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a b s t r a c t

It has been proposed that animals and humans might choose a speed-accuracy tradeoff that maximizes
reward rate. For this utility function the simple drift-diffusion model of two-alternative forced-choice
tasks predicts a parameter-free optimal performance curve that relates normalized decision times to
error rates under varying task conditions. However, behavioral data indicate that only ≈ 30% of
subjects achieve optimality, and here we investigate the possibility that, in allowing for uncertainties,
subjects might exercise robust strategies instead of optimal ones. We consider two strategies in which
robustness is achieved by relinquishing performance: maximin and robust-satisficing. The former
supposes maximization of guaranteed performance under a presumed level of uncertainty; the latter
assumes that subjects require a critical performance level and maximize the level of uncertainty under
which it can be guaranteed. These strategies respectively yield performance curves parameterized by a
presumed uncertainty level and required performance. Maximin performance curves for uncertainties in
response-to-stimulus interval match data for the lower-scoring 70% of subjects well, and are more likely
to explain it than robust-satisficing or alternative optimal performance curves that emphasize accuracy.
For uncertainties in signal-to-noise ratio, neither maximin nor robust-satisficing performance curves
adequately describe the data. We discuss implications for decisions under uncertainties, and suggest
further behavioral assays.

© 2010 Elsevier Inc. All rights reserved.
1. Introduction

There is a substantial literature on random walk and drift-
diffusion (DD) processes as models for behavioral measures of
reaction time and error rates on two-alternative forced-choice
(2AFC) tasks, e.g. Laming (1968), Ratcliff (1978), Ratcliff, Van Zandt,
and McKoon (1999), Smith and Ratcliff (2004) and Stone (1960).
Additionally, in vivo recordings in monkeys trained to respond
to motion stimuli show that neural spike rates in certain oculo-
motor regions evolve like sample paths of a DD process, rising
to a threshold prior to response initiation (Gold & Shadlen, 2001;
Mazurek, Roitman, Ditterich, & Shadlen, 2003; Ratcliff, Cherian, &
Segraves, 2003; Ratcliff, Hasegawa, Hasegawa, Smith, & Segraves,
2006; Roitman & Shadlen, 2002; Schall, 2001). Such experiments
support a picture in which the state of the DD process, interpreted
as a difference between accumulating, noisy evidence streams, is
integrated until it reaches a confidence threshold.
The simpleDDprocesswith constant signal-to-noise ratio (SNR)

is a continuum limit of the sequential probability ratio test (SPRT),
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which is optimal for statistically stationary tasks in the sense that,
on average, it renders a decision of specified accuracy for the
smallest number of observations (Wald, 1947; Wald & Wolfowitz,
1948). It therefore offers a normative theory of decision making
against which human and animal behaviors can be assessed (Gold
& Shadlen, 2002). Specifically, both speed and accuracy are often at
a premium, and a key issue is how these requirements are balanced
in a speed-accuracy tradeoff (SAT). Wald and Wolfowitz (1948)
used aweighted sumof decision time and error rate as an objective
function in their analysis of SPRT, and Edwards (1965) generalized
this to model how human subjects choose decision thresholds.
This was further extended and tested in Busemeyer and Rapoport
(1988)and Rapoport and Burkheimer (1971), and a related theory,
involving a competition between reward and accuracy (COBRA),
has also been proposed (Bohil & Maddox, 2003; Maddox & Bohil,
1998). A review of these theories appears in Bogacz, Brown,
Moehlis, Holmes, and Cohen (2006), which also describes how
the DD process with constant SNR emerges from various evidence
accumulator models, as parameters approach particular limits.
Gold and Shadlen (2002) then proposed that the DD model

be used to derive an explicit SAT that optimizes the reward rate.
Bogacz et al. (2006) and Holmes et al. (2005) performed this
computation and carried out 2AFC experiments on human subjects
to test its predictions. As discussed below, and at greater length
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Table 1
List of abbreviations.

Abbreviation Meaning

2AFC 2 alternative forced choice
COBRA Competition between reward and accuracy
DD Drift-diffusion
DT Decision time
MMPC Maximin performance curve
OPC Optimal performance curve
RA Reward accuracy rate
RR Reward rate
RRm Modified reward rate
RSI Response-to-stimulus interval
RSPC Robust-satisficing performance curve
RT Reaction time
SAT Speed-accuracy tradeoff
SNR Signal-to-noise ratio
SPRT Sequential probability ratio test

in Bogacz, Hu, Cohen, and Holmes (in press), the experiments
reveal that, while a significant subset of 80 subjects performed
near-optimally, most were substantially sub-optimal, favoring
accuracy over speed.
Several explanations have been advanced to account for such

behavior. Physiological constraints might prevent neural circuits
from integrating evidence in the optimal manner prescribed by
the SPRT (cf. Bogacz et al. (2006) and see discussions below).
Second, attention may wax and wane, leading to variable SNR
(also, experimental protocols often mix stimuli of different
discriminability, violating the stationarity assumed in the SPRT
and in the blocked experiments of Bogacz et al. (in press)).
Third, intentional emphases on accuracy or speed, as in Bohil
and Maddox (2003) and Maddox and Bohil (1998), can modulate
the SAT at the level of individual subjects. Finally, in addition
to assuming statistical stationarity, the SPRT-based optimality
theory of Bogacz et al. (2006), Holmes et al. (2005) and Gold and
Shadlen (2002) implicitly assumes that key parameters such as
experimenter-imposed response-to-stimulus delays and SNR are
precisely known to the subject.
In this paper we shall briefly discuss all these factors before

focusing on the final one. We suppose that only uncertain
estimates are available for key parameters and apply robust
strategies to predict robust, rather than optimal, SATs. We find that
uncertainties in inter-trial delays can account for sub-optimality
in the data of Bogacz et al. (in press), while uncertainties in the
SNR cannot. Furthermore, we show that a robust strategy, which
also involves only one free parameter, provides a better fit than a
version of the COBRA theory that includes a weight for accuracy.
The paper is structured as follows. In Section 2 we review the

DD model and derivation of the optimal SAT, describing how it
can be expressed as an optimal performance curve (OPC). Robust
strategies for 2AFC, which account for parameter uncertainties, are
developed in Section 3, and used to derive the robust performance
curves. In Section 4 we compare the predictions of the robust
approaches with experimental data of Bogacz et al. (2006, in press)
and with alternative optimization strategies, and we briefly
assess the effects of parameter mis-estimates. Section 5 contains
a discussion and proposals for future experiments to further
explore our conclusions. Many proofs and other mathematical
and statistical details are relegated to Appendices. Common
abbreviations used in the paper are summarized in Table 1.

2. A drift-diffusion model and optimal performance curves

The simplest version of a DD process is described by the
following stochastic differential equation:

dx = A dt + σ dW ; x(0) = 0, (1)
where A denotes the drift rate and σ dW increments drawn from
a Wiener process with standard deviation σ (Gardiner, 1985).
Eq. (1) is also known as the Wiener process with drift (Diederich
& Busemeyer, 2003). In the 2AFC context, the state variable
x(t) represents a running estimate of the logarithmic likelihood
ratio (Gold & Shadlen, 2002), the two stimuli produce drift rates
±A respectively, and on each trial a choice is made when x(t) first
crosses either of the predetermined thresholds±xth. It is implicitly
assumed here that stimuli are presented with equal probabilities,
that x(0) is initialized midway between the thresholds at the start
of each trial as in the optimal SPRT, and that drift, noise level and
thresholds remain constant over each block of trials. We shall refer
to Eq. (1) as a pure DD process, to distinguish it from the extended
processes described in Section 2.1.
Average performance on a block of trials is characterized by

the probability of making an error, p(err), and the mean decision
time, 〈DT 〉 (the first passage time for (1)), which can be computed
explicitly as

p(err) =
1

1+ exp(2ηθ)
and 〈DT 〉 = θ

[
exp(2ηθ)− 1
exp(2ηθ)+ 1

]
, (2)

(Busemeyer & Townsend, 1993; Gardiner, 1985), cf. (Bogacz et al.,
2006, Appendix). Here the parameters η ≡ (A/σ)2 and θ ≡ |xth/A|
are the SNR (having the units of inverse time), and the threshold-
to-drift ratio: i.e., the passage time for the noise-free process x(t) =
At . (The present notation differs from Bogacz et al. (2006) to avoid
confusion with that used below to describe uncertainty.) In (2)
〈DT 〉 is that part of themean reaction time 〈RT 〉 ascribed to mental
processing per se, excluding the non-decision latency T0 required
for sensory transduction andmotor response, i.e., 〈DT 〉 = 〈RT 〉−T0.
The formulae of Eq. (2) may be inverted to solve for the DD

model parameters, η and θ , in terms of the two performance
parameters, p(err) and 〈DT 〉 (cf. Wagenmakers, van der Maas &
Grasman, 2007):

θ =
〈DT 〉

1− 2p(err)
and η =

1− 2p(err)
2〈DT 〉

log
(
1− p(err)
p(err)

)
. (3)

Given a suitable objective function for performance, these
explicit formulae allow us to predict a parameter-free optimal
performance curve that relates p(err) and 〈DT 〉, as detailed in
Section 2.2. However, first we address some shortcomings of the
simple DD model of Eq. (1), including neurophysiological factors
described next, and behavioral factors addressed in Section 2.1.
As noted in Section 1, the DD model gains support from

neurophysiology. A decision model in wide use employs a pair
of leaky, mutually-inhibiting accumulators whose states represent
the averaged firing rates of populations of neurons preferentially
sensitive to different stimuli (Usher & McClelland, 2001). The DD
variable x(t) is the difference between these states. However,
reduction to a single variable is valid only if leak and inhibition are
high, and to a DD process only if they are balanced (Bogacz et al.,
2006) and firing rates remain in ranges in which linearization is
justified (Cohen, Dunbar, & McClelland, 1990). Recent studies of
multi-unit spiking neuron models (Wang, 2002; Wong & Wang,
2006) question these assumptions and suggest that nonlinear
models may be necessary (Roxin & Ledberg, 2008). In view of the
SPRT results noted above (Wald, 1947; Wald & Wolfowitz, 1948),
all such generalizations, and the extended DD models described
next, are necessarily non-optimal decision makers.

2.1. Extensions to the DD model

In addition to the neurophysiologically-motivated nonlinear
accumulator models mentioned above, extended DD processes
have been introduced to better account for human and animal
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behaviors. In particular, mean reaction times for error and correct
trials typically differ, slow errors being frequently observed,
whereas the pure DD process (1) predicts identical forms for the
probability distributions of DTs for both trial types.
Slow errors can be produced by selecting the drift rate A for

each trial from a Gaussian distribution, and fast errors result
by selecting initial conditions x(0) on each trial from a uniform
distribution (Ratcliff et al., 1999). Including a possible overall
bias, so that 〈x(0)〉 6= 0, these increase the number of DD
parameters from two to five. To further allow for variability, the
nondecision time T0 can also be taken from a distribution (Ratcliff
& Tuerlinckx, 2002). Alternatively, time-dependent drift rates A(t),
which can represent varying attention, can produce slow or fast
errors (Ditterich, 2006a,b; Eckhoff, Holmes, Law, Connolly, & Gold,
2008; Liu, Holmes, & Cohen, 2008), in principle expanding the
model to an infinite-dimensional parameter space.
Variable drift rates (either within or between trials) seem

most relevant to account for differences in the reaction time
distributions of error and correct decisions. However, as noted at
the end of Section 2.2, the resulting optimal performance curves
fail to match the observed preference for accuracy over speed in
the present data (Bogacz et al., 2006). Herewe develop a normative
theory of robust decision making, based on the pure DD model,
which accounts well for this observed preference. We introduce
a new factor: the degree of uncertainty in estimating specific model
parameters. Comparing the effects on different parameters, we are
able to assess which source of uncertainty may best explain the
observed behavior, and to contrast it with the emphasis placed
on accuracy in theories such as COBRA (Bohil & Maddox, 2003;
Maddox & Bohil, 1998). Furthermore, we show that uncertainties
in SNR also allow variable drift rates, and thus can account for
differences in DT distributions for error and correct decisions.

