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The advance of Parkinson’s disease is associated with the existence of abnormal oscillations within the basal ganglia with frequencies in the beta
band (13–30 Hz). While the origin of these oscillations remains unknown, there is some evidence suggesting that oscillations observed in the
basal ganglia arise due to interactions of two nuclei: the subthalamic nucleus (STN) and the globus pallidus pars externa (GPe). To investigate this
hypothesis, we develop a computational model of the STN–GPe network based upon anatomical and electrophysiological studies. Significantly,
our study shows that for certain parameter regimes, the model intrinsically oscillates in the beta range. Through an analytical study of the model,
we identify a simple set of necessary conditions on model parameters that guarantees the existence of beta oscillations. These conditions for
generation of oscillations are described by a set of simple inequalities and can be summarized as follows: (1) The excitatory connections from
STN to GPe and the inhibitory connections from GPe to STN need to be sufficiently strong. (2) The time required by neurons to react to their
inputs needs to be short relative to synaptic transmission delays. (3) The excitatory input from the cortex to STN needs to be high relative to the
inhibition from striatum to GPe. We confirmed the validity of these conditions via numerical simulation. These conditions describe changes in
parameters that are consistent with those expected as a result of the development of Parkinson’s disease, and predict manipulations that could
inhibit the pathological oscillations.

Introduction
Parkinson’s disease is attributed to the death of dopaminergic
neurons of the substantia nigra pars compacta (Jankovic, 2008), a
brainstem nucleus projecting to virtually all of the basal ganglia.
The symptoms of Parkinson’s disease include bradykinesia,
which is a hallmark of basal ganglia disorders, and is character-
ized by a general slowing of movement execution (Berardelli et
al., 2001). The advance of bradykinesia is highly correlated with
the presence of abnormal coherent oscillations within basal nu-
clei in the beta band frequency (13–30 Hz) (Boraud et al., 2005).

Some evidence suggests that the oscillations observed in the
dopamine-depleted basal ganglia may originate from the network
composed of two basal nuclei: the subthalamic nucleus (STN) and
the globus pallidus pars externa (GPe) (Plenz and Kital, 1999). The
STN is a glutamatergic nucleus projecting substantially to GPe (Sato
et al., 2000b), while the GPe is a GABAergic nucleus projecting pro-
fusely back to STN (Sato et al., 2000a). The STN provides widespread
inhibition of all movements (Mink, 1996). Recent computational
models suggest that this inhibition permits more accurate choices
during difficult decisions (Frank, 2006; Frank et al., 2007), and the
optimal level of this inhibition is computed by the STN–GPe circuit

(Bogacz and Gurney, 2007). In the diseased state, prominent coher-
ent oscillations in firing rate are observed in both nuclei (Bevan et al.,
2002; Boraud et al., 2005; Mallet et al., 2008a,b), as in other basal
ganglia structures. It is commonly thought that some of these oscil-
lations could be generated in the STN–GPe network, because the
architecture of the circuit (STN exciting GPe and GPe inhibiting
STN) is prone to generate oscillatory behavior (Bevan et al., 2002).
Experimentally it has been already shown that this circuit can sustain
oscillatory delta band activity on its own in in vitro studies (Plenz and
Kital, 1999). However, the existing experimental data does not pro-
vide a clear answer as to whether beta band activity can be produced
in the STN–GPe circuit (Lang and Zadikoff, 2005).

To shed light on the origin of oscillations associated with Par-
kinson’s disease, many computational models have been pro-
posed (Gillies et al., 2002; Terman et al., 2002; Frank, 2006;
Humphries et al., 2006; Leblois et al., 2006; Gillies and Willshaw,
2007; van Albada and Robinson, 2009). These models provide
interesting conclusions and explain experimentally observed
phenomena; however, most have a drawback in that the com-
plexity of the equations used in the model make them unsuitable
for mathematical analysis. Furthermore, none of them have been
able to produce beta oscillations associated with bradykinesia.

In the present study, we develop a computational model of the
STN–GPe network, based upon anatomical and electrophysio-
logical studies. The model is detailed enough to reproduce mul-
tiple experimental studies showing the reciprocal connectivity
between STN and GPe, while being straightforward enough to
permit mathematical analysis of the system. This allows us to
identify a simple set of necessary conditions on model parameters
that guarantees the existence of beta oscillations. These condi-
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tions predict manipulations that could reduce the pathological
oscillations.

Materials and Methods
In this section, we provide a detailed description of the model of the STN–
GPe circuit. We then describe how parameter values in the model were
obtained on the basis of experimental data.

Computational model
The architecture of our model is shown in Figure 1 A. The STN–GPe
network is a mutually coupled system, where STN neurons project exci-
tatory glutamatergic axons to the GPe (Sato et al., 2000b), while GPe
neurons project inhibitory GABAergic axons to the STN and to other
neurons within GPe (Sato et al., 2000a). Additionally, these two nu-
clei receive inputs from cortex and striatum, respectively (Kita, 2007).
To characterize the firing rate of neural populations in STN and GPe,
we use the well described firing rate model (Dayan and Abbott, 2001; Vogels
et al., 2005). The differential equation used by this type of model to describe
the changes in the firing rate of a neuronal population has the following
form:

�v̇ � F�w� u� � � v, (1)

where v is the firing rate of the neural population being modeled, v̇ denotes
the rate of change in the firing rate (i.e., derivative of v), u� is a vector of firing
rates of the presynaptic neural populations, w� is a vector of weights describ-
ing strengths of synaptic connections from the presynaptic populations, � is
the time constant describing how rapidly the population reacts to its inputs,
and F( � ) is the input–output relationship of the neurons in the steady state,
typically termed the activation function or F–I relationship. Using Equation
1 to model STN and GPe populations, we obtain the following set of differ-
ential equations describing our system:

�SSṪN � FS��wGSGP(t � �tGS) � wCSCtx) � STN(t)

�GG
�
P � FG(wSGSTN(t � �tSG) � wGGGP(t � �tGG) � wXGStr) � GP(t), (2)

where STN and GP are, respectively, the firing rates of the STN and GPe
neural populations. Ctx and Str are the constant inputs from cortex and
striatum, respectively. Although beta oscillations have been reported in the
cortex and the striatum (Courtemanche et al., 2003; Sharott et al., 2005), we
wish to explore whether the STN–GPe network could generate beta oscilla-
tions independently of an external oscillatory drive. Consequently, we do not
explicitly model corticostriatal interactions and consider these inputs to be
constant, and in this way, we ensure that any oscillatory phenomena appear-
ing in our model will be exclusively due to the STN–GPe network. �S and �G

are the time constants for STN and GPe populations, respectively. FS( � ) and
FG( � ) are the input–output relationships for STN and GPe populations.
wAB are the weights of the connections from neural population A to neural
population B. �tAB are the transmission delays of connections from popu-
lation A to population B, respectively. Here the indexes A and B used to
indicate different neural populations can be any of the following: S for STN,
G for GPe, C for cortex, or X for striatum. For clarity, we refer to this set of

equations as the “original model,” to distinguish it from the two simplified
models we consider in the Results section.

Determining model parameters from experimental studies
For many of the parameters of the model, we were able to determine their
values on the basis of published experimental studies. We used the results of
experimental studies from monkeys, unless stated otherwise. Table 1 lists the
parameters of the model and experimental studies from which they were
estimated; these parameters describe the following properties of the model:

Connection delays �t. In our model, we consider the existence of a trans-
mission delay between STN and GPe neurons. We were unable to find ex-
perimental studies investigating the delay in transmission from GPe to STN
in monkeys, and hence used the value from an analogous study in rat (Fuji-
moto and Kita, 1993). We were also unable to find studies investigating
transmission delays between two GPe neurons. However, given that these
neurons are located closer to each other than STN neurons to GPe, we
assume that the corresponding time delay between GPe neurons is shorter
than that between GPe and STN neurons.

