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Abstract

Much evidence indicates that discrimination of the familiarity of visual stimuli is dependent
on the perirhinal cortex of the temporal lobe. Within the monkey's perirhinal cortex, &25% of
neurons respond strongly to the sight of novel objects but respond only weakly or brie#y when
these objects are seen again. These neurons can be divided into three populations based on their
patterns of responsiveness. Speci"c temporal dependencies exist among the activities of the
three populations of neurons, suggesting the existence of speci"c connections between them.
This report concerns computer modelling that indicates how such connections may be used to
increase reliability in the determination of whether or not a stimulus is being seen for the "rst
time. � 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Work in amnesic patients and in monkeys has established that discrimination of the
relative familiarity or novelty of visual stimuli is dependent on part of the brain's
temporal lobe, the perirhinal cortex [1,2,5}7]. Thus, damage to the perirhinal cortex
results in impairments in recognition memory tasks that rely on discrimination of
the relative familiarity of objects. Within the monkey's perirhinal cortex, &25% of
neurons respond strongly to the sight of novel objects but respond only weakly or
brie#y when these objects are seen again [9] (Fig. 1). These neurons can be divided
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Fig. 2. Temporal dependencies between activity of recency, familiarity and novelty neurons [8,5].

Fig. 1. Responses of novelty, recency and familiarity neurons recorded from monkey perirhinal cortex [9].
Each display shows a cumulated peristimulus-time histogram of the occurrence times of the neuron's action
potentials during the presentation of 10 di!erent pictures. The responses were recorded during presenta-
tions of four types of stimuli: Novel-"rst (N1)*stimuli seen by the monkey for the "rst time; Novel-second
(N2)*unfamiliar stimuli presented for the second time during the recording session; Familiar "rst
(F1)*stimuli familiar (well known) to the monkey presented for the "rst time during the day of recording;
Familiar second (F2)*familiar stimuli presented for the second time during the session.

into three types: novelty neurons that respond strongly only to the "rst presentations
of novel stimuli (N1 in Fig. 1); recency neurons that respond strongly to stimuli which
were not presented recently (N1 and F1); and familiarity neurons that respond
strongly to unfamiliar stimuli (N1 and N2) [9]. Furthermore, simultaneous neuronal
recordings reveal that action potentials of novelty neurons are commonly followed at
short latency (&3 ms) by action potentials of recency and familiarity neurons [8,5].
When action potentials of novelty neurons follow those of familiarity and recency
neurons they do so only at relatively long latency ('10 ms) [5,8] (Fig. 2). This may
indicate the existence of direct projections from novelty neurons to familiarity and
recency neurons and polysynaptic connections from recency and familiarity neurons
to novelty neurons. No short-latency interactions have been found between recency
and familiarity neurons. This study investigates the function of interactions between
novelty, recency and familiarity neurons, using computer modelling.

This work is an extension of our model of familiarity discrimination in the
perirhinal cortex, where only novelty neurons were considered [4,3]. Connections in
that model result in novelty neurons being active for novel and inactive for familiar
patterns. The decisions made by the network are accompanied by con"dence
levels*the higher the con"dence about the novelty of the stimulus, the higher is the
population activity of the novelty neurons.
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Fig. 3. Connections between recency, familiarity and novelty neurons in the model.

2. The extended model

The existence of novelty, recency and familiarity neurons in the perirhinal cortex
allows a network to determine not only if a stimulus is presented for the "rst time, but
also if it was presented recently [5]. According to our model, the neurons of each type
create subsystems each of which has the network architecture described in [4] for
novelty neurons. The di!erent behaviours of the neurons in the di!erent subsystems
may be reproduced by introducing specialised synaptic properties for recency neurons
(synapses that have a short-term memory and are reset after a short period of time)
and familiarity neurons (synapses that have a delayed or slowly developing plasticity),
based on the experimentally observed responses of these neurons [9].

