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The dominant theoretical framework for decision making asserts that people make decisions by inte-
grating noisy evidence to a threshold. It has recently been shown that in many ecologically realistic
situations, decreasing the decision boundary maximizes the reward available from decisions. However,
empirical support for decreasing boundaries in humans is scant. To investigate this problem, we used an
ideal observer model to identify the conditions under which participants should change their decision
boundaries with time to maximize reward rate. We conducted 6 expanded-judgment experiments that
precisely matched the assumptions of this theoretical model. In this paradigm, participants could sample
noisy, binary evidence presented sequentially. Blocks of trials were fixed in duration, and each trial was
an independent reward opportunity. Participants therefore had to trade off speed (getting as many rewards
as possible) against accuracy (sampling more evidence). Having access to the actual evidence samples
experienced by participants enabled us to infer the slope of the decision boundary. We found that
participants indeed modulated the slope of the decision boundary in the direction predicted by the ideal
observer model, although we also observed systematic deviations from optimality. Participants using
suboptimal boundaries do so in a robust manner, so that any error in their boundary setting is relatively
inexpensive. The use of a normative model provides insight into what variable(s) human decision makers
are trying to optimize. Furthermore, this normative model allowed us to choose diagnostic experiments
and in doing so we present clear evidence for time-varying boundaries.
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In an early theory of decision making, Cartwright and Fest-
inger (1943) modeled decision making as a struggle between
fluctuating forces. At each instant, the decision maker drew a
sample from the (Gaussian) distribution for each force and
computed the difference between these samples. This difference
was the resultant force and no decision was made while the
opposing forces were balanced and the resultant force was zero.
Cartwright and Festinger realized that if a decision was made as

soon as there was the slightest imbalance in forces, there would
be no advantage to making decisions more slowly. This was
inconsistent with the observation that the speed of making
decisions traded-off with their accuracy, a property of decision
making that had already been recorded (Festinger, 1943; Gar-
rett, 1922; Johnson, 1939) and has been repeatedly observed
since (e.g., Bogacz, Wagenmakers, Forstmann, & Nieuwenhuis,
2010; Howell & Kreidler, 1963; Pachella, 1974; Wickelgren,
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1977; Luce, 1986). Cartwright and Festinger addressed the
speed–accuracy trade-off by introducing an internal restraining
force—also normally distributed and in the opposite direction to
the resultant force—which would prevent the decision maker
from going off “half-cocked” (Cartwright & Festinger, 1943, p.
598). The decision maker drew samples from this restraining
force and did not make a decision until the resultant force was
larger than these samples. The restraining force was adaptable
and could be adjusted on the basis of whether the decision
maker wanted to emphasize speed or accuracy in the task.

In the ensuing decades, Cartwright and Festinger’s theory fell
out of favor because several shortcomings (see Irwin, Smith, &
Mayfield, 1956; Vickers, Nettelbeck, & Willson, 1972) and was
superseded by the signal detection theory (Tanner & Swets, 1954)
and sequential sampling models (LaBerge, 1962; Laming, 1968;
Link & Heath, 1975; Ratcliff, 1978; Stone, 1960; Vickers, 1970).
These models do not mention a restraining force explicitly, but this
concept is implicit in a threshold, which must be crossed before the
decision maker indicates their choice. Just as the restraining force
could be adjusted based on the emphasis on speed or accuracy,
these models proposed that the threshold could be lowered or
raised to emphasize speed or accuracy. This adaptability of thresh-
olds has been a key strength of these models, a feature that has
been used to explain how distribution of response latencies
changes when subjects are instructed to emphasize speed or accu-
racy in a decision (for a review, see Bogacz, Brown, Moehlis,
Holmes, & Cohen, 2006; Ratcliff & Smith, 2004; Ratcliff, Smith,
Brown, & McKoon, 2016).

Introducing a restraining force or a threshold to explain the
speed–accuracy trade-off answers one question but raises another:
How should a decision maker select the restraining force (thresh-
old) for a decision-making problem? Should this restraining force
remain constant during a decision? This problem was examined by
Wald (1947) who proposed that, for an isolated decision, an
optimal decision maker can distinguish between two hypotheses
by choosing the desired ratio of Type I and Type II errors and then
using a statistical procedure called the sequential-probability-ratio-
test (SPRT). In the SPRT, the decision maker sequentially com-
putes the ratio of the likelihoods of all observations given the
hypotheses and the decision process terminates only once the ratio
exceeds a threshold (corresponding to accepting the first hypoth-
esis) or decreases below another threshold (corresponding to ac-
cepting the second hypothesis). The values of these thresholds do
not change as more samples are accumulated and they determine
the accuracy of decisions. Wald and Wolfowitz (1948) showed that
the SPRT requires a smaller or equal number of observations, on
average, than any other statistical procedure for a given accuracy
of decisions.

The SPRT gives a statistically optimal procedure to set the
threshold for an isolated decision. However, in many real-world
decision problems—a bird foraging for food, a market trader
deciding whether to keep or sell stocks, a professor going through
a pile of job applications or, indeed, a psychology undergraduate
doing an experiment for course credits—decisions are not made in
isolation; rather, individuals have to make a sequence of decisions.
How should one set the threshold in this situation? Is the optimal
threshold still given by SPRT? If decision makers accrue a reward
from each decision, an ecologically sensible goal for the decision
maker may be to maximize the expected reward from these deci-

sions, rather than to minimize the number of samples required to
make a decision with a given accuracy (as SPRT does). And for
sequences that involve a large number of decisions or sequence of
decisions that do not have a clearly defined end point, it would
make sense for the decision maker to maximize the reward rate
(i.e., the expected amount of rewards per unit time). In fact, under
certain assumptions, including the assumption that every decision
in a sequence has the same difficulty, it can be shown that the two
optimization criteria—SPRT and reward rate—result in the same
threshold (Bogacz et al., 2006). That is, the decision maker can
maximize reward rate by using the SPRT and maintaining an
appropriately chosen threshold that remains constant within and
across trials. Experimental data suggest that people do indeed
adapt their speed and accuracy to improve their reward rate (Bo-
gacz, Hu, Holmes, & Cohen, 2010; Simen et al., 2009). This
adaptability seems to be larger for younger than older adults
(Starns & Ratcliff, 2010, 2012) and seems to become stronger with
practice (Balci et al., 2011) and guidance (Evans & Brown, 2016).

However, maintaining a fixed and time-invariant threshold
across a sequence of trials cannot be the optimal solution in many
ecologically realistic situations where the difficulty of decisions
fluctuates from trial-to-trial. Consider, for example, a situation in
which there is very little information or evidence in favor of the
different decision alternatives. Accumulating little evidence to a
fixed threshold might take a very long time. The decision maker
risks being stuck in such an impoverished trial because they are
unable to choose between two equally uninformative options, like
Buridan’s donkey (see Lamport, 2012), who risks being starved
because it is unable to choose between two equally palatable
options. Cartwright and Festinger (1943) foresaw this problem and
noted that “there is good reason to suppose that the longer the
individual stays in the decision region, the weaker are the restrain-
ing forces against leaving it” (p. 600). So they speculated that the
mean restraining force should be expressed as a decreasing func-
tion of time but they were not prepared to make specific assump-
tions as to the exact nature of this function.

In cases where the restraining force may change with time, the
concept of a fixed threshold may be replaced by a time-dependent
decision boundary between making more observations and choos-
ing an alternative. A number of recent studies have mathematically
computed the shape of decision boundaries that maximize reward
rate when decisions in a sequence vary in difficulty and shown that
the decision maker can maximize the reward rate by decreasing
this decision boundary with time (Drugowitsch, Moreno-Bote,
Churchland, Shadlen, & Pouget, 2012; Huang & Rao, 2013; Mo-
ran, 2015). It can also be shown that the shape of the boundary that
maximizes reward rate depends on the mixture of decision diffi-
culties. Indeed, on the basis of the difficulties of decisions in a
sequence, optimal boundaries may decrease, remain constant or
increase (Malhotra, Leslie, Ludwig, & Bogacz, 2017; also see
subsequent text).1

The goal of this study was to test whether, and under what
circumstances, humans vary their decision boundaries with time
during a decision. More generally, we assessed the relationship
between the bounds used by people and the optimal bounds—that
is, the boundary that maximizes reward rate. Importantly, we adopt

1 Article available at https://osf.io/9t76q/
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an experimental approach that is firmly rooted in a mathematical
optimality analysis (Malhotra et al., 2017) and that allows us to
infer the decision boundary relatively directly based on the se-
quences of evidence samples actually experienced by decision
makers.

Previous evidence on whether people change decision boundar-
ies at all during a trial, much less adapt it to be optimal, is
inconclusive. Some evidence of time-dependent boundaries was
found early on in studies that compared participant behavior with
Wald’s optimal procedure. These studies used an expanded-
judgment paradigm in which the participant makes their decision
based on a sequence of discrete samples or observations presented
at discrete times—for example, deciding between two deck of
cards with different means based on cards sampled sequentially
from the two decks (see, e.g., Becker, 1958; Busemeyer, 1985;
Irwin et al., 1956; Manz, 1970; Pleskac & Busemeyer, 2010; Smith
& Vickers, 1989; Vickers, 1995). The advantage of this paradigm
is that the experimenter can record not only the response time and
accuracy of the participant, but also the exact sequence of samples
on which they base their decisions. In an expanded-judgment
paradigm Pitz, Reinhold, and Geller (1969) found that participants
made decisions at lower posterior odds when the number of
samples increased. Similar results were reported by Sanders and
Linden (1967) and Wallsten (1968). Curiously, participants
seemed to be disregarding the optimal strategy in these studies,
which was to keep decision boundaries constant. We discuss in the
following text why this behavior may be ecologically rational
when the participant has uncertainty about task parameters.

The shape of decision boundaries has been also analyzed in a
number of experiments using a paradigm where the samples drawn
by the participant are implicit, that is, hidden from the experi-
menter. In these paradigms, the data recorded is limited to the
response time and accuracy, so one can distinguish between con-
stant or variable decision boundaries only indirectly, by fitting the
two models to the data and comparing them. These tasks generally
involve detecting a signal in the presence of noise. Therefore, to
distinguish these experiments from the expanded-judgment tasks,
we call them signal detection tasks. Examples of this paradigm
include lexical decisions (Wagenmakers, Ratcliff, Gomez, &
McKoon, 2008), basic perceptual discrimination (e.g., brightness;
Ratcliff & Rouder, 1998; Ludwig, Gilchrist, McSorley, & Badde-
ley, 2005), and numerosity judgments (Starns & Ratcliff, 2012).
Pike (1968) analyzed data from a number of psychophysical dis-
crimination studies and found that this data is best explained by the
accumulator model (Audley & Pike, 1965) if subjects either vary
decision bounds between trials or decrease bounds during a trial.
Additional support for decreasing boundaries was found by Dru-
gowitsch et al. (2012), who analyzed data collected by Palmer,
Huk, and Shadlen (2005). Finally, data from nonhuman primates
performing a random dot motion discrimination task (Roitman &
Shadlen, 2002) were best fit by a diffusion model with decreasing
boundaries (Ditterich, 2006).

In contrast to these studies that found evidence favoring de-
creasing boundaries, Hawkins, Forstmann, Wagenmakers, Rat-
cliff, and Brown (2015) analyzed data from experiments on human
and nonhuman primates spanning a range of experiments using
signal detection paradigms and found equivocal support for con-
stant and decreasing boundaries. They found that overall evidence,
especially in humans, favored constant boundaries and that, cru-

cially, experimental procedures such as the extent of task practice
seemed to play a role in which option was favored. Therefore,
what seems to be missing is a more systematic analysis of the
conditions under which people decrease the decision boundary
within a trial and understanding why they would do so.

In this study, we took a different approach: Rather than inferring
the decision boundaries indirectly by fitting different boundaries to
explain RTs and error rates, we used the expanded-judgment
paradigm, where the experimenter can observe the exact sequence
of samples used by the participant and record the exact evidence
and time used to make a decision. This evidence and time should
lie on the boundary. This allowed us to make a more direct
estimate of the decision boundary used by the participants and
compare this boundary with the optimal boundary. We found that,
in general, participants modulated their decision boundaries during
a trial in a manner predicted by the maximization of reward rate.
This effect was robust across paradigms and for decisions that play
out over time scales that range from several hundreds of ms to
several s. However, there were also systematic deviations from
optimal behavior. Much like the expanded-judgment tasks dis-
cussed in preceding text, in a number of our experiments partici-
pants seemed to decrease their decision boundary even when it was
optimal to keep them constant. We mapped these strategies on to
the reward landscape, predicted by the theoretical model—that is,
the variation in reward rate with different settings of the decision
boundary. These analyses suggest that participants’ choice of
decision boundary may be guided not only by maximizing the
reward rate, but also by robustness considerations. That is, they
appear to allow for some “error” in their boundary setting due to
uncertainty in task parameters and deviate from optimality in a
manner that reduces the impact of such error.

Although it has been argued that the results from an expanded-
judgment task can be generalized to signal detection paradigms,
where sampling is implicit (Edwards, 1965; Irwin & Smith, 1956;
Sanders & Linden, 1967; Pleskac & Busemeyer, 2010; Vickers,
Burt, Smith, & Brown, 1985), these tasks usually use a slow
presentation rate and elicit longer response latencies than those
expected for perceptual decisions. It is possible that attention and
memory play a different role in decision making at this speed than
at faster speeds at which perceptual decisions occur. To address
this possibility, we adapted the expanded-judgment task to allow
fast presentation rates and consequently elicit rapid decisions.