Time constants �. The time constant of a firing rate model corresponds to
the membrane time constant of the neurons being modeled (Dayan and
Abbott, 2001). Hence, we chose the values of the time constants on the basis
of electrophysiological studies of STN and GPe neurons (Kita et al., 1983;
Nakanishi et al., 1987b; Kita and Kitai, 1991; Paz et al., 2005).

Firing rates of cortical Ctx and striatal Str neurons. As mentioned in the
previous subsection, the firing rate of cortex and striatum are assumed con-
stant in the model (as we wished to explore whether the STN–GPe network
can generate oscillations without external oscillatory input). The firing rates
of cortex and striatum were determined from experimental studies where the
mean activity of motor cortex and striatal medium spiny neurons were mea-
sured (Schultz and Romo, 1988; Lebedev and Wise, 2000).

The activation function F( � ). The firing rate of STN and GPe neurons as a
function of injected current has been studied in detail (Nakanishi et al.,
1987a; Kita and Kitai, 1991; Hallworth et al., 2003; Wilson et al., 2004; Deister
et al., 2009). All STN neurons reported in these studies showed very similar
activation functions with a characteristic sigmoidal shape (Hallworth et al.,
2003; Wilson et al., 2004), and hence the activation function for the popula-

Figure 1. Schematic diagrams of the three computational models considered in the paper: A, original model; B, delayed linear model; C, nondelayed linear model. Each rectangle denotes a
nucleus. The excitatory connections are denoted by arrows, while the inhibitory connections by lines ended with circles. The parameters associated with each connection (weights w and transmission
delays �t) are also shown. The indexes of those parameters refer to the origin and target nuclei of the connection, and these can be any of the following: cortex (C), striatum (X), subthalamic nucleus
(S), or globus pallidus pars externa (G).

Table 1. Values of the parameters of the model and sources used to establish each
value

Parameter Value Source

�tSG 6 ms Kita et al. (2005)
�tGS 6 ms Extrapolation to monkeys based on Fujimoto and Kita (1993) and �tSG

�tGG 4 ms Based on proximity between cells
�S 6 ms Kita et al. (1983); Nakanishi et al. (1987a); Paz et al. (2005)
�G 14 ms Kita and Kitai (1991)
Ctx 27 spk/s Lebedev and Wise (2000)
Str 2 spk/s Schultz and Romo (1988)
MS 300 spk/s Hallworth et al. (2003)
BS 17 spk/s Hallworth et al. (2003)
MG 400 spk/s Kita et al. (2005); Kita (2007)
BG 75 spk/s Kita et al. (2004); Kita (2007)
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tion of STN neurons in our model is sigmoidal. There exist some studies of
GPe neurons whose activation functions were close to sigmoidal (Deister et
al., 2009), while other studies reported that different GPe neurons had dif-
ferent activation functions (Nambu and Llinas, 1994). Nevertheless theoret-
ical studies have shown that a population of neurons with heterogeneous
activation functions can be approximated in a population level model by a
unit with a sigmoidal activation function (Wilson and Cowan, 1972). There-
fore, the population of GPe neurons in our model also has a sigmoidal
activation function. The activation functions of STN and GPe in our model
are shown by solid lines in Figure 2. A sigmoidal curve can be defined with
four parameters—its minimum firing rate, its maximum firing rate, its max-
imum slope, and the firing rate in the absence of inputs. For both STN and
GPe, we define the minimum firing rate as 0, as this is the minimum possible
neuronal firing rate and it is the common figure observed in experimentally
obtained F–I curves. Also in both STN and GPe, the slope will be defined as
1 (note in Fig. 2 that in a wide range the activation function is parallel to
dashed-dotted line with slope 1), as this creates a simple interpretation of the
units of synaptic weight in our model (see Results). The remaining two
parameters, maximum firing rate and the firing rate in the absence of input,
are enough to constrain a sigmoidal F–I curve. These parameters will be
called MS and BS for STN, and MG and BG for GPe (see labeling in Fig. 2), and
they can be directly established from electrophysiological observations. We
set MS and MG to the maximum observed firing rate in electrophysiological
experiments for each nuclei (Hallworth et al., 2003; Kita et al., 2005; Kita,
2007), BG to the firing rate in GPe when all inputs are blocked (through the
use of GABA antagonist–agonists and glutamate antagonists) (Kita et al.,
2004; Kita, 2007), and BS to the spontaneous firing rate of STN neurons in
slices taken from rats (since there is no published corresponding primate data)
(Hallworth et al., 2003). In summary, the activation functions are as follows:

FS�in� � sig(in, MS, BS) �
MS

1 � exp(�4in/MS) � �MS � BS�/BS

FG�in� � sig(in, MG, BG) �
MG

1 � exp(�4in/MG) � �MG � BG�/BG
,

(3)

where “in” is the input to the neural population being modeled.

Estimating network weights in the healthy state
The parameters describing weights of synaptic connections cannot be di-
rectly established from published experimental data. We now describe how

we estimate these network weights by finding the values for which the behav-
ior of the model fits a wide array of experimental data on neural activity in
STN and GPe.

The experimental data recordings of STN and GPe activity used to fit the
model can be divided into two types: passive and active. The passive record-
ings are a group of measures of mean STN and GPe firing rates. These
measures have not been exclusively collected in control conditions, but also
following injecting glutamate and GABAA blockers into the nuclei, a sce-
nario that we modeled by setting the related connection weights to zero.
These passive measures are listed in Table 2 and plotted in Figure 3A. On the
other hand, active measures are the recordings of GPe activity performed
while electric current is injected into STN. In one such experiment by Kita et
al. (2005), two types of STN stimulation were used: single pulse (Fig. 3B) and
burst high-frequency stimulation (BHFS), which consists of a train of 10
pulses spanned 0.01 s from each other (100 Hz) (Fig. 3C). The data from this
experiment are particularly suitable for the estimation of the synaptic weights in
the STN–GPe circuit, because, as concluded by Kita et al. (2005), the responses
observed in this study resulted from intrinsic connections of this circuit.

The estimation of network weights was performed using a computational
search with an advanced genetic algorithm (Goldberg, 1989; Mitchell, 1998).
We term it advanced because it introduces a number of important improve-
ments over a classical genetic algorithm [specifically crossover, elitism, local
hill climbing with inertia, stochastic universal sampling, automatic variation
of mutation step, fitness sharing, and old elite genes freezing (Goldberg,
1989; Mitchell, 1998)]. An in-depth description of this algorithm falls out of
the scope of this paper; however, we provide a brief summary for complete-
ness. For each set of experiments whose results are shown in Figure 3, values
of model parameters were estimated using this genetic algorithm, which
found the parameter set that minimized the error of the simulation with
respect to the experimental recordings, defined as follows:

E � qmean�1

6 �j�1

6 �FRexMean, j � FRmean, j

FRexMean
�2

� max
j�1..6

�FRexMean, j � FRmean, j

FRexMean
�2�

�
qsingle

tsingle
�
t�0

tsingle �GPexSingle(t) � GPsingle(t)

GPexSingle
�2

�
qBHFS

tBHFS
�
t�0

tBHFS �GPexBHFS(t) � GPBHFS(t)

GPexBHFS
�2

, (4)

where FRexMean,j, GPexSingle, and GPexBHFS are the experimental firing rates
of STN or GPe in the three types of experiment (mean firing rates of STN and
GPe in six different situations, single stimulation of STN and BHFS stimu-
lation of STN, respectively). FRmean,j, GPsingle, and GPBHFS are the firing rates
obtained in the simulations of the model corresponding to each one of the
three mentioned types of experiment. The index j refers to the specific ex-
periment where the mean activity of the nuclei was recorded, and it corre-
sponds to the index used in Figure 3A. tsingle and tBHFS are the numbers of
bins in the firing rate histograms in Figure 3, B and C. qmean, qsingle, and qBHFS

are coefficients that assign more relevance to the experiments that we
thought were more important to be reproduced closely. The value of these
coefficients are 0.8, 0.1, and 0.1, respectively, which are chosen to optimize
the algorithm’s performance, based on our experience. The overbar x� used in
some variables denotes the mean value of that variable in the experimental data,
which is used throughout the equation to normalize squared error measures.

