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a b s t r a c t

TheWiener diffusionmodel (WDM) for 2-alternative tasks assumes that sensory information is integrated
over time. Recent neurophysiological studies have found neural correlates of this integration process
in certain neuronal populations. This paper analyses the properties of the WDM with two different
boundary conditions in decision making tasks in which the time of response is indicated by a cue. A dual
reflecting boundary mechanism is proposed and its performance is compared with a well-established
absorbing boundary in the cases of the WDM, the WDM with extensions, and the WDM with prior
probability. The two types of boundary influence the dynamics of the model and introduce differential
weighting of evidence. Comparisons with Ornstein–Uhlenbeck models are also done, and it is shown
that the WDM with both types of boundary achieves similar performance and produces similar fits to
existing behavioural data. Further studies are proposed to distinguishwhich boundarymechanism ismore
consistent with experimental data.

© 2009 Elsevier Inc. All rights reserved.
1. Introduction

Making choices is a frequent and critical element of human
and animal lives. This problem has been studied by psychologists
under two types of 2-alternative-forced-choice (2AFC) paradigms,
in which subjects must decide between two available alternatives.
The information controlled (IC) paradigmallows subjects to respond
whenever they feel confident (Luce, 1986). Alternatively, subjects
can be required to report their choice immediately after a cue to
respond (Swensson, 1972; Yellott, 1971), under the time controlled
(TC) paradigm (sometimes referred to as the response signal
paradigm; see Dosher (1984)).
Over the last half century, several sequential sampling models

have been proposed to describe experimental results as well
as underlying decision making mechanisms in 2AFC tasks (for
reviews, see Luce (1986) and Townsend and Ashby (1983)). The
Wiener diffusion model (WDM) – the focus of this paper –
assumes that subjects integrate partial information representing
the relative support for the two alternatives over time (Laming,
1968; Ratcliff, 1978; Stone, 1960), and it has been shown to
be the statistically optimal method for choosing between two
alternatives on the basis of noisy evidence. For a fixed set of
stimulus conditions, the WDM minimizes the reaction time for
given accuracy, or maximizes the accuracy for given reaction

∗ Corresponding author at: School of Psychology, University of Birmingham,
Birmingham B15 2TT, United Kingdom.
E-mail address: J.Zhang.1@bham.ac.uk (J. Zhang).

0022-2496/$ – see front matter© 2009 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmp.2009.03.001
time (Edwards, 1965; Gold & Shadlen, 2001, 2002; Laming, 1968;
Wald, 1947). The WDM successfully describes the reaction time
distribution and accuracy in various cognitive decision tasks in
the IC paradigm (Laming, 1968; Link, 1975; Link & Heath, 1975;
Ratcliff, 1978; Ratcliff & Smith, 2004; Ratcliff, Van Zandt, &
McKoon, 1999; Stone, 1960). However, in the TC paradigm, the
earlier version of themodel (Ratcliff, 1978) allows integrator states
to take arbitrary values. This leads to the prediction that the
accuracy always increases over time if the drift of the process
is in the correct direction. This is contrary to the finding that
accuracy in the paradigm grows over time to an asymptote. To
avoid this shortcoming, the model needs to assume that drift
values are normally distributed across trials (Ratcliff, 1978) or
that the integration range is bounded (Ratcliff, 1988). With one of
these elaborations, themodel correctly predicts the time–accuracy
curves found in the IC condition.
This paper introduces a reflecting boundary mechanism to