The rest of the article is split into five sections. First, we
summarize the theoretical basis for the relationship between a
boundary and reward rate. In the next three sections, we describe
a series of expanded-judgment tasks, each of which compares the
boundaries used by participants with the theoretically optimal
boundaries. In the final section, we consider the implications of
our findings as well as the potential mechanisms by which time-
varying boundaries may be instantiated. Data from all experiments
reported in this article is available online (https://osf.io/f3vhr/).

Optimal Shape of Decision Boundaries

We now outline how an expanded-judgment task can be math-
ematically modeled and how this model can be used to establish
the relationship between the task’s parameters and decision bound-
aries that maximize reward rate. We summarize the key results
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from a theoretical study of Malhotra et al. (2017), provide intuition
for them, and state predictions that we tested experimentally.

Consider an expanded-judgment task that consists of making a
sequence of decisions, each of which yields a unit reward if the
decision is correct. Each decision (or trial) consists of estimating
the true state of the world on the basis of a sequence of noisy
observations. We consider the simplest possible case in which the
world can be in one of two different states, call these up or down,
and each observation of the world can be one of two different
outcomes. Each outcome provides a fixed amount of evidence, �X,
to the decision maker about the true state of the world:

�X � ��1 with probability u
�1 with probability 1 � u

(1)

where u is the up-probability that governs how quickly evidence is
accumulated and depends on the true state of the world. We
assume throughout that u � 0.5 when the true state is up and u �
0.5 when the true state is down. Note that the parameter u will
determine the difficulty of a decision—when u is close to 0.5 the
decision will be hard while when u is close to 0 or 1 the decision
will be easy.

Figure 1 illustrates the process of making a decision in this
expanded-judgment task. As assumed in sequential sampling mod-
els, decision making involves the accumulation of the probabilistic
evidence, so let x be the cumulative evidence, that is, the sum of
all �X outcomes. The accumulation continues till x crosses one of
two boundaries � corresponding to the options, so that the decision
maker responds up when x � �, and down when x � ��. During
the expanded-judgment task described above, the state of the
decision maker, at any point of time, is defined by the pair (t, x),
where t is the number of observations made. In any given state, the
decision maker can take one of two actions: (a) make another
observation—we call this action wait, or (b) signal their estimate
of the true state of the world—we call this the action go. As shown
in Figure 1, taking an action wait can lead to one of two transitions:
the next observed outcome is �1; in this case, make a transition to
state (t � 1, x � 1), or the next observed outcome is �1; in this
case, make a transition to state (t � 1, x � 1). Similarly, taking the
action go can also lead to one of two transitions: (a) The estimated
state is the true state of the world; in this case, collect a reward and
make a transition to the correct state, or (b) the estimated state is
not the true state of the world; in this case, make a transition to the
incorrect state. After making a transition to a correct or incorrect
state, the decision maker starts a new decision, that is, returns to
the state (t, x) � (0, 0) after an intertrial delay DC following a
correct choice and DI following the incorrect choice.

These set of state-action pairs and transitions between these
states defines a Markov decision process (MDP) shown schemat-
ically in Figure 1. In this framework, any decision boundary that is
a function of time, � � f(t), can be mapped to a set of actions, such
that action wait is selected for any state within the boundaries, and
action go is selected for any state on or beyond the boundaries. The
mapping that assigns actions to all possible states is called a policy
for the MDP.

We assume that a decision maker wishes to maximize the
reward rate (i.e., the expected number of rewards per unit time).
The reward rate depends on the decision boundary: If the boundary
is too low, the decision maker will make errors and miss possible

rewards, but if it is too high, each decision will take a long period,
and the number of reward per unit of time will also be low.

The policy that maximizes average reward can be obtained by
using a dynamic programming procedure known as policy itera-
tion (Howard, 1960; Puterman, 2005; Ross, 1983). Several recent
studies have shown how dynamic programming can be applied to
decision-making tasks to get a policy that maximizes reward rate
(see, e.g., Drugowitsch et al., 2012; Huang & Rao, 2013; Malhotra
et al., 2017). We now summarize how the optimal shape of
decision boundary depends on task’s parameters on the basis of the
analysis given in Malhotra et al. (2017). Let us first consider a
class of tasks in which the difficulty of the decisions is fixed. That
is, evidence can point either toward up or down, but the quality of the
evidence remains fixed across decisions: u � �1

2 � �, 1
2 � ��, with 	

corresponding to the drift. The drift can take values in range � �

�0, 1
2� and it determines the difficulty of each trial with higher drift

corresponding to easier trials. For single-difficulty tasks, 	 remains
fixed across trials.

In the single-difficulty tasks, reward rate can be optimized by
choosing a policy such that the decision boundary remains con-

Figure 1. Evidence accumulation and decision making as a Markov
decision process: States are shown by circles, transitions are shown by
arrows, and actions are shown by color of the circles. The solid (blue) line
labeled � indicates a hypothetical decision boundary. The policy that
corresponds to the boundary is indicated by the color of the states. Black
circles indicate the action go, whereas gray circles indicate wait. Dashed
lines with arrows indicate transitions on go, whereas solid lines with arrows
indicate transitions on wait. The rewarded and unrewarded states are shown
as C and I, respectively (for correct and incorrect). See the online article
for the color version of this figure.
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stant during each decision. Intuitively, this is because the decision
maker’s estimate of the probability that the world is in a particular
state depends only on integrated evidence x, but not on time
elapsed within the trial t. Therefore, the optimal action to take in
each state only depends on x but not t, so go actions are only taken
if x exceeds a particular value, leading to constant boundaries.

The optimal height of the decision boundary in the single-
difficulty tasks depends on task difficulty in a nonmonotonic way.
For very easy tasks (	 close to 1

2), each outcome is a very reliable
predictor of the state of the world, so very few outcomes need to
be seen to obtain an accurate estimate of the state of the world
(Figure 2a). As the difficulty increases, more outcomes are re-
quired, and the optimal boundary increases (compare Figures 2a
and 2b). However, when the task becomes very difficult (	 close

0), there is little benefit in observing the stimulus at all, and for 	 �
0 the optimal strategy is not to integrate evidence at all, but guess
immediately, that is, � � 0 (compare Figures 2d and 2e).

Let us now consider a mixed-difficulty task, in which half of the
trials are easy with drift 	e and the other half of the trials are
difficult with drift 	d, where 	e � 	d. We assume that during
mixed-difficulty tasks, the decision maker knows that there are two
levels of difficulty (either through experience or instruction), but
does not know if a particular trial is easy or difficult. Indeed, a key
assumption of the underlying theory is that the difficulty level is
something the decision maker has to infer during the accumulation
of evidence.

In mixed-difficulty tasks, reward rate is optimized by using
boundaries that may decrease, increase or remain constant based

Figure 2. Optimal policies for single and mixed-difficulty tasks. Black squares indicate states of the MDP
where the optimal action is to go—that is, choose an alternative—whereas gray squares indicate states
where the optimal action is to wait—that is, collect more evidence. In each row, the two panels on the left
show optimal policies for single-difficulty tasks with two different levels of difficulty and the right-most
panel shows optimal policy for mixed-difficulty task obtained by mixing the difficulties is the two left-hand
panels. The intertrial intervals (ITIs) were DC � DI � 70 for the top row (Panels a through c) and DC �
DI � 50 for the bottom row (Panels d through f).
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on the mixture of difficulties. Intuitively, this is because the
decision maker’s estimate of the probability that the world is in a
particular state, given the existing evidence, depends on their
inference about the difficulty of the trial. Time becomes informa-
tive in mixed-difficulty tasks because it helps the decision maker
infer whether a given trial is easy or difficult and hence the
estimate of the true state of the world depends not only on the
evidence, x, but also on the time, t. The optimal decision maker
should begin each decision trial assuming the decision could be
easy or difficult. Therefore, � at the beginning of the trial should
be in between the optimal boundaries for the two difficulties. As
they make observations, they will update their estimate of the task
difficulty. In particular, as time within a trial progresses, and the
decision boundary has not been reached, the estimated probability
of the trial being difficult increases and the decision boundary
moves toward the optimal boundary for the difficult trials.

The above principle is illustrated in Figures 2c and 2f showing
optimal boundaries for two sample mixed-difficulty tasks. Figure
2f shows the optimal boundary for a task in which half of the trials
have moderate difficulty and half are very difficult (the optimal
bounds for single-difficultly tasks with corresponding values of
drift are shown in Figures 2d and 2e). As the time progresses the
optimal decision maker infers that a trial is likely to be very
difficult, so an optimal strategy involves moving on to the next
trial (which may be easier), that is, decreasing the decision bound-
ary with time in the trial.

In contrast, when the boundary for the difficult task is higher
than the easy task (the difficult task is not extremely hard; Figures
2a and 2b), the optimal boundary in the mixed-difficulty task will
again start at a value in-between the boundaries for the easy and
difficult tasks and approach the boundary for the difficult task
(Figure 2c). In this case, the boundary for the difficult task will be
higher than the easy task meaning that the optimal boundary will
increase with time.

In summary, the mathematical model makes three key predic-
tions about the normative behavior: (a) optimal decision boundar-
ies should stay constant if all decisions in a sequence are of the
same difficulty, (b) it is optimal to decrease decision boundaries if
decisions are of mixed difficulty and some decisions are extremely
difficult (or impossible), and (c) it may be optimal to keep decision
boundaries constant or even increase them in mixed-difficulty
tasks where the difficult decision is not too difficult. In the next
three sections, we compare human behavior with these normative
results.

Experiment 1

To compare human behavior with the normative behavior de-
scribed previously, we designed an experiment that involved an
evidence-foraging game which parallels the expanded-judgment
task described in the previous section. We modeled this evidence-
foraging game on previous expanded-judgment tasks, such as
Irwin et al. (1956) and Vickers, Burt, et al. (1985), where partic-
ipants are shown a sequence of discrete observations and required
to judge the distribution from which these observations were
drawn. We modified these expanded-judgment paradigms so that
(a) the observations could have only one of two values (i.e., drawn
from the Bernoulli distribution), (b) the reward-structure of the
task was based on performance, and (c) the task had an intrinsic

speed–accuracy trade-off. We introduced a speed–accuracy trade-
off by using a fixed-time blocks paradigm: the experiment was
divided into a number of games, the total duration for each game
was fixed, and participants could attempt as many decisions as
they like during this period. Therefore, if a participant takes a very
long time for each decision they are likely to be accurate, but will
not be able to complete many decisions during a game. If a
participant decides very quickly, they are likely to perform worse
in terms of accuracy, but will have more reward “opportunities”
during the game. The goal of the participants was to collect as
much reward as possible during each game, so they need to find a
balance between these two strategies.

In this expanded judgment task, we are able to record the exact
sequence of stimuli presented to the participants and the position in
state-space (t, x) at which participants made their decisions. Based
on the location of these decisions, we inferred how the decision
boundary for a participant depended on time. According to the
above theory, the optimal decision boundary should be indepen-
dent of time in single-difficultly tasks, but could vary with time
during mixed-difficulty tasks. By comparing the inferred decision
boundary with optimal boundaries in each type of task, we as-
sessed whether participants adjusted their decision boundaries to
maximize reward rate.

Method

Description of task. Twenty-four participants from the uni-
versity community were asked to play a set of games on a com-
puter. The number of participants was chosen to give a sample size
that is comparable to previous human decision-making studies and
kept constant during all of our experiments.2 Each game lasted a
fixed duration and participants made a series of decisions during
this time. Correct decisions led to a reward and participants were
asked to maximize the cumulative reward. The game was pro-
grammed using Matlab® and Psychtoolbox (Brainard, 1997;
Kleiner et al., 2007; Pelli, 1997) and was played using a computer
keyboard. The study lasted approximately 50 min, including the
instruction phase and training.

During each game, participants were shown an animated crea-
ture (Pacman) moving along a path (see Figure 3). A trial started
with Pacman stationary at a fork in the path. At this point Pacman
could jump either up or down and the participant made this choice
using the up or down arrow keys on the keyboard. One of these
paths contained a reward, but the participant could not see this
before making the decision. Participants were shown a sequence of
cues and they could wait and watch as many cues as they wanted
before making their choice. The display also showed the total
reward they accumulated in the experiment and a progress bar
showing how much time was left in the current game.

Once the participant indicated their choice, an animation
showed Pacman moving along the chosen path. If this path was the
rewarded one, a bag with a $ sign appeared along the path (right

2 See, for example, Palmer et al. (2005) who tested 6 participants with

560 trials for each participant and Ratcliff and McKoon (2008) who
tested 15 participants with 
960 trials per participant. We used a
performance-based reward paradigm (outlined subsequently), which means
that the number of trials varied between participants and experiments but
were between 
150 and 
650 trials per participant for each of the
experiments reported subsequently.
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panel in Figure 3). When Pacman reached this bag, the reward was
added to the total and Pacman navigated to the next fork and this
started the next trial. If the participant chose the unrewarded path,
the money bag appeared along the other path.