The stimulation of STN was simulated by increasing its input by a
value proportional to the electrode current used and during the periods
of time that the real stimulation lasted. This added quantity corresponds
to the term IeStim added to Equation 2:

�
�SSṪN � FS(�wGSGP�t � �tGS) � wCSCtx)

� STN�t� � IeStim

�GG
�
P � FG�wSGSTN�t � �tSG)

� wGG GP�t � �tGG) � wXGStr) � GP�t�.

(5)

Figure 2. F–I curves of STN and GPe in the model. Solid lines show the sigmoidal activation
functions FS and FG (see vertical axis labels). Dotted lines indicate the firing rates in the absence of
input, and values of parameters MS, BS, MG, and BG label the vertical axes. Dashed-dotted and dashed
lines show two different linearizations of the sigmoidal input– output relationships. Dashed-doted
lines have slope equal to 1, while the dashed lines indicate the linearizations performed around the
mean firing rate of each nucleus in the steady state.

12342 • J. Neurosci., September 15, 2010 • 30(37):12340 –12352 Nevado Holgado et al. • Origin of Beta Oscillations in Parkinson’s Disease



In this equation, the term Ie corresponds to the stimulation current in mil-
liamps used in experiments by Kita et al. (2005). Stim is a conversion factor
relating electrode current (in milliamps) to the modification induced in
neuronal firing rate. This conversion factor is also found by the genetic
search together with the network weights. The resulting parameter values are

shown in Table 3. A comparison of model behav-
ior with different experimental measures is pre-
sented in Figure 3, where the model essentially
reproduces a low-pass-filtered version of the fir-
ing rate, in accordance with theoretical studies of
the firing rate model (Dayan and Abbott, 2001).

The range of the weight values obtained is
in accordance with known STN–GPe func-
tional interconnectivity. To start with, it is
widely accepted that STN axons are diffuse,
such that every GPe neuron receives inputs
from a large number of STN neurons (Sato et
al., 2000b). Similarly, diffuse projections are
observed in the axons projecting from stria-
tum to GPe, where each GPe neuron receives
inputs from a large number of striatal cells
(Kita, 2007). These two similar situations,
where on average each GPe cell is influenced
by many presynaptic striatal and STN neu-
rons, are in accordance with the high values
we obtained for the weights wSG and wXG.
Conversely, GPe axons project to small areas
of both STN and itself (Sato et al., 2000a).
This significantly limits its ability to contact
a high number of postsynaptic neurons, and
therefore could explain the smaller values
obtained for wGG and wGS compared to wSG

and wXG. At the same time, although local
GPe axons project mainly inside the dendritic
tree of the presynaptic neuron (Sato et al., 2000a),
they show relatively large boutons contacting the
soma and proximal dendrites of postsynaptic

cells (Kita, 2007), which would explain the relatively high value of wGG in
comparison to wGS.

Simulating the advance of Parkinson’s disease in the model
Experimental evidence has established that dopamine influences den-
dritic excitability through the opposite action of D1-like and D2-like
receptors (Surmeier et al., 2007); therefore, the loss in dopamine ob-
served in Parkinson’s disease produces an important alteration in how
neurons respond to their inputs. In particular, the experimental data
summarized in Table 4 suggest that the weights of all synaptic connec-
tions included in our model increase with dopamine loss. The main
reason for this increase is that all synaptic connections in the model
terminate either in STN or in GPe and, in both of these nuclei, D2 recep-
tors are present (Shen and Johnson, 2000; Hoover and Marshall, 2004).
These receptors reduce synaptic transmission (Shen and Johnson, 2000;
Cooper and Stanford, 2001), and hence in the dopamine-depleted state

Figure 3. Comparison of model behavior with experimental data obtained from healthy monkeys. Vertical axes indicate firing
rate in units of spikes per second. A, Measures of STN�s and GPe’s mean firing rate in different experimental situations, as shown in
Table 2. Gray crosses show the mean values and vertical lines indicate SDs. This is compared with the mean firing rate of the model
in the same situations indicated by black circles. The numbers under the x-axis correspond to the numbers shown in Table 2. B, GPe
firing rate after single stimulation of STN (Kita et al., 2005). Gray bars show experimental data and black curve corresponds to the
results of simulation. C, GPe firing rate after burst high-frequency stimulation of STN (Kita et al., 2005).

Table 2. Experimentally observed STN and GPe firing rates in different experimental conditions used to constrain the model

Number Experimental measure Nucleus Firing rate (spk/s) n Source

1 Control STN 19 � 10 (SD) 220 Bergman et al. (1994)

2 Control GPe 62.6 � 25.8 (SD) 35 Kita et al. (2004, 2005)

3 wSG � 0 GPe 17.3 � 8.5 (SD) 6 Kita et al. (2004)
Glutamate blocker into GPe

4 wSG � 0, wGG � 0, wXG � 0 GPe 68.4 � 28.5 (SD) 5 Kita et al. (2004)
Glutamate blocker into GPe
GABAA blocker into GPe

5 wGS � 0 GPe 96.8 � 35.0 (SD) 6 Kita et al. (2004)
GABAA blocker into STN

6 wGG � 0, wXG � 0 GPe 135.1 � 107.3 (SD) 11 Kita et al. (2004)
GABAA blocker into GPe

In some of the experimental conditions shown, neurotransmitter blockers were injected into different nuclei, which corresponds in our model to the suppression of the related network weights, as indicated in the second column. n�Number
of sample measurements.

Table 3. Estimated parameter values for synaptic connection weight and electrode
stimulation (i.e., Stim)

Parameter Healthy state Diseased state

wSG 19.0 20.0
wGS 1.12 10.7
wGG 6.60 12.3
wCS 2.42 9.2
wXG 15.1 139.4
Stim 4.6 	 10 3 —
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this reduction is likely to be smaller. We now review additional studies
suggesting weight increase specifically for individual connections:

STN to GPe. Increase in wSG is suggested by a study showing that
dopamine reduces the effect of glutamate on GPe neurons (Johnson and
Napier, 1997).

GPe to STN. For wGS, different studies suggest that the influence from
GPe to STN is exaggerated in parkinsonian patients: (1) In rodent models
of Parkinson’s disease, GABA agonists evoke greater currents in STN
neurons than in the healthy state (Shen and Johnson, 2005). (2) Dopa-
mine application in the STN of rats reduces the impact of GABAergic
inputs in this nucleus (Cragg et al., 2004).

GPe collaterals. Increase in wGG is suggested by the observation that
ambient GABA is increased in animal models of Parkinson’s disease
(Robertson et al., 1991; Ochi et al., 2000; Schroeder and Schneider, 2002).

Cortex to STN. For wCS, studies suggesting an increase include the
following: (1) In rodent models, STN neurons are excited to a greater
extent by cortex in the parkinsonian state (Magill et al., 2001). (2) Currents
evoked by AMPA and NMDA agonists are significantly greater in parkinso-
nian STN neurons of rodent models (Shen and Johnson, 2005).