model 2AFC tasks in the TC paradigm. We compare the dynamics
and performance of the WDM with reflecting and absorbing
boundaries (Feller, 1968) and assess their ability to account
for published behavioural data from 2AFC experiments. We
also compare them with an Ornstein–Uhlenbeck (O–U) model
(Busemeyer & Townsend, 1992, 1993; Diederich, 1995, 1997;
Ratcliff & Smith, 2004; Smith, 1995, 2000). Analytical and
numerical results show that both boundary types lead to similar
performance and produce similar fits, but we identify some
differences between them. Further studies are proposed thatmight
distinguish which type of boundary better describes the decision
making process.
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The paper is organized as follows. Section 2 reviews neuro-
physiological evidence of decisionmaking, and describes theWDM
and alternative boundary mechanisms. More detailed reviews are
available elsewhere (Bogacz, Brown, Moehlis, Holmes, & Cohen,
2006; Glimcher, 2001; Gold & Shadlen, 2007; Schall, 2001; Smith
& Ratcliff, 2004). Section 3 compares the dynamics and the per-
formance of models with the two types of boundary. Section 4
compares fits of bounded models with behavioural data. Finally,
Section 5 discusses further experimental studies that could dis-
tinguish between the boundarymechanisms.Mathematical details
are provided in Appendices A and B.

2. The biology of decision and the sequential sampling models

2.1. The neural basis of 2AFC tasks

Recently, neuronal activity from awake animals has been
recorded in choice experiments. For example, in the motion
discrimination task, visual stimuli comprise arrays of random
moving dots, a proportion of which move coherently to the left or
right. Subjects (monkeys) are required to indicate their decision
regarding the coherent direction by making a saccade to a left or
right target (Roitman& Shadlen, 2002; Shadlen&Newsome, 2001).
The activity of neurons in the middle temporal (MT) area has

been shown to correlate with the motion coherence (Britten,
Shadlen, Newsome, & Movshon, 1993). However, since these
neurons are highly noisy and poorly correlated with choices,
the MT area is less likely to be a ‘‘decision maker’’ than to
provide temporal information for a further process. It has been
suggested that the lateral interparietal (LIP) area may interpret
raw information from MT neurons. Shadlen and Newsome (1996)
reported that LIP neurons gradually build up or attenuate their
activity within a trial, and exhibit persistent activity in the absence
of stimuli (Shadlen & Newsome, 2001). The time course of LIP
neuronal activity suggests that the LIP area integrates inputs from
MT neurons (Hanks, Ditterich, & Shadlen, 2006; Huk & Shadlen,
2005; Roitman & Shadlen, 2002). Similar discharge patterns are
also found in the frontal eye field (FEF) (Schall, 2002) and the
superior colliculus (SC) (Basso & Wurtz, 1998).
These results indicate a general decision mechanism mani-

fested in different brain regions in which certain neuronal pop-
ulations integrate sensory information over time to increase the
accuracy of selection between alternatives (Gold & Shadlen, 2007;
Schall, 2001). Gold and Shadlen (2001, 2002) formalize the deci-
sion process in 2AFC tasks as following two processes: two popula-
tions of sensory neurons (e.g., in the MT area) generate continuous
noisy information streams (Y1(t) and Y2(t)) for each of two alterna-
tives Y1 and Y2 at time t . For simplicity, we assume that Y1(t) and
Y2(t) have constant means µ1 and µ2 during each trial, with the
same constant standard deviation, σ . The goal of the second pro-
cess (reflected in LIP activities) is to successfully identify which in-
put population has higher mean based on sample sequences Y1(t)
and Y2(t). This framework is the basis for several sequential sam-
pling models in behavioural studies, including the WDM (Ratcliff,
1978), the O–U model (Busemeyer & Townsend, 1992), and the
leaky-competing-accumulator (LCA) model (Usher & McClelland,
2001).

2.2. The Wiener diffusion model (WDM)

The Wiener diffusion or Brownian motion is a continuous
limit of the random walk (Laming, 1968; Ratcliff, 1978; Stone,
1960). It implies a leak-free integrator that accumulates the
difference Y1(t)−Y2(t) between noisy evidence streams for the two
alternatives. Let X(t) denote the accumulated difference at time
t: the value of the integrator state, with initial state X0 = X(0).
Fig. 1. Evolutions of integrator states after stimulus onset for the WDM, showing
correct trials (black) and error trials (grey). The model was simulated with µ =
σ = a = 1 and time-step dt = 0.01 s, and hence X(t) > 0 corresponds to
the correct alternative. (a) IC paradigm: choices are made on first reaching one
of the two thresholds. (b) TC paradigm: choices are determined by the sign of the
integrator state X(tc) at time tc .