2.2. Optimal performance curves

To determine optimal strategies for a given experimental
paradigm, we must specify an objective or utility function. Here
we consider the paradigm of Gold and Shadlen (2002), in which a
subject is presented with a stimulus and is free to indicate a choice
(by motor or oculomotor response) at any time. Correct responses
are rewarded and after each response there is a fixed delay or
response-to-stimulus interval (RSI), denoted DRSI, before the next
trial begins. This may be increased by a penalty delay Dpen ≥ 0 in
the event of an error. Trials are run sequentially in blocks in which
delays and stimulus discriminabilities are constant. The duration
of each block, rather than the number of trials within it, is fixed,
thereby presenting subjects with a clear challenge of balancing
accuracy with speed (the number of trials completed in the block).
Gold and Shadlen (2002) propose that subjects seek to

maximize their average reward rates (RR), defined as the fraction of
correct responses divided by the average time between responses:

RR(p(err), 〈DT 〉 : DRSI, T0,Dpen)

=
1− p(err)

〈DT 〉 + T0 + DRSI + p(err)Dpen
. (4)

Appendix A.1 shows that the mean number of correct decisions
per unit time is given asymptotically by Eq. (4). For simplicity we
have assumed that the non-decision time T0 and the response-to-
stimulus interval DRSI remain fixed during each block of trials over
which the reward rate is to be maximized, but if these are variable
one would simply replace them with their means 〈T0〉 and 〈DRSI〉.
Since only the combination T0 + DRSI appears in (4), we define the
non-decision delayD = T0+DRSI, and for future use, the total delay
Dtot = D+ Dpen.
Substituting Eqs. (2) into Eq. (4) yields the reward rate that can
be achieved as a function of the decision parameter θ and the task
parameters η, D and Dtot:

RR(θ : η,D,Dtot) = [θ + D+ (Dtot − θ) exp(−2ηθ)]−1. (5)

The response-to-stimulus interval, DRSI, penalty delay, Dpen, and
stimulus discriminability are under the experimenter’s control
and remain fixed throughout each block of trials. Stimulus
discriminability determines the SNR, η, at least partially. To the
extent that subjects can manipulate η, e.g., by increasing attention
and thus decreasing the noise-variance σ 2, Eq. (5) implies that it
should be maximized to achieve optimal RR. We therefore assume
that η is fixed in each block (this will be relaxed when addressing
uncertainties in Section 3). Under these conditions, the threshold-
to-drift ratio, θ , is the only adjustable parameter, so local maxima
of RR occur at zeros of ∂RR/∂θ , and the optimal threshold θop
satisfies:

exp(2ηθ)− 1 = 2η(Dtot − θ). (6)

The left hand side of (6) is monotonically increasing with θ and
its right hand side is monotonically decreasing, so it has a unique
solution θop that depends only uponη andDtot. This unique solution
determines the globally optimal normalized threshold, leaving
the optimal decision maker with no free decision parameter. The
corresponding optimal reward rate is given by RRop = RR(θop :
η,D,Dtot), and depends also on D.
Eq. (6) establishes a relationship among θ , η and Dtot that

must hold if RR is maximized. Substituting Eqs. (3), the DD
model parameters θ and η can be replaced by the performance
parameters 〈DT 〉 and p(err) to obtain:

〈DT 〉
Dtot
=

 1

p(err) log
(
1−p(err)
p(err)

) + 1
1− 2p(err)

−1 . (7)

This optimal performance curve (OPC), pictured in Fig. 1 and first
derived in Bogacz et al. (2006) and Holmes et al. (2005), is a
unique, parameter-free relationship that describes the SAT: the
tradeoff between speed (〈DT 〉/Dtot) and accuracy (1 − p(err))
that must hold in order to maximize RR for the given task
conditions. Each condition, specified by SNR η and total delay
Dtot, determines a unique optimal threshold-to-drift ratio θop,
given by Eq. (6), and hence a SAT that maximizes the RR for that
condition. As task conditions vary – bymanipulating η via stimulus
discriminability, or Dtot via the RSI – θop changes, and with it, the
SAT that maximizes RR. To illustrate this, in Fig. 1(a) we mark
eight points, corresponding to different SNR and Dtot values, on the
OPC. Each of these conditions yields a different RR, as enumerated
in the figure caption, but each RR is optimal for that condition;
indeed, all (p(err), 〈DT 〉/Dtot) pairs on the OPC correspond to optimal
performances.
The formof theOPCmay be intuitively understood by observing

that very noisy stimuli (η ≈ 0) contain little information, so that
given a priori knowledge that they are equally likely, it is optimal
to choose at random without examining them, giving p(err) =
0.5 and 〈DT 〉 = 0 (note the points for η = 0.1 in Fig. 1(a)).
At the opposite limit η → ∞, noise-free stimuli are so easy to
discriminate that both 〈DT 〉 and p(err) approach zero (note the
points for η = 100 in Fig. 1(a)). This limit yields the highest RRs,
but when SNR is finite, due to poor stimulus discriminability or
a subject’s inability to clearly detect a signal, making immediate
decisions is not optimal. Instead, it is advantageous to accumulate
the noisy evidence for just long enough to make the best possible
choice (see the points for η = 1 and η = 10 in Fig. 1(a)).
Thresholds that differ from the optimal threshold cause sub-

optimal performance, as illustrated by the diamonds in Fig. 1(a),
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Fig. 1. (a) Optimal performance curve of Eq. (7) relatingmean normalized decision
time to error-rate under varying task conditions. Triangles and circles mark the
performance under the specified task conditions. Moving leftwards, the resulting
RRs increase with SNR from 0.51 to 0.60, 0.84 and 0.97 for Dtot = 1, and from
0.26 to 0.33, 0.45 and 0.49 for Dtot = 2. Diamonds mark suboptimal performance
points resulting from thresholds 25% above and below the optimal threshold
for SNR=1 and Dtot = 2; both yield ≈1.3% degradation in the RR. (b) Thick
curve shows the optimal performance curve of Eq. (7), and histograms show data
collected from 80 human subjects, sorted according to total scores. Refer to the
text for experimental conditions. White bars: all subjects; lightest bars: lowest 10%
excluded; medium bars: lowest 50% excluded; darkest bars: lowest 70% excluded.
Vertical line segments indicate standard errors. From Holmes et al. (2005, Fig. 1).

which result from setting θ 25% above or below θop for η = 1 and
Dtot = 2. In both cases the RR degrades by≈1.3%.
To test whether humans can optimize their performance,

two experiments were carried out using different 2AFC tasks, as
detailed in Bogacz et al. (2006, in press). In the first, 20 subjects
viewed motion stimuli (Britten, Shadlen, Newsome, & Movshon,
1993) and received 1 cent for each correct discrimination. The
experiment was divided into 7 min blocks with different penalty
delays and response-to-stimulus intervals: three with Dpen = 0
and DRSI = 0.5 s, 1.0 s, and 2.0 s, respectively, and one with
Dpen = 1.5 s and DRSI = 0.5 s. One block of trials was run for each
condition except for Dpen = 0,DRSI = 2.0 s, for which two blocks
were required to gather sufficient data. In the second experiment,
60 subjects discriminated if the majority of 100 locations on a
visual display were filled with stars or empty (Ratcliff et al., 1999).
The designwas the same as that of the first experiment except that
blocks lasted for 4 min, and the set of 5 blocks was repeated under
two difficulty conditions. In both cases subjects were instructed
to maximize their total earnings, and unrewarded practice blocks
were administered before the tests began.
Since the OPC is independent of the parameters defining the DD

process, and Dtot enters only as the denominator of the normalized
decision time, data fromdifferent subjects and blocks of trials, with
various SNRs and delays, can be combined in a single histogram for
comparison with the OPC. For each subject and condition p(err)s
were computed andmean decision times 〈DT 〉 estimated by fitting
the DDmodel to reaction time distributions, as described in Bogacz
et al. (2006). The range of error rates from0%–50%was thendivided
into 10 bins and a mean normalized decision time 〈〈DT 〉/Dtot〉
computed for each bin by averaging over all subjects and task
conditions with error rates in that bin, yielding the white bars in
Fig. 1 (Bogacz et al., in press; Holmes et al., 2005). The shaded
bars show results of the same analysis restricted to subgroups
of subjects ranked according to their total rewards accrued over
all blocks of trials and conditions. This reveals that the top 30%
of subjects perform near the optimal SAT (the darkest bars lie
close to the OPC), but that those with lower total scores exhibit
significantly longer mean normalized decision times.
As noted in Section 1, this suboptimal behavior may reflect

the valuation of accuracy over speed, but it may also happen that
subjects try to optimize their performances and fail to do so due
to erroneous estimates of delays or SNR. (Since optimal thresholds
depend on Dtot and η (Eq. (6)), errors in estimating them would
lead to sub-optimality.) In this case, however, both under- and
over-estimation would be expected to occur, yielding individual
performances both below and above the OPC (see diamonds on
Fig. 1(a)), in contrast with the averaged performance above the
OPC in Fig. 1(b). We shall revisit this point at the end of Section 4,
after showing in Section 3 that the data is captured well by
assuming that subjects apply robust rather than optimal strategies
and explicitly account for uncertainties in delays.
We believe that the conditions under which this data was

collected, with stimulus discriminability and RSIs fixed during
each block of trials, along with training sessions and emphasis
on maximizing rewards, strongly encouraged subjects to improve
their ability to extract signal from noise, thereby driving their
decision mechanisms closer to that described by the optimal
DD process. Indeed, while fits to an extended DD process with
variability in A and x(0) improved on pure DD fits, a detailed
comparison, summarized in Appendix D, reveals that both models
capture a similar proportion of the variance in subjects’ thresholds.
Furthermore, allowing variability in A and x(0) results in OPCs
that differ qualitatively from the experimental data (Bogacz et al.,
2006, Fig. 14). Specifically, trial-to-trial variability in A decreases
the mean normalized decision time for a given error rate, favoring
speed over accuracy, and variability in x(0) results in mean
normalized decision times higher than those observed at low error
rates. We therefore believe that it is reasonable to use pure DD fits
in comparing the data from all 80 subjects with the OPC, and with
the alternative performance curves described below.

2.3. Performance curves weighted for accuracy

The tendency to value accuracy over speed has been noted
earlier (Bohil & Maddox, 2003; Maddox & Bohil, 1998; Myung &
Busemeyer, 1989). This motivates the investigation of alternative
objective functions (Bogacz et al., 2006; Holmes et al., 2005). We
give two examples.
The first is a modified reward-accuracy rate that additionally

penalizes errors, as suggested by the COBRA theory (Bohil &
Maddox, 2003; Maddox & Bohil, 1998):

RA = RR−
qp(err)
Dtot

. (8)

Here q specifies the relative weight placed on accuracy, and the
characteristic time Dtot is included so that the units of both terms
are (time)−1. Secondly, for monetary rewards one can suppose
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that errors are penalized by subtraction from previous winnings,
leading to the modified reward rate:

RRm =
(1− p(err))− qp(err)
〈DT 〉 + Dtot

. (9)

(Herewe require q < 1, so that rewards are positive.) The functions
defining RA and RRm each involve a single parameter q, and reduce
to RR for q = 0. Since errors are explicitly penalized in the
expressions (8) and (9), no additional delay Dpen is included in Dtot
here.
In Appendix A.2 we derive one-parameter families of OPCs

for these objective functions and briefly characterize them
(Eqs. (A.3)–(A.4) and (A.6)). We show that mean normalized
decision times are well-defined for RA provided that q ≤ 1.096.
Furthermore, the resulting OPCs for RA are scaled versions of
the OPC for RR while the OPCs for RRm are not. These modified
OPCs will be assessed against the data in Section 4, along with
predictions from robust decision making (see Fig. 6).
In the next section we develop decision strategies for the

2AFC task that are robust against uncertainties in either delays
(Section 3.1) or SNR (Section 3.2). We show that they differ
from the optimal strategies described above, and in Section 4
we argue that the data is more consistent with the use of
robust decision strategies against uncertainties in delays than
for any of the optimal procedures, especially for 70% of the
subjects with lower total scores. In common with optimal ones,
robust strategies require threshold setting, or, equivalently, the
formulation of a stopping criterion for the decision procedure. We
do not consider these issues here, but see Busemeyer and Myung
(1992) and Myung and Busemeyer (1989) for models of criterion
learning, and see Simen, Cohen, and Holmes (2006) for a neural
network implementation of threshold setting in the DD model
context.