Striatum to GPe. Finally, the increase in wXG is supported by the fol-
lowing observations: (1) Striatal activity is increased in Parkinson’s dis-
ease (Kish et al., 1999; Tseng et al., 2001; O’Donnell, 2003) (in our model,
the striatal activity is not directly modified as we simulate the advance of
the disease, so the increased impact of striatum on GPe can be modeled
by increasing wXG). (2) It is commonly stated that dopamine inhibits the
action of striatal neurons projecting predominantly to GPe through the
action of D2 receptors (Obeso et al., 2000; Surmeier et al., 2007), so
dopamine depletion should increase the activity of such neurons. (3)
An increase in wXG is also supported by the previously mentioned
increased levels of GABA in animal models of Parkinson’s disease
(Robertson et al., 1991; Ochi et al., 2000; Schroeder and Schneider,
2002). (4) Dopaminergic depletion enhances the discharge activity of
striatal neurons projecting to GPe and their responsiveness to cortical
input (Mallet et al., 2006).

The above studies suggest that the advance of Parkinson’s disease
should be simulated in our computational model by increasing the syn-

aptic weights of the STN–GPe network. However, these studies do not
specify quantitatively by how much each synaptic weight should be in-
creased. To estimate how much these weights increase, we fitted the
computational model to experimental data recorded from monkey mod-
els of Parkinson’s disease (see Table 5) using the same method that was
previously used to fit data from healthy animals (see above, Estimating
network weights in the healthy state). When using this method to esti-
mate the weights of the diseased state, we treated the frequency of oscil-
lations in the same manner as the mean firing rates are treated in
Equation 4. The model successfully reproduced several properties of ex-
perimental data listed in Table 5, and these are illustrated in Figure 4. The
estimated values of synaptic weights in the diseased state are listed in
Table 3.

To simulate the advance of Parkinson’s disease, we set the weights in
simulations corresponding to different stages of disease progression as
follows:

wAB � wABh � K � �wABd �wABh�, (6)

where wAB is the synaptic weight from nucleus A to nucleus B, wABh the
weight value corresponding to the healthy state (see Table 3), wABd the
value corresponding to the diseased state (see Table 3), and K a parameter
that is increased from 0 (corresponding to a healthy state) to 1 (corre-
sponding to the diseased state) to simulate the continuous advance of the
illness. Similar changes in STN–GPe synaptic weights to model dopa-
mine depletion have been used in a previous computational model
(Humphries et al., 2006).

Results
We have simulated a model describing changes in firing rates of
STN and GPe neurons. Connectivity in the model is shown in
Figure 1A, and its parameters were estimated from published
experimental data. The STN–GPe circuit in our model receives a
constant (rather than oscillatory) input from the cortex and the
striatum, as we wanted to investigate whether the STN–GPe cir-
cuit can generate oscillations on its own. The constant inputs
ensure that any oscillations observed in our simulations are gen-
erated within the model of STN–GPe network rather than result-
ing from external oscillatory input. We simulated the advance of
Parkinson’s disease by increasing weights of synaptic connections
terminating in STN or GPe in agreement with existing literature
(see Materials and Methods).

Model of the STN–GPe circuit can generate beta oscillations
When the model was simulated with parameter values corre-
sponding to a healthy state, the firing rate of STN and GPe pop-
ulations converged to a stable state and the model did not
produce oscillations (Fig. 5A). The initial changes in the firing
rate within the first 
50 ms in Figure 5A were due to the differ-
ence between the initial values of the firing rates of STN and GPe
populations at time 0 and the firing rates at the equilibrium, so
they reflect the network converging to an equilibrium.

Figure 5B shows a simulation of the model with slightly in-
creased synaptic weights (corresponding to a relatively mild do-
pamine depletion). Although the firing rates converge to an
equilibrium, the difference between initial firing rates and the
equilibrium causes transient oscillations with decreasing ampli-
tude. The model with these values of parameters produces a tran-
sient oscillation whenever the values of the external inputs
change.

Figure 5C shows a simulation of the model with synaptic
weights increased to the values estimated from monkey models of
Parkinson’s disease (see Materials and Methods). The model in
this state produces sustained oscillations even though the exter-
nal inputs remain constant. This is a significant finding as it sug-

Table 4. Summary of literature supporting increase in specific synaptic weights
with the advance of Parkinson’s disease

Weight Literature supporting weight increase in Parkinson’s disease

wSG Dopamine reduces the effect of glutamate on GPe neurons (Johnson and Napier,
1997; Kita, 2007)

D2 receptors are present in GPe (Hoover and Marshall, 2004; Kita, 2007)

wGS In the parkinsonian state, GABA agonists in GPe evokes greater currents in STN
(Shen and Johnson, 2005)

Dopamine reduces the effect of GABA on STN neurons (Cragg et al., 2004)
D2 receptors are present in STN (Shen and Johnson, 2000)

wGG Increased ambient GABA in GPe in animal models of Parkinson’s disease
(Robertson et al., 1991; Ochi et al., 2000; Schroeder and Schneider, 2002)

D2 receptors are present in GPe (Hoover and Marshall, 2004; Kita, 2007)

wCS In the parkinsonian state, STN neurons are excited to a greater extent by cortex
(Magill et al., 2001)

In the parkinsonian state, AMPA and NMDA currents are greater in the STN
(Shen and Johnson, 2005)

D2 receptors are present in STN (Shen and Johnson, 2000)

wXG Striatal neurons activity is increased after dopamine depletion (Kish et al., 1999;
Tseng et al., 2001; O’Donnell, 2003)

D2 receptors reduce the excitability of striatopallidal neurons (Obeso et al., 2000;
Surmeier et al., 2007)

Increased GPe ambient GABA in animal models of Parkinson’s disease (Robertson et
al., 1991; Ochi et al., 2000; Schroeder and Schneider, 2002)

D2 receptors are present in GPe (Hoover and Marshall, 2004; Kita, 2007)
Striatopallidal neurons are activated by dopamine lesion (Mallet et al., 2006)

The indexes of the weights refer to the origin and target nuclei of the connection they describe, and these can be C
(cortex), X (striatum), S (STN), or G (GPe).
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gests that the connectivity structure of the basal ganglia makes it
prone to oscillate, even in the absence of oscillatory inputs.

To better understand the origin of these oscillations (in the
next subsection), it is helpful to visualize them in a different
manner. Figure 5D–F shows the same simulated neural activity as
Figure 5A–C, but now the two axes correspond to the firing rates
of the STN and GPe populations, and different points on the
black curves correspond to the firing rates in different moments
of time. For example, the initial firing rates in Figure 5C for both
STN and GPe are equal to 0 Hz; thus, the initial firing rates are
represented in Figure 5F as a point with coordinates STN � GPe �
0 Hz (indicated by a gray circle). In Figure 5C, initially both firing
rates of STN and GPe increase, which corresponds in Figure 5F to the
curve continuingrightwardandupwardfromtheinitialstate.Figure5C
shows that after 
20 ms from the start of the simulation, the firing rate
of STN starts to decrease while the firing rate of GPe still increases.

This corresponds in Figure 5F to the curve
continuing leftward and upward, etc. Fi-
nally, note that the oscillation in Figure 5C
corresponds to a closed loop in Figure 5F.