If there is no prior bias towards either choice, the process starts
at baseline X0 = 0, and is described by a stochastic differential
equation:

dX(t) = µ dt + σ dW (t), with X0 = 0, (1)

where dX(t) denotes the evidence obtained during time step
dt . µ is a constant drift (the accumulation rate), representing
the average of evidence difference µ1 − µ2. On a given trial,
µ > 0 (µ1 > µ2) implies that Y1 is the correct choice,
while µ < 0 (µ1 < µ2) if Y2 is correct. For consistency we
hereafter set µ > 0 unless indicated specifically, and hence
assume that Y1 is the correct choice. The magnitude of µ reflects
the difficulty level of the task: for small µ (µ1 ≈ µ2), it
is difficult to distinguish which evidence samples have higher
mean. The second term, σ dW (t), denotes Gaussian noise with
mean 0 and variance σ 2dt . In the absence of noise (σ = 0),
X(t) changes at rate µ and always reaches a correct decision.
Noisy inputs cause the X(t) to fluctuate and hence induce incorrect
choices on some trials.
Fig. 1 shows the growth of X(t) in the two paradigms. For the IC

paradigm, the decision time is unrestricted and two thresholds±a
are introduced to indicate termination states. Once X(t) reaches
a threshold, the corresponding alternative is chosen. For the TC
paradigm, the decision process is interrupted by a response cue,
and a response is immediately required. We hereafter denote
the time delay from stimulus onset to response cue by tc . The
alternatives are selected by locating the final integrator state X(tc)
and selecting Y1 if X(tc) > 0, and Y2 if X(tc) < 0.
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Performance can be measured by the error rate: the probability
ofmaking an incorrect choice in a block of trials,1hereafter denoted
by P . The error rate is a function of model parameters µ, σ ,
and threshold setting, a, or response signal, tc , depending on the
paradigm. For unbiased initial conditions X0 = 0, the error rate
of the WDM in the IC and TC paradigms is given by Eqs. (2) and
(3), respectively (Bogacz, Usher, Zhang, and McClelland (2007);
cf. Gardiner (1985) and Ratcliff (1978)):

P(a) =
1

1+ e
2µa
σ2

, and (2)

P(tc) =
∫
−
µ
σ

√
tc

−∞

1
√
2π
e−

u2
2 du. (3)

Two extensions have been proposed to improve fits to
experimental data (Ratcliff et al., 1999). They allow certain
parameters to vary randomly across trials. First, the drift rate µ̃ is
assumed to have a Gaussian distribution across trials with mean
µ∗ and variance σ 2µ, whichmight reflect the variability of difficulty
between trials, the subject’s attention level, or other variable inter-
trial factors. On each trial, µ̃ can take either positive or negative
values, promoting accumulation towards different alternatives.
The correct choice is determined by the mean drift µ∗, even if the
sampled value µ̃ has opposite sign in some trials. This is motivated
by the fact that, in difficult situations, stimulus distributions
corresponding to the two alternatives often overlap (Ratcliff et al.,
1999). Even after long training, perfect performance in such tasks
is impossible. Drift variability is also necessary to ensure that the
asymptotic accuracy of the WDM in the IC paradigm is not infinite
in the absence of boundaries (Ratcliff, 1978). Second, the theory of
premature sampling assumes that subjects start to integrate noise
before sensory information is available. Hence the starting point is
not at 0when stimuli onset (Laming, 1968). Instead, on each trialX0
is chosen from a uniform distribution 2on the interval [−σX , σX ].
The extended WDM produces different reaction times on

correct and error trials in the IC paradigm (Ratcliff et al., 1999).
We assume that the same variability sources also operate in the TC
paradigm; their effects on the decision process will be evaluated in
the next section.