3. Robust decisions under uncertainties

Optimal decision theory presumes that subjects maximize
a relevant utility function, given the actual task parameters.
However, these parameters are rarely known with accuracy and
decisions must be made under uncertainties. In 2AFC tasks, as
shown in Section 2.2, the RR depends on inter-trial delays and the
SNR: quantities that may be difficult to estimate.
There are twomajormethodologies for handling parameter un-

certainty, based onwhether parameters are assumed to be stochas-
tic or not (Ben-Tal & Nemirovski, 2008. The stochastic approach
presumes that the uncertain parameters are characterized by a
joint probability distribution. Given the distribution, the optimal
strategy may be applied to select the decision that maximizes the
expected utility. More generally, when only the class of possible
distributions – but not the exact distribution – is known, the max-
imin strategy may be applied to select the decision that maxi-
mizes the minimum expected utility across all possible distribu-
tions (Wald, 1950). In either case, the stochastic approach requires
additional information about the distribution function or the class
of possible distributions.
Here we pursue a non-stochastic approach, which presumes

that the parameters are deterministic but unknown (Ben-Haim,
2006; Ben-Tal & Nemirovski, 2008). First, we consider the case
of bounded uncertainty, in which parameters are assumed to be
bounded within a specific uncertainty set, and apply the maximin
strategy to select the decision that maximizes the minimum
utility (Section 3.1). We consider both uncertainties in delays
(Section 3.1.1) and in SNR (Section 3.1.2) and show that the basic
pattern of maximin performance curves for the former agrees well
with the experimental data, while that for uncertainties in SNR
does not.
We then consider the case in which only the family of uncer-
tainty sets, rather than a specific one, is known. In this case, ro-
bust decisions are based on the notion of satisficing, i.e., satisfying
an aspiration level of performance that is deemed sufficient. Si-
mon (1956, 1982), who coined this term, suggested that the ten-
dency to satisfice appears in many cognitive tasks including game
playing, problem solving, and financial decisions, in which people
typically do not or cannot seek an optimal solution (Reber, 1995).
Given an aspiration level of performance, the robust-satisficing
strategy (Ben-Haim, 2006) selects the decision that achieves that
performance under the largest uncertainty set as detailed in
Section 3.2. The resulting performance curves are slightly inferior
to the maximin performance curves in fitting the experimental
data. We therefore outline this strategy only briefly, and discuss
its potential relevance for other 2AFC experimental paradigms.
Robust decisions under parameter uncertainties can also

account for trial-to-trial variations in the parameter. Trial-to-
trial variations in drift rate are of special interest, given their
role in explaining differences between correct and error response
times (Section 2.2). Bounded trial-to-trial variations in drift rate
are considered in Section 3.1.2, where, in terms of the maximin
strategy, they are shown to be a special case of uncertainties in the
SNR. As mentioned above, robust decisions under uncertainties in
the SNR do not explain the experimental data well, so while trial-
to-trial variations in drift ratemay occur, they cannot alone explain
the observed sub-optimal performance.

3.1. Maximin performance curves

3.1.1. Uncertainties in delays

Uncertainty set: Uncertainties in delays may arise from poor
estimation. Extensive investigations of interval timing, reviewed
in Buhusi and Meck (2005), indicate that estimated intervals are
normally distributed around the true duration with a standard
deviation proportional to it. This is known as the scalar property
of interval timing (Gibbon, 1977); it suggests that the size of the
uncertainty set for the true interval increases with its duration.
According to Eq. (5), the RR is affected by both the non-decision

delay D = DRSI + T0 (which combines the response-to-stimulus
interval and the non-decision latency) and the total delay Dtot =
D + Dpen (which also includes the penalty delay), so we consider
uncertainties in both of these delays. Their estimated values are
referred to as the nominal delays, and denoted by D̃ and D̃tot.
Accounting for the scalar property of interval timing, subjects are
assumed to base their decisions on the assumption that the actual
values are within the presumed uncertainty set given by:

Up(αp : D̃, D̃tot)

=

{
D,Dtot > 0 :

∣∣∣D− D̃∣∣∣ ≤ αpD̃, ∣∣∣Dtot − D̃tot∣∣∣ ≤ αpD̃tot} , (10)
where the size of the uncertainty set is proportional to the nominal
delay with a proportionality constant αp. We refer to αp as the
presumed level of uncertainty, and note that it reflects the subject’s
assessment of how well he or she may estimate the interval’s
duration. In this section we assume that αp is known to the subject
based on past experience with interval timing.
Maximin decision strategy: The optimal strategy of Section 2.2
maximizes the RR that can be achieved with the nominal
delays, but ignores potential degradation in performance due
to unfavorable delays. Instead, the maximin strategy focuses on
the worst RR that could be obtained given the presumed level
of uncertainty αp, and selects the maximin threshold θMM that
maximizes this minimum, as defined next.
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Definition 3.1. Themaximin threshold θMM under uncertainties in
the delays is the threshold that maximizes the worst RR under the
presumed uncertainty set Up(αp : D̃, D̃tot) for the delays, given the
presumed level of uncertainty, αp, the nominal delays, D̃ and D̃tot,
and the SNR, η:

θMM(αp : η, D̃, D̃tot)

= argmax
θ

(
min

D,Dtot∈Up(αp:D̃,D̃tot)
RR(θ : η,D,Dtot)

)
. (11)

Maximin performance curves: The inner minimization in Eq. (11)
specifies the lowest RR possible using the threshold θ , given
that delays lie within the presumed uncertainty set. This occurs
when delays are longest, as detailed in Appendix B.1. Viewed as
a function of threshold θ , the worst RR has a single maximum,
which specifies the uniquemaximin threshold θMM , as described in
Appendix B.2. The resulting condition, Eq. (B.3), dictates a unique
SAT that must hold to maximize the worst RR, as stated in the next
theorem.

Theorem 3.1. Maximin performance curve under uncertainties in the
delays: Maximizing the worst RR under the presumed uncertainty set
given by Eq. (10), imposes the following tradeoff between the speed
(〈DT 〉/D̃tot) and accuracy (1− p(err)):

〈DT 〉
Dtot

= γ (1+ αp)

 1

p(err) log
(
1−p(err)
p(err)

) + 1
1− 2p(err)

−1 , (12)

where γ ≡ D̃tot
Dtot
is the ratio between the nominal and actual delays.

This tradeoff is referred to as themaximin performance curve (MMPC).

Proof. See Appendix B.2. �

TheMMPCs specified by Eq. (12) are simply scaled copies of the
OPC given by Eq. (7), which is the special case of a MMPC with
αp = 0 and γ = 1. Thus, the MMPCs define a one-parameter
family of performance curves parameterized by the scaling factor
γ (1+αp), as depicted in Fig. 2.When thenominal delay is exact, i.e.,
Dtot = D̃tot and hence γ = 1, the resulting MMPCs are referred to
as the nominal MMPCs (Fig. 2, dashed curves). When the nominal
delay differs from the actual value, the nominal MMPCs are further
scaled by the corresponding ratio γ . Assuming that the actual delay
is within the presumed uncertainty set, this ratio is bounded by
(1 + αp)−1 ≤ γ ≤ (1 − αp)−1. Thus, performance may range
within a performance band bounded above by the extreme MMPC
given by Eq. (12) with γ = (1− αp)−1 (Fig. 2, dash-dotted curves)
and below by the OPC obtained for γ = (1 + αp)−1 (Fig. 2, solid
curve).
Since the MMPCs are scaled copies of the OPC, they all

peak at the same error rate (≈17.41%, see Appendix A.2). The
MMPCs and performance bands capture the qualitative form of the
experimental data fairly well, especially for error rates in the range
15%–35%, in which the mean normalized decision times peak and
arewidely spread. Quantitative comparisons are given in Section 4.

3.1.2. Uncertainties in signal-to-noise ratios
Apart from delays, performance is also affected by the drift

rate A and noise variance σ 2 that characterize the DD process.
Uncertainty in these parameters gives rise to uncertainties in
the SNR η = A2/σ 2. Here we develop 2AFC strategies that are
Fig. 2. Maximin performance curves (MMPCs) and performance bands for two
presumed levels of uncertainty αp = 0.2, 0.4 in delays. Nominal MMPCs for
Dtot = D̃tot (dashed), and extreme MMPCs for Dtot = D̃tot(1 − αp) (dash-dotted)
and for Dtot = D̃tot(1 + αp) (solid) are shown; the latter coincide with the OPC for
all αp (cf. Eq. (12) with γ = (1+ αp)−1 and Eq. (7)). Performance bands consistent
with the presumed level of uncertainty are bounded by the extremeMMPC and the
OPC.

robust against uncertainties in the SNR, but show that the resulting
maximin performance curves do not match the experimental data
as well as MMPCs under uncertainties in delays.
The analysis is also extended to allow for trial-to-trial variations

in the SNR. In particular,we focus on variations in the SNR that arise
from trial-to-trial variations in drift rate, since these have been
important in explaining differences between correct and error
reaction times. Here, however, the drift rate in each trial is assumed
to be boundedwithin a presumed uncertainty set, instead of drawn
from a Gaussian distribution (Ratcliff et al., 1999). We show that
such trial-to-trial variations do not affect the performance curves,
and thus cannot contribute to explaining the observed sub-optimal
performance.
Uncertainty set for fixed SNR: First we consider the case in which
the SNR is fixed but unknown. The estimated SNR is referred to as
the nominal SNR, denoted by η̃. Given η̃, subjects are presumed
to base decisions on the assumption that the actual SNR is a fixed
value within the presumed uncertainty set specified by:

Up(αp, η̃) =
{
η > 0 : |η − η̃| ≤ αpη̃

}
. (13)

The case in which the actual SNR may vary from trial-to-trial is
considered at the end of this section.
Sources of uncertainty in SNR: A given level of uncertainty in the SNR
may reflect different combinations of uncertainties in drift rate and
noise variance. While neither of these factors appears explicitly
in the expression (5) for the reward rate, the drift rate appears
implicitly in defining the threshold-to-drift ratio θ = |xth/A|.
Thus, specifying θ defines the size of the actual threshold xth
unambiguously only if uncertainties arise solely fromuncertainties
in the noise variance.
Alternatively,whenuncertainties in the SNR are due to drift rate

alone, analysis is facilitated by normalizing the threshold by noise
variance and defining the threshold-to-noise ratio ϑ = |xth/σ |,
which specifies the size of xth unambiguously in this case. For
simplicity we consider only these two ideal cases: uncertainties
in the SNR arising from noise variance with known drift rate, and
uncertainties in the SNR arising from the drift rate, with known
noise variance.
Uncertainties in noise variance: The maximin threshold and
resulting MMPCs are developed in Appendix B.3, and depicted in
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Fig. 3. MMPCs for two presumed levels αp = 0.3, 0.6 of uncertainties in the SNR
arising from uncertain noise variance. Nominal MMPC for η = η̃ (dashed), and
extreme MMPC for η = η̃(1 + αp) (dash-dotted) and for η = η̃(1 − αp) (solid);
the latter coincide with the OPC for all αp . Performance bands for the SNR within
the range consistent with the presumed uncertainty are bounded by the extreme
MMPC and the OPC.

Fig. 4. MMPCs for two presumed levelsαp = 0.45, 0.9 of uncertainty in SNR arising
from uncertain drift rate. Nominal MMPC for η = η̃ (dashed), and extreme MMPCs
for η = η̃(1+ αp) (dash-dotted) and for η = η̃(1− αp) (solid); the latter coincides
with the OPC for allαp . Performance bands for SNRwithin the range consistentwith
the presumed uncertainty are bounded by the extreme MMPC and the OPC.