Figure 5G shows the range of firing rates
of STN population after the initial transient
response as a function of factor K determin-
ing how much the weights are increased in
the model. Figure 5G demonstrates that up
to K � 0.3, the model converges to a stable
state, which we will refer to as a stable steady
state. But at K � 0.3, a transition occurs (for
details, see supplemental material B, avail-
able at www.jneurosci.org), after which sus-
tained oscillations occur. For these values of
K, there exists a pair of values of STN and
GPe firing rates such that if the STN and
GPe firing rates are equal to these values,
they do not change, but any small perturba-
tion will make the system oscillate. This
value of STN firing rate is shown by the
dashed line in Figure 5G, and we will refer to
it as an unstable steady state. Finally, Figure
5H shows that the frequency of the sus-
tained oscillations is in the range 16–28 Hz;
thus, it falls into the beta band, commonly
observed in Parkinson’s disease (Boraud et
al., 2005). Interestingly, the model demon-
strates that the frequency of oscillations de-
creases, as the synaptic weights associated
with the onset of Parkinson’s are increased.
This suggests that as the condition
progresses, we should expect a slowing of
beta band activity.

Conditions for the onset of oscillations
This subsection describes a simple set of conditions that the
model parameters must satisfy for the model to produce sus-
tained oscillations. These conditions are derived analytically,
and therefore they specify whether the oscillations are present
for any value of parameters. This complements the results of
the previous section, which showed that beta oscillations can
be generated by the simulated STN–GPe circuit with a specific
range of values of parameters that were estimated from the
experimental data. Hence the analytic results of this section
predict when the STN–GPe circuit produces oscillations even
if the model has different parameters from those used in the
previous subsection. This property is valuable because it
makes our results robust to errors in parameter estimations,
and consequently the results can be generalized to other mam-
malian species.

Figure 4. Comparison of model behavior with experimental data obtained from monkey models of Parkinson’s disease. A,
Comparison of the experimental measurements shown in Table 5 with the corresponding values observed in the computational
model. The numbers under the x-axis correspond to the numbers shown in Table 5. For measurements 7–12, vertical axis indicates
firing rate in spikes per second, while for measurement 13 it indicates oscillation frequency in Hz. Black circles correspond to the
equivalent values using model simulations, while gray crosses show the mean experimental values. In measurements 8 and 11,
gray vertical lines indicate SD, while in measurement 13, the gray vertical line indicates the frequency range observed in studies by
Bergman et al. (1994) and Raz et al. (2000). B, Firing rate of the STN and GPe generated by the model for the same parameter values
as in A. C, A single cycle of oscillation from B. The horizontal axis shows the phase of the oscillation, where phase 0° corresponds to
the lowest GPe firing rate. The vertical dashed line shows the mean value of phase of each nuclei, which was calculated using the
standard equation for the mean of a circular quantity (in this case, the phase).

Table 5. Experimentally observed STN and GPe firing rates and oscillation frequency in monkey models of Parkinson’s disease

Number Experimental measure Nucleus Value n Source

7 Oscillation minimum firing rate STN 0.2 spk/s 1 Bergman et al. (1994)
8 Mean firing rate STN 25.8 � 14.9 (SD) spk/s 220 Bergman et al. (1994)
9 Oscillation maximum firing rate STN 76.9 spk/s 1 Bergman et al. (1994)

10 Oscillation minimum firing rate GPe 20.7 spk/s 3 Raz et al. (2000)
11 Mean firing rate GPe 44.8 � 4.6 (SD) spk/s 445 Raz et al. (2000)
12 Oscillation maximum firing rate GPe 117.7 spk/s 3 Raz et al. (2000)
13 Oscillation frequency STN & GPe 15 Hz 220 Bergman et al. (1994); Raz et al. (2000)

The maximum and minimum firing rates of the oscillatory activity for STN and GPe neurons can be extracted from the autocorrelograms used in the cited studies (see supplemental material A, available at www.jneurosci.org). n � number
of sample measurements.
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We now summarize the main findings before going into
more technical details. We show below that three conditions
need to be satisfied for the model to produce oscillations. First,
the excitatory connection from STN to GPe and the inhibitory
connection from GPe to STN need to be relatively strong.
Biological systems that include both excitatory and inhibitory
feedback often produce robust oscillations (Tsai et al., 2008).
The reason why the strong excitatory and inhibitory feedback
produce oscillations in the model can be understood by con-
sidering Figure 5C: 
10 ms from the start of the simulation, the
activity in GPe becomes so large that it starts to inhibit STN, and the
STN activity decreases. But the decrease in STN activity reduces ex-
citatory input to GPe, so from 
20 ms, the GPe firing starts to
decrease. The decreased firing rate of GPe reduces inhibition in STN,
so from 
50 ms, the STN firing rate starts to increase, and the oscil-
latory cycle continues.

Second, the synaptic transmission delays need to be large
relative to the time constant describing how rapidly neurons
change their firing rate in response to changes in their inputs.
Intuitively, the transmission delays need to be sufficiently long
to allow STN neurons to “charge” and increase their firing rate
while GPe firing rate remains low. If the transmission delays
were very short, the increase in STN firing rate would very
quickly result in increase in GPe, which would stop any further
increase in STN firing rate, and the system would quickly
converge to an equilibrium.

Finally, the cortical input to the STN needs to be relatively
larger than the striatal inhibition to GPe. Although we assume
that the external inputs to the STN–GPe circuit are constant,
these inputs need to provide “energy” so the system can generate
oscillations. It is common that systems generating oscillations
require a constant input: A familiar example would be a whistle or
any wind instrument that requires a constant stream of air to
generate oscillations in air pressure.

The change in values of synaptic transmission delays and ex-
ternal inputs is relatively smaller in Parkinson’s disease than the
change in synaptic weights between STN and GPe. Therefore, the
increase in these synaptic weights is most likely a critical factor
causing the oscillations.

We now turn to the analysis of the model. The original model
is difficult to analyze mathematically because of nonlinear acti-
vation functions and transmission delays. To investigate the ori-
gin of oscillations analytically, we consider two successive
reductions of the original model illustrated in Figure 1, B and C.
The first reduction consists of approximation of the sigmoidal acti-
vation function in the original model by a linear function. We con-
sider two such approximations shown by dashed-dotted and dashed
lines in Figure 2. For simplicity of argument, in this subsection we
will consider the linearization shown by the dashed-dotted line in
Figure 2, and we will come back to the more precise approximation
shown by dashed line in the next subsection. The second simplifica-
tion of the original model is the assumption that both time constants
and all transmission delays are equal. Modifying Equation 2 using
these simplifications, we obtain the following system:

� �SṪN�t� � �wGSGP(t � �t) � wCSCtx � STN(t)

�G
�
P�t� � wSGSTN(t � �t) � wGGGP(t � �t)

� wXGStr � GP(t),
(7)

and since firing rates cannot be negative, we additionally extend
this equation by imposing two lower boundaries along each axis,
STN � 0 and GP � 0. Equation 7 will be referred to as “delayed
linear model,” to distinguish it from the “original model” (Eq. 2).

To obtain the second reduction (which is suitable for mathe-
matical analysis), we further approximate this delayed dynamical
system by linearizing also about the delay using the Taylor expan-

Figure 5. Simulations of the original model. A–C, Firing rate as a function of time for different values of K. D–F, Phase portraits of the system showing the same firing rates as in A–C. G, Range
of firing rates of STN as a function of parameter K. A stable steady state is shown with a solid gray line. The unstable steady state is shown with a dashed gray line. The maximum and minimum values
in a cycle of oscillations are shown in black. H, Frequency of the oscillations for different values of K. Note that the model predicts a decrease in frequency of oscillation as the weights increase.
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sions of the terms GP(t � �t) and STN(t � �t). This approxima-
tion for Equation 7 is given by the following (for full details, see
supplemental material C, available at www.jneurosci.org):

�
�SṪN�t� � �wGS(GP(t) � �t � G

�
P(t))

� wCSCtx � STN(t)

�G
�
P�t� � wSG(STN(t) � �t � SṪN(t))

� wGG(GP(t) � �t � G
�
P(t)) � wXGStr � GP(t),

(8)

where all the terms depend now on t. This system will be referred
to as “nondelayed linear model,” to distinguish it from the pre-
vious two ones.