2.3. Boundary mechanisms

In the TC paradigm, the fact that integrator states X(t) are
unbounded implies that the error rate of the WDM with no
variability in drift rate diminishes to zero for large tc (cf. Eq. (3)).
To eliminate this contradiction, absorbing boundaries can be
introduced at X = ±b. This mechanism was originally
used to model tasks in which IC and TC paradigms were
intermixed (Ratcliff, 1988). Such tasks promote subjects to respond
as quickly as possible before a predetermined deadline. Under this
condition the proposed model, also called the internal deadline
model, assumes that the decision process is terminated when
the accumulated evidence reaches one of the three possible
boundaries, whichever comes first. The three boundaries are: top
and bottom absorbing boundaries in the state domain, and a
deadline boundary in the time domain (Diederich & Busemeyer,
2006; Ratcliff & Rouder, 2000).

1 Herewe do not directlymeasure the probability of choosing certain alternatives
(e.g., PY1 or PY2 ) since in most experiments the correct choice is randomly assigned
from the two alternatives across trials (e.g., Roitman and Shadlen (2002) and
Shadlen and Newsome (2001)). Note that when we assume Y1 is correct, then
P = PY2 .
2 The uniform distribution is assumed to prevent X0 exceeding the thresholds±a
(by setting σX < a).
In this work, we consider a pure TC paradigm in which subjects
are only allowed to respond after the deadline tc (Roitman &
Shadlen, 2002). If the decision process reaches one of the absorbing
boundaries before tc , the accumulation process stops and the
activity X(t) = ±b is maintained until the end of the trial.
For sufficiently large tc , X(t) will almost surely reach one of the
boundaries before tc (cf. Section 3.1). Absorbing boundaries have
the same effect as the decision threshold in the IC paradigm.
Hence the error rate of the absorbing WDM with infinite tc can be
analytically obtained as (cf. Eq. (2))

lim
tc→∞

P(abs)(tc) =
1

1+ e
2µb
σ2

, (4)

where the subscript abs stands for the WDM with absorbing
boundary. For b < ∞, the error rate does not decrease
to zero as tc increases, which is consistent with experimental
observations (Meyer, Irwin, Osman, & Kounios, 1988; Usher &
McClelland, 2001).
In contrast with the absorbing boundary mechanism, since no

time pressure exists in the pure TC paradigm, subjects may use
the deadline alone to terminate the decision process. In this case
two reflecting boundaries may be more suitable to constrain the
accumulation process, because they allow the preferred choice
to change even if X(t) reaches a boundary. Here the boundaries
restrict the amount of evidence that can be represented (much as
a sigmoidal function provides cutoffs at high and low activation).
Some previous studies (Diederich, 1995; Diederich & Busemeyer,
2003) use a lower reflecting and an upper absorbing boundary to
model the simple reaction time task in which subjects respond
immediately after a stimulus is detected. The reflecting boundary
in theirmodel and the one proposedhere share similarmotivations
but there is amajor difference. In the simple reaction time task, the
accumulated sensory information directly represents the absolute
evidence to make a response. Since the integrated information
cannot drop below a certain baseline, one reflecting boundary is
required to model the minimum level of absolute evidence. Single
reflecting boundaries have also been used to represent a lower
bound on the integration process (see Ratcliff and Smith (2004),
Smith and Ratcliff (in press) and Usher and McClelland (2001)).
In the TC paradigm of 2AFC tasks, the integrator in the WDM

represents the relative evidence supporting the alternatives. The
preferred alternative at time t is determined by the sign of X(t). A
value of X(t) > 0means that the first alternative is the provisional
choice, whereas X(t) < 0 means that the second alternative is
currently preferred. If we also assume that a minimum activity
baseline exists and that decision preferences may switch during
the trial, two reflecting boundaries are required to restrict the
relative evidence of two alternativeswithin a certain range. Details
of the model are given in Section 3.