Fig. 3 for two levels of presumed uncertainty. The curves exhibit
a leftward shift in the peak location that is not characteristic of
the experimental data, and stands in contrast with the MMPCs
for uncertainties in delays (see Fig. 2). We shall nonetheless
revisit these MMPCs in the detailed comparison presented in
Section 4, in order to quantitatively assess the relative likelihood
of uncertainties in delays versus uncertainties in the SNR (due to
noise variance) in accounting for the experimental results.
Uncertainties in drift rate: The maximin threshold and resulting
MMPCs are developed in Appendix B.4, and depicted in Fig. 4 for
two levels of presumed uncertainty. They also exhibit leftward
shifts in peak values and moreover lie below the OPC for most
error rates. Since these MMPCs deviate even further from the
data than those of Fig. 3, they are excluded from the comparisons
of Section 4. They are nonetheless important in evaluating the
maximin strategy under trial-to-trial variations in the drift rate, as
described next.
Trial-to-trial variations in drift rate: Trial-to-trial variations in drift
rate have been invoked to explain the differences between the
correct and error reaction times (Ratcliff, 1978; Ratcliff et al.,
1999; Smith & Ratcliff, 2004). Here we extend our robust analysis
to account for such variations and assess their effect on the
performance curves. Instead of drawing drift rates from a Gaussian
distribution, we assume that they belong to an infinite sequence
of unknown but bounded values. Following the discussion above,
variations in drift rate are formulated as trial-to-trial variations
in the SNR with fixed and known noise variance. The presumed
uncertainty set for an infinite sequence of SNRs is

Up,seq(αp, η̃) =
{
{ηi}
∞

i=1 : ηi > 0, |ηi − η̃| ≤ αpη̃
}
, (14)

where ηi denotes the SNR on the ith trial.
With known noise variance, the threshold-to-noise ratio ϑ

determines the actual threshold unambiguously. For a fixed
threshold-to-noise ratio, the worst case scenario that guides the
maximin strategy is independent of whether the SNR is fixed or
allowed to vary from trial to trial. Hence, for the same presumed
level of uncertainty αp, the worst case performance is the same, as
stated in the next theorem:

Theorem 3.2. Worst performance with a variable SNR: Consider
a 2AFC task with fixed threshold-to-noise ratio ϑ . The worst
performance that can occur with any sequence of bounded SNRs
consistentwith the presumeduncertainty set of Eq. (14) coincideswith
the worst performance that can occur with a fixed SNR consistent with
the presumed uncertainty set of Eq. (13) at the same presumed level
of uncertainty αp.

Proof. See Appendix B.5. �

Theorem 3.2 implies that the performance curves for the
variable SNR case considered above are the same as those for the
fixed SNR case depicted in Fig. 4. Since these MMPCs do not match
the experimental data well, robust strategies for uncertainties in
drift rate cannot account for the observed SATs, even when they
include bounded trial-to-trial variations.

3.2. Robust-satisficing performance curves

Robust-satisficing decision strategy: The maximin strategy pre-
sumes that the level of uncertainty is known. Furthermore, it ap-
peals to worst case performance, which may be very unlikely, and
it yields prudent and pessimistic decisions. Robust-satisficing in-
stead focuses on meeting a sufficient or required level of perfor-
mance despite the uncertainties (Ben-Haim, 2006). It has been ap-
plied successfully to explain a range of decision making, including
foraging behavior, where a critical level of food intake is required
for survival (Carmel & Ben-Haim, 2005), and equity premium, in
which a critical level of return is required (Ben-Haim, 2006).
As shown in this section, applying the robust-satisficing

strategy to 2AFC tasks results in performance curves that
differ from those associated with the maximin strategy. Under
uncertainties in delays, these robust-satisficing performance
curves (RSPCs) are marginally inferior to the MMPCs in describing
the experimental data, while performance curves for uncertainties
in SNR deviate substantially from it. Thus, we focus on robust-
satisficing against uncertainties in delays.While theMMPCsmatch
the data better, we argue in the discussion that thismay depend on
the reward policy and that robust-satisficing may be relevant for
explaining decision making in other 2AFC tasks. The presentation
is brief, with details deferred to Appendices.
Info-gap model: When the level of uncertainty is unknown, only
a family of uncertainty sets, rather than a unique set, can be
specified. Motivated by the scalar property of interval timing, the
presumed uncertainty set of Eq. (10) is extended to define an
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Fig. 5. Robust satisficing performance curves (RSPCs, dashed) for uncertainties in
delays given three normalized required performance levels q = (R−1r − D)/Dtot .
Here the nominal delay ratio D̃/D̃tot = 1 is assumed, corresponding to the case
of zero penalty delay. The OPC (solid) bounds the RSPCs below, but extensions of
RSPCs under the OPC are also relevant (cf. dash-dotted line for q = 0.5) and see
Appendix B.7).

unbounded, nested family of uncertainty intervals parameterized
by the level of uncertainty α:

U(α : D̃, D̃tot)

=

{
D,Dtot > 0 :

∣∣∣D− D̃∣∣∣ ≤ αD̃, ∣∣∣Dtot − D̃tot∣∣∣ ≤ αD̃tot} ,
∀α ≥ 0. (15)

Such a structure is known as an information-gap (info-gap) model
of uncertainty (Ben-Haim, 2006). Unboundedness implies that the
lengths of the intervals increase without bound as the uncertainty
level increases. Nesting implies that the intervals associated with
larger uncertainty levels include those associated with smaller
levels.
Robustness and robust-satisficing threshold: Consider a fixed thresh-
old θ , which achieves the nominal reward rate RR(θ : η, D̃, D̃tot) of
Eq. (5), under the nominal delays D̃ and D̃tot. As the level of uncer-
tainty increases, adverse delays may be encountered and the re-
ward rate may deteriorate. Robustness assesses how far the level
of uncertainty may increase without jeopardizing the required RR.
Noting that a better than nominal RR cannot be guaranteed even
without uncertainty, the robustness for such a requirement is de-
fined to be zero. Otherwise, the robustness is the largest level of
uncertainty under which the required RR can be guaranteed. For
a fixed threshold, robustness is a non-increasing function of RR:
RR = 0 (if such would ever satisfy anyone!) may be achieved with
infinite robustness, while better than nominal RRs have zero ro-
bustness. SeeAppendix B.6 for rigorous definitions andderivations.
Given a sub-optimal required reward rate Rr , the robust-

satisficing strategy selects the threshold that provides the largest
robustness. The resulting RSPCs are derived in Appendix B.7 (see
Eq. (B.27)). Representative RSPCs are depicted in Fig. 5 (dashed
lines) for zero penalty delay Dpen = 0 (i.e., D = Dtot), and three
different levels of normalized required performance q ≡ (R−1r −
D)/Dtot. All the RSPCs peak at p(err) ≈ 13.52%: to the left of
the OPCs and MMPCs that peak at p(err) ≈ 17.41%. Since the
RSPCs are evaluated for Dpen = 0, they must be evaluated against
experiments without penalty delays. This is done in Section 4,
where it is shown that the leftward shift slightly degrades the data
fit (see Fig. 6 and Table 4).
The robust satisficing strategy is relevant only when the

required reward rate is sub-optimal, i.e., Rr < RRop(η : D̃, D̃tot).
Table 2
Numbers of experimental conditions falling into each error rate bin for the three
panels of Fig. 6.

Error rate range (%) Top 30% Middle 60% Bottom 10%

0–5 37 82 9
5–10 17 32 7
10–15 12 12 3
15–20 12 23 6
20–25 19 35 2
25–30 15 39 5
30–35 7 13 4
35–40 1 6 2
40–45 1 5 2
45–50 4 3 2

In Appendix B.7 it is shown that this constrains the RSPCs to lie
above the OPC. Since the experimental data also primarily lies
above the OPC, this is the main region of interest. Nevertheless, as
noted in Appendix B.7, the extension of RSPCs below the OPC is
also meaningful and the complete RSPCs are used for the analysis
of Section 4.

3.3. Summary of robust strategies

We have presented two robust strategies, maximin and robust-
satisficing, and derived the associated performance curves under
different sources of uncertainty. Performance curves strongly
depend on the source of uncertainty and appear to qualitatively
match the data of Fig. 1 best for uncertainties in delays, with
MMPCs seeming marginally superior to RSPCs (Figs. 2 and 5).
Uncertainties in SNR do not appear as relevant to the present data,
particularly when they arise from uncertainties in drift rate (Fig. 4)
rather than noise variance (Fig. 3).

4. Comparisons with experimental data

In this sectionwe assess quantitative fits of robust performance
curves to the behavioral data. Following the qualitative analyses
of Section 3 (summarized in Section 3.3) we focus on the three
best candidates: MMPCs and RSPCs for uncertainties in delays, and
MMPCs for uncertainties in noise variance. For comparison,we also
assess the OPCs for the alternative objective functions introduced
in Section 2.3: the modified reward-accuracy rate RA andmodified
reward-rate RRm.
Experimental data: We limit our comparison to data from blocks
with no penalty delays Dpen = 0 (i.e., Dtot = D), because
OPCs for RRm and RA are only defined for Dpen = 0, and RSPCs
for uncertainty in delays involve the ratio D/Dtot, which differs
between blocks with Dpen = 0 and Dpen > 0.
As noted in Section 2, the SAT differs among subjects with

different total scores, and hence performance curves must be
compared with data from different groups of subjects separately.
In particular, some subjects with the lowest scores had decision
times an order of magnitude higher than others (see the bottom
panel of Fig. 6), and we therefore analyze the lowest 10% of
subjects separately. We then split the remaining 90% into 3 equal
groups, but upon finding no significant difference between the
mean normalized decision times of the 30%–60% and 60%–90%
groups (paired t-test across 10 ranges of error rates: p > 0.35),
we henceforth pooled the data from these two groups. Normalized
decision times for the resulting middle 60% and for the top 30%
groups are shown in the upper panels of Fig. 6. The number of
experimental conditions falling into each bin (i.e. the number of
data points averaged to obtain each mean decision time) is given
in Table 2.
Fitting method: Except for the parameter-free OPC for RR, each
performance curve includes one free parameter, denoted by q or
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Fig. 6. Comparisons of performance curves with mean normalized decision times from experimental blocks with Dpen = 0 for three groups of subjects sorted by total
rewards acquired. Error bars show the standard error of mean normalized decision times. Note the difference in scale of the vertical axes in upper and lower panels. Here
and throughout this section, maximinSNR refers to the MMPC due to uncertainty in noise variance, maximinD and robustD refer to MMPC and RSPC, respectively, due to
uncertain delays.
α. We estimated these parameters via the maximum likelihood
method, using the standard assumption that normalized decision
times are normally distributed around the performance curve
being fitted, with variance estimated from the data. As noted in
Section 2.3, the OPC for RA is not defined for weight parameters
q > 1.096 (cf. inequality (A.5) of Appendix A.2) and the OPC for
RRm is not defined for p(err) s close to 0.5 if q > 1, so in fitting
these functions we restricted to q ≤ 1.096 and q ≤ 1 respectively.
Further comments appear below and in Appendix C.
Results: Fig. 6 shows the best-fitting performance curves for
the three groups, and parameter values estimated for each
performance curve are given in Table 3. For each family of
performance curves, the corresponding parameter α or q increases
as the total score decreases, being lowest for the top 30% and
highest for the bottom 10% of subjects. This is consistent with
natural interpretations of the various strategies, as follows: (i) for
MMPCs it implies that poorer performers have a higher presumed
uncertainty in delays or SNR; (ii) for RSPCs it implies that they
require lower levels of reward, and (iii) for the RRm and RA criteria
it implies that they place a higher emphasis on accuracy. Note that
the best fit for the RA theorywith the lowest 10% iswith q = 1.096,
at the constraint limit of Eq. (A.5), and that the corresponding OPC
has become concave on either side of its sharp peak.
Comparison of likelihoods of data given different performance

curves reveals that the MMPC with uncertainty in delays fits the
data best for all three groups of subjects. Table 4 shows the ratios
of the likelihood of the data given the MMPC with uncertainty
in delays, with likelihoods given each of the other performance
curves. For the top 30% of subjects all curves fit comparably
well, except the OPC for RR. Differences in fit qualities increase
significantly for the middle and bottom groups, and are also high
when considering the data from all subjects, as summarized in
the last column of Table 4. These indicate that the data is several
Table 3
Values of performance curve parameters (q or α) estimated using the maximum
likelihood method from the data from the three groups of subjects sorted by total
earning. For the MMPC with uncertainty in SNR and bottom 10%, the higher the
value of α the higher the likelihood of the data. See Table 1 for abbreviations.