The intertrial interval (ITI) started as soon as the participant
indicated their choice. We manipulated the ITI for correct and
incorrect decisions by varying Pacman’s speed. Participants were
told that Pacman received a “speed-boost” when it ate the money
bag so that ITI for correct decisions was smaller than that for
incorrect decisions. Values for all parameters used during the game
are shown in Table 1.

Cue stimuli. When Pacman reached a fork, cues were dis-
played at a fixed rate, with a new cue every 200 ms. We call this
delay the interstimulus interval (ISI). During these 200 ms, the cue
was displayed for 66 ms, followed by 134 ms of no cue. Each cue
was the outcome of a Bernoulli trial and consisted of either an
upward or a downward pointing arrow. This arrow indicated the
rewarded path with a particular probability.

Next to the cues, participants were shown a picture of either an
elephant or a penguin. This animal indicated the type of game they
were playing. One of the two animals provided cues with a
probability 0.70 of being correct, while the other animal provided
cues with a probability 0.50 of being correct. Thus, the two
animals mapped to the two single-difficultly conditions—easy
(with 	 � 0.20) or difficult (with 	 � 0)—shown in Figure 2d and
2e. The mapping between difficulties and animals was counterbal-
anced across participants.

We chose the values of up-probability so that the optimal
decision boundaries in the mixed-difficulty case have the steepest
slope, making it easier to detect if participants decrease decision
boundaries. The theory in the previous section shows that decision
boundaries decrease only when the difficult decisions are ex-
tremely difficult. In the experiment we set the up-probability for
difficult condition to the extreme value of 0.5, that is, 	d � 0;
therefore, the cues do not give any information on the true state of
the world. Using this value has two advantages: (a) it leads to
optimal decision boundaries in mixed-difficulty games with the
steepest decrease in slope, and (b) it makes it easier for participants
to realize that the optimal boundary in the difficult condition is
very low (in fact, the optimal strategy for difficult games is to
guess immediately). Optimal boundaries should also decrease (al-
though with a smaller slope) when decisions are marginally easier
(e.g., 	d � 0.03). But we found that participants frequently over-

weight evidence given by these low probability cues (perhaps
analogous to the overweighting of small probabilities in other risky
choice situations, e.g., Tversky & Kahneman, 1992; Gonzalez &
Wu, 1999) and need a large amount of training to establish the
optimal behavior in such extremely difficult (but not impossible)
games. In contrast, when 	d � 0, participants could learn the
optimal strategy difficult games with a small amount of training.

The experiment consisted of three types of games: easy games,
where only the animal giving 70% correct cues appeared at each
fork; difficult games, where only the animal giving the 50% cues
appeared at the fork; and mixed games, where the animal could
change from one fork to the next. Participants were given these
probabilities at the start of each game and also received training on
each type of game (see Structure of Experiment section). Impor-
tantly, during mixed games participants were shown a picture of a
wall instead of either animal and told that the animal was hidden
behind this wall. That is, other than the cues themselves, they
received no information indicating whether a particular trial during
a mixed game was easy or difficult so that they had to infer the
type of trial solely on the basis of these cues. This corresponds to
the mixed-difficulty task shown in Figure 2f.

Reward structure. Participant reimbursement was broken
down into three components. The first component was fixed and
every participant received (approx $7.5) for taking part in the
study. The second component was the money bags accumulated
during the experiment. Each money bag was worth (approx 2
cents) and participants were told that they could accumulate up to
(approx $6) during the experiment. The third component was a
bonus prize of (approx $25) available to the participant who
accumulated the highest reward during the study. Participants were
not told how much other participants had won until after they took
part in the study.

Structure of experiment. The experiment was divided into a
training phase and a testing phase. Participants were given training
on each type of game. The duration of each training game was
150 s. This phase allowed participants to familiarize themselves
with the games and probability of cues as well as understand the
speed–accuracy trade-off for each type of games. The reward
accumulated during the training phase did not count toward their
reimbursement.

The testing phase consisted of six games, two of each type.
Participants were again reminded of the probabilities of cues at the
start of each game. The order of these games was counterbalanced
across participants so that each type of game was equally likely to

Figure 3. Two screenshots of the display during the experiment. The left
panel shows the display during the evidence-accumulation phase of a trial.
Participants chose whether Pacman goes up or down after seeing a se-
quence of cues (arrows) pointing up or down. The elephant next to the
arrow indicates that this is an easy game, so the arrow points to the
reward-holding path with probability 0.70. The right panel shows a screen-
shot during the intertrial interval (ITI). The participant has chosen the
lower path and can now see that this was the correct (rewarded) decision.
See the online article for the color version of this figure.

Table 1
Values of Parameters Used During the Game

Parameter name Value

Interstimulus interval (ISI) 200 ms
Intertrial interval (ITI), correct (ISI � DC) 3 s
ITI, incorrect (ISI � DI) 10 s
Reward (approx 2 cents)
Drift for easy condition (	e) .20
Drift for difficult condition (	d) 0
Block duration, training 150 s
Block duration, testing, easy 240 s
Block duration, testing, difficult 300 s
Block duration, testing, mixed 300 s

782 MALHOTRA, LESLIE, LUDWIG, AND BOGACZ



occur in each position in the sequence of games. The duration of
the easy games was 240 s, whereas the difficult and mixed games
lasted 300 s each. The reason for different durations for different
types of games was that we wanted to collect around the same
amount of data for each condition. Pilot studies showed that
participants generally have faster reaction time (RT) during the
easy games (see following Results section). Therefore, we in-
creased the length of the difficult and mixed blocks. By using these
durations, participants made approximately 70 to 90 choices dur-
ing both easy and mixed conditions. In the middle of each game,
participants received a 35 s break.

Eliminating nondecision time. We preprocessed the re-
corded data to eliminate nondecision time—the delay between
making a decision and executing a response. As a result of this
nondecision time, the data contained irrelevant stimuli that were
presented after the participant had made their decision. To elimi-
nate these irrelevant stimuli, we estimated the nondecision time for
each participant on the basis of their responses during the easy
games. Appendix A illustrates the method in detail; the key points
are summarized briefly in the following text.

For each participant, we reversed the sequence of stimuli and
aligned them on the response time. Let us call these ordered
sequence (s1

i , s2
i , . . . , sT

i ), where i is the trial number and (1, 2, . . . ,
T) are the stimulus indices before the response. Each stimulus can
be either up or down, that is, st

i � {up, down}. At each time step,
we estimated the correlation (across trials) between the observing
a stimulus in a particular direction and making a decision to go in
that direction. That is, we computed pt at each stimulus index, t �
{1, 2, . . . , T}, as the fraction of trials where the response ri � {up,
down} is the same as st

i. So, for each participant, the values (p1, p2,
. . . , pT) serve as an estimate of the correlation between the
stimulus at that index and the response.

If stimuli at a particular index, t, occurred after the decision, that
is, during the nondecision time, we expected them to have a low
correlation with response and consequently pt to be below the drift
rate, 0.70. We determined the first index in the sequence with pt

larger than 0.75; that is, the first index with more than 75% of
stimuli in the same direction as the response. This gave us an
estimate of the number of stimuli, ND, that fall in the nondecision
period. We used this estimate to eliminate the stimuli, s1, . . . , sND

from each recorded sequence for the participant. See Figure A1 in
Appendix A.

For 21 out of 24 participants, we estimated ND � 1, that is, a
nondecision delay of approximately 200 ms. For two subjects the
nondecision delay was two stimuli and for one participant no
stimuli were excluded.

Exclusion of participants. To ensure that each participant
understood the task, we conducted a binomial test on responses in
the easy and mixed-difficulty games. This test checked whether the
number of correct responses during a game were significantly
different from chance. Two participants failed this test during
mixed-difficulty games and were excluded from further analysis.

Analysis method. We now describe how we estimated the de-
cision boundary underlying each participant’s decisions. In signal-
detection paradigms, the experimenter cannot observe the exact se-
quence of samples based on which the participant made their decision.
Therefore, parameters like boundary are obtained by fitting a sequen-
tial sampling or accumulator model to the RT and error distributions.
In contrast, the expanded-judgment paradigm allows us to observe the

entire sequence of samples used to make each decision. Therefore, our
analysis method takes into account not only the evidence and time at
which the decision (‘up’/‘down’) was made, but also the exact se-
quence of actions (wait–go) in response to the sequence of cues seen
by the participant. It also takes into account the trial-to-trial variability
in the behavior of participants: even when participants saw the exact
same sequence of cues, they could vary their actions from one trial to
next.

If a participant makes a decision as soon as evidence crosses the
boundary, the value of time and evidence, (t, x) during each
decision should lie along this boundary. Therefore, one way to
recover this boundary is by simply fitting a curve through the
values of (t, x) for all decisions in a block. However, note that
participants show a trial-to-trial variability in their decision mak-
ing. Sequential sampling models account for this trial-to-trial vari-
ability by assuming noisy integration of sensory signals as well as
variability in either drift, starting point or in threshold (see Ratcliff,
1978; Ratcliff & Smith, 2004). We chose to model this variability
by assuming there is stochasticity in each wait–go decision. That
is, instead of waiting when evidence was below the boundary and
going as soon as evidence crossed the boundary, we assumed that
a participant’s decision depended on the outcome of a random
variable, with the probability of the outcome depending on the
accumulated evidence and time.

Specifically, we define two predictor variables—the evidence
accumulated, X � x, and the time spent in the trial, T � t – and a
binary response variable, A � wait, go. The probability of an
action can be related to the predictor variables using the following
logistic regression model:

log �(A � go)
�(A � wait) � 	0 � 	T � T � 	X � X (2)

where �T and �X are the regression coefficients for time and
evidence, respectively, and �0 is the intercept. Given the triplet
(X, T, A) for each stimulus in each trial, we estimated for each
type of game and each participant the 	̂0, 	̂T and 	̂X that
maximized the likelihood of the observed triplets.

Figure 4 shows the results of applying the above analysis to one
participant. The data are split according to condition – easy, difficult
or mixed. Each circle shows the end of a random walk (sequence of
stimuli) in the time-evidence plane. These random walks were used to
determine the (maximum likelihood) regression coefficients, 	̂0, 	̂X

and 	̂T, as outlined above. These estimated coefficients are then used
(Equation 2) to determine the probability of going at each x and t,
which is shown as the heat-map in Figure 4.

This heat-map shows that, under the easy condition, this partic-
ipant’s probability of going strongly depended on the evidence and
weakly on the number of samples. In contrast, under the difficult
condition, the participant’s probability of going depends almost
exclusively on the number of samples—most of their decisions are
made within a couple of samples and irrespective of the evidence.
Under the mixed condition, the probability of going is a function
of both evidence and number of samples.

Since we were interested in comparing the slopes of boundaries
during easy and mixed conditions, we determined a line of indif-
ference under each condition, where ��A � go� � ��A � wait�,
that is, the participant was equally likely to choose actions wait and
go. Substituting in Equation 2 gives the line:
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X � �
	̂T

	̂X

� T �
	̂0

	̂X

(3)

with slope �
	̂T

	̂X

and intercept as �
	̂0

	̂X

. We used the slope of this

line as an estimate for the slope of the boundary. Appendix B
reports a set of simulations that tested the validity of this assump-
tion and found that there is a systematic relationship between this
inferred slope and the true slope generating decisions. Importantly,
these simulations also demonstrate that even if the variability in
data is due to noisy integration of sensory signals (rather than
trial-to-trial variability in decision boundary), this inferential
method still allows us to make valid comparisons of slopes of
boundaries in easy and mixed games.

Each panel in Figure 4 also shows the line of indifference for
the condition. The slope of the line of indifference is steepest under
the difficult condition followed by the mixed condition and most
flat for the easy condition. Note that for the mixed condition, we
only considered the “easy” trials—that is, trials showing cues with
correct probability � 0.70. This ensured that we made a like-for-
like comparison between easy and mixed conditions.

A quantitative comparison of slopes between conditions can be
made by taking the difference between slopes. However, a linear
difference is inappropriate as large increasing slopes are qualita-
tively quite similar to large decreasing slopes—both indicate a
temporal, rather than evidence-based boundary (e.g., the difficult
condition in Figure 4). Therefore, we compared slopes in the
mixed and easy conditions by converting these slopes from gradi-
ents to degrees and finding the circular difference between slopes:


m � ((me � mm � 90) mod 180) � 90 (4)

where me and mm are the slopes in easy and mixed conditions,
respectively; m is the difference in slopes and mod is the modulo

operation. Equation 4 ensures that the difference between slopes is
confined to the interval [�90, �90] degrees and large increasing
slopes have a small difference to large decreasing slopes.

The above analysis assumes that evidence accumulated by a
participant mirrors the evidence presented by the experimenter—
so there is no loss of evidence during accumulation and the internal
rate of evidence accumulation remains the same from one trial to
next. In Appendix C we performed simulations to verify that
inferences using the above analysis remain valid even when there
is loss in information accumulated and when the drift rate varied
from one trial to next.