2.4. The Ornstein–Uhlenbeck (O–U) model

Another widely applied sequential samplingmethod is the O–U
model (Busemeyer & Diederich, 2002; Busemeyer & Townsend,
1992, 1993). It introduces a new parameter λ to the WDM to
represent decay (λ < 0) or growth (λ > 0) of accumulated
information, its evolution being described by

dX(t) = (λX(t)+ µ) dt + σdW , X0 = 0, (5)

where the notations are as in Eq. (1). In the O–U model the
accumulation rate depends not only on the drift µ but also on the



234 J. Zhang et al. / Journal of Mathematical Psychology 53 (2009) 231–241
current state of the integrator X(t). This allows the error rate of the
O–Umodel to approach a finite asymptote for large tc evenwithout
boundaries.
The O–U model can account for the primacy and recency

effects observed in decisionmaking tasks: some subjects paymore
attention to initial evidence (primacy) while others focus on later
evidence (recency) (Wallsten & Barton, 1982). To illustrate this,
note that Eq. (5) has a fixed point X = −µ/λ. For λ > 0, the
fixed point is unstable. After X(t) has been driven to one side or
other of the fixed point, subsequent evidence has little effect on
the final choice due to repulsion, indicating a primacy effect. For
λ < 0, the fixed point is an attractor. Information decays over time
so that early evidence is partially lost, indicating a recency effect.
A proof is available in Busemeyer and Townsend (1993).
TheO–Umodel has been applied to a variety of tasks (Diederich,

1995, 1997; Smith, 1995) and also been extended to multi-
alternative tasks (McMillen & Holmes, 2006; Usher & McClelland,
2001). As it is similar to the WDM, we include the O–U model in
our subsequent comparative study.

3. Comparison of properties of bounded WDMs

3.1. The WDM with reflecting boundaries

Motivated by the discussion in Section 2.3, we now propose
reflecting boundary conditions. In the simplest cases, the bound-
aries ±b are still symmetric about X0 but they differ from absorb-
ing boundaries in that once X(t) reaches±b, it cannot exceed this
value, but it may move back due to noise, as specified by{X(t + dt) = b, if X(t)+ dX(t) ≥ b,
X(t + dt) = −b, if X(t)+ dX(t) ≤ −b,
X(t + dt) = X(t)+ dX, otherwise,

(6)

where dX(t) is given by Eq. (1). In contrast to absorbing boundaries,
reflecting boundaries allow information from any time period to
contribute to the final choice, which is not determined until the
end of tc . Fig. 2 shows sample paths of integrator states in the
WDM with both types of boundary, over one trial. The solid line
shows that for reflecting boundaries, even ifX(t) reaches the upper
boundary, X(t) continues to evolve until tc and it may ‘‘backtrack’’
to subsequently reach the lower boundary.
Note that, unlike the absorbing WDM in which boundary

contact induces a decision, the reflecting WDM requires an
external criterion to stop (e.g., a response cue at time tc), so it
cannot be applied to the IC paradigm or to tasks in which IC and
TC paradigms are intermixed. Hence we will only consider the TC
paradigm in the rest of this paper.
The first step in investigating the bounded WDM is to compute

the probability density p(X, t) of Eq. (1)with appropriate boundary
conditions, i.e., the probability of finding a sample path at state X at
time t . Explicit expressions for p(X, t) of absorbing and reflecting
WDMs are given in Eqs. (B.5) and (A.9) of the Appendix. Fig. 3b
illustrates the distribution of the reflecting WDM at several time
instants. Comparing with that of the absorbing WDM in Fig. 3a,
we may distinguish properties of p(X, t) for the two types of
boundaries. Initially both are approximately Gaussian (note the
curves marked t = 0.1 s), with means close to X0 and shifted
towards the upper boundary (the correct choice for µ > 0), but
they become significantly different as t grows. For the absorbing
WDM, p(X, t) collapses to 0 as t → ∞, since every decision
process is absorbed by one of the boundaries after sufficiently
large tc . In contrast, no paths terminate in the reflecting WDM,
but p(X, t) remains of unit mass and approaches the equilibrium
distribution:

lim
t→∞

p(X, t) =
2µeµ(b+X)

e4µb − 1
. (7)
Fig. 2. Examples of trajectories of the WDM with absorbing and reflecting
boundaries. Models were simulated with µ = 1, σ = 1, dt = 0.01 s, and
symmetric boundaries ±b = ±1, indicated by thick grey dashed lines. For
the absorbing WDM (solid), the choice is determined when the state first hits a
boundary (at 0.5 s); for the reflecting WDM (dashed), the preferred choice may
change throughout the decision process.

The error rate of the reflecting WDM can be computed by
integrating p(X, t) from−b to 0 (cf. Eq. (A.16) of Appendix A), and
as tc increases, it converges to

lim
tc→∞

P(ref )(tc) =
1

1+ e
2µb
σ2

, (8)

where ref stands for reflecting WDM. Note that arbitrarily small
P(ref )(tc) can be achieved for b <∞ only if the signal-to-noise ratio
µ/σ →∞, and that the expression of P is identical to Eq. (4).

3.2. Primacy and recency effects

Since the updating rule in Eq. (1) is independent of the current
state X(t), the unbounded WDM implicitly assumes that the
influence of sensory evidence on the final choice does not depend
on the timing of its occurrence. This assumption is contrary to
the primacy and recency effects discussed before. Here we show
that, by applying the two types of boundary, the WDM can also
represent primacy and recency effects.
For the absorbing WDM, once X(t) hits the boundary, the

preferred decision is determined andmaintained. Only inputs prior
to the first boundary hit contribute to the decision process, so the
probability that incoming evidence at time t contributes to the final
choice (denoted by P(dX(t) 6= 0)) is equal to the probability that
neither boundary has been reached before t , i.e.,

P(dX(t) 6= 0) = P(G(X) > t) = 1− ΦG(X)(t), (9)

where the random variable G(X) is the time required for X(t) to
first reach either boundary (the first-passage time (Feller, 1968))
and ΦG(X) is the cumulative distribution of G(X). Since ΦG(X) is a
monotonically increasing function, P(dX(t) 6= 0) is monotonically
decreasing. Thus on average the decision is more likely based on
earlier inputs, indicating a primacy effect.
For the reflecting WDM, each boundary hit results in a loss of

information, since themodel does not fully integrate the increment
that carries it to the boundary. To illustrate this, assume that,
at time τ , the incoming evidence dX(τ ) drives the integrator
to reach one of the boundaries. Compared with the unbounded
WDM, hitting the reflecting boundary leads to a loss of information
|X(τ ) + dX(τ ) − b| (cf. Eq. (6)). On average, evidence presented
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Fig. 3. Probability densities of integrator states in boundedWDMs. State values are
shown on the horizontal axes. Densities are shown for parameters µ = σ = 1 and
boundaries ±b = ±1. Different curves show densities at different time instants
from 0.1 s to 2 s. The probability density functions p(X, t) are calculated via Eqs.
(B.5) and (A.9) in the Appendix. All solutions start at X0 = 0. (a) Absorbing WDM;
(b) reflecting WDM.

earlier in the trial results in more boundary hits. Thus, information
arriving earlier is partially lost and the final choice depends
to a greater extent on later inputs, producing a recency effect.
The reflecting WDM can also (repeatedly) change the preferred
alternative within a trial, e.g., in Fig. 2 the state of the reflecting
WDM drops below zero, changing its choice in the last 0.2 s.
Primacy and recency effects can be illustrated by showing how

the two models weight noisy inputs during the decision process.
A sequence of trials was simulated and the noisy inputs recorded
(right side of Eq. (1)) only for trials resulting in correct choices.
These inputs were then averaged to indicate the correlation
between the mean inputs and the final choice, and this averaged
input was shown in Fig. 4. For absorbing boundaries, larger inputs
at early times contributed more to the final decision (primacy),
while for reflecting boundaries, larger inputs before the response
led to the correct choice (recency).