Performance curve Top 30% Middle 60% Bottom 10%

MMPC for D 0.22 1.02 5.84
MMPC for SNR 0.19 0.54 ∞

RSPC for D 0.72 1.85 8.57
OPC for RRm 0.14 0.49 0.98
OPC for RA 0.15 0.55 1.096

orders of magnitudemore likely given theMMPCwith uncertainty
in delays, than given the OPC for either RR or RRm or the MMPC
with uncertainty in SNR. It also shows that the data is over 13 (or
43) times more likely given the MMPC with uncertainty in delays,
than the RSPC with uncertainty in delays (or the OPC for RA). In
summary, the MMPC with uncertainty in delays provides the best
fit for all three subgroups, followed closely by the RSPC for delays
and the OPC for RA.
At least two effects influence the reliability of the likelihood

ratio estimates. First, the test assumes that experimental decision
times are normally distributed around the performance curve
being fitted. We assessed this in Appendix C, concluding that
there is no evidence for non-Gaussianity in the majority of bins,
although up to 3 out of the 10 distributions in each group are
significantly non-Gaussian, being skewed toward longDTs. Second,
likelihood ratios may depend on the way that subjects are split
into groups, since we implicitly assume a homogeneous strategy
within each group. To investigate this we fitted data from six
additional splits, ranging from all 80 individuals treated singly,
to two groups of 40 subjects each. As described in Appendix C,
while different splits lead to different likelihood ratios, the relative
ordering of performance curves remains essentially the same as
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Table 4
Likelihood ratios of the data given theMMPCwith uncertainty inD compared to other performance curves (rows), for different groups of subjects (columns). The last column
is the product of the first three and thus expresses likelihood ratios for all data. The higher the likelihood ratio, the less likely is it that the data could be generated by the
corresponding model, in comparison to the MMPC with uncertainty in D. To account for the fact that all curves have one free parameter except the OPC, the bottom row
includes in brackets the ratio of the likelihood of the data given the two curves divided by exp(1), as suggested by Akaike (1981): see Appendix C. See Table 1 for abbreviations.

Performance curve Top 30% Middle 60% Bottom 10% Product

MMPC for SNR 1.13 >108 308.38 >1010
RSPC for D 1.99 4.04 1.72 13.82
OPC for RRm 1.28 38.79 208.47 >104
OPC for RA 1.11 8.11 4.83 43.48
OPC for RR 47.34 [17.42] >1021 >106 >1028
that of Table 4. We therefore believe that the conclusions drawn
above and developed in Section 5, are sound.
We end this section with a brief discussion of the alternative

hypothesis noted in Section 2.2, that subjects may try to optimize,
but do so using erroneous parameter estimates. As pointed out
there, both over- and under-estimation of thresholds would be
expected in such a case, yielding individual performances above
and below the OPC. We tested this by computing, for each
subgroup of subjects, the fraction of individual performances
below the OPC. For the top 30% of subjects this is 50.6%, and
for the remaining subgroups 25.9% and 0% respectively. Although
the individual subject data shows substantial scatter (not shown
here), this finding supports our contention that while the top
group of subjects may indeed try to optimize, the remaining 70%
systematically employ higher thresholds.

5. Discussion

We have developed an approach to two-alternative forced
choice (2AFC) tasks that accounts for potential uncertainties in
experimental conditions, specifically, estimated delays and signal-
to-noise ratio. Two strategies – maximin and robust satisficing
– were proposed. The former assumes that subjects maximize
guaranteed performance under a presumed uncertainty level;
the latter assumes that they maximize the uncertainty under
which a required level of performance can be guaranteed. We
compared these strategies with optimal procedures based on
reward rate and modified reward rates weighted for accuracy,
and found that the maximin strategy with uncertainties in delays
predicts performance curves that best match behavioral data from
a group of 80 subjects (Fig. 6). Performance curves predicted by
the robust satisficing strategy with uncertainties in delays, and
optimization of a modified reward-accuracy rate (RA) are the
closest competitors. Additional experiments are needed to further
assess which strategy is more consistent with human decision
making, as discussed at the end of the section.
The robust strategies result in performance bands around the

nominal performance curves. These bands explain well the range
of mean normalized decision times observed for a given error rate.
We also considered the alternative hypothesis that subjects may
try to optimize, butwith erroneous parameter estimates.We found
it inconsistent with the observation that most subjects tended to
perform above rather than below the OPC.
Accounting for uncertainty in the parameters of the pure DD

model provides an alternative to the probabilistically-extendedDD
model that includes trial-to-trial parameter variations (Smith &
Ratcliff, 2004).We show that uncertainty in the SNR can be derived
from trial-to-trial variations in the drift rate, albeit bounded ones,
and thus can also account for differences between response times
for correct and error trials. However, unlike those for uncertainties
in delays, we find that the resulting performance curves do not
match well the experimental data (nor do performance curves for
Gaussian-distributed drift rates (Bogacz et al., 2006). This does not
mean that trial-to-trial variations in the SNR are absent, but it may
imply that the presumed uncertainty in the SNR is much smaller
than the presumed uncertainty in delays.
It is notable that uncertainties in delays result in performance

curves that fit the data well, while uncertainties in SNR do not
do so. A major source of the former may be attributed to the
scalar property of interval timing (Buhusi & Meck, 2005; Gibbon,
1977). Psychophysical experiments suggest that elapsed time
estimates are distributed normally around the true value, with a
standard deviation proportional to it. Thus the sizes of confidence
intervals around an estimated experiential delay are proportional
to the delay itself. This relationship is captured by the presumed
uncertainty set of Section 3.1, and info-gap model of Section 3.2.
In contrast to potential uncertainties in estimating time intervals,
human subjects seem to be very sensitive to SNR levels. For
example, Luijendijk (1994) found that the perception threshold
for noise in images was as much as 27 dB below the signal level.
This suggests that humans can accurately assess the SNR, although
further, more direct, experimental verification would be required.
The underlying assumption in this paper is that subjects either

optimize or satisfice by setting their decision thresholds based
on estimates of intertrial delays and SNR, as modeled by a
DD process. In a related study, Simen et al. (2006) proposed a
neural network model for rapid threshold adjustment based on
estimates of reward rate RR that are updated as trials proceed.
Their model relies on prior, long-term, learning of an approximate
linear relationship between maximum RR and threshold that is
independent of SNRover an appropriate SNR range. It too implicitly
assumes the ability to estimate time intervals, since the discrete
rewards following correct responses must be converted into RR,
and it also suggests that the SNR may not play as important a role
as delays.
As noted in Section 3, satisficing was first introduced by Simon

(1956, 1982) to account for decisionsmotivated by a level of aspira-
tion, rather than optimization. Optimization has been heavily crit-
icized due to its dependence on unrealistic amounts of knowledge
and simplifying assumptions (Gigerenzer, 2001). Instead, decision
making based on bounded rationality (Gigerenzer, 2001, 2002;
Gigerenzer & Goldstein, 1996) stresses the importance of proper
cues for evaluating different alternatives and heuristics for making
fast and frugal decisions. The Take-The-Best heuristic, for example,
suggests focusing on the best cue that differentiates between the
alternatives. In the context of the DD model Eq. (1), this may sug-
gest monitoring the state variable x(t) as the cue; but the issue of
determining the threshold is left open.
We propose two kinds of additional experiments to investigate

whether subjects satisfice or optimize in 2AFC: (i) direct investiga-
tion of the effects of induced uncertainties, and (ii) correlation of
performance in 2AFC with accuracy in interval timing. Uncertain-
ties could be induced by varying the SNRs randomly in each block
of trials, although this violates the assumption of statistical station-
arity on which the optimality proofs for the SPRT and DD model
rely. Alternatively, response-to-stimulus intervals, DRSI, could be
drawn from a distribution with a fixedmean D̄RSI, thus keeping the
mean D̄tot constant on blocks. D̄RSI and the variance of the distri-
bution could then be changed from block to block and the effects
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on performance assessed in comparisonwith the different decision
strategies.
Alternatively, a subject’s standard deviation in interval timing,

σI , could be measured directly in separate time-estimation trials,
and then correlatedwith performance on 2AFC tasks. Themaximin
strategy suggests that the normalized decision time 〈DT 〉/Dtot is
proportional to 1+αp. Assuming that the presumed uncertaintyαp
is proportional to σI , there should be a correlation (across subjects)
between 〈DT 〉/Dtot’s in 2AFC experiments and average errors
in interval timing. One could also correlate timing ability with
performance on a deadlined choice task with substantial penalties
for failures to respond before the deadline. Unlike the free response
paradigm, poor timers are predicted to respond prematurely, and
hence faster and less accurately, under such conditions (Frazier &
Yu, 2007): in the opposite direction to their suboptimal slower and
more accurate free response behavior.
The robust satisficing strategy is relevant when a critical

performance level must be met, while the maximin strategy is
appropriate for optimizing performance under a presumed level
of uncertainty. The current results indicate that the majority
of subjects in 2AFC tasks seem to follow maximin rather than
robust satisficing or optimal performance curves. It would also be
interesting to investigate whether subjects change their strategy
under different conditions, e.g., do they resort to robust satisficing
when the success of the whole block (and the consequent net
reward) depends on achieving a specific level of performance. This
question could be addressed by additional experiments in which a
fixed reward is given when outperforming a preset required level,
instead of the current paradigm in which the reward increases
linearly with the number of correct responses.
As noted in Section 1, the pure DD model is analytically

tractable, yielding explicit, parameter-free OPCs. It supports a nor-
mative decision theory that can explain sub-optimal experimen-
tal data by allowing analytical derivation of one-parametermodels
for comparison with the optimal strategy that maximizes reward
rate. The current analysis suggests that robust strategies against
uncertainties in delays best explain the sub-optimal results in the
present data. Nevertheless, additional potential sources of nonop-
timality identified in Section 2.1 should also be investigated.
The proofs and mathematical details are given in the Appen-

dices below.
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Appendix A. Reward rate and optimal performance

A.1. Reward rate

Lemma A.1. Let the random variable St denote the number of correct
decisions in time t. As t →∞, the mean number of correct decisions
per unit time 〈St〉/t approaches the RR defined by Eq. (4).