Results

The mean RTs during easy, difficult and mixed games were
1444 ms (SEM � 23 ms), 1024 ms (SEM � 47ms) and 1412 ms
(SEM � 22ms), respectively, where SEM is the within-subject
standard error of the means. Note that ‘RT’ here refers to ‘decision
time,’ that is, the raw response time minus the estimated nonde-
cision time. As noted above, the nondecision time for most par-
ticipants was approximately 200 ms. Figure 5 compares the slopes
for the lines of indifference in the easy and mixed games (black
circles). Error bars indicate the 0.95 percentile confidence inter-
val.3 Like the participant shown in Figure 4 the estimated slope for
most participants was more negative during the mixed games than
during easy games, falling below the identity line. A paired t test

3 Each confidence interval is based on percentiles of the bootstrap
distribution of the lines of indifference. Each bootstrap distribution is
obtained by generating 1,000 independent bootstrapped data sets (per
condition) and computing the slope for the line of indifference on the data
set. Each data set consists of N sampled trials, where N is the number of
trials (for that condition) seen by the participant.

Figure 4. The decisions made by a subject during Experiment 1 and the inferred boundaries based on these
decisions. Each scatter-plot shows the values of evidence and time where the subject made decisions during a
particular game (only easy trials considered during mixed game). These values have been slightly jittered for
visualization. The heat-map shows the ��Go �Xt � x� for each x and t inferred using logistic regression. The solid
line shows a “line of indifference” where ��Go �Xt � x� � ��Wait �Xt � x� and serves as a proxy for the
subject’s boundary (see Appendix B). See the online article for the color version of this figure.
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on the difference in slopes in the two conditions (using Equation 4)
confirmed that there was a significant difference in the slopes
(t(21) � 5.24, p � 0.001, m � 15.94, d � 1.20), indicating that the
type of game modulated how participants set their decision bound-
ary.

Figure 5 also shows the relationship between the slopes of easy
and mixed games for 24 simulated participants (red crosses) who
optimize the reward rate. Each of these participants had slopes of
boundary calculated using dynamic programming (Malhotra et al.,
2017) and made decisions based on a noisy integration of evidence
to this optimal boundary. The slopes in each condition were then
inferred using the same procedure as for our real participants.
These optimal participants, like the majority of participants in our
study, had a larger (negative) slope in the mixed condition than the
easy condition. However, in contrast to the optimal participants,
the majority of participants also exhibited a negative slope during
the easy games, indicating that they lowered their decision bound-
ary with time during this condition. A t test confirmed that the
slope during easy condition was less than zero (t(21) � �5.51,
p � 0.001, m � �11.47). Participants also showed substantial
variability in the decision boundary in the easy condition, with
slopes varying between 0 and 45 degrees.

An alternative possibility is that participants change their deci-
sion boundary during the experiment, adopting a higher (but con-
stant) boundary toward the beginning and lowering it to different
(constant) boundary during the experiment. In order to check for
this possibility, we split the data from each condition into two
halves and checked whether the mean number of samples required

to make a decision changed from the first half to second half of the
experiment. During easy games, we found that participants ob-
served 7.5 and 6.8 samples, on average, during the first and second
half of the experiment, respectively. During mixed games, these
mean observations changed to 6.8 and 6.2 samples, on average,
during the first and second half of the experiment. A two-sided
paired t test which examined whether the mean number of samples
were different in the two halves of the experiment found no
significant difference in either the easy games (t(21) � 1.76, p �
0.09, m � 0.73) or in the mixed games (t(21) � 1.40, p � 0.18,
m � 0.64).4

We checked the robustness of these results by performing a
model comparison exercise, pitting a time-varying decision bound-
ary against a fixed boundary model. The latter simply involves a
logistic regression in which the decisions to wait or go were based
on evidence only. The full details of this model comparison pro-
cedure and results are described in Appendix D. Based on a
comparison of Bayesian Information Criteria (Schwarz, 1978;
Wagenmakers, 2007), the time-varying model provided a better
account of the behavior of 15 out of 22 participants in mixed-
difficulty games. For 3 participants, the evidence was ambiguous
and for the remaining 4 participants the simpler, fixed boundary
model won. In easy games, the model using time as a predictor was
better at accounting for data from 13 participants while the simpler
model performed better to data for 8 participants.

In order to understand why participants decrease the decision
boundary in easy games and why different participants show a
large variation in their choice of boundary, we computed the
reward rate accrued by each participant’s choice of boundary and
compared it to the reward rate for the optimal policy. This gave us
the cost of setting any nonoptimal decision boundary. Figure 6
shows the landscape (heat-map) of the reward rate for each type of
game for a host of different boundaries, defined by different
combinations of intercepts and slopes. The circles indicate the
intercepts and slopes of the inferred line of indifference of each
participant.

Notice, in particular, the landscape for the easy games. Even
though the peak of this landscape lies at the policy with zero slope
(flat bounds), there is a “ridge” of policies on the landscape where
the reward rate is close to optimal. The policies chosen by most
participants in Experiment 1 seem to lie along this ridge—even
though participants do not necessarily choose the optimal policy,
they seem to be choosing policies that are close to optimal. A
similar pattern holds in the mixed games. In contrast, during
difficult games, the average reward is low, irrespective of the
policy. Correspondingly, there is a large variability in the policies
chosen by participants. We examine the effect of reward landscape
on the policies chosen by participants in more detail at the end of
Experiment 2.

Experiment 2

Experiment 1 established that people modulate their decision
boundary based on task difficulty and variations in the reward
landscape. However, our experimental paradigm—effectively an
expanded-judgment task—is clearly very different from the dom-

4 Analogous analysis was also done for Experiments 2a through 2d as
well and no significant differences were found.
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Figure 5. Each circle (black) compares the estimated slope in easy and
mixed games for 1 participant. Circles below the dashed line were partic-
ipants who had a larger gradient of the inferred boundary during the mixed
games as compared to the easy games. Error bars indicate the 0.95
percentile bootstrapped confidence intervals for the estimated slopes.
Crosses (red) show 24 simulated participants—decisions were simulated
using a rise-to-threshold model with optimal boundaries shown in Figures
2d and 2f. See the online article for the color version of this figure.
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inant, typically signal-detection paradigms used to test rise-to-
threshold models and time-varying boundaries (e.g., Britten,
Shadlen, Newsome, & Movshon, 1992; Palmer et al., 2005; Lud-
wig, 2009; Starns & Ratcliff, 2012). In our paradigm, response
times in mixed games were generally between 1 and 2 s, whereas
in the perceptual decision-making literature, RTs are typically
between 0.5-1 s (Palmer et al., 2005). It is possible that at this
speed participants do not, or cannot, modulate their decision
boundaries and instead adopt suboptimal fixed thresholds.

Our aim in Experiment 2 then was to replicate and extend our
findings to a more rapid task, where RTs were similar to a
signal-detection paradigm. More generally, we tested the robust-
ness and generality of the results from the expanded-judgment task
of Experiment 1 by introducing different (i) stimulus materials, (ii)
ISIs and (iii) ITIs. The variation in ISI was designed to induce
more rapid decision making (with RTs typically � 1s). Since the
optimal policies are computed on a relative time scale (based on
a unit ISI), we can scale both the interstimulus and ITI without
affecting the optimal policy, but reducing the RT. The variation
in ITI (specifically: for correct decisions, DC) was introduced to
manipulate the reward landscape, without affecting the optimal
policy. Bogacz et al. (2006) have previously shown that the
optimal policy is invariant to change in DC for single-difficultly
games. Malhotra et al. (2017) showed that this result general-
izes to the mixed-difficulty scenario: optimal policy for mixed-
difficulty games depends only on the ITI for incorrect deci-
sions, DI, but is independent of the ITI for correct decisions,
DC, as long as DC � DI. If participants were optimizing the
reward rate, they should not change their decision boundary
with a change in DC. However, as we will see below, changing
DC does affect the wider reward landscape around the optimal
policy and we explored to what extent participants were sensi-
tive to this change.

Permutations of varying these two parameters leads to four
experiments, which we have labeled Experiments 2a–2d. The
values of parameters for each experiment are shown in Table 2.

Experiment 2a was a replication of Experiment 1 with exactly the
same parameters, but using the new paradigm (described below).
In Experiment 2b, we scaled the ISI and ITI to elicit rapid deci-
sions but kept all other parameters the same as Experiment 2a. In
Experiment 2c, we increased the inter-trial-interval for correct
responses to match that for incorrect responses. All other param-
eters were kept same as Experiment 2a. Finally, in Experiment 2d,
we scaled ISI and ITI to elicit rapid decisions and also matched
ITIs for correct and incorrect decisions.

Like Experiment 1, 24 healthy adults between the age of 18 and
35 from the university community participated in each of these
experiments, with no overlapping participants between experi-
ments.

Method

Decreasing the ISI increases two sources of noise in the exper-
iment: (i) noise due to variation in attention to cues (i.e., there is

Table 2
Values of Parameters for Experiment 2

Parameter name Value

Drift for easy condition (	e) .22
Drift for difficult condition (	d) 0
Reward (approx 2 cents)

DI � ISI�50

ISI DC � 1
3 DI DC � DI

200 msec Experiment 2a Experiment 2c
50 msec Experiment 2b Experiment 2d

Note. The parameters that are common to all four subexperiments are
listed at the top. Each of the four subexperiments has a different combi-
nation of interstimulus and intertrial intervals, the values of which are listed
at the bottom. ISI � interstimulus interval.

Figure 6. The reward rates for different decision boundaries. In each panel, the slope and intercept determine
a linear boundary. The actions of all states below the boundary are set to wait and all states above are set to go.
The heat-map in each panel shows the reward rate for each threshold. The circles show the inferred boundaries
used by the participants in Experiment 1.
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a greater likelihood of participants “missing” samples when they
are coming in faster; ii) noise due to visual interference between
consecutive cues in the same location. The second source of noise
is particularly challenging for our purposes. That is, the analysis
presented here assumes that each evidence sample is processed
independently. However, if we were to present a sequence of cues
in rapid succession, it is clear that, due to the temporal response
properties of the human visual system, successive cues could
“blend in” with each other (Georgeson, 1987). As a result, we
could not simply speed-up the presentation of the arrow cues in the
Pacman task. We adapted the original task from Experiment 1 to
another evidence-foraging game that retained the structure of the
paradigm and that allowed for systematic variation of the various
parameters of interest (i.e., interstimulus and ITIs).

Participants were again asked to maximize their cumulative
reward by making correct decisions in a game. But now, during
each trial participants focused on a fixation cross in the middle of
the screen with gray background5 and were told that a reward was
either on the left or the right of the fixation cross. In order to make
their choice, participants were shown cues that could appear either
to the left or right of the fixation cross. In order to minimize
interference (see below) cues could appear in two alternative
locations on each side – ‘left-up’ or ‘left-down’ on the left and
‘right-up’ or ‘right-down’ on the right. A cue appeared on the same
side as the reward with a given probability. Participants were given
this probability at the beginning of the game. For single-difficultly
games, they were told that this probability was the same
�1

2 � 0.22� for all trials within this game. For the mixed-difficulty
games, they were told that a particular trial during the game could
give cues with one of two different probabilities �1

2 � 0.22 or 1
2 � 0)

and they were given these possible probabilities at the start of each
game (i.e., block). Participants were again told that they could see
as many cues as they wanted during a trial before making a
decision, but the total duration of the game was fixed. Figure 7

shows an example trial in which the participant makes the decision
to go left after observing a series of cues.

Each cue was a Gabor pattern (sinusoidal luminance grating
modulated by a 2D Gaussian window). We designed these cue
patterns to minimize interference between consecutive patterns.
The integration period of early visual mechanisms depends
strongly on the spatiotemporal parameters of the visual patterns.
But for coarse (i.e., low spatial frequency) and transient patterns it
should be less than 100 ms (Georgeson, 1987; Watson, Ahumada,
& Farrell, 1986). To ensure the low spatial frequency we fixed the
nominal spatial frequency of the Gabor to 0.4 cycles/deg (we did
not precisely control the viewing distance, so the actual spatial
frequency varied somewhat between participants) and the size of
the Gaussian window to 1.2 deg (2D standard deviation). The
patterns had a vertical orientation. In the “fast” experiments (Ex-
periments 2b and 2d), each cue was displayed for 10 ms and the
delay between onset of two consecutive cues (the ISI) was 50 ms.
To ensure that consecutive cues were processed independently by
the visual system we (i) alternated the location on one side of the
screen (e.g., ‘left-up’ and ‘left-down’) so that the smallest ISI at
any one retinal location was 90 ms and (ii) alternated the phase of
the patterns (90° and 270°).

Participants indicated their choice by pressing the left or right
arrow keys on a keyboard. When the decision was correct, a
money bag appeared on the chosen side. During the ITI, an
animation displayed this money bag moving toward the bottom of
the screen. When the decision was incorrect, no money bag ap-
peared. All money bags collected by the participant remained at
the bottom of the screen, so participants could track the amount of
reward they had gathered during the current game.

The structure of the experiment was the same as Experiment 1,
with the experiment consisting of a set of games of fixed durations
and given difficulties. Each game consisted of a sequence of trials
where participants could win a small reward if they made the
correct decision or no reward if they made an incorrect decision.
Games were again of three different types: (i) Type I, correspond-
ing to easy games from Experiment 1, (ii) Type II corresponding
to difficult games and (iii) Type 3 corresponding to mixed games.
The type of the game was indicated by the color of the fixation
cross – Type I: Green, Type II: Red and Type 3: Blue. The order
of games was counterbalanced across participants.