3.3. Performance of bounded WDMs

Recall that the error rate expressions for the reflecting and
absorbing WDM coincide when tc → ∞ (Eqs. (4) and (8)). In
Appendix B we prove that such an equality holds in general: given
the same parameter set (µ, σ , b) and no prior bias (i.e., boundaries
Fig. 4. Primacy and recency effects for theWDMwith absorbing (left) and reflecting
(right) boundaries. The boundedWDM is simulated for 10,000 trials. For all correct
trials the input to the WDM (µdt + σdW , cf. Eq. (1)) at every time step is recorded
and averaged. Curves illustrate averaged inputs plotted against time. Parameter
values are µ = 0.71, b = 0.47, σ = 1, which are obtained by fitting behavioural
data from subject S1 in a 2AFC task (Usher and McClelland (2001), Table 1 and see
Section 4) and tc = 3 s.

Fig. 5. Error rates of theWDMwith reflecting (solid) and absorbing (thick dashed)
boundaries at different time tc . Model parameters areµ = σ = b = 1 and data are
averaged over 100,000 trials.

equidistant from the starting point X0 = 0), the error rates for the
two bounded WDMs are identical for any tc :

P(abs)(tc) = P(ref )(tc). (10)

Hence both bounded models achieve the same accuracy under the
TC paradigm, as illustrated in Fig. 5: the two curves coincide for
any given tc . Thus, although the different boundaries profoundly
influence the dynamics of the decision process, their performances
are indistinguishable. For given experimental observations (P(tc)
in the TC paradigm) and the same parameter set, the two types of
bounded model can always provide the same fitting ability, as we
shall illustrate in Section 4.

3.4. Performance of bounded WDM with extensions

We now consider the extended WDM described in Section 2.2.
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Fig. 6. Error rates of the bounded WDMs at different tc with variable drift rates
across trials sampled from a normal distribution N (1, 1) (solid and thick dashed),
compared with the error rate of the bounded WDM with constant drift rate µ = 1
(dash–dotted). Other model parameters are σ = b = 1. Data are averaged over
100,000 trials.

3.4.1. Variability of drift rate
Fig. 6 compares P(tc) at different tc for the bounded WDM

with drift rates sampled from a normal distribution, with P(tc) for
the bounded WDM with constant drift rate. The drift variability
increases the error rate for all tc . The figure also shows that
reflecting and absorbing boundaries still produce identical error
rates for any tc . This is not surprising, since while the drift differs
across trials in the extended model, within each trial the sampled
drift µ̃ remains fixed. Hence both bounded models produce the
same error rate, according to Section 3.3.

3.4.2. Variability of starting point
Fig. 7 shows the performance of the bounded WDM with

starting points X0 sampled from a uniform distribution. This
produces higher error rates than models with constant X0. Also,
since the starting points are not equidistant from the boundaries,
the error rates differ for the two types of boundary. One interesting
result is that the reflecting WDM with variable and constant
X0 can achieve the same error rate for large tc (the dashed
and dash–dotted curves converge after 2 s). This follows from
the recency effect discussed in Section 3.2: the initial condition
variability is attenuated by reflecting boundaries as tc increases. In
contrast, the performance of the absorbingWDMis highly sensitive
to the starting points.