Proof. Consider the DD model of Eq. (1), which is re-initialized
immediately after crossing the threshold. The resulting passage
times define a sequence of points in time, and hence may be
regarded as a realization of a point process. Furthermore, since the
first passage time is independent of the previous passage times, the
resulting point process can be described as a renewal process (Cox,
1962), i.e., a point process in which intervals between the points
are the realizations of a random variable T whose pdf depends only
on the time since the last point (i.e., last passage time). Let Nt be
the random variable indicating the number of passages in time t .
For a renewal process the asymptotic distribution of Nt for large
t is normal with mean 〈Nt〉 = t/〈T 〉 (Cox, 1962, Eq. (3.3.3)) (this
relies on the asymptotic normal distribution of the sum of the first
r renewals for large r). So, for large t , t = 〈T 〉〈Nt〉.
Let p(corr) be the probability that a decision be correct. Then,

for n decisions the mean number of correct decisions is: 〈St |Nt =
n〉 = p(corr) n; and the mean number of correct decisions is:

〈St〉 =
∞∑
n=0

〈St |Nt = n〉 Pr[Nt = n]

= p(corr)
∞∑
n=0

n Pr[Nt = n] = p(corr)〈Nt〉. (A.1)

Hence, asymptotically as t →∞we have

〈St〉
t
=
p(corr)〈Nt〉
〈T 〉〈Nt〉

=
p(corr)
〈T 〉

. (A.2)

The proof is completed by noting that the decision times form
a renewal process too, where each decision interval equals
the corresponding first passage time plus processing and delay
intervals. Substituting p(corr) = 1 − p(err) and 〈T 〉 = 〈DT 〉 +
T0 + DRSI + Dpenp(err) in Eq. (A.2) results in Eq. (4). �

A.2. Families of OPCs for alternative objective functions RA and RRm

Employing Eqs. (3) and an analog of (6) as in Section 2.2, the
expression (8) for RA may be maximized to yield a family of OPCs
parameterized by q:

〈DT 〉
Dtot
=

E − 2q−
√

E2 − 4q(E + 1)
2q

, (A.3)

where E =

 1

p(err) log
(
1−p(err)
p(err)

) + 1
1− 2p(err)

 (A.4)

is the reciprocal of the OPC for RR given by (7). In Lemma A.2
below we prove that E has a unique minimum (and hence that
the OPC for RR has a unique peak) at p(err) ≈ 0.1741. It follows
that the mean normalized decision times given by Eq. (A.3) are
non-negative real numbers provided that the weight satisfies the
following inequality:

q ≤ min
{

E2

4(E + 1)

}
=

E2min
4(Emin + 1)

. (A.5)

Numerically, we find Emin ≈ 5.224, implying that q ≤

1.096. Moreover, differentiating the expression in (A.3)–(A.4) with
respect to p(err), we find that its critical points coincide with the
minimum of E for all q satisfying (A.5), implying that the the OPCs
for RA all peak at p(err) ≈ 0.1741, as for RR.
A similar computation for the objective function (9) for RRm

leads to the following OPC family:

〈DT 〉
Dtot
= (1+ q)

 1
p(err) −

q
1−p(err)

log
(
1−p(err)
p(err)

) + 1− q
1− 2p(err)

−1 , (A.6)
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whosemean normalized decision times are non-negative provided
that q ≤ 1. Unlike the OPCs for RA, the maxima of the family (A.6)
move rightward with increasing q (Fig. 6). Eqs. (A.3) and (A.6) both
reduce to (7) for q = 0.

Lemma A.2. The function E of Eq. (A.4) has a unique minimum E ≈
5.224 at ER ≈ 0.1741 and E approaches +∞ as ER → 0 and as
ER→ 0.5.

Proof. The limits at ER = 0 and 0.5 are obtained directly for the
second term in E , and via L’Hôpital’s rule for the term involving
logarithms. Before computing the derivative to prove that there is
a uniqueminimum, it is convenient to change variables by defining

y =
1− p(err)

p
(err)⇒ p(err) =

1
1+ y

; (A.7)

note that as p(err) rises from 0 to 0.5, y falls monotonically from
+∞ to 1. We then have

dE
dy
=
d
dy

[
y+ 1
log(y)

+
y+ 1
y− 1

]
=
log(y)− 1− y−1

[log(y)]2
−

2
(y− 1)2

. (A.8)

Setting Eq. (A.8) equal to zero and rearranging, we find that critical
points of E occur at the roots of

log(y)− y−1 = 1+ 2
[
log(y)
y− 1

]2
, (A.9)

but in fact the solution is unique, since the left hand side of (A.9) is
strictly increasing from−1 to∞ and its right hand monotonically
decreases from 2 to 1, as y goes from 1 to ∞. The former claim
is easy to check, and the latter follows from computation of the
derivative of [log(y)/(y− 1)]:

d
dy

[
log(y)
y− 1

]
=
1− y−1 − log(y)

(y− 1)2
. (A.10)

This expression is clearly negative for all y ≥ e, and the following
series expansion shows that it is in fact negative for all y > 1 and
zero only at y = 1:

log(y) =
∞∑
j=1

1
j

(
y− 1
y

)j
= 1− y−1 +

∞∑
j=2

1
j

(
y− 1
y

)j
, (A.11)

see Abramowitz (1972, Formula 4.1.25). Numerical solution of
Eq. (A.9) yields the estimates of the lemma. �

Appendix B. Robust performance

B.1. Extreme performance under uncertainties in delays

The worst (minimal) reward rate that may occur under the pre-
sumeduncertainty setUp(αp : D̃, D̃tot) for the delays, is denotedby:
RRMIN(αp : θ, η, D̃, D̃tot) ≡ minD,Dtot∈Up(αp:D̃,D̃tot) RR(θ : η,D,Dtot).
According to Eq. (5), theRR isminimizedwhen the actual delays are
the longest possible within the presumed uncertainty set. Given
the presumed uncertainty set of Eq. (10), the longest possible de-
lays are D = D̃(1+ αp) and Dtot = D̃tot(1+ αp), so:

RRMIN(αp : θ, η, D̃, D̃tot)

=

[
θ + D̃(1+ αp)+ [D̃tot(1+ αp)− θ ] exp(−2ηθ)

]−1
. (B.1)

We note that when there are no delays, the reward rate, denoted
by RR0, is RR0(θ, η) ≡ [θ(1− exp(−2ηθ))]−1.
Similarly, the best performance (maximum RR) that can
be obtained is denoted as: RRMAX(αp : θ, η, D̃, D̃tot) ≡

maxD,Dtot∈Up(αp:D̃,D̃tot) RR(θ : η,D,Dtot). According to Eq. (5), RR
is maximized when the actual delays are the shortest, i.e., when
D = max(0, D̃(1− α)) and Dtot = max(0, D̃tot(1− α)). For α ≤ 1,
we have:

RRMAX(αp ≤ 1 : θ, η, D̃, D̃tot)

=

[
θ + D̃(1− αp)+ [D̃tot(1− αp)− θ ] exp(−2ηθ)

]−1
. (B.2)

The case α ≥ 1 includes the favorable condition of zero delays, so
RRMAX(αp ≥ 1 : θ, η, D̃, D̃tot) = RR0(θ, η).

B.2. Maximin performance curves under uncertainties in delays

Here we prove Theorem 3.1. Specifically, we develop the
maximin performance curves (MMPC) given that the uncertainties
in the delays are described by the presumed uncertainty set of Eq.
(10) with the presumed level of uncertainty αp.

Proof of Theorem 3.1. The inner minimization in Eq. (11) speci-
fies theworst reward rate thatmight be obtained using the thresh-
old θ , given the uncertainty set of Eq. (10) and the presumed level
of uncertainty αp. The worst (minimal) reward rate RRMIN, is de-
rived in Appendix B.1, and given by Eq. (B.1). The maximin thresh-
old θMM should maximize Eq. (B.1). Differentiating the RRMIN(αp :
θ, η, D̃, D̃tot) given by Eq. (B.1) with respect to θ and setting this
derivative to zero results in the following condition for the max-
imin threshold θMM :

exp(2ηθMM)− 1 = 2η[D̃tot(1+ αp)− θMM ]. (B.3)

It is straightforward to verify that when this condition holds, the
second derivative is negative, and hence condition Eq. (B.3) defines
a unique maximum for the worst reward rate, RRMIN.
Finally, substituting Eq. (3) in Eq. (B.3), and setting γ ≡ D̃tot

Dtot
results in themaximin performance curve (MMPC) of Eq. (12). �

B.3. Maximin performance curves for uncertainties in noise variance

Here we consider uncertainties in the SNR that arise from
uncertainties in the noise variance. Thus, the uncertainty set for the
SNR, specified by Eq. (13), is assumed to reflect uncertainties in the
noise variance, while the drift rate A in each experimental block is
assumed fixed and known. In this case, determining the threshold-
to-drift ratio θ unambiguously defines the threshold xth = Aθ for
the DD process of Eq. (1).

Definition B.1. Maximin threshold-to-drift ratio under uncertainties
in the SNR: Themaximin threshold-to-drift ratio θMM is the one that
maximizes the worst RR under the presumed level of uncertainty
αp in the SNR, given the delays and nominal SNR:

θMM(αp : η̃,D,Dtot)

= argmax
θ

(
min

η∈Up(αp,η̃)
RR(θ : η,D,Dtot)

)
. (B.4)

Theorem B.1. Maximin threshold-to-drift ratio under uncertainties
in SNR: Given the presumed uncertainty set given by Eq. (13) with
αp ≤ 1, the maximin threshold-to-drift θMM satisfies:

exp(2η̃(1− αp)θMM)− 1 = 2η̃(1− αp)(Dtot − θMM). (B.5)

Proof. The inner minimization in Eq. (B.4) specifies the worst
reward rate that may occur under the presumed uncertainty set
Up(αp, η̃) for the SNR, and is denoted by: RRMIN(αp : θ, η̃,D,
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Dtot) ≡ minη∈Up(αp:η̃) RR(θ : η,D,Dtot). According to Eq. (5), the
minimization of the RR with respect to η depends on the sign of
Dtot − θ . We note that for the optimal threshold, Eq. (6) implies
that Dtot − θop > 0.
First, we consider thresholds that satisfyDtot−θ > 0, for which

RR is minimized at the lowest SNR, i.e., ηL = max{0, (1−αp)η̃}, so
for αp ≤ 1:

RRMIN(αp ≤ 1 : θ, η̃,D,Dtot)

=
[
θ + D+ (Dtot − θ) exp(−2η̃(1− αp)θ)

]−1
. (B.6)

The case αp ≥ 1 includes the worst condition of zero SNR.
The resulting performance RRMIN(αp ≥ 1 : θ, η̃,D,Dtot) =
[D+ Dtot]−1, corresponding to instant response at chance level
(i.e., with p(err) = 0.5 cf. Eq. (2)), is referred to as chance
performance and denoted by RRchance ≡ [D+ Dtot]−1. Chance
performance can be achieved even under infinite uncertainty, and
is thus of no interest.
Concentrating on αp ≤ 1, we note that for either θ = 0 or

θ = Dtot, the worst reward rate is the chance level: RRMIN(αp ≤
1 : θ = 0, η̃,D,Dtot) = RRMIN(αp ≤ 1 : θ + Dtot, η̃,D,Dtot) =
RRchance. Furthermore, at θ = 0, the derivative of RRMIN(αp ≤
1 : θ, η̃,D,Dtot) with respect to θ is positive, and hence there is
at least a local maximum of Eq. (B.6) for thresholds in the range
0 < θ < Dtot. Differentiating Eq. (B.6)with respect to θ , and setting
the derivative to zero, indicates that θMM must satisfy Eq. (B.5). It is
straightforward to verify that RRMIN(αp ≤ 1 : θMM , η̃,D,Dtot) is a
maximum by evaluating the second derivative at θMM that satisfies
Eq. (B.5).
For large thresholds that satisfy Dtot − θ < 0, the RR is

minimized at the highest SNR, i.e., ηH = (1+ αp)η̃, so:

RRMIN(αp : θ, η̃,D,Dtot)

=
[
θ + D+ (Dtot − θ) exp(−2η̃(1+ αp)θ)

]−1
. (B.7)

Noting that the last term is always negative, and that since αp ≥
0, the exponent is always less than unity, i.e., (exp(−2η̃(1 +
αp)θ) < 1), we conclude that RRMIN(αp : θ, η̃,D,Dtot) <

[θ + D+ (Dtot − θ)]−1 = RRchance. As argued above, sub-chance
performance levels, i.e., RR < RRchance, can be achieved even under
infinite uncertainty, and are thus of no interest. �

When the presumed level of uncertainty is zero, Eq. (B.5) for
the maximin threshold-to-drift ratio reduces to Eq. (6) for the
optimum threshold.
Assuming that the nominal SNR is the actual SNR (η = η̃), the

nominal MMPC for a presumed level of uncertainty αp ≤ 1 in the
SNR, can be derived by substituting Eq. (3) in Eq. (B.5):

〈DT 〉
Dtot
= [1− 2p(err)]


(
1−p(err)
p(err)

)χ
− 1

χ log
(
1−p(err)
p(err)

) + 1
−1 , (B.8)

where χ ≡ 1−αp. Under uncertainties in the SNR, the MMPCs are
not scaled version of the OPC (Eq. (7)), but reduce to it when the
uncertainty vanishes (χ = 1).
If the SNR varieswithin the range consistentwith the presumed

level of uncertainty, i.e., η ∈ [η̃(1 − αp), η̃(1 + αp)] for αp ≤ 1,
the maximin performance bands are bounded below (for η =
η̃(1 − αp)) by the OPC (Eq. (7)), and above (for η = η̃(1 + αp))
by Eq. (B.8) with χ = 1−αp

1+αp
.

