the repeated activation of novelty neurons by similar patterns prevails. Thus when neuronal
activity is uncorrelated, the combined competitive model achieves a slightly higher capacity
than the specialist Hebbian model for very sparse representations (e.g. a = 0.1 in figure 7).
Also, the combined competitive network has a slightly greater capacity for sparse than for
non-sparse representations.

3.5. Double-threshold model

Appendix C shows that the capacity of the double-threshold model (the simplified version of
the Sohal and Hasselmo (2000) model) for random patterns is proportional to the number of
synapses of the novelty neurons. Surprisingly (by contrast to any other memory networks),
appendix C also shows that the capacity decreases for sparser representations. This finding is
in agreement with the results of the simulations presented in figure 7. The figure shows that for
uncorrelated patterns that are not sparse, the capacity of the double-threshold model is similar
to the capacity of the combined competitive model, but lower than that of the Hebbian model.
For sparse representations, the capacity of the double-threshold network is the lowest of the
models.

3.6. Anti-Hebbian model

The capacity of the anti-Hebbian model is shown in figure 7 to be also proportional to the
number of modifiable synapses in the network. Figure 7 indicates that the capacity of the anti-
Hebbian model is slightly larger for sparse representations. Although in figure 7 the capacity
for a = 0.1 is lower than that for a = 0.2 when N = 100, this is an artefact of the small
number of neurons (i.e. N = 100). For larger networks (e.g. N = 300 in figure 7), the capacity
of the anti-Hebbian model is increased by sparse representations.

The observation that the anti-Hebbian model has slightly higher capacity for sparser
representations may come from the following fact. For small a, only a small fraction of
the most active novelty neurons (those which contribute to the value of the decision function
most) have their weights modified, while the weights of all other neurons are left unchanged.
By contrast for higher a (i.e. less sparse representation), many more neurons (including those
which do not contribute so much to the value of the decision function) have their weights
modified. Thus for sparser representations the weight modifications are distributed in a more
nearly optimal way, so increasing the capacity.

4. Discussion

This paper analyses how the sparseness of coding influences the capacity of familiarity
discrimination networks. It shows that for uncorrelated input patterns the familiarity
discrimination networks have approximately similar capacities, being proportional to the
number of synapses in the network. The sparseness of coding has different effects on different
familiarity discrimination networks. The capacity of an optimally implemented Hebbian model
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Figure 8. Schematic representation of the changes in the capacity achieved by different networks
due to increasing the sparseness of coding (decreasing a from a = 0.5 to 0.1). The combined
competitive model is a simplified version of the neocortical part of Norman and O’Reilly (2001)
model, and the double-threshold model is a simplified version of the Sohal and Hasselmo (2000)
model. The value of 100% represents the capacity of a network of N = 300 neurons with a
sparseness of coding of a = 50%. Each pyramid points toward the capacity achieved by the
network of the same size with a sparseness of coding of 10%. The values of the capacities of
familiarity discrimination networks were taken from figure 7(c).

does not depend on the sparseness of coding. Sparser representations increase the capacity
of the combined competitive and the anti-Hebbian models, and decrease the capacity of the
double-threshold model. In general, the influence of the sparseness of coding on the capacity
of familiarity discrimination networks is far smaller than on the capacity of associative memory
networks. The above observations are summarized in figure 8 which shows the changes in
capacity achieved by different models due to changing the sparseness of coding from a = 0.5
to 0.1.

It is important to emphasize that the influence of the sparseness of coding on the capacity
of familiarity discrimination networks is much smaller than on the capacity of associative
memory networks. This fact may be explained intuitively in the following way. Sparse coding
increases the capacity of associative memories because it reduces the statistical noise in the
activities of individual neurons and hence reduces the probability of individual neurons making
an error in recalling of a pattern (Amit 1989). In the case of familiarity discrimination, the
decision of the network is based on the population activity of a group of neurons (not on the
activity of individual neurons). Hence, although sparse coding increases the accuracy of the
responses of individual novelty neurons, it decreases the number of novelty neurons active
and hence the number of those contributing to the decision process. These two effects of
sparse coding (i.e. increased accuracy of individual neurons, and decreased number of neurons
involved) act to counterbalance each other and therefore the influence of the sparseness of
coding on the capacities of familiarity discrimination networks is lower than for associative
memories.