For oscillations to occur, a trajectory in the (GP, STN) plane
must create a closed loop such as that shown in Figure 5F. Such a
closed loop trajectory will exist in the nondelayed linear model
(Eq. 8), when the following three conditions are satisfied.

First, the steady state of the STN–GPe system is unstable. Oth-
erwise, the system would converge to a stable steady state and
remain there (as in Fig. 5A,B).

Second, the trajectories starting from the neighborhood of the
steady state form spirals. An example of such trajectory is shown in
Figure 6A. If this condition was not satisfied, the trajectories origi-
nating from the neighborhood of the steady state would move away
from the steady state and form straight lines or exponential curves.
Supplemental material E (available at www.jneurosci.org) shows
that the first and second conditions are satisfied when

wSGwGS

�t

�
� 1 � wGG�1 �

�t

� ��2 (9)

and

wSGwGS � wGG
2 /4, (10)

respectively. Intuitively, both inequalities describe the situation
in which the reciprocal synaptic influence between STN and GPe
is higher than a value depending on the self-inhibition of GPe
neurons. Furthermore, in supplemental material E (available at
www.jneurosci.org), we show that the direction of the flow in the
spiral is clockwise in the (GP, STN) plane as shown in Figure 6A.

The third condition required for oscillations is that a closed
loop trajectory is formed between the intersection of the bound-
aries and one of the spiral paths. This condition requires some
explanation. If the steady state is unstable and the flow of the
system follows a clockwise spiral path, then an appropriate flow
on each boundary could force a connection of one spiral path
with itself to form a closed trajectory as shown in Figure 6A (the
different types of the limit cycle that could be created in this
manner can be seen in supplemental Fig. 2, available at www.
jneurosci.org as supplemental material). As can be seen, under
specific conditions, the flow along the boundary could act to
redirect a spiral path along the boundary and ultimately recon-
nect it at an earlier point on the same trajectory. If this happens,
the section of spiral path, together with the flow along the bound-
aries, would form a limit cycle. In the nondelayed linear model
(Eq. 8), it can be shown that for certain parameter values the
horizontal boundary (STN � 0) conducts the flow first toward
the point (0, 0), and then the vertical boundary (GP � 0) from
here toward (0, �) until it abandons the GP � 0 boundary (see
supplemental material F, available at www.jneurosci.org). Aban-
doning the GP � 0 boundary, it rejoins a spiral path, which closes
again afterward when intersecting the STN � 0 boundary.

The condition necessary for the boundaries to behave in this
way, is as follows (see supplemental material F, available at
www.jneurosci.org):

wSGwCSCtx � wXGStr. (11)

A situation in which the condition is not satisfied is shown in
Figure 6B where the flow in the boundaries will stop at point
(0, wCSCtx) and will not abandon the GP � 0 boundary.

For parameter values found to reproduce the healthy state, the
third condition (Eq. 11) strongly holds. This situation is main-
tained for higher values of K that simulate the advance of the
disease. However, the first and second conditions (Eqs. 9, 10),
which are false for K � 0, become true when K is increased, giving
rise in this manner to the limit cycle.

Comparison of analytical results with numerical simulations
In this subsection, we compare the conditions found analytically
for the nondelayed linear model with simulations of the delayed
linear and original models to test how well these conditions de-
scribe the occurrence of the oscillations in these two progressively
more realistic models.

Equations 9 –11 describe a surface in parameter space that
divides the parameter values for which oscillations occur from
values for which they do not. A direct method to test these con-
ditions in the delayed linear and original models is to determine,
numerically, regions in parameter space for each model where the
oscillations occur, and compare the limits of these regions with
the surface defined analytically by Equations 9 –11. To find these
oscillatory regions in parameter space, a methodical numerical
procedure was used: Each of the three parameters critical in Equa-
tions 9–11 (wSG, wGS, and �t/�) are varied around the values sug-
gested by the literature for the healthy state. For each combination of
the three parameters, the system was simulated and the power spec-

Figure 6. Schematic illustrations of the boundary flow of the nondelayed linear model.
Small open circles denote the location of a steady state. Dotted spirals show a trajectory origi-
nating from the vicinity of the steady state. Arrows on the axes show the direction of flow on the
boundaries. Labels wCSCtx on the vertical axes show locations of a steady state of the flow on the
vertical boundary. Lines labeled SṪN�0 and G

�
P�0 show nullclines—these are lines in which

there is no flow in STN and GP directions, respectively. Importantly the nullclines separate parts
of the state space with flow in different directions: Below the SṪN � 0 nullcline, the flow is
always upward, while above it is downward; below the G

�
P � 0 nullcline, the flow is always

leftward, while above it is rightward (as indicated by arrows in 4 parts of the state space
separated by the nullclines). A, If wCSCtx is above the intersection of the G

�
P � 0 nullcline with

the vertical boundary, then no steady state appears in the boundary. This is due to the flow on
the boundary above the intersection with the G

�
P � 0 nullcline not being invariant (i.e., you

move away from the boundary if you begin there). B, If wCSCtx is smaller than the intersection of
the nullcline G

�
P � 0 with the vertical boundary, then a stable steady state appears in this axis

(indicated by a small filled circle).
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trum of oscillations in STN was calculated. In each simulation, if the
oscillations occurred, their frequency was recorded.

The recorded power and frequency of oscillations for each
combination of parameters are shown in Figure 7, A and B, where
each colored square represents results obtained for a specific
combination of parameter values for wSG, wGS, and �t/�. These
figures show that oscillations arise as parameters wSG and wGS

increase, in accordance with Equations 9 and 10.
As mentioned in the previous subsection, in the parameter

range considered Equations 9 and 10 determine the occur-
rence of the oscillations. Since they both need to hold for the

oscillations to occur, the system should oscillate when the
following is true:

wSGwGS � max��1 � wGG�1 �
�t

� ��2� �

�t
, wGG

2 /4�.

(12)

The white curves in Figure 7A show the boundaries defined in
Equation 12. They match the regions found in simulations quite
well. The dashed curves in Figure 7B show analogous boundaries

Figure 7. A–C, Comparison of conditions for the occurrence of oscillations with the simulations of the delayed linear (A) and original (B, C) models for different values of parameters. In each panel,
the left column of displays shows the power spectral density of dominant oscillations, and the right column shows their frequency (in hertz). In each display, each of the small squares summarizes
the results of simulation with particular values of parameters shown on the axes. For example, the top-left square in the top-left display indicates that for wSG � 2 and wGS � 3 the model did not
produce any oscillations, while the top-right square of this display indicates that for wSG � 50 and wGS � 3 the model did produce oscillations, and the display to the right indicates that these
oscillations had frequency of 15 Hz. In the simulations of the delayed linear model in A, all parameters were kept as for simulations of the healthy state, except for wSG, wGS, �, and �t. The values of
wSG and wGS are shown on the axes, � � 10 ms, i.e., the average of �S and �G in the healthy state, and �t is equal to 15.3 ms, 12.8 ms, and 10.3 ms in each of the rows, respectively. Analogously,
in the simulations of the original model in B, the values of wSG and wGS are shown on the axes, �S and �G are set to the values in the healthy state, and �tSG, �tGS, and �tGG are increased from the
values in the healthy state by 10 ms, 7.5 ms, and 5 ms in each of the rows, respectively. In the simulations of the original model in C, all parameters were kept as for simulations of the healthy state,
except for �S, �G, �tSG, �tGS, and �tGG, which were set as shown on the axes.
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for the original model where �t in Equation 12 is taken as the
average of transmission delays in the original model (�tSG, �tGS,
and �tGG) and � is taken as the average of �S and �G. In the original
model, however, the oscillations’ boundaries do not fit the sur-
face defined by Equation 12. The reason for this is that the delayed
linear model was obtained by linearizing the original sigmoidal
function with a linear function of slope equal to 1 (Fig. 2, dashed-
dotted line). This slope is different from the slope of the sigmoidal
curve corresponding to a typical state of the network, i.e., the
slope at the input commonly received by STN and GPe. For ex-
ample, in the condition corresponding to a healthy state, the
inputs are as follows:

inSTN � �wGS � 62.6 � wCS � 27 � �5.22 (13)

inGP � wSG � 19 � wGG � 62.6 � wXG � 2 � �85, (14)

where the numbers in the above equations correspond to exper-
imentally observed firing rates in the healthy state listed in Tables
1 and 2. The lines parallel to sigmoidal function with these inputs
are shown by dashed lines in Figure 2. The slopes of these lines are
F�S � 0.201 and F�G � 0.3269. If the original system is linearized
around the above inputs, then weights of all connections termi-
nating in STN are multiplied by F�S and the weights of all connec-
tions terminating in GPe are multiplied by F�G. Equation 12 then
becomes the following:

FG�wSGFS�wGS � max��1 � FG�wGG�1 �
�t

� ��2� �

�t
, FG�wGG

2 /4�.

(15)

Boundaries defined by Equation 15 are shown by solid curves in
Figure 7B, and they provide a much closer match to simulations.
Nevertheless there is still a discrepancy for high wGS and relatively
low wSG where Equation 15 predicts that the oscillations should
occur but they are not observed in the simulations. Note, how-
ever, that for high inhibitory weight wGS and low excitatory
weight wSG the firing rate in the model will be very low, and the
slopes of the sigmoidal functions at a typical state of the network
for these parameter values would be even lower. Reducing the
slopes of the linear approximations moves the boundary toward
higher values of wGS and wSG (Fig. 7B, compare the dashed and
solid curves), which explains why the model does not produce
oscillations for high wGS and low wSG.

Comparison between rows of Figure 7, A and B, reveals that
the oscillations become more likely as �t/� increases. Although
this effect is relatively weak in Figure 7A, it is strong in Figure 7B.
This is because in the range of parameters shown in Figure 7A, the
second term in the maximum operator in Equation 12 is higher
than the first, thus the second condition (Eq. 10) governs the
occurrence of oscillations, and �t/� does not appear in Equation
10. Therefore, Equation 12 does not predict dependence of oc-
currence of oscillations on �t/� (note that white curves in Fig. 7A
do not differ between rows), and indeed the effect of �t/� on the
occurrence of the oscillations in the simulations is weak. In con-
trast, for the range of parameters shown in Figure 7B, the first
term in the maximum operator in Equation 15 is higher than the
second, thus the first condition (Eq. 9) governs the occurrence of
oscillations, and �t/� does appear in Equation 9. Therefore,
Equation 15 does predict the dependence of occurrence of oscil-
lations on �t/� (note that white curves in Fig. 7B do differ be-
tween rows), and indeed the effect of �t/� on the occurrence of
the oscillations in the simulations is strong.

Figure 7B also shows that that there exists a separate region in
the parameter space with high wSG and low wGS, where oscilla-
tions of a higher frequency occur. These oscillations are gener-
ated by inhibitory connections within GPe (simulations not
shown here demonstrate that when the inhibitory connections
within GPe are removed, these oscillations disappear). For the
parameter values for which these oscillations occur (high wSG and
low wGS), the firing rate in GPe is particularly high. It is known
that a system including just inhibitory feedback with delay can
generate oscillations (Gore and van Oudenaarden, 2009), but
since the power of these oscillations is two orders of magnitude
lower than the oscillations generated by the STN–GPe loop (see
Fig. 7B), we do not analyze them further.

Figure 7C shows the dependence of power and frequency of
oscillations in the original model on synaptic transmission delay
and time constant. The boundary defined by Equation 15
matches well the region of the parameter space where the oscilla-
tions occur in the simulations. Importantly, Figure 7C shows that
the values of �t and � influence significantly the frequency of the
oscillation, while variations in synaptic weights were not able to
produce such significant change (Fig. 7A,B). Intuitively, the rea-
son why �t and � influence the frequency of the oscillations is that
these two parameters describe how long it takes for information
to “traverse the STN–GPe loop,” hence these two parameters
determine the period of the oscillations.

A final point of importance is that simulations performed for
equivalent parameter values as per Figure 7B, but with striatal
and cortical inputs set to zero, do not produce oscillations. This is
consistent with Equation 11, which states that cortical excitation
is a necessary condition for the existence of oscillations.

Interpretation of the values of synaptic weights
In the previous subsection, we compared Equations 9 and 10 with
simulations, but a real test of the validity of these conditions
would be a comparison with an neurophysiological experiment.
However, before such comparison can be made, one first needs to
be able to estimate the values of weight parameters from an ex-
periment. In this subsection, we describe in what units the weight
parameters occurring in Equations 9 and 10 are measured, and
how they could be estimated from an experiment.

The weights in the model are measured in units that describe
the impact of change in firing rate of presynaptic neurons on the
firing rate of postsynaptic neurons. To illustrate this, let us con-
sider two neuronal populations A and B, such that B receives
excitatory input from population A, and does not receive any
other input. Let us initially assume that that population B has a
linear input– output transfer function with slope equal to 1 (we
made such an assumption for STN and GPe neurons in the de-
layed linear and nondelayed linear models). Let us denote the
firing rate of these populations by A and B, the weight of their
connection by wAB, and the membrane time constants of popu-
lation B by �B. Thus, the dynamics of population B is described by
the following: �BḂ � wABA � B. Note that if A is constant, then
the firing rate of population B converges to steady state B* �
wABA*. This implies that increasing firing rate in all neurons in
population A by 1 [Hz] will increase the mean firing rate in pop-
ulation B by wAB [Hz]. This illustrates that wAB is expressed in
units that describe the change in firing rate of the postsynaptic
population to a unit change in the firing rate of the presynaptic
population.

We now argue that the above interpretation of the units of
weight in Equations 9 and 10 remains valid if we further assume
that B has a nonlinear input– output transfer function F. In this
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case, the firing rate of population B converges to B � F(wABA).
This implies that increasing the firing rate of all neurons in pop-
ulation A by 1 [Hz] will increase the mean firing rate in popula-
tion B by F�(wABA)wAB [Hz], where F�(wABA) is the slope of the
input– output relationship for the present input. However, recall
in the previous subsection that the synaptic weights in the origi-
nal model had to be rescaled by multiplying them by this slope
before inserting their values into Equations 9 and 10. Therefore,
in summary, the values of synaptic weights wAB in Equations 9
and 10 are expressed in units that describe the increase in the
firing rate of population B due to the increase in the firing rate of
population A by 1 [Hz], both for linear and nonlinear input–
output transfer functions.

The above interpretation is correct when each connection be-
tween two populations is considered in isolation (because if B
provided feedback to A, the change in B due to change in A will be
more complex). Thus for example, the value of wSG could be
interpreted as the change in GPe firing to a unit increase in STN
firing, if the feedback connections from STN to GPe were
blocked.