B.4. Maximin performance curves under uncertainties in drift rate

Here we consider uncertain drift rates. In this case, specifying
the threshold-to-drift ratio θ ≡ |xth/A| does not specify the pro-
cess threshold xth unambiguously, since the latter depends on the
uncertain drift rate. Instead we introduce the threshold-to-noise
ratio ϑ ≡ |xth/σ |. Assuming that the noise variance σ 2 is fixed
and known, determining the threshold-to-variance ratio ϑ unam-
biguously defines the process threshold xth for the drift-diffusion
process of Eq. (1). Note that ϑ = θ

√
η, so the quantities describing

performance: p(err) and 〈DR〉 in Eq. (2) and RR in Eq. (5), can be
expressed in terms of ϑ and η in place of θ and η. In particular, the
reward rate can be expressed as a function of η and ϑ:

RR(ϑ : η,D,Dtot)

=

[
ϑ
√
η
+ D+

(
Dtot −

ϑ
√
η

)
exp

(
−2
√
ηϑ
)]−1

. (B.9)

Definition B.2. Maximin threshold-to-noise ratio under uncertain-
ties in SNR: The maximin threshold-to-noise ratio ϑMM is the
threshold that maximizes the worst RR under the presumed un-
certainty set Up(αp, η̃) for the SNR, given the level of uncertainty
αp, the delays, D and Dtot, and the nominal SNR, η̃:

ϑMM(αp : η̃,D,Dtot)

= argmax
ϑ

(
min

η∈Up(αp,η̃)
RR(ϑ : η,D,Dtot)

)
. (B.10)

Theorem B.2. Maximin threshold-to-noise ratio under uncertainties
in SNR: Given the presumed uncertainty set for the SNR given by Eq.
(13), with a presumed level of uncertainty αp ≤ 1, the maximin
threshold-to-noise ϑMM satisfies:

exp
(
2
√
η̃(1− αp)ϑMM

)
− 1

= 2η̃(1− αp)

(
Dtot −

ϑMM√
η̃(1− αp)

)
. (B.11)

Proof. For a fixed ϑ , the reward rate given by Eq. (B.9) is an
increasing function of η, and hence its minimum occurs at the
lowest SNR consistent with the presumed uncertainty αp ≤ 1,
i.e., ηL = (1 − αp)η̃. The maximin threshold-to-noise variance,
defined by Eq. (B.10), is obtained by substituting the lowest SNR
in Eq. (B.9), differentiating with respect to ϑ , and equating to
zero. �

As in Appendix B.3, the case αp ≥ 1 includes the worst case
of zero SNR, which results in chance performance, which is of no
further interest.
Given η̃, the threshold-to-noise ratio is related to the threshold-

to-drift ratio by ϑ = θ
√
η. Thus, the expression for θ in Eq. (3)

can be used to express ϑMM , and consequently the condition in
Eq. (B.11), in terms of the two performance parameters, p(err) and
〈DT 〉, and the nominal SNR, η̃. Assuming that the actual SNR equals
the nominal SNR (η = η̃), the latter can also be expressed in the
terms of the performance parameters to derive the nominal MMPC
for a fixed level of presumed uncertainty αp ≤ 1 in the SNR:

〈DT 〉
Dtot
=
√
χ(1− 2p(err))


(
1−p(err)
p(err)

)√χ
− 1

√
χ log

(
1−p(err)
p(err)

) + 1

−1

, (B.12)

where, as in Eq. (B.8), χ ≡ 1− αp.
If the SNR varieswithin the range consistentwith the presumed

level of uncertainty, i.e., η ∈ [η̃(1 − αp), η̃(1 + αp)] for αp ≤ 1,
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the maximin performance bands are bounded by the OPC (Eq. (7),
obtained for η = η̃(1− αp)) and by Eq. (B.12) with χ =

1−αp
1+αp

(for
η = η̃(1+ αp)).

B.5. Performance under uncertain and variable drift rate

Here we prove Theorem 3.2, which states that for a fixed
threshold-to-noise ratio, the worst performance with a sequence
of possibly variable SNRs, within the presumed uncertainty set
defined by Eq. (14), is the same as that for a fixed SNR within the
presumed uncertainty set defined by Eq. (13), under the same level
of presumed uncertainty αp.
Proof of Theorem 3.2. Consider a 2AFC task where the SNR at
the ith trial is the ith element in an infinite sequence {ηi}∞i=1
consistent with the presumed uncertainty set of Eq. (14). Given the
presumed level of uncertainty αp the lowest SNR consistent with
that uncertainty set is given by ηw = max(0, (1− α)η̃).
Let p(η : ϑ) be the probability of error in a 2AFC with a fixed

SNRη using the threshold-to-noise ratioϑ . Noting thatηθ =
√
ηϑ ,

it follows from Eq. (2), that:

p(η : ϑ) =
1

1+ exp(2
√
ηϑ)

. (B.13)

When the SNR varies from trial-to-trial according to a specific
sequence {ηi}∞i=1, the probability of error in a 2AFC experiment of
fixed duration is a random variable Perr, which depends on the
number of trials in the experiment. Let P(n) denote the probability
of having n trials in the fixed duration of the experiment, the mean
Perr (see pp. 763–4 of Bogacz et al. (2006), and Gold and Shadlen
(2002)) is:

〈Perr({ηi}∞i=1 : ϑ)〉 =
∞∑
n=0

P(n)
n

(
n∑
i=1

p(ηi : ϑ)

)
. (B.14)

Since p(η : ϑ) given in Eq. (B.13) is a decreasing function of η, the
mean Perr can only increase by replacing each ηi with ηw:

〈Perr({ηi}∞i=1 : ϑ)〉 ≤
∞∑
n=0

P(n)
n

(
n∑
i=1

p(ηw : ϑ)

)
= p(ηw : ϑ), (B.15)

which is the probability of error with a fixed SNR ηw .
Similarly, let 〈DT (η : ϑ)〉 be the mean response time in a 2AFC

with a fixed SNR η using the threshold-to-noise ratioϑ . Noting that
θ = ϑ/

√
η, it follows from Eq. (2), that:

〈DT (η : ϑ)〉 =
ϑ
√
η

exp(2
√
ηϑ)− 1

exp(2
√
ηϑ)+ 1

, (B.16)

which is a decreasing function of η (as proved in Lemma B.1 at the
end of this appendix).
The mean response time with the sequence of SNRs {ηi}∞i=1

is (Gold & Shadlen, 2002):

〈DT ({ηi}∞i=1 : ϑ)〉 =
∞∑
n=0

P(n)
n

(
n∑
i=1

〈DT (ηi : ϑ)〉

)
. (B.17)

Since 〈DT (ηi : ϑ)〉 given by Eq. (B.16) is a decreasing function of η,
the mean response time with a sequence of SNRs 〈DT ({ηi}∞i=1 : ϑ)〉
can only increase by replacing each ηi with ηw:

〈DT ({ηi}∞i=1 : ϑ)〉 ≤
∞∑
n=0

P(n)
n

(
n∑
i=1

〈DT (ηw : ϑ)〉

)
= 〈DT (ηw : ϑ)〉, (B.18)

which is the mean response time with a fixed SNR ηw .
The RR, given by the ratio between the probability of a correct
response and the average time between responses:

RR({ηi}∞i=1 : ϑ)

=
1− 〈Perr({ηi}∞i=1 : ϑ)〉

〈DT ({ηi}∞i=1 : ϑ)〉 + D+ (D− Dtot)〈Perr({ηi}
∞

i=1 : ϑ)〉
, (B.19)

is a decreasing function of both 〈Perr({ηi}∞i=1 : ϑ)〉 and 〈DT ({ηi}
∞

i=1 :

ϑ)〉. According to Eqs. (B.15) and (B.18), both of these terms are
maximized simultaneouslywhen the SNR is fixed at its worst level,
ηw . Hence, when the SNR may vary from trial-to-trial according to
a sequence {ηi}∞i=1 consistent with the presumed uncertainty set of
Eq. (14), the worst performance is obtained when ηi = ηw . This
performance is the same as the worst performance for a fixed SNR
within the presumed uncertainty set of Eq. (13), for the same level
of uncertainty αp. �

Lemma B.1. The function 〈DT (η|ϑ)〉 = ϑ
√
η

exp(2
√
ηϑ)−1

exp(2
√
ηϑ)+1 is a

decreasing function of η.

Proof. The derivative of 〈DT (η|ϑ)〉 is given in Box I: Using a Taylor
series to expand the exponent and noting that for n > 3, 2n < 2n,
we may conclude that 2y exp(y) + 1 < exp(2y). Substituting
y = 2

√
ηϑ indicates that the above derivative is negative, thereby

completing the proof. �

B.6. Robustness to uncertainties in delays

This section defines and derives the robustness of a 2AFC task
for achieving the required reward rate under uncertainties in the
delays.

Definition B.3. Robustness of a 2AFC task to uncertainties in delays:
Consider a 2AFC task with uncertainties in the delays specified by
an info-gap model. Given a threshold θ , the robustness α̂ is the
greatest level of uncertainty in the info-gap model U(α, D̃, D̃tot)
for which the required reward rate Rr ≤ RR(θ : η, D̃, D̃tot) can
be guaranteed:

α̂(Rr , θ : η, D̃, D̃tot)

= max
{
α

∣∣∣∣( min
D,Dtot∈U(α,D̃,D̃tot)

RR(θ, η,D,Dtot)
)
≥ Rr

}
. (B.20)

The upper limit on the required reward rate, RR(θ : η, D̃, D̃tot), is
the nominal reward rate that can be achieved using the threshold
θ with the nominal delays, D̃ and D̃tot, and the SNR, η, i.e., Eq. (5)
with the nominal delays. The robustness for achieving a better than
nominal reward rate is zero.

The robustness depends on the structure of the info-gapmodel.
Given the specific info-gap model of Eq. (15), the robustness
against uncertainties in the delays can be derived as specified in
the next theorem.

Theorem B.3. Robustness of a 2AFC task to uncertainties in the
delays: Consider a 2AFC task with uncertainties in the delays specified
by the info-gapmodel of Eq. (15). Given the nominal delays, D̃ and D̃tot,
and the SNR, η, the robustness for achieving the required performance
Rr with the threshold θ is given by:

α̂(Rr , θ : η, D̃, D̃tot)

= max
{
0,
1/Rr − θ(1− exp(−2ηθ))

D̃+ D̃tot exp(−2ηθ)
− 1

}
. (B.21)

Proof. The internal minimization in Eq. (B.20) is derived in
Appendix B.1 for the presumed level of uncertainty, i.e., forα = αp,
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[
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)
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exp(2
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exp(2
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Box I.
and expressed in Eq. (B.1). For a general level of uncertainty α,
Eq. (B.1) implies that the internal inequality in Eq. (B.20) can be
expressed as:

θ + D̃(1+ α)+ [D̃tot(1+ α)− θ ] exp(−2ηθ) ≤ R−1r . (B.22)

The robustness α̂ is the level of uncertainty α for which equality
holds, and thus given by Eq. (B.21). �

Eqs. (5) and (B.21) imply that the robustness for achieving the
nominal performance is zero, i.e., α̂(Rr = RR(θ : η, D̃, D̃tot), θ :
η, D̃, D̃tot) = 0. In particular, the optimal nominal performance
RR(θop : η, D̃, D̃tot) (i.e., Eq. (4) for the optimal threshold under
nominal delays) has zero robustness. Only lower reward rates Rr <
RR(θ : η, D̃, D̃tot) ≤ RR(θop : η, D̃, D̃tot), can be attained robustly.
Robustness to uncertainties requires relinquishing performance.