Sections 3.1 and 3.2 show that the capacity of the Hebbian model may be changed by
making small modifications to the learning rule and the decision function. This highlights the



478 R Bogacz and M W Brown

importance of the precise form of learning rules for the capacity of familiarity discrimination
networks. The importance of the precise form of learning rules has been also shown for the
capacity of associative memories (Willshaw and Dayan 1990, Dayan and Willshaw 1991).

Section 3.2 shows that when only the weights of active novelty neurons are modified, then a
more complicated familiarity criterion (i.e. decision function act dif) must be used to maximize
the storage capacity of the network. In this case, in order to achieve high capacity while
using a simple (thus biologically plausible) learning rule, the role of determining the required
average characteristics of the input stimuli is shifted from the learning rule to the discrimination
function. A similar approach has been used in modelling associative memories: Buckingham
and Willshaw (1993) and Graham and Willshaw (1995) showed that more sophisticated
strategies of setting the threshold for sparsely connected associative memory networks result
in higher capacities than are obtained by using the simple learning rule proposed by Willshaw
et al (1969).

This paper establishes how sparseness of coding influences the capacity of familiarity
discrimination networks under the simplifying assumption that the responses of the neurons
providing input to the network are uncorrelated. Analysis of the capacity of the familiarity
discrimination networks when the activities of the input neurons are correlated is much more
complex. It is not given here, but it is discussed by Bogacz (2001). Preliminary results indicate
that the sparseness of coding has relatively little effect (in comparison to that for associative
memories) on the capacity of familiarity discrimination networks also for correlated input
patterns. In particular, Bogacz (2001) shows that the capacity of the Hebbian model for
correlated inputs is the same for any sparseness of coding. Investigation of the influence of the
sparseness of coding on the capacity of other familiarity discrimination networks for correlated
input patterns will be the subject of future work.

The purpose of this paper was to analyse the influence of the sparseness of coding on
the capacity of familiarity discrimination networks. All the published models of familiarity
discrimination in the perirhinal cortex are compared in terms of the efficiency they are likely
to achieve in the human brain and the consistency of their behaviour with experimental
observations in Bogacz and Brown (2002).

There is evidence that stimulus representation in the rhinal cortex is sparse, i.e. for each
stimulus fewer than half the neurons respond (see also Barnes et al (1990), Kreiman et al
(2000)) but there are indications that the representation in the perirhinal cortex is less sparse
than in the hippocampus (Barnes et al 1990, Brown et al 1996).

According to information theory, less sparse patterns may encode more information than
more sparse patterns (Amit 1989). Since for familiarity discrimination the sparseness of coding
does not influence the capacity very significantly, there is no efficiency gain in using sparse
coding in such a network. The less sparse representation may lead to better discriminability
between stimuli and so may improve accuracy at no cost to capacity. This conclusion may
explain why the coding in the rhinal cortex seems to be less sparse than in the hippocampus
(Barnes et al 1990, Brown et al 1996).
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Appendix A. Capacity of the Hebbian model

This appendix analyses the capacities of different variations of the Hebbian model.

A.1. Capacity for the standard case

In this appendix we will calculate the capacity of the Hebbian model using signal-to-noise
analysis (for a clear introduction to this method see Hertz et al (1991)). We will calculate
successively

(i) the mean value of the decision function d (defined in equation (2.2)) for familiar patterns,
(ii) the mean d for novel patterns,

(iii) the variance of d across patterns.

Using these three values, we will find the probability of discrimination error. Finally, having
the expression for error probability, we will find the number of stored patterns Pmax for which
this error probability is 1%; Pmax is then the capacity.