Discussion
Relationship to other models
There have been a number of other modeling studies that inves-
tigated the oscillations present in the basal ganglia (Gillies et al.,
2002; Terman et al., 2002; Humphries et al., 2006; Leblois et al.,
2006). Two of those studies (Gillies et al., 2002; Terman et
al., 2002) also focused on the STN–GPe circuit and found that it
can generate oscillatory activity, but the mechanisms that gener-
ated these oscillations were very different from our model, as we
now describe. Gillies et al. (2002) developed a firing rate model of
the STN–GPe circuit that was simple enough to be studied ana-
lytically. They found that their model could produce oscillations
only if the strength of connections from STN neurons to other
STN neurons was increased. Such connections are not present in
our model, because we judged that the evidence for such connec-
tions (Hammond and Yelnik, 1983; Sato et al., 2000b) was not
strong enough to consider that they play a prominent role in
information transmission in the basal ganglia. We think that the
reason why Gillies et al. (2002) did not find oscillations without
these connections is that they did not consider transmission de-
lays between STN and GPe, and our results (Eq. 9) imply that
these delays must exist for the oscillations to be present.

Terman et al. (2002) developed a spiking neuron model of the
STN–GPe circuit. The main difference with our model is that
they did not consider excitatory input to STN from cortex, but
instead introduced a rebound mechanism to simulated STN neu-
rons, which was the only means by which the STN neurons could
generate activity in their model. Since the rebound mechanism
operated on a slow time scale, the oscillations they observed had
much lower frequency than the beta range. One possibility why
Terman et al. (2002) did not observe beta oscillations is that they
did not consider the cortical input to the STN, which, according
to our analysis (Eq. 11), is critical for the presence of the beta
oscillations.

Two other models simulated a more general circuit including
the cortex, the basal ganglia, and the thalamus (Humphries et al.,
2006; Leblois et al., 2006). Leblois et al. (2006) observed oscilla-
tory behavior in theta-alpha band for realistic values of transmis-
sion delays. Beta oscillations were not observed, but we think this
is due to the fact that they did not include the GPe into the
architecture of the model (recall that the STN–GPe feedback loop
did generate this frequency in our model).

Humphries et al. (2006) observed gamma (30 – 80 Hz) and
slow (
1 Hz) oscillatory activity. Beta oscillations that we obtain
could correspond to their gamma oscillatory activity, as their
model includes the STN–GPe network. The higher-frequency ac-
tivity could be accounted for by the use of a smaller STN–GPe
delay. They consider a set of values for conduction delays and
synaptic time constants equivalent to a 2 ms transmission delay in
our system, which is smaller than the value of 6 ms used in our
study. According to our analysis, this smaller delay will make any
frequency generated in the STN–GPe subnetwork higher.

Extending the model
In this paper, we considered constant external inputs to the STN–
GPe network, as we wished to explore whether this circuit could
generate oscillations on its own. In the future, it would be inter-
esting to include the feedback from STN–GPe circuit to cortex
and striatum (via the cortico-basal-ganglia-thalamic loop), so
that the cortex and striatum provide oscillatory input while sim-
ulating Parkinson’s disease. It would be very interesting to inves-
tigate how gamma oscillations occurring in the cortex propagate
in the basal ganglia and interact with the beta oscillations.

Relationship to experimental data
The model replicates two features observed in Parkinson’s dis-
ease, that were not included among the data to which the model
was fitted. The first feature is the striatal hyperactivity of the
indirect basal ganglia path, a central property of the classical
model of Parkinson’s disease (Obeso et al., 2000), which is clearly
displayed in our model by the very noticeable increase in striato-
pallidal synaptic weight (wXGd � 139.4 for the diseased state,
wXGh � 15.1 for the healthy state). Second, the model displays the
whole range of beta frequencies observed in Parkinson’s disease
[13–30 Hz (Brown, 2003; Courtemanche et al., 2003; Boraud et
al., 2005; Hammond et al., 2007)], and the particular frequency of
oscillation depends on the parameter K describing the advance of
the disease (see Fig. 5H). Thus the model suggests that different
frequencies within the beta band observed in experiments may
correspond to different stages of disease progression.

Equations 9 and 10 predict that the reduction in synaptic weights
wGS and wSG can stop beta oscillations. Existing data provides sup-
port for this prediction. It has been shown that blocking glutamater-
gic neurotransmission has anti-parkinsonian effects in a variety of
rodent and primate models of Parkinson’s disease (Greenamyre,
1993; Lange et al., 1997), which provides initial support to this pre-
diction in relation with wSG. Further, it has been shown that the
inhibition from GPe to STN is crucial for the appearance of beta
oscillations in the STN–GPe network (Baufreton et al., 2005).

Equation 9 also predicts that the beta oscillations can be in-
duced by reducing the time constant �. Leblois et al. (2006) pro-
posed that the time constant of a neuronal population in their
firing rate model is influenced by the relative proportion of fast,
i.e., AMPA, and slow, i.e., NMDA, synapses. Thus, the time con-
stant could be reduced by enhancing AMPA transmission and
reducing transmission through NMDA receptors. Such an in-
crease in AMPA and decrease in NMDA transmission (corre-
sponding to reduction in �) has been shown to accompany the
onset of Parkinson’s disease in rat models (Shen and Johnson,
2005), which gives support to our prediction.

Equation 11 predicts that cortical input is necessary for the
presence of beta oscillations. This is consistent with recent results
(Gradinaru et al., 2009) that show that the therapeutic effects of
the deep brain stimulation in STN can be accounted by direct
selective stimulation of afferent cortical axons projecting to this
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region. Thus, in the framework of our model, the effect of deep
brain stimulation could be described by a reduction in wCS.

Experimental predictions
Until now it has not been shown experimentally that an isolated
STN–GPe circuit in vitro can produce sustained beta oscillations.
It has been discussed that the lack of beta oscillations in vitro may
be due to the lack of cortical input in slices (Loucif et al., 2005;
Wilson et al., 2006). Our analysis supports this suggestion: Equa-
tion 11 states that to generate beta oscillations, STN needs to
receive an excitatory input from the cortex. Hence our analysis
predicts that to produce beta oscillations in a STN–GPe circuit in
vitro, the STN neurons need to be activated (e.g., by application of
glutamate or a constant excitatory stimulation).

Our simulations suggest that the beta oscillations observed in
Parkinson’s disease are produced in the STN–GPe circuit. This
predicts that a local application of dopamine to STN and GPe
(rather than to the whole brain) should be sufficient to stop beta
oscillations and reduce bradykinesia. Furthermore, since we as-
sume that the beta oscillations occur due to increase in weights
caused by reduced activation of D2 receptors, the model predicts
that an application of D2 agonist (rather than dopamine) should
be sufficient to stop beta oscillations.

A further prediction of the model is that we should expect to
see a slowing in frequency of beta oscillations as the parkinsonian
condition develops. This can be seen from the relationship be-
tween frequency of oscillations and increases in synaptic weight
parameters (shown in Fig. 5H).

As mentioned in the previous subsection, the predictions of
Equations 9 and 10 on therapeutic effect of reduction in wGS and
wSG is qualitatively supported by published experiments. How-
ever, Equations 9 and 10 also make quantitative predictions on
how much wGS and wSG need to be reduced for oscillations to
cease. These predictions could be tested by applying different
concentrations of the antagonists, measuring wGS and wSG (last
subsection of Results), and observing whether the oscillations are
present.

Equation 9 also predicts that the beta oscillations can be
stopped by increasing the time constant �. As described in the
previous section, this can be achieved by blocking fast AMPA
receptors (e.g., with antagonist) and enhancing transmission
through slower NMDA receptors (e.g., by reducing the concen-
tration of magnesium ions). The model predicts that such ma-
nipulation should stop the beta oscillations. Furthermore, the
model predicts that if the time constant is increased gradually,
the frequency of the oscillations should initially decrease before
the oscillations stop.

In summary, our computational model predicts novel phar-
macological manipulations that could inhibit beta oscillations
related to bradykinesia. If the predictions of our model are con-
firmed in animal experiments, we hope that the model can inspire
new treatments for Parkinson’s disease.
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