B.7. Robust satisficing under uncertainties in delays

This section specifies the robust-satisficing strategy and derives
the resulting performance curves under uncertainties in the delays.
Eq. (B.20) implies that sub-optimal reward rates have positive

robustness to uncertainties in the delays. The robust-satisficing
strategy seeks the threshold θRS that provides maximum robust-
ness for required reward rates that are sub-optimal, as defined be-
low:

Definition B.4. Robust-satisficing threshold under uncertainties in
the delays: Consider a 2AFC task with SNR, η, and nominal delays,
D̃ and D̃tot. Given the required sub-optimal performance, Rr , the
robust-satisficing threshold, θRS , maximizes the robustness for
achieving Rr under uncertainties in delays:

θRS(Rr : η, D̃, D̃tot) = argmax
θ
α̂(Rr , θ : η, D̃, D̃tot). (B.23)

Robust-satisficing under uncertainties in the delays imposes a
strict condition on the threshold θRS as stated in the next theorem.

Theorem B.4. Robust-satisficing threshold under uncertainties in the
delays: Consider a 2AFC task with uncertainties in the delays specified
by the info-gapmodel of Eq. (15). Given the nominal delays, D̃ and D̃tot,
the SNR, η, and the sub-optimal required reward rate Rr < RRop(η :
D̃, D̃tot), the robust satisficing threshold θRS satisfies:

2ηD̃totR−1r = [2ηθRS + exp(2ηθRS)− 1] D̃

+ [2ηθRS − exp(−2ηθRS)+ 1] D̃tot. (B.24)

Proof. For a fixed level of required performance Rr , consider the
interval of threshold values for which the nominal reward rate is
higher than required, i.e., threshold values forwhichRr < RR(θ, η :
D̃, D̃tot). This is a single (connected) interval since RR as a function
of the threshold has a single global maximum, as noted following
Eq. (6). Within this interval the robustness is positive and given by
the second term in Eq. (B.21). The boundaries of the interval are
defined by Rr = RR(θ, η : D̃, D̃tot)- at which the robustness is
zero; or by θ = 0 at the lower boundary. In the latter case, the
derivative of the robustness with respect to the threshold at θ = 0
is positive. Since the robustness within the interval is higher than
at the boundaries, there must be at least onemaximumwithin this
interval. The derivative of the right term in Eq. (B.21) with respect
to θ can be expressed as

∂α̂(Rr , θ : η, D̃, D̃tot)
∂θ

=
g(θ, η : Rr , D̃, D̃tot) exp(−2ηθ)(

D̃+ D̃tot exp(−2ηθ)
)2 , (B.25)

where

g(θ, η : Rr , D̃, D̃tot) =
2ηD̃tot
Rr
− [2ηθ + exp(2ηθ)− 1] D̃

− [2ηθ − exp(−2ηθ)+ 1] D̃tot. (B.26)

Hence, extrema of α̂(Rr , θ : η, D̃, D̃tot) as a function of θ satisfy
g(θ, η : Rr , D̃, D̃tot) = 0. It is straightforward to verify that when
the latter equality holds, the second derivative of the robustness is
negative. Thus g(θ, η : Rr , D̃, D̃tot) = 0 defines a uniquemaximum
and, according to Eq. (B.26), the robust-satisficing threshold that
satisfies this equality must obey Eq. (B.24). �

Substituting Eq. (3) in Eq. (B.24), specifies the robust-satisficing
performance curve (RSPC) that describes the tradeoff between
speed (〈DT 〉/D̃tot) and accuracy (1−p(err)) thatmust hold in order
to robust-satisfice the required performance Rr :

〈DT 〉

D̃tot

=
R−1r
D̃tot

 D̃/D̃tot + p(err)(1− D̃/D̃tot)

p(err)(1− p(err)) log
(
1−p(err)
p(err)

) + D̃/D̃tot + 1
1− 2p(err)

−1 . (B.27)

Note that this expression does not reduce to a scaled OPC Eq. (7)
even when the actual delays equal the nominal values (D = D̃ and
Dtot = D̃tot), or when there is no penalty delay (D̃tot = D̃). The
RSPCs have a different shape.
The RSPCs depend on the ratio D̃/D̃tot, so for comparison with

experimental data, this ratio must be determined or related to the
actual ratio D/Dtot. When no penalty delay is used, Dpen = 0, and
the ratio is one. The corresponding RSPCs are specified by Eq. (B.27)
with D̃/D̃tot = 1:
We note that the constraint on the required performance

Rr < RRop(η : D̃, D̃tot) implies that the RSPCs lie above the
OPC. However, it is possible to extend Eqs. (B.24) and (B.27)
below the OPC, as briefly outlined here. While better than optimal
reward rates cannot be guaranteed, they may nevertheless occur
under favorable conditions, which are made increasingly possible
as the level of uncertainty increases. The minimum level of
uncertainty which makes it possible to get a desired reward rate
is defined as the opportuneness, and the opportunity facilitating
strategy selects the threshold with minimum opportuneness for
the desired reward rate. The resulting performance curves follow
the above equations below the OPC. Since this region is only
marginally important for the current paper (the RSPCs in Fig. 6
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Table C.1
Likelihood ratios of the data given MMPC with uncertainty in D and given other performance curves (rows), for different splits of subjects into groups (columns). The higher
the likelihood ratio, the less likely is it that the data could be generated by the corresponding model, in comparison to the MMPC for D. See Table 1 for abbreviations.

Performance curve Individual 20 groups 10 groups 5 groups 4 groups 2 groups

MMPC for SNR >1013 >1010 >109 >1010 >1010 >108
RSPC for D 1.96 42.00 29.26 8.28 7.86 9.61
OPC for RRm 471.54 >105 >105 522.09 316.03 59.16
OPC for RA >106 482.05 70.52 3.33 8.82 3.96
OPC for RR >1059 >1033 >1029 >1026 >1024 >1020
are mostly above the OPC) the opportunity facilitating strategy
is not developed further in this paper, (but see Ben-Haim (2006)
and Zacksenhouse, Nemets, Lebedev and Nicolelis (2009) for more
details).

Appendix C. The likelihood ratio test and the influence of
subgroup sizes

Hereweprovide further details on the reliability of the statistics
used in Section 4.We first address the assumption that the data are
normally distributed. For each subgroup of subjects and each p(err)
bin, we tested the distribution of normalized decision times for
Gaussianity using the Jarque–Bera (Judge, Hill, Griffiths, Lutkepohl,
& Lee, 1988) and Lilliefors (Conover, 1980) tests, obtaining the
following numbers of significantly non-Gaussian p(err) bins for
both tests, at a significance level of 0.05. Among the top 30%
and 30%–60% groups: 3 bins in each group; among the 60%–90%
group: 2 bins; among the bottom 10% group no significantly non-
Gaussian binswere found.When the 30%–60%and60%–90%groups
are combined into a single group as in Section 4, the number of
significantly non-Gaussian p(err) bins rises to 6, probably due to
the fact that some subjects in this large group employ different
decision strategies, a point that we address further below. (There
are 250 data points in this middle group, comparedwith 125 in the
top 30% and 42% in the bottom 10% groups, cf. Table 2.)
When comparing two nested models, i.e., a complex model

and a simple model to which the complex one can be reduced,
the likelihood ratio test can be used to determine whether the
data is significantly less likely under the simple rather than the
complex model. This is the case when comparing the MMPC with
uncertainty in Dwith the OPC for RR, to which the former reduces
by fixing α = 0. The likelihood ratio test shows that the MMPC
with uncertainties in D provides a significantly better description
of the data for the top 30% of subjects (p < 0.01), and for
both the other groups (p ≈ 0). Except for the OPC for RR, all
the other PCs are based on non-nested models with a single free
parameter each. The corresponding likelihood ratio between the
MMPC with uncertainties in D and each of these models (first
four rows Table 4) provides a reasonable criterion for assessing
whether the former explains the data better. A more rigorous
comparison using the Bayesian approach would require additional
assumptions on prior probabilities of the parameters q and α: see,
e.g. MacKay (2003).
As noted in Section 4, in fitting performance curves to data

from subgroups of subjects divided according to the total rewards
accrued, we implicitly assume that all members of each given
subgroup employ a common decision strategy. Here we probe
the validity of this assumption by considering six additional ways
of splitting the data. We first fitted all performance curves to
the data from each subject separately and computed the average
likelihood ratio for each pair of curves, as a product of likelihood
ratios for the 80 individuals, obtaining the entries in the first
column of Table C.1. This split avoids the assumption of a common
strategy, but the ratios are unreliable because individual subject
data are very noisy and some bins contain as few as 3 data points,
leading to overfitting. This is reflected in the fact that the entries
of column 1 differ substantially from those of the other columns in
Table C.1.
This analysis was repeated five times to produce the remaining

columns of Table C.1, by successively dividing the subjects (sorted
by total rewards accrued) into 20, 10, 5, 4, and 2 groups, with
equal numbers in each group (4, 8, 16, 20, and 40 respectively).
Although the precise values of the ratios depend on the number of
groups, the relative ranking remains almost completely consistent.
All ratios in Table C.1 exceed 1, implying that the data are most
likely under MMPCwith uncertainty in D in all cases. The next best
fits are providedbyRSPCwithuncertainty inD andOPC forRA, their
order depending on the split. Somewhat further behind comes the
OPC for RRm, trailed by MMPC with uncertainty in the SNR, and
finally the parameter-free OPC for RR.

Appendix D. Comparison of pure and extended DD models for
experiment 1

As explained in Bogacz et al. (in press) only the first of the two
experiments described in this paper yielded sufficient data for fits
to the extended DD model to be feasible. Comparison of extended
DD parameters obtained by such data fits, averaged over the 20
subjects, to fits of the same data to the pure DD process reveals
the following. (We identify the source of the parameters by the
parenthetical notes ext. and pure respectively.)
Mean values of the threshold-to-drift ratios θ (ext.) are ap-

proximately half θ (pure), mean values of the SNR η (ext.) are ap-
proximately triple η (pure), while mean values of the nondeci-
sion time T0 (ext.) are very close to T0 (pure). In all cases the ex-
tended and pure parameter values are strongly correlated across
subjects (θ : r = 0.61, p = 0.004, η: r = 0.92, p < 10−5 and
T0: r = 0.67, p = 0.001 (Bogacz et al., in press, Fig. 4)), and the
resulting optimal threshold-to-drift ratios are also strongly corre-
lated (r = 0.71, p < 10−5). This leads to the fact that overall cor-
relations between subjects’ thresholds and the optimal thresholds
obtained from the pure and extended DD fits do not substantially
differ (r1 = 0.44(p < 10−5) for pure, and r1 = 0.62(p < 10−5)
for extended.) Moreover, comparisons of the mean thresholds (av-
eraged over these 20 subjects) with the optimal thresholds com-
puted analytically for the pure, and numerically for the extended
DD processes, for all four delay conditions, reveal very similar pat-
terns. See Bogacz et al. (in press, Fig. 5).
We believe that this is because the substantial variances in

the SNR and threshold-to-drift ratio for the extended DD model
are compensated by higher noise variance σ 2 in the pure DD fits
(i.e., all the sources of variance are lumped in a lower SNR η
(pure)). To further gauge the effects of drift and initial condition
variance we compared mean decision times and error rates for
the extended DD fits with the corresponding quantities evaluated
for a pure DD process with η and θ equal to the mean values of
the extended DD parameters. We found that 〈DT 〉s for the two
processes were very similar (r = 0.94, p < 10−5), but that p(err) s
were significantly lower for the pure DD process (paired t-test
p < 10−5), presumably due to the unrealistically high SNRs that
result when the other sources of variance are removed from the
extended DD model.
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