In all four experiments the up-probability for easy and difficult
games was 0.50 � 0.22 and 0.50 � 0, respectively. During mixed
games, easy and difficult trials were equally likely. The reward
rate-optimal policy for easy games was again to maintain constant
threshold (Figure 2d) while for difficult it was to guess immedi-
ately (Figure 2e). Similarly, the optimal policy for the mixed
condition was to start with a high boundary (similar to the bound-
ary at the start of easy games) and steadily decrease it, eventually
making a decision at x � 0 (Figure 2f). Just like in Experiment 1,
participants were given training on each type of game and the
reward structure was divided into three components: (approx
$8.50) for participating, (approx 2 cents) for each correct response

5 The luminance of the monitor was gamma-corrected so that luminance
was a linear function of grayscale RGB value. The background luminance
was fixed to 0.5 on a scale of [0, 1].

Figure 7. An illustration of the paradigm for Experiments 2a through 2d.
During each trial, participants chose left or right based on a sequence of
cues. Each cue was a Gabor pattern displayed (for a fifth of interstimulus
interval [ISI]) in one of four possible locations, equidistant from the
fixation cross. If the decision was correct (as in this example), a money bag
was displayed on the chosen side of the fixation cross and the participant
waited for the duration DC before starting the next trial. If the decision was
incorrect, no money bag was displayed and the participant waited for the
duration DI before starting the next trial. RT � Reaction time. See the
online article for the color version of this figure.
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and (approx $25) for the participant accumulating the largest
number of money bags.

Results

We analyzed data using the same method as Experiment 1 after
removing the nondecision time. Wait and go actions were used to
determine the probability of going at all combinations of evidence
and time, which were then used to determine a line of indifference,
where the probability of wait matched the probability of go. We
compared the slopes of this line of indifference for easy and mixed
games for each of the four experiments.

Experiment 2a. This experiment used the same parameters as
Experiment 1, but replaced the Pacman game, with the evidence-
foraging game described in Figure 7. Two participants failed the
binomial test in the mixed games and were excluded from analysis.
The mean RTs during easy, difficult and mixed games were 1155
ms (5.8 samples, SEM � 17 ms), 618 ms (3.1 samples, SEM � 27
ms) and 1142 ms (5.7 samples, SEM � 19 ms), respectively. We
estimated the average number of stimuli that fell in the nondeci-
sion period (ND) to be 0.96, that is, a average nondecision delay of
approximately 192 ms. For 21 out of the 22 participants, we
estimated ND � 1 and for one participant no stimuli were ex-
cluded. Figure 8 (top-left panel) shows a comparison of the esti-
mated slopes of lines of indifference in easy and mixed games. We
observed that slopes were negative in both easy and mixed games
for almost all participants and more negative during mixed games
than easy games (t(21) � 3.92, p � 0.001, m � 15.76, d � 0.84).
Again, circles show the slopes for estimated lines of indifference
for each subjects. The 0.95 percentile confidence intervals on these
slopes are obtained using the same bootstrap procedure described
in Experiment 1.6 Note that the mean difference in slopes is
virtually identical to Experiment 1, although the effect size (Co-
hen’s d) was larger during Experiment 1. Thus, Experiment 2a
replicated the results of Experiment 1 showing that the findings
were robust to different formulations of the evidence-foraging
game. A model comparison exercise concurred with these results,
showing that the majority of participants in mixed (N � 18) as well
as easy games (N � 17) were better accounted by a logistic
regression model using both evidence and time as a predictor than
by a simpler model that used only evidence as the predictor (see
Appendix D for details).

Experiment 2b. In the next experiment, we decreased the ISI
to 50 ms and scaled the ITIs accordingly. All other parameters
were the same as Experiment 2a. All participants passed the
binomial test in the easy and mixed games. The mean RT during
easy, difficult and mixed games were 337 ms (6.7 samples, SEM �
4.2 ms) 418 ms (8.4 samples, SEM � 9.8 ms) and 419 ms (8.4
samples, SEM � 5.3 ms), respectively, showing that this paradigm
successfully elicited subsecond RTs typically found in signal de-
tection paradigms. We estimated the average number of stimuli
that fell in the nondecision period to be 3.7, that is, an average
nondecision delay of approximately 183 ms. We estimated ND �
4 for 15 participants, ND � 3 for six participants, ND � 5 for two
participants and ND � 1 for one participant. The bottom-left panel
of Figure 8 shows the estimated slopes in easy versus mixed
games. Like Experiment 2a, the slopes were negative for most
participants in both easy and mixed games. Similarly, we also
observed that the slopes were more negative in the mixed games

than in the easy games, although the result was a little weaker than
in Experiment 2a (t(23) � 2.12, p � 0.044, m � 11.80, d � 0.47).
There are three possible reasons for this weaker result. First, the
distribution for difference in slopes is more diffuse due the outlier
at the right of the plot. Excluding this participant gave a clearer
difference in slopes (t(22) � 3.31, p � .003, m � 15.19, d � 0.72)
that was numerically highly similar to the slope difference ob-
served in Experiments 1 and 2a. Second, for reasons discussed
below, our estimates of nondecision time are likely to be less
accurate in the “faster” paradigm. In turn, this error introduces
variability in the accuracy of the actual evidence paths on a
trial-by-trial basis that were used to derive our slope estimates.
Lastly, it is possible that the process decreasing the boundary
needs time to estimate the drift and adjust the boundary accord-
ingly. With shorter ISI, this process may have less time to affect
the decision process before the response is made, resulting in
smaller difference in slopes between conditions.

Experiment 2c. Next, we changed the ISI back to 200 ms
(same as Experiment 2a) but increased DC, the ITI for correct
decisions, to the same value as DI, the ITI for incorrect decisions
(10s for both). Increasing the ITI decreased the reward per unit
time and meant that participants had to wait longer between trials.
Participants found this task difficult, we suspect because the ITI is
so much longer than the typical RT. That is, participants spend
most of their time waiting for a new trial, but then those trials are
over rather quickly. Perhaps as a result, the games lacked in
engagement and six out of 24 participants failed the binomial test
in mixed games. For the 18 remaining participants, the mean RTs
in easy, difficult and mixed games were 807 ms (4.0 samples,
SEM � 27 ms), 858 ms (4.3 samples, SEM � 49 ms) and 954 ms
(4.8 samples, SEM � 32 ms), respectively. We estimated the
average number of stimuli that fell in the nondecision period to be
0.9, that is, an average nondecision delay of approximately 176 ms
(ND � 2 for 21 participants and ND � 0 for the remaining three
participants). The estimated slopes are shown in the top-right panel
of Figure 8. We observed much greater variability in the estimated
decision boundaries, though slopes were generally negative in
mixed as well as easy games.7 The mean estimated slopes de-
creased more rapidly in mixed games as compared to easy games.
However, given the large variability of responses and the number
of participants that had to be excluded, this effect was compara-
tively weaker (t(17) � 2.41, p � .028, m � 17.97, d � 0.60).
Nevertheless, the mean slope difference is very similar to that
observed in all previous three experiments.

Experiment 2d. In this experiment we tested the final permu-
tation of ISIs and ITIs—we decreased the ISI to 50 ms and matched
the ITIs for correct and incorrect decisions (both 2.5s). Two partici-
pants failed the binomial test in mixed games and were excluded from

6 When the estimated slope for a participant is really steep, a large
negative slope is qualitatively similar to a large positive slope. For this
reason, the confidence intervals for some participants with large slopes
seem extremely wide. We compare the slopes using a circular difference
(Equation 4), which corrects for this problem.

7 There is an outlier who seems to have a large positive slope in mixed
games. This may seem unintuitive, but, as noted above, there is little
difference between a large positive and a large negative slope—in both
cases the probability of going depends strongly on time (a temporal
deadline) and weakly on evidence. The circular difference (Equation 4)
accounts for cases like this.
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further analysis. The mean RTs during easy, difficult and mixed
games were 240 ms (4.8 samples, SEM � 4 ms), 308 ms (6.2 samples,
SEM � 9 ms) and 294 ms (5.9 samples, SEM � 5 ms), respectively.
We estimated the average number of stimuli that fell in the nondeci-
sion period to be 4.3, that is, an average nondecision delay of approx-
imately 216 ms (ND � 4 for 18 participants, ND � 5 for five

participants and ND � 7 for one participant). The bottom-right panel
in Figure 8 compares the estimated slopes in easy and mixed games.
The mean slope in either kind of game was negative (t(21) � �3.10,
p � .005, m � �11.66 for easy games and t(21) � �3.42, p � .003,
m � �18.82 for mixed games). However, in contrast to Experiment
2b, there was no significant difference in mean estimated slopes

Figure 8. Slopes (in degrees) of estimated lines of indifference in easy versus mixed games in four experi-
ments. The dashed line shows the curve for equal slope in easy and mixed games. Each circle (black) shows the
estimated slopes for one participant. Error bars show 0.95 percentile bootstrapped confidence intervals. Crosses
(red) show the estimated slopes for 24 simulated participants—decisions were simulated using a rise-to-
threshold model with boundaries given by the optimal policies computed as described by (Malhotra et al., 2017).
See the online article for the color version of this figure.
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during easy and mixed games (t(21) � 1.71, p � 0.10, m � 7.15, d �
0.32).

Discussion

Experiments 2a-d revealed three key behavioral patterns: (i)
participants generally decreased their decision boundaries with
time, not only in the mixed games, but also in the easy games, (ii)
this pattern held for the rapid task (Experiment 2b) but the vari-
ability of parameter estimates increased at faster RTs, (iii) decreas-
ing the difference between DC and DI decreased the difference in
slopes between easy and mixed games.

Clearly, it is not optimal to decrease the decision boundary
during fixed difficulty (easy) games, but most participants seemed
to do this. As noted in Experiment 1, a possible reason is that the
reward rate for suboptimal policies is asymmetrical around the
optimal boundary. Figure 9(a) shows the reward rate landscape for
all possible decision boundaries during easy games in Experiment
2a, and maps the estimated boundaries for each participant onto
this landscape.

Reward rate is maximum at (0, 3). When slope increases above
zero the reward rate drops rapidly. In contrast, when slope de-
creases below zero, reward rate decreases gradually. This asym-
metry means that participants pay a large penalty for a suboptimal
boundary with a positive slope, but a small penalty for a subopti-
mal boundary with a negative slope. If participants are uncertain
about the evidence gathered during a trial, or about the optimal
policy, it is rational for them to decrease their decision boundary,
as an error in estimation will lead to a relatively small penalty.
Figure 9 suggests that most participants err on the side of caution
and adopt policies with high (though not maximum) rewards and
decreasing boundaries.

The shape of the reward landscape also sheds light on why
participants behave differently when the ITI DC is changed, even
though changing this parameter does not affect the optimal policy.
The first column in Figure 9 shows the reward rate in experiments
where DC � 1

3 DI, while the second column shows the reward rate
in experiments where DC � DI. The top two rows show the
reward-rate landscapes in easy games at all combinations of slopes
and intercepts, while the bottom row compares the reward rate in
easy and mixed games at a particular intercept of decision bound-
ary but different values of slope (i.e., a horizontal slice through the
heat-maps above). Even though the optimal policy in all four
experiments is the same, there are several ways in which the
reward-rate landscape in the left-hand column (Experiments 2a
and 2b) differ from the landscape in the right-hand column (Ex-
periments 2c and 2d).

First, the reward-rate landscape in easy games is more sharply
peaked when DC � 1

3 DI (Experiments 2a and 2b). This is most
clearly discernible in panels in the bottom row which shows the
profile of the (normalized) reward-rate landscape at a particular
intercept. If the participant adopts a boundary with large negative
slope, the difference between the reward rate for such a policy and
the optimal reward rate is larger when DC � 1

3 DI (left panel) than
when DC � DI (right panel). So in Experiments 2a and 2b adopting
a suboptimal policy carries a larger ‘regret’ than in Experiments 2c
and 2d. This means that the reward landscape constrains the choice
of boundaries more in Experiments 2a and 2b than it does in

Experiments 2c and 2d, even though the optimal policy for all
experiments is the same.

The panels in the bottom row also compare the reward-rate
profiles during easy (shaded) and mixed (hatched) games at a
particular intercept. It can be seen that for both types of experi-
ments the normalized reward rate is larger in mixed games than
easy games when slopes are more negative. Thus it is better (more
rewarding) to have decreasing boundaries in mixed games than in
easy games. However, the difference in easy and mixed games is
larger when DC � 1

3 DI (left panel) than when DC � DI (right
panel). Correspondingly, we found a more robust difference in
slopes during Experiments 2a and 2b than we did in Experiments
2c and 2d.

The third behavioral pattern was an increase in variability of
slopes when the decisions were made more rapidly. There are two
possible sources of this variability: internal noise and error in
estimation of the nondecision time. Recall that we excluded stimuli
that arrive during the nondecision time based on a single estimate
of this time for each participant. It is likely that the nondecision
time varies from trial-to-trial; indeed, this is a common assumption
in models of decision making (see Ratcliff & Smith, 2004). Any
such variability means that on some trials we are including irrel-
evant samples (estimating a nondecision time too short) or exclud-
ing relevant samples (estimating a nondecision time too long). As
a result, there is a discrepancy between the evidence paths that
actually led to the participant’s decision and the one entered into
the logistic regression model used to estimate the decision bound-
ary. Importantly, this discrepancy will be much smaller in the
experiments with a long ISI, because even an error in nondecision
time of, say, 100 ms will at most introduce only one additional or
excluded evidence sample. However, in the experiments with a
much shorter ISIs, the same numerical error will result in several
additional or missed evidence samples. Therefore, trial-to-trial
variability in the nondecision times introduces more noise in the
slope estimates for the faster experiments.