Let us therefore calculate the value of the decision function of equation (2.2) after
presentation of a sample familiar stimulus (e.g. x1):

d(x1) =
N∑

i, j=1
i �= j

x1
i wi j x

1
j = 1

Na2(1 − a)2

N∑
i, j=1
i �= j

P∑
µ=1

x1
i x1

j (xµ

i − a)(xµ

j − a)

= 1

Na2(1 − a)2

N∑
i, j=1
i �= j

x1
i x1

j (x1
i − a)(x1

j − a)

+
1

Na2(1 − a)2

N∑
i, j=1
i �= j

P∑
µ=2

x1
i x1

j (xµ

i − a)(xµ

j − a). (A.1)

The first term in the last expression of equation (A.1) is called the signal in neural network
literature (Amit 1989) and the second term is called noise. Since xµ

j ∈ {0, 1}, then xµ

j = (xµ

j )
2;

hence the signal term is given by

Signal = 1

Na2(1 − a)2

N∑
i, j=1
i �= j

x1
i (1 − a)x1

j (1 − a) = 1

Na2
a2 N2 = N. (A.2)

The noise term may be rewritten as

Noise = 1

Na2(1 − a)2

P∑
µ=2

N∑
i=1

x1
i (xµ

i − a)

N∑
j=1
i �= j

x1
j (xµ

j − a). (A.3)

The term
∑N

i=1 x1
i (xµ

i − a) may be treated as a random variable with a hypergeometrical
distribution, for the following reason. A hypergeometrical distribution is followed when we
select n elements from a set of N elements, among which M elements have a certain feature.
Here the elements are (xµ

i − a); there are N of these elements, among which M = a N
have the feature that they are equal to 1 − a. We select n = a N elements—those for which
x1

i = 1 (for the rest x1
i = 0). Therefore, it may be shown that this variable has mean 0

and variance Na2(1 − a)2. The variable approximating the term
∑N

j=1,i �= j x1
j (xµ

j − a) has
the same mean and variance. Hence it might be expected that the variable approximating
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i=1 x1

i (xµ

i − a)
∑N

j=1,i �= j x1
j (xµ

j − a) would have mean 0 and variance N2a4(1 − a)4.
However, the variance of this variable is twice as large, because the weights are symmetrical
(wi j = w j i ; see equation (2.6), and hence in this summation there are pairs of the same
elements, i.e. x1

i (xµ

i − a)x1
j (xµ

j − a) and x1
j (xµ

j − a)x1
i (xµ

i − a); they can be added once only
and the result may be multiplied by 2, which will result in twice the variance (see Bogacz et al
(1999, 2001)). Since the whole summation in equation (A.3) is a sum of P of these variables,
the whole summation may be approximated by a normal distribution with mean 0 and variance
2P N2a4(1 − a)4. Let θ(m, σ ) denote a random variable with mean m and standard deviation
σ . It follows that

Noise ≈ 1

Na2(1 − a)2
θ
(
0,

√
2P Na2(1 − a)2

) = θ
(
0,

√
2P

)
. (A.4)

After presentation of a novel stimulus, the signal is equal to 0, and the noise has the same mean
and variance as for familiar stimuli. Hence, the average value of d for familiar stimuli is N ,
while for novel stimuli it is 0. Therefore, by taking as the threshold the middle value N/2,
we can define a familiarity discrimination criterion, namely, if d > N/2 then the stimulus is
considered familiar, otherwise it is novel.

This familiarity discrimination network works well when the noise θ is small. We consider
the network as working well if the probability of error is less than 1%. An error occurs if the
noise is higher than the threshold N/2. To calculate the maximum acceptable number of stored
patterns Pmax, we must solve the following equation:

Pr

(
θ(0,

√
2Pmax) <

N

2

)
= 0.99. (A.5)

In equation (A.5), Pr denotes probability. Equation (A.5) is equivalent to

Pr

(
θ(0, 1) <

N√
8Pmax

)
= 0.99. (A.6)

Since the noise may be estimated by a normal distribution, equation (A.6) may be solved by
checking the value of the inverted standard normal cumulative distribution for 0.99:

N√
8Pmax

≈ 2.33. (A.7)

Solving equation (A.7) with respect to Pmax, we get Pmax ≈ 0.023N2 (Bogacz et al 1999).