Recency and familiarity neurons can discriminate among all four stimulus classes of
Fig. 1, without the need for novelty neurons. However, it is particularly important to
identify the "rst presentation of a novel stimulus (N1)*it might signal danger*and
hence to minimise errors in this decision. The model establishes that having novelty
neurons can further decrease the probability of such errors. Thus it could be advant-
ageous for there to be two systems, the recency-familiarity system and the novelty
system, each capable of identifying case N1. To avoid making inconsistent decisions
and to decrease the probability of error, these two systems must co-operate in making
the "nal decision as to whether a stimulus is of type N1.

If the two systems give inconsistent answers, the "nal decision is taken as that of the
more con"dent system. The decision may be reached as follows. The con"dence of the
novelty system that a stimulus is of type N1 is represented by the population activity
of the novelty neurons; the con"dence of the recency-familiarity system is given by the
smaller of the population activities for the recency neurons and the familiarity
neurons. If the novelty system is highly con"dent, it uses direct connections from
novelty neurons to recency and familiarity neurons to increase the population activity
of recency and familiarity neurons and so change their activity to that appropriate for
a stimulus of type N1. Otherwise, it is necessary to have comparator neurons which
calculate the con"dence level of the joint recency}familiarity system, i.e., determine the
smaller of the population activities for recency neurons and familiarity neurons. These
additional neurons project to the novelty neurons and allow the recency}familiarity
system to change the overall activity in the novelty system. The interactions between
the subsystems may be implemented by the connections shown in Fig. 3, which are
consistent with those suggested by experimentally observed interactions (Fig. 2).
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Table 1
Error (%) in discriminating whether stimuli are of type N1. Three networks were tested each consisting of 60
neurons with 100 synapses per neuron: (a) 60 novelty neurons (this network cannot distinguish between 3 of
the 4 stimulus categories of Fig. 1); (b) 30 recency and 30 familiarity neurons; (c) 20 of each type of neuron. The
tabulated errors are averaged over 10 tests. Before each test, synaptic weights were reset and 300 patterns were
written to the network (i.e., weights were modi"ed as described in [4]). The written patterns consisted of: 100
patterns of type N2*written to novelty and recency subsystems, 100 patterns of type F1*written to novelty
and familiarity subsystems, and 100 patterns of type F2*written to all subsystems. During each test the
network error in discriminating whether stimuli are of type N1 was calculated after presentation of all the
previously written patterns (which the network was supposed to classify as not N1) and an additional 300
random patterns di!erent from the written ones (which should be classi"ed as N1)

Error (%)

(a) Novelty neurons only N�"60, N�"N�"0 1.6
(b) Recency}familiarity neurons only N�"0, N�"N�"30 3.5
(c) All types of neurons N�"N�"N�"20 2.4

3. Simulations

Simulations were performed at two levels of abstraction. First, to calculate precisely
network error, the three sub-systems were simulated separately (following [4]), and the
"nal decision of the combined system was made by evaluating a function D, re#ecting
interactions between the subsystems (weighted sum of the con"dences of both systems),

D"C�#min�
C�

N�
,
C�

N��RF
������

(N�#N�),

where C�, C�, C� are the decision con"dences of novelty, familiarity and recency
subsystems (taken from the population activities of the neurons in the subsystems);
N�, N� are the numbers of familiarity and recency neurons, and RF

������
is an

empirically established constant equal to 0.8. D has higher values for patterns of type
N1 and lower for others. Hence, by taking as a threshold a middle value, D may be
used to decide whether a stimulus is of type N1. Results of sample simulations using
D (Table 1) show that for a given number of neurons: (i) the network consisting of only
novelty neurons (Table 1, (a)) the error rate is low*but this network cannot distin-
guish highly familiar from recently presented stimuli, and (ii) the combined network (c)
which can discriminate amongst all four types of stimuli has a lower error rate than
the recency}familiarity network (b).

Second, that co-operation between the subsystems works to this e!ect has been
established in simulations using a more realistic spiking-neuron version of the model.

4. Conclusion

The model shows that speci"c connections between recency, familiarity and novelty
neurons, as suggested by experimental observations in the perirhinal cortex, may be
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e$ciently used to increase the reliability of discriminating whether stimuli are being
seen for the "rst time.
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