Experiment 3

In the above experiments, the optimal policy was to decrease
decision boundaries in mixed games but keep them constant in
single-difficultly games. Correspondingly, data suggested that par-
ticipants adopted more strongly decreasing boundaries in mixed-
difficulty games than in single-difficultly games, particularly when
errors are costly (in terms of reward rate). In Experiment 3 we
changed the parameters so that the optimal policy during mixed-
difficulty games was, in fact, to increase the decision boundary.
Recall from the theory on optimal shapes of decision boundaries
that the optimal policy in mixed games is to decrease decision
boundaries only when one of the decision types is extremely
difficult. In contrast, when both types of decisions are easy or
moderately difficult, the policy that optimizes reward rate is to
increase decision boundaries or leave them constant (Figure 2c).
Therefore, if participants were optimizing their average reward, we
expected estimated slopes in mixed-difficulty games of this type to
be either the same or larger than slopes in single-difficultly games.

Experiment 3 used the same experimental paradigm as Experi-
ment 2. The parameters for Experiment 3 are shown in Table 3.
During this experiment, easy games showed cues with up-
probability 1

2 � 0.40 – so participants could make really rapid
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Figure 9. Reward rate for Experiments 2a through 2d. Each heat-map in the first two rows shows the
“landscape” of reward rate in policy space and dots show estimated policies adopted by participants in easy
games. The bottom row show profiles sliced through the (normalized) reward-rate landscape at a particular
intercept. Shaded regions show profiles for easy games, whereas hatched regions show profiles for mixed games.
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decisions in these games. And unlike Experiments 1 and 2, diffi-
cult games showed cues with up-probability 1

2 � 0.10. The optimal
boundaries in this case are higher for difficult games than easy
games (Figures 2a and 2b) and the optimal boundary for mixed
games show a slight increase in evidence with time (Figure 2c).

Twenty-four participants played blocks of easy, difficult and
mixed games with the objective of maximizing their reward. Each
correct decision was worth 2p and there was no reward or penalty
for incorrect decisions. The participant who collected the largest
number of money bags received a bonus reward of (approx $25).
The ISI was 50 ms and ITI was 3.5 s.

We used the same procedure as the above experiments to
analyze the data. All participants passed the binomial test in mixed
games so no data was rejected. Figure 10 shows the estimated
slopes for lines of indifference in easy, difficult and mixed games.
Unlike the previous experiments, we compared the slopes in mixed
games not only to easy games, but also to difficult games, since the

difficult games in this case required participants to accumulate
evidence before making a decision.

During easy games, participants made really rapid (and accurate)
decisions, with mean RTs 107 ms (SEM � 4 ms), that is, based on
two to three sample cues (after excluding nondecision time). Such fast
responses are of course consistent with the model prediction of
narrow decision boundaries in this condition. As discussed above, on
this rapid time scale noise in the responses due to nondecision time or
due to variability of the perceptual system has a large impact on the
variability of estimated slopes. Indeed, we can see from Figure 10 (left
panel), that the confidence intervals around estimated slopes are large
and there was substantial (between-participants) variability in the
mean estimated slopes.

A more accurate comparison between single- and mixed-difficulty
games is obtained by comparing the slopes in difficult games with the
slopes on difficult trials in mixed games. The panel on the right in
Figure 10 shows this comparison. The mean RTs in difficult games
was 397 ms (8 samples, SEM � 9 ms), while that in the mixed games
was 234 ms (4.7 samples, SEM � 6 ms). We estimated the nonde-
cision time to be approximately 4.5 samples, that is, 227 ms (ND �
5 for 13 participants and ND � 4 for the remaining 11 participants).
Like previous experiments, the mean slope in single-difficultly (here,
difficult) games was less than zero (t(23) � �3.15, p � 0.001,
m � �19.5).

Crucially, in contrast to Experiment 1 and 2, but in agreement
with the reward-rate optimizing policy, we found that the esti-
mated slopes in mixed games were slightly larger (less negative)
than in the difficult games (t(23) � �2.25, p � .034, m � �9.86,

Table 3
Values of Parameters Used During Experiment 3

Parameter name Value

Drift for easy condition (	e) .40
Drift for difficult condition (	d) .10
Reward (approx 2 cents)
Intertrial interval, correct 3.5 s
Intertrial interval, incorrect 3.5 s
Interstimulus interval 50 ms

Figure 10. Slopes of estimated lines of indifference in Experiment 3. The panel on the left compares slopes for
the easy trials during mixed games with slopes for all trials during easy games, whereas the panel on the right
compares slopes for the difficult trials in mixed games with slopes for all trials during difficult games. In each
panel, the solid vertical and horizontal lines show lines of zero slope (flat threshold), and the dashed line shows
the curve for equal slopes in the two types of games. Each circle shows the estimated slopes for one participant
and crosses show estimated slopes from simulated optimal participants. See the online article for the color
version of this figure.
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d � �0.39). Indeed, model comparison suggested that, again in
contrast to Experiment 1 and 2, the simpler logistic regression model
using only evidence as the predictor provided a better account of data
in mixed games than the model using both evidence and time as
predictors (see Appendix D). However, for the difficult games, the
evidence was more mixed in that for just over half the participants, a
model that included time as a predictor performed better. These
results are consistent with the slope comparisons in that boundaries
varied with time (slightly) in difficult games, but were approximately
constant in the mixed games. Although we do not actually observe
increasing boundaries, the shift from decreasing to approximately
constant boundaries is a shift in the right direction.

In Figure 11, we have again plotted the estimated policies of all
participants on the reward landscape. The key difference in behavior
between mixed and difficult games was that most participants were
concentrated around the zero slope during mixed games while the
slope of boundaries chosen by participants in the difficult games were
spread over a large range with a number of participants choosing
policies with large negative slopes. In the right-most panel, we have
compared the profile of the landscape, slicing it at intercept � 3
(optimal policy in mixed games had slope slightly above 0 and
intercept between 3 and 4). This profile shows that, like Experiment
2, reward rate is an asymmetric function of slope in both the difficult
and mixed games. However, in contrast to Experiment 2, the amount
of asymmetry is now lesser during mixed games than difficult games.
So during mixed games, participants can choose policies in the
neighborhood of constant boundary with a lower regret, even in the
presence of uncertainty about the evidence or the optimal boundary.
This could explain why the majority of participants in the mixed
games are concentrated around policies with zero slope. In contrast,
the larger asymmetry during difficult games seems to push a number
of participants into adopting boundaries with large negative slopes—a
lower risk strategy that nevertheless leads to a small loss in average
reward.

General Discussion

Constant or Decreasing Boundaries

Sequential sampling models have had a very successful history
of fitting data in a variety of decision-making experiments (Bogacz

et al., 2006; Ratcliff, 1978; Ratcliff & Smith, 2004; Ratcliff et al.,
2016; Smith & Vickers, 1989). These models typically assume that
decision boundaries remain constant during a trial, so introducing
the possibility of changing boundaries adds further complexity to
these models. The question is whether this complexity is warranted
given existing data.

Recently, Hawkins et al. (2015) and Voskuilen, Ratcliff, and
Smith (2016) conducted a model comparison based on data from a
number of decision-making studies and found that introducing
decreasing bounds did not generally improve the model fit. In this
study, we took a different approach—instead of working out
whether decreasing boundaries improves model fit, we used a
mathematical model (Malhotra et al., 2017) to establish the cir-
cumstances for changing decision boundary if the decision maker
wanted to maximize reward rate. The key insight from this ap-
proach is that optimal decision boundaries decrease only in very
specific scenarios—when one of the difficulty in a mixed-
difficulty task is extremely difficult, or even impossible. In other
conditions, optimal boundaries for mixed-difficulty tasks may
increase or stay constant based on the difficulty of constituent
decisions. An advantage of the model presented in this study is that
it can be used for inferring the reward rate of any given boundary,
which can then be used to compare with the optimal boundary.
Using this approach, we found that suboptimal policies were
“asymmetrically distributed” near the optimal boundary in policy
space. A judicious decision maker should consider this asymmetry
in reward landscape to make decisions that are robust to uncer-
tainty in task parameters and to their own estimate of the optimal
policy. Six expanded-judgment experiments indicate that people
may not only be modulating how decision boundaries change with
time, but may also be using such robustness considerations to
choose the value and shape of these boundaries.

So why do Hawkins et al. (2015) and Voskuilen et al. (2016)
find no strong evidence for changing decision boundaries and,
indeed, why are models with constant decision thresholds so
successful at fitting data from a variety of experiments? There
could be three possible reasons. First, the data sets analyzed by
Hawkins et al. (2015) and Voskuilen et al. (2016) consist of
mixed-difficulty experiments with a variety of different difficulty
levels. For example, Experiment 1 conducted by Hawkins et al.

Figure 11. Reward rate during difficult and mixed games during Experiment 3. Each heat-map shows the
“landscape” of reward per unit time in policy space. Lighter colors show higher reward. Each circle shows
the slope and intercept of the estimated line of indifference for a participant. The right-most panel compares the
reward landscape in difficult and mixed games at a particular intercept.
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(2015) was a motion-discrimination task with six different diffi-
culty levels (0%, 2.5%, 5%, 10%, 20% and 40%) while Experi-
ment 1 from Ratcliff, Hasegawa, Hasegawa, Smith, and Segraves
(2007) was a brightness-discrimination task with three levels of
difficulty (55%, 65% and 98%). It is not clear in any of these
experiments what the shape of boundaries that optimize reward
rate should be. As we have discussed above, optimal boundaries do
not necessarily decrease in mixed-difficulty trials and when they
do decrease, the rate of decrease varies over a broad range based
on the levels of difficulty. So even if participants were optimizing
reward rate in the experiments considered by Hawkins et al. (2015)
and Voskuilen et al. (2016), this may not necessarily entail ob-
serving decreasing boundaries.

Second, each of our experiments carefully controls the cost/reward
of each decision and links performance to reward. This allows us to
compute the optimal behavior in the task (in terms of reward rate) and
compare participant performance with this optimal behavior. In con-
trast, most studies considered by Hawkins et al. (2015) do not have a
performance-based reward structure. Participants are asked to empha-
size speed, accuracy or both and there is no explicit scale on which a
participant can measure the expected return of a policy. Exceptions to
these are studies involving nonhuman primates, such as Roitman and
Shadlen (2002); Ratcliff, Cherian, and Segraves (2003); Ditterich
(2006), where performance was explicitly linked to reward and inter-
estingly, Hawkins et al. find evidence for decreasing boundaries in
these studies.

Decisions in ecologically realistic situations are typically ac-
companied by costs and rewards and the structure of incentives can
profoundly affect performance, as shown by a series of studies in
experimental economics (Camerer & Hogarth, 1999; Cubitt,
Starmer, & Sugden, 1998). Therefore, if we want to establish
whether participants decrease decision boundaries within a trial,
we must determine what it is they stand to gain by changing their
decision boundaries during the experiment.

Last, note that the expanded-judgment paradigm used by us is
different from the signal detection paradigms used in studies
analyzed by Hawkins et al. (2015) and Voskuilen et al. (2016).
This is a key strength of our study as we are able to observe the
exact sequence of stimuli observed by the decision maker and infer
their decision boundaries based on these observations. It has been
demonstrated recently that constraining sequential sampling mod-
els by the exact sequence of stimuli provides a closer description
of RTs than that obtained from models in which the drift parameter
is assumed constant within a trial (Park, Lueckmann, Kriegstein,
von Bitzer, & Kiebel, 2016). However, using this paradigm leaves
open the possibility that the decision boundary is set differently
when the decision processes draw samples from an internal rep-
resentation (e.g., in color/brightness/numerosity judgment tasks)
and when samples drawn cannot be recorded by the experimenter.
Previous evidence suggests that results from expanded-judgment
tasks can be generalized to situations where sampling is internal
(Vickers, Burt, et al., 1985; Vickers, Smith, Burt, & Brown, 1985).
However, these studies did not examine a signal-detection task
where RTs are typically �500 ms. Thus, an important outstanding
question is whether people use different decision processes for
internally and externally sampled observations and whether this
affects how they set their decision boundaries.

Data from several expanded-judgment tasks involving choice be-
tween multiple alternatives have been successfully analyzed using

sequential sampling models with fixed boundaries, which have been
shown to capture the key interesting aspects of these data (Brown,
Steyvers, & Wagenmakers, 2009; Hawkins, Brown, Steyvers, &
Wagenmakers, 2012). It would be interesting to extend the model
fitting methodology presented in this paper to the case of choice
between multiple alternatives, and investigate if these data are better
described by a model with flat or decreasing boundaries.

Individual Differences

In all of the preceding experiments, we observed variability in
behavior both between individuals and between trials within a
participant. We have already discussed two reasons for the vari-
ability between trials: (a) nondecision time, which is estimated per
individual but may vary from trial-to-trial and (b) internal noise,
which could lead to a trial-to-trial variability in drift rate. As
mentioned previously, a trial-to-trial variability in drift rate, start-
ing point or threshold has been shown to be essential for fitting RT
distributions—in particular, different patterns of error RTs—using
sequential sampling models (see Ratcliff, 1978; Ratcliff & Smith,
2004). In addition to these, our study highlights another source of
variability between individuals—the shape of the reward land-
scape with its broad region in which acceptably high reward rates
could be achieved. Reward rate was asymmetrically distributed
around the optimal policy in all the above experiments, with a bias
toward suboptimal policies that yielded a reward rate that was
close to maximum.