A.2. Capacity for different number of active inputs

When the number of active bits in a pattern may differ between patterns and the decision
function of equation (2.2) is used, the capacity of the Hebbian model decreases slightly
due to additional noise which has two sources. First, the terms

∑N
i=1 x1

i (xµ

i − a)

and
∑N

j=1, i �= j x1
j (xµ

j − a) in the noise equation (A.3) have a binomial rather than a
hypergeometrical distribution. Hence, it may be shown that the variance of each of these
terms is increased by a factor of 1/(1 − a), thus becoming Na2(1 − a). Therefore, the total
variance of the noise increases by 1/(1−a)2. Secondly, the signal is no longer constant and so
must be treated as a random variable. Let us calculate the value of the signal after presentation
of the first pattern:

Signal = 1

Na2(1 − a)2

N∑
i, j=1
i �= j

x1
i (x1

i − a)x1
j (x1

j − a) ≈ 1

Na2

( N∑
i=1

x1
i

)2

. (A.8)
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In equation (A.8) xµ

i may be treated as a random variable with mean a and variance a(1 − a).
Hence, the summation inside the bracket in equation (A.8) has mean µ = Na and variance
V = Na(1 − a). Therefore, the square of the summation has mean N2a2 and the following
variance:

D2 = 2µ2V + V 2 = 2N2a2 Na(1 − a) + N2a2(1 − a)2. (A.9)

For large N , the second term in equation (A.9) is much smaller than the first and may be
discarded. Hence, the mean of the signal is equal to N and the variance of the signal is equal
to 2N(1 − a)/a. Making calculations analogous to those of equations (A.5)–(A.7), it may be
shown that the capacity of the Hebbian model for different numbers of active inputs between
patterns is expressed by equation (3.2), i.e.

P = (1 − a)2

(
0.023N2 − N(1 − a)

a

)
. (3.2)

For larger N , the second term in the bracket in equation (3.2) becomes insignificantly small in
comparison to the first, and may be discarded. Hence, for large N , when the number of active
bits in patterns may differ, the capacity converges to 0.023N2(1 − a)2.

Appendix B. Capacity of the Hebbian model with a mod win learning rule

To observe the importance of the modification of the synaptic weights of inactive novelty
neurons, we will analyse what happens if only the weights of active novelty neurons are
modified after presentation of a novel stimulus (a mod win learning rule is used). For this case,
the synaptic weights after presentation of P stimuli in the modified version of the Hebbian
model are expressed by equation (3.4).

For simplicity, assume (as section 2.1.2, equation (2.4)) that the number of active inputs in
each pattern is constant and equal to a N . Calculations analogous to those of equations (A.1),
(A.2) show that after presentation of a familiar stimulus the signal in d is equal to −N/(1−a).
Let us calculate the value of the noise in d after presentation of familiar stimulus x1.
Calculations analogous to those of equations (A.1) and (A.3) give

Noise = 1

Na2(1 − a)2

P∑
µ=2

N∑
i=1

x1
i xµ

i

N∑
j=1
i �= j

x1
j (xµ

j − a). (B.1)

As in appendix (A.1), term
∑N

j=1, i �= j x1
j (xµ

j − a) has a hypergeometrical distribution with

mean 0 and variance V = Na2(1 − a)2. The term
∑N

i=1 x1
i xµ

i has the same variance V but
its mean is equal to µ = Na2. Hence, term

∑N
i=1 x1

i xµ

i

∑N
j=1, i �= j x1

j (xµ

j − a) has mean 0 and
variance equal to

D2 = µ2V + V 2 = N2a4(1 − a)2(Na2 + (1 − a)2). (B.2)

The noise may be approximated by a normal distribution as in appendix (A.1):

Noise ≈ θ

(
0,

√
P(Na2 + (1 − a)2)

(1 − a)

)
. (B.3)

Function d may be used as a criterion of familiarity as in the Hebbian model, but this
time the threshold is equal to −N/(2(1 − a)). Finding the storage capacity analogously
to equations (A.5)–(A.7), we get the capacity expressed by equation (3.5):

Pmax ≈ 0.046N2

Na2 + (1 − a)2
. (3.5)
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For large N , the term Na2 in the denominator is much larger than (1 − a)2 and the capacity of
the Hebbian model with a mod win learning rule becomes proportional to N rather than N2.