A number of previous studies have compared individuals with
optimal behavior in decision-making tasks and found that partic-
ipants often use boundaries that are suboptimal (Bogacz, Hu, et al.,
2010; Pitz et al., 1969; Sanders & Linden, 1967; Simen et al.,
2009; Starns & Ratcliff, 2010; Wallsten, 1968; Zacksenhouse,
Bogacz, & Holmes, 2010). It has also been observed that partici-
pants have a tendency to overvalue accuracy, setting boundaries
that are wider than those suggested by maximization of reward rate
(Balci et al., 2011; Bohil & Maddox, 2003; Maddox & Bohil,
1998; Myung & Busemeyer, 1989; Starns & Ratcliff, 2012). To
explain this behavior, a set of studies have investigated alternative
objective functions (Bogacz et al., 2006; Bohil & Maddox, 2003;
Zacksenhouse et al., 2010). For example, Zacksenhouse et al.
(2010) found that only about 30% of participants achieve (reward
rate) optimality and the behavior of the other 70% is better ex-
plained by a robust strategy that maximizes performance under
presumed level of uncertainty (the maximin strategy).

The behavior of participants in our experiments is in line with
such a robust strategy: a small proportion of participants adopt
policies that are close to optimal (Figures 5, 8, and 10) but most
participants adopt strategies that yield high, but not maximum,
reward rate (Figures 6, 9 and 11). Because the gradient of reward
rate was larger above constant boundary than below it, this meant
choosing a policy with a decreasing boundary.

In the preceding experiments, there can be several sources of
uncertainty, leading to adoption of a robust strategy: uncertainty in
estimation of task parameters such as ISI/ITI, uncertainty in the
signal due to noise in the sensory system, and uncertainty in the
estimate of reward rate for the task. If participants use a hill-
climbing learning mechanism (Myung & Busemeyer, 1989; Si-
men, Cohen, & Holmes, 2006), these uncertainties introduce noise
in the learning process and make it harder for participants to search
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for the optimal policy, especially when the reward landscape has a
low gradient, leading to the observed differences in the choice of
boundaries. With training, participants should be able to reduce
these uncertainties and approach optimal boundaries, as shown by
previous research (Myung & Busemeyer, 1989; Balci et al., 2011).

Conversely, when internal noise in the sensory system increases
or when the estimate of the task parameters becomes more uncer-
tain, participants should find it more difficult to locate the optimal
policy in policy space. For example, it has been shown that the
duration estimates of older adults are more variable than younger
adults (Block, Zakay, & Hancock, 1998) and visual perception
declines with aging (Habak & Faubert, 2000; Owsley, 2011; Spear,
1993; Weale, 1963). These processes will increase the level of
uncertainty in the (temporal) task parameters as well as the visual
stimuli and could explain why older adults adopt boundaries that
are farther from optimal (Starns & Ratcliff, 2010, 2012). Of
course, it is also possible that the deviation from optimality is a
consequence of not only an increase in visual and temporal noise
but also a decline in the ability to flexibly set the boundary and
more empirical studies would be required to tease apart the relative
contribution of these two factors.

Mechanistic Considerations

The behavior of participants in the experiments above suggests
that they adapt their decision-making mechanism to achieve near-
maximal reward rates. We claim neither that participants are
optimal—they clearly are not—nor that the mathematical model
we have used to derive the optimal policy is a psychological
theory. The focus of our study was not on establishing the mech-
anism by which people achieve this behavior but on comparing the
normative behavior with the empirical behavior. In a manner
similar to “ideal observer models” in the study of sensory systems
(Geisler, 2003), specifying the optimal policy has helped us (a)
identify experimental conditions that are best suited to empirically
test time-varying decision boundaries, and (b) identify sources for
suboptimal behavior (or inefficiencies) through analysis of the
reward landscape. Nevertheless, we finish with some consider-
ations of the underlying mechanisms that may be responsible for
the time varying boundaries observed in our study.

First of all, the reader may wonder whether the decreasing bounds
we identify in our experiments may be accounted for by existing
mechanisms in models that assume constant boundaries. In Appendix
C, we explore two such mechanisms—between-trial noise in the drift
rate and imperfect integration of information. We simulated decisions
using a rise-to-threshold model both with and without between-trial
noise in drift rate and with and without loss in integration of evidence.
We then estimated the slopes of boundaries using the method dis-
cussed above and found that the estimated difference in slopes be-
tween single- and mixed-difficulty conditions reflected the true dif-
ference, irrespective of the noise in drift rate or loss in integration of
evidence. Thus, our inferences about difference in slopes remain valid
even when these mechanisms are considered.

Next, the pattern of decision making we observed in the expanded-
judgment tasks is compatible with a number of different mechanistic
accounts. For example, it is possible that participants did not weigh
each cue equally and cues later in the decision carried a larger weight.
This mechanism has been recently suggested by the urgency-gating
model (Cisek, Puskas, & El-Murr, 2009; Thura, Beauregard-Racine,

Fradet, & Cisek, 2012). Similarly, it is also possible that participants
maintained a constant threshold but also used a stochastic deadline.
That is, they maintain an internal clock and make a decision if
evidence crosses a constant threshold before a deadline or choose the
most-likely alternative if the threshold is not crossed but a deadline is
reached. This mechanism is similar to the response signal paradigm
(e.g., Ratcliff, 2006), with an internal instead of an external deadline.
Both these mechanisms will lead to decision boundaries that appear to
decrease with time. However, the urgency gating model does not
assume integration of sensory input over whole duration of trial, but
rather rapid forgetting of previously integrated input. It would be
interesting to formally compare in a future study whether the urgency
gating model or an integration to boundary model better describes
data from the current study, which is freely available, as mentioned
earlier.

However, note that the normative model does not always predict
that decision boundaries should decrease with time. In agreement with
this, we found that many participants in Experiment 3 did not appear
to decrease their decision boundaries in mixed-difficulty condition
(also see Figure D1). These findings are not straightforward to rec-
oncile in mechanistic accounts such as urgency-gating and stochastic
deadline and provide a good test for teasing apart these models.

The logistic regression model used to infer the boundary from data
(Equations 2 and 3) assumes that people integrate evidence to a
constant boundary but that the slope of the boundary is allowed to
vary. Under this assumption, participants appear to decrease their
decision boundaries when decreasing boundaries increases reward
rate. So the thrust of our argument is that people seem sensitive to the
normative behavior and when the normative behavior changes
(single-difficulty vs. mixed-difficulty conditions) participants seem to
adapt their decision mechanism in line with the normative standard. A
separate and important question is how people make this adaptation.
Decreasing the decision boundary, increasing the gain of observations
or maintaining a stochastic deadline are all possible mechanisms to
achieve this goal and future research should examine what mecha-
nisms are used by people.
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Appendix A

Nondecision Time

Figure A1 illustrates the reverse correlation procedure used to
compute nondecision time across the experiments. For this example
participant, the proportion of easy-difficulty trials where the samples
at time steps (1, 2, 3, 4, 5, 6, . . .) before the response were in the same
direction as the responses were (0.62, 0.65, 0.63, 0.68, 0.85, 0.91, . . .).
The first time-step where this proportion was larger than 0.75 was 5,
and we estimated the nondecision time to be 4. Note that the corre-
lation during the nondecision time is not 0.50 because of drift in the
stimuli—the responses made by participants are generally correlated
to the stimulus (provided their response rates were better than chance,
which we check for in our exclusion criterion). Hence it is important
to pick a threshold that is larger than the drift. We experimented with
a number of different threshold values. Results remained similar for a
range of threshold values that were above the drift rate but below the
highest correlated stimuli for the participant. The threshold value chosen
in this manner was kept constant across participants and experiments.

Note that this analysis method assumes a fixed nondecision time
across trials. Because nondecision time would, presumably, vary
from trial to trial, we carried out simulations to test how trial-by-
trial variability in nondecision time affects our estimates of the
slopes of the decision boundaries. We found that the analysis
method outlined in the main text was robust under trial-to-trial
variability in nondecision time: Adding a trial-by-trial variability
added a small amount of noise in our estimates but estimated
slopes were still highly correlated with true slopes and inferences
about difference in slopes between conditions remained the same
irrespective of the variability of nondecision time.

Appendix B

Parameter Recovery

In this study, we estimated decision boundaries based on a
line of indifference computed using a logistic regression model.
We now show that this estimation method allows us to make
valid comparisons about slopes of single- and mixed-difficulty
games and that our inferences about difference in slopes are
valid irrespective of whether the noise in decisions originates
from stochasticity in wait– go actions (as we assume) or from a
noisy integration of sensory signals.

We evaluated estimated slopes by simulating decisions from
known boundaries and comparing estimated values with known
values. Decisions were simulated using two alternative models: (a)

a rise-to-threshold model, with noisy accumulation of evidence but
no noise in the boundary and (b) a rise-to-threshold model with no
noise in the accumulated signal but noisy wait–go decisions. Once
decisions had been generated, slopes were estimated using two
alternative fitting methods: the logistic regression method de-
scribed in Equations 2 and 3 and a maximum likelihood fit to
rise-to-threshold model described below. In Figure B1, we show a
2 � 2 comparison between the two estimation methods and the
two models used to generate the decisions. Before discussing these
results, we describe how simulated data was generated and how the
slopes of boundary were estimated.

(Appendices continue)

Figure A1. The plot shows the proportion of trials at each time step
before the response (for a particular participant and condition) that are in
the same direction as the response. The dashed horizontal line represents a
threshold on this proportion used to compute the nondecision time. The
dashed vertical line shows the last time-step where this proportion was
below the threshold.
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Figure B1. True versus estimated difference in slopes for 200 simulations. Each circle represents one
participant simulated using either a rise-to-threshold model (first row) or a probabilistic boundary model (second
row). The figures in the left column compare true difference with the difference estimated using logistic
regression (as described in Section ‘Experiment 1’), whereas the panels in the right column make the same
comparison but slopes are estimated by fitting a rise-to-threshold model.

(Appendices continue)
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Simulating Decisions

In the noisy accumulation model, each sample (cue) was gen-
erated using a Bernoulli process (Equation 1), with drift parame-
ters (ue � 0.72, ud � 0.50). These samples were then integrated in
a noisy decision variable, V:

Vt�1 � Vt � �X �  (5)

where  	 N�· �0, �V
2� is a zero-mean Gaussian noise with variance

�V
2. This integration process generates a random walk, (X1, . . . , Xt)

and terminates when the decision-variable, Vt, crosses a known
boundary. We simulated random walks using 200 different values
of boundary (standing for 200 simulated participants), with vary-
ing slopes and intercepts, generating 1,000 random walks for each
boundary (in both easy and mixed conditions).

For the stochastic boundary model, decisions were generated
stochastically based on the distance from boundary. For each given
boundary, �, we determined the probability of going at any point
(t, x) of the random walk, based on the distance, f� (t, x), of the
point from the boundary:

�(A � go) � ef� (t,x)

1 � ef� (t,x) (6)

The key difference between data simulated using this model and
the rise-to-threshold model is that this model does not assume any
accumulation of noise—each wait–go action is independent and
solely based on ��A � go� at that point.

Estimating Slopes

The logistic regression method of estimating slopes has been
described in the main text (Equations 2 and 3). We now describe
how we generated maximum-likelihood estimates of slopes for the
rise-to-threshold model with noisy accumulation of evidence.

According to this model, the value of the decision variable after
accumulating t samples and evidence x is obtained by integrating
Equation 5 and is given by the Gaussian distribution, N�· �x, �d

2t�,
with mean x and variance �d

2t, where �d is a free parameter that
needs to be estimated. The probability of observing a go at (t, x)
will be given by the probability that the decision variable is greater
than or equal to the boundary, �, i.e.

�(tgo, xgo) � 
�(t, x)

�
�(� |x, �d

2t)d�

� 1 � �(f�(t, x) |x, �d
2t)

(7)

where f� (t, x) is the distance to the current evidence, x, from the
boundary and �(· | x, �d

2t) is the cumulative Gaussian with mean x
and variance �d

2t. The boundary � is parameterised by it’s slope, m,
and intercept, c. Both of these are free parameters of the model.
Similarly, the probability of waiting at (t,x) is given by �(f�(t, x) | x,

�d
2t). If Dwait is the set of all wait observations, {(t1

wait, x1
wait), . . . ,

(tn
wait, xn

wait)}, and Dgo is the set of all go observations, {(t1go, x1
go), . . . , (tm

go,
xm

go)}, then the likelihood of all observations is given by

L(D |m, c, �d) � �
(t, x)�Dgo

(1 � �(f�(t, x) |x, �d
2t))

� �
(t, x)�Dwait

��f�(t, x) |x, �d
2t� (8)

where D includes both Dwait and Dgo decisions. We obtained
estimates, m̂, ĉ and �̂d that maximized the likelihood function
given in Equation 8.8

Evaluation of Estimation Methods

The panel on the top-left of Figure B1 compares the true and
estimated difference in slopes when decisions were generated using
the noisy accumulation model (Equation 5) and estimated using the
logistic regression model (Equations 2 and 3). The estimated differ-
ence in slopes is not equal to the true difference and the deviation
from truth does depend on the noise in the accumulation process, �V;
simulations showed that the difference approaches zero as �V ap-
proaches zero. Moreover, the estimated difference is approximately
proportional to the true difference, so that if statistical test, such as the
t-test, is valid on the true difference it will also be valid on the
estimated difference.

The top-right panel in Figure B1 compares the true and esti-
mated differences in slopes, when decision were again generated
using the noisy accumulation model (Equation 5) and also esti-
mated assuming a noisy accumulation to boundary (Equation 8). It
can be seen that the difference in slopes estimated using this
method is fairly similar to that estimated using the logistic regres-
sion model. The estimated difference is approximately propor-
tional to the true difference and, like the estimates in top-left panel,
these estimates also contains a deviation that depends on the
diffusion parameter used to generate the data, �V. Simulations also
showed (not shown in Figure B1) that, while the difference in
slopes using this method was similar to that using the logistic
regression method, this method overestimated the slopes when true
slope was zero—that is, when bounds are in fact flat, it estimates
them to be increasing, which is not the case with the logistic
regression method used in this study.

8 Note that we used both Dwait and Dgo to obtain maximum-likelihood
estimates. If we use only Dgo, which is what is available if the paradigm
does not involve an expanded-judgment task, we get a more noisy estimate
of the slope. In that case we also obtain a poor correlation between true and
estimated differences when data was simulated using the stochastic bound-
ary model (bottom-right) graph.

(Appendices continue)
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The bottom-left panel shows that the difference in slopes estimated
using the logistic regression model (Equations 2 and 3) are highly cor-
related with the true differences when data is simulated using the sto-
chastic boundary model (Equation 6). This is not surprising since this
method of generating the data inverts the logistic regression model. In
contrast, the bottom-right panel shows that when slopes are estimated
using the noisy accumulation process (Equation 8), the correlation be-
tween the true and estimated difference in slopes decreases and there is a
bias in the estimated difference albeit, again, multiplicative.

To sum up, difference in slopes estimated using the logistic
regression model, were at least as good as estimates using the
maximum likelihood method and the logistic regression model
was, in fact, robust to misspecification of the model that gen-
erates the data. Furthermore, estimated differences were lin-
early related to true differences, which meant that it was valid
to use the t-test on the estimated differences for inferring
whether there was a difference in the true slopes of single- and
mixed-difficulty games.

Appendix C

Variable Drift Rate and Information Loss

We have analyzed the data based on the evidence and time of
each wait and go decision, assuming that participants accumu-
lated every cue provided to them and the internal drift rate was
the same in every trial. In this appendix, we verified whether
our inferences about difference in slopes would be valid if some
evidence was lost during accumulation and the drift rate varied
from trial-to-trial.

Consider a variable drift rate first. Even though our experiments
use the expanded-judgement paradigm where the drift of the
stimulus is controlled by the experimenter, it is possible that the
internal drift rate varies from trial-to-trial due to fluctuations in
attention and cognitive resources. Fluctuations in the effect of
stimulation have been modeled as a random variable since Thur-
stone’s comparative and categorical judgement models (Thurstone,
1927a, 1927b) and form an integral part of signal detection theory
(Tanner & Swets, 1954; Green & Swets, 1966) and sequential
sampling models (Ratcliff, 1978; Ratcliff & Smith, 2004).

To check how variability in drift rate affected our results, we
simulated decisions using a rise-to-threshold model both with
and without variability in drift and estimated the slopes in each
case using the logistic regression method (Equation 3). A com-
parison between the estimated slopes showed us how a vari-
ability in drift affects our estimate.

Decisions were simulated using the following method. Stim-
uli were generated using a Bernoulli process (Equation 1), with
drift 	 � 	0 � �, where 	0 was a constant drift parameter based
on the type of game (e.g., 	0 � 0.22 for easy games) and � 	
N�0, �drift

2 � was a random variable drawn independently for every
trial. The overall drift, 	, was bound between 0 and 1

2. These
stimuli were then integrated in a noisy decision-variable, V:

Vt�1 � Vt � �X �  (9)

where  	 N�0, �V
2� is a zero-mean Gaussian noise with variance

�V
2. This integration process generated a random walk, (X1, . . . , Xt)

and terminated when the decision variable, Vt, crossed a known
boundary. We simulated random walks using 200 different values
of boundary (standing for 200 simulated participants), with vary-
ing slopes and intercepts, generating 1,000 random walks for each
boundary (in both easy and mixed conditions).

Figure C1 (Panel a) shows a comparison between true and esti-
mated slopes in easy games when �drift � 0, i.e. there was no
trial-to-trial variability in drift, as well as when �drift � 0.35, that is,
there was a large trial-to-trial drift variability. When there was no
trial-to-trial variability in drift, the estimated slopes were close to true
slopes. In the presence of drift variability, the magnitude of slopes was
systematically overestimated. However, constant slopes were still
estimated as constant and increasing or decreasing slopes were also
estimated as increasing or decreasing, respectively. Thus, irrespective
of trial-to-trial variability in drift rates, a negative estimate of slope
indicated that the true slope was also negative.

Figure C1(b) shows a comparison between true and estimated
difference in slopes for �drift � 0 and �drift � 0.35. In the presence
of drift variability, the bias in estimation of slopes results in a bias
in estimation of difference in slopes, with the magnitude of esti-
mated difference being larger than true difference. The estimated
difference in slopes is approximately proportional to the true
difference for both �drift � 0 and �drift � 0.35. Therefore, when
there was no difference in true slopes, there was also no difference
in estimated slopes. Similarly, when true difference in slopes was
positive (negative), the estimated difference in slopes was also
positive (negative). Therefore, even when there was trial-to-trial
variability in drift, the estimated difference in slopes indicated a
difference in true slopes.

(Appendices continue)
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We also checked whether our inferences were robust to loss
of information in the integrative decision process. To do this,
we simulated data from the binomial loss model (Smith &
Vickers, 1989), where observations �X available to the decision
maker are only accumulated with some fixed probability pa,
otherwise they are lost:

Vt�1 � �Vt � �X �  with probability pa

Vt �  with probability 1 � pa
(10)

where Vt and � are defined in the same way as Equation 9. Figure
C2(a) compares the estimates of slopes during easy games for 200
simulated participants from the information loss model (Equation
10, pa � 0.7) with 200 simulated participants from the rise-to-
threshold model without any information loss (Equation 9). Intro-
ducing information loss resulted in some systematic biases: esti-
mated slopes were, in general, larger and shifted in the positive
direction so that constant slopes were estimated to have a small
positive value and slightly negative slopes were estimated to be

constant, whereas large negative and positive slopes were esti-
mated to have a larger value than the true slopes. Note the direction
of this bias—when slopes were estimated to be negative (as in the
majority of experiments in this study), the true slopes were also
negative while when they were estimated to be positive, they could
in fact be constant. This makes sense: the total information loss
will increase over time and since the drift is positive, decisions
made at later points of time will seem to be at higher levels of
evidence than internally integrated.

Figure C2(b) compares the true and estimated difference in
slopes between easy and mixed games. When information was
lost, the estimate of slopes in each type of game was biased,
therefore, the estimate for difference in slopes was also biased.
However, the estimated difference in slopes was still approxi-
mately proportional to true difference in slopes, passing through
the origin so that the estimated difference in slopes was pro-
portional to the true difference in slopes even when data were
simulated from the binomial loss model.

(Appendices continue)

Figure C1. The effect of trial-to-trial variability in drift on estimation of slopes of decision boundary. Panel (a)
shows a comparison of true and estimated slopes in a single-difficulty task (	 � 0.22). Panel (b) shows a
comparison of true and estimated difference in slope during an easy (	 � 0.22) and mixed (	 � 0.22/0) task. In
both panels, each dot represents a participant simulated using a rise-to-threshold model with no trial-to-trial drift
and crosses represent participants simulated using a rise-to-threshold model with a large trial-to-trial variability
in drift (�drift � 0.35). See the online article for the color version of this figure.
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Appendix D

Model Selection and Recovery

A key finding of Experiments 1 and 2 is that participants seem
to decrease their decision boundaries with time, especially in the
mixed-difficulty condition. To check the robustness of this result,
we compared the logistic regression model presented in the main
text (Equation 2), which uses both evidence and time to predict the
probability of go, with a simpler model that uses only evidence to
predict this probability:

log �(A � go)
�(A � wait) � 	0 � 	X � X (11)

where �X is the regression coefficient for evidence and �0 is the
intercept. Note that this simpler model is equivalent to assuming
that decision boundaries do not change with time as only evidence
predicts whether a participant chooses the action wait or go during
a trial. We inferred the preferred model for each participant and
condition by computing the Bayesian information criterion (BIC)

for each model (Schwarz, 1978; Wagenmakers, 2007). Following
Wasserman (2000) and Hawkins et al. (2015), we approximated
the posterior probability for a participant using each model under
the assumption that both models are a priori equally likely,

PBIC(Mi |Data) �
exp��1

2BIC(Mi)�
�j�1

m exp��1
2BIC(Mj)�

(12)

Figure D1 plots these posterior probabilities for data from both
single-difficulty (left column) and mixed-difficulty conditions
(right column) for each participant. Shaded (red) bars show the
posterior model probability for the more complex model (using
both evidence and time), while the while hatched bars show the
complementary posterior probability for the simpler model (only
on evidence).

(Appendices continue)

Figure C2. The effect of information loss on estimation of slopes of decision boundary. Panel (a) shows a
comparison of true and estimated slopes in a Single-difficulty task (	 � 0.22). Panel (b) shows a comparison of
true and estimated difference in slope during an Easy (	 � 0.22) and Mixed (	 � 0.22/0) task. In both panels,
each dot represents a participant simulated using a rise-to-threshold model without any information loss and
crosses represent a participant simulated using a binomial loss model (pa � 0.7). See the online article for the
color version of this figure.
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In agreement with the slopes estimated using the line of indif-
ference (Figures 5 and 8), we found that the model using both
evidence and time provided the best account of the data in Exper-
iments 1, 2a, and 2b. This was especially true for the mixed-
difficulty games. Note that, in spite of the fact that the BIC rewards

lower model complexity, the simpler model of Equation 11 pro-
vided the best account for only 5 participants during the mixed-
difficulty trials during these experiments. Data from most other
participants was better accounted for by the model using time as an
additional predictor variable.

(Appendices continue)

Figure D1. Each row shows the posterior model probability for the logistic regression models using only
evidence as the predictor (hatched) and using both time and evidence as predictors (shaded) for all participants
in an experiment. The left and right-hand columns show these posterior probabilities during the single- and
mixed-difficulty conditions, respectively. See the online article for the color version of this figure.
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In contrast, during Experiments 2c and 2d, where the inter-trial
intervals were same for correct and incorrect decisions and reward
landscapes were flatter (Figure 9), support for the two models was
much more mixed. Finally, during Experiment 3, where the reward
landscape favored constant (or slightly increasing) decision bound-
aries with time (Figures 10 and 11), the simpler model, using only
evidence to predict probability of going, provided the best account
of the data, especially in the mixed-difficulty condition.

We checked the validity of this model selection procedure using
a model recovery analysis. We simulated decisions using two
noisy accumulation-to-threshold models (see Equation 5 in Ap-
pendix B). The first model used a constant threshold, while the
second one used a threshold that decreased linearly with time. For
each simulated participant, we generated 100 random walks with
drifts drawn, with uniform probability, from the set 	 � {0.22, 0}.
Thus, these simulated random walks approximately matched the
data collected and conditions for mixed-difficulty trials in Exper-
iment 2.

We then fit the two logistic regression models discussed above,
one using only evidence as a predictor (Equation 11) and the other
using evidence as well as time (Equation 2), to each of these

simulated participants and computed the BIC values for each fit.
Each plot in Figure D2 shows the distribution of difference in BIC
values for 400 simulated participants, 200 of which are simulated
using the fixed boundary model (hatched distribution), whereas the
remaining 200 are simulated using the decreasing boundary model
(shaded distribution). It can be seen from these plots that the
decisions generated using a fixed boundary model are better fit
(lower BICfix) by the logistic regression model using only evidence
as the predictor, while the decisions generated using a decreasing
boundary model are better fit (lower BICvar) by the logistic re-
gression model using both evidence as time as predictors. Further-
more, when the slope of the decision boundaries is increased for
the simulated decisions, the difference in BIC values increases
(compare the shaded region in the three plots), showing that the
BIC of the time-varying bounds model decreases with increase in
the slope used to generate the decisions.
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Figure D2. Each plot shows the distribution of difference in Bayesian information criterion (BIC) values for
fixed boundary model (only evidence used as predictor) and variable boundary model (both evidence and time
used as predictors). Hatched distributions show this difference in BIC values when decisions are simulated using
integration of evidence to a fixed boundary (inset, dashed line) and shaded distributions show the difference in
BIC values when decisions are simulated from integration to a decreasing boundary (inset, solid line). Three
different slopes are used for decreasing boundaries (a) 15 degrees, (b) 30 degrees, and (c) 60 degrees. See the
online article for the color version of this figure.
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