Appendix C. Capacity of the double-threshold model

The behaviour of the double-threshold model (simplified version of the Sohal and Hasselmo
(2000) model) is complex, and hence its capacity is calculated here using approximations.
After delivery of familiar stimulus x1, the membrane potential of a novelty neuron whose
membrane potential was below the plasticity threshold when x1 was presented for the first
time (y1

i = 0) is

hi :yµ
i =0(x1) =

N∑
j=1

wi j x
1
j

≈ 1

Na(1 − a)

N∑
j=1

P∑
µ=1

(yµ

i − a)(xµ

j − a)x1
j

= 1

Na(1 − a)

N∑
j=1

(0 − a)(x1
j − a)x1

j +
1

Na(1 − a)

N∑
j=1

P∑
µ=2

(yµ

i − a)(xµ

j − a)x1
j .

(C.1)

Between the first and second lines there is only an approximate equality, because of the
learning constant η and the normalization process (described in section 3.3). The last line
of equation (C.1) contains signal and noise terms. It is easy to calculate that the signal term is
equal to −a. It can also be shown that the elements of the summations in the noise term have
mean 0 and variance (1 − a)2a3. Since in the noise term there is a sum of approximately N P
such elements, the summation may be approximated by a normal distribution with variance
N P(1 − a)2a3.

Hence the distribution of the membrane potentials of novelty neurons such that yµ

i = 0
after presentation of a familiar stimulus may be approximated by θ(−a,

√
Pa/N ), and after

presentation of novel stimulus by θ(0,
√

Pa/N )—because there is no signal. Therefore, to
maximize storage capacity the activation threshold can be taken as−a/2. (Since it was assumed
for simplicity of calculation that the average value of wi j is 0—see section 3.3—then hi may
be negative and hence, under these artificially simplified conditions, the activity threshold may
also be negative. In reality, such negative values may be readily avoided by assuming that
the mean background activity of the network is above zero.) For the purpose of calculating
capacity, we can approximate the distribution of all novelty neurons after presentation of
familiar stimulus µ by θ(−a,

√
Pa/N ) (the approximation is shown in figure C.1) because

after this approximation the potentials of the neurons for which yµ

i = 1 remain above the
activation threshold. The grey area in figure C.1(b) is equal to the probability of a neuron not
responding for the familiar stimulus. Denote this probability by q and calculate it:

q = Pr

(
θ

(
−a,

√
Pa

N

)
< −a

2

)
= Pr

(
θ(0, 1) <

√
Na

4P

)
= �

(√
Na

4P

)
. (C.2)

In this model, the decision function is simply the number of active novelty neurons. Hence
the decision function for familiar stimuli has mean Nq and variance Nq(1 − q), and for
novel stimuli it has mean N(1 − q) and the same variance. Therefore, as a familiarity
criterion we may take the number of active novelty neurons being lower than N/2 (because
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Figure C.1. Distribution of the membrane potentials of the novelty neurons in the double-
threshold model (simplified version of the Sohal and Hasselmo (2000) model) for novel and
familiar stimuli. Description as in figure 2. (a) Distributions of the membrane potentials before
the approximation: the grey curve shows the distribution for familiar stimuli, the black for novel
stimuli. (b) Distributions of the membrane potentials after approximation. The hatched area is
equal to the probability of the neuron not responding to a familiar stimulus.

N/2 = 1/2(Nq + N(1−q))). Following appendix A, the equation giving the network capacity
is

Pr

(
θ(N(1 − q),

√
Nq(1 − q)) <

N

2

)
= 0.99. (C.3)

Solving equation (C.3) with respect to q as in appendix (A.1), we get

q = 1

2
+

√
5.41

4N
. (C.4)

According to equation (C.4),q is very close to 1/2, and according to equation (C.2), q is equal to
the cumulative normal distribution �. Therefore, we may approximate �(x) ≈ 1/2 + x/

√
2π ,

and get

q = 1

2
+

√
Na

8π Pmax
= 1

2
+

√
5.41

4N
. (C.5)

Solving equation (C.5) with respect to Pmax, we get Pmax ≈ 0.03N2a. This result shows that
for uncorrelated input patterns, the double-threshold model achieves a capacity proportional
to the number of synapses in the network, but that this capacity decreases with the sparseness
of coding.
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