3.5. Prior probability and biased starting points

In this section we investigate how boundaries affect the
performance if the starting point X0 depends on the prior
probability of the alternatives.
If the subject knows that one of the alternatives is more proba-

ble, the performance can be improved bymoving the starting point
towards that alternative (Edwards, 1965; Link, 1975). Such starting
point biases have been observed in behavioural experiments (Lam-
ing, 1968; Link, 1975; Ratcliff et al., 1999). We now compare the
performance of bounded WDMs in this situation. We denote the
probability that the first alternative is correct by p+, and that the
second is correct by p− = 1− p+, so that on each trial drift µ > 0
occurs with probability p+ and drift µ < 0 with probability p−.
Link (1975) proved that to minimize the error rate under the IC

paradigm, the starting point should be set to

X0 =
σ 2

4|µ|
ln
p+
p−
. (11)
Fig. 7. Error rates of absorbing (solid) and reflecting (dashed) WDMs at different
tc with variable starting point across trials, sampled from a uniform distribution
between [1, 1], compared with the error rate for the bounded WDM with starting
point X0 = 0 (dash–dotted). Model parameters are µ = σ = b = 1. Data are
averaged over 100,000 trials.

Thus, as the difference in prior probabilities increases, X0 moves
towards the boundary which is more likely to be correct. Recall
that in Section 2 we proposed that absorbing boundaries in the TC
paradigm act like decision thresholds in the IC paradigm. Hence
Eq. (11) also specifies the optimal starting point of the absorbing
WDM for large tc under the TC paradigm. Fig. 8a illustrates this
prediction by stimulating bounded models with several starting
points. The theoretically optimal X0 (vertical solid line) of Eq. (11)
can minimize the error rate of the absorbing model (solid curve).
Note that the correct choice in the simulation is still defined by
the sign of the drift rate. Hence a biased starting point close to the
error boundary (X0 < 0) induces P(tc) larger than 0.5. In contrast,
the reflecting boundary model achieves the same error rate for
different X0 for large tc , because the recency effect attenuates the
influence of starting point on final choices.
Fig. 8b compares the performance of bounded WDMs with

starting points given by Eq. (11). Biased starting points produce
lower error rates for all tc than X0 = 0. As expected from Fig. 8a,
for large tc the reflecting WDMwith the starting points of Eq. (11)
has similar error rate to the bounded WDM with X0 = 0 because
of the recency effect, while the absorbing boundary model with
biased starting points of Eq. (11) achieves superior performance,
since it can profit from starting point adjustments. For small
tc (<0.3 s), the two bounded models with biased starting points
exhibit similar performances, since early in the decision process
most integrator states |X(t)| are distant from the boundaries, so
the models approximate an unbounded WDM and hence produce
similar error rates.

4. Fitting the models to experimental data

An interesting debate has recently taken place between Ratcliff
and Usher and McClelland regarding which model best describes
data from the TC paradigm. We briefly recall this to place our
results in context.
Eq. (3) predicts that the error rate of the unbounded WDM

under the TC paradigm converges to zero as tc → ∞ if the
sign of µ represents the correct choice, so that subjects can
achieve arbitrarily small error rate even for difficult tasks (smallµ).
However, it is known that humans cannot produce 100% accuracy
even for large tc . For example, Usher and McClelland (2001)
performed an experiment in which subjects were required to
decide whether a rectangle is tilted to the left or to the right and to
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Table 1
Estimated parameters of bounded WDMs and O–U models, and likelihood ratios of experimental data given the models. Estimated parameters for the O–U model are very
close to those given in the left part of Table 2 in Usher and McClelland (2001).

Subject P(data|WDM)
P(data|O−−U) Parameters of O–U model Parameters of bounded WDMs

µ1 µ2 µ3 λ T0 µ1 µ2 µ3 b T0

S1 4.91 3.21 2.19 0.77 7.30 284 3.17 2.08 0.71 0.47 283
S2 1.34 3.29 2.10 0.85 4.41 307 3.29 2.01 0.79 0.61 306
S3 0.52 3.66 2.59 1.02 3.33 297 3.64 2.56 0.97 0.69 297
ALL 3.42
Fig. 8. Error rates of bounded WDMs for stimuli with unequal prior probabilities.
Models are stimulated with µ = σ = b = 1, and the probability of the positive
alternative being correct p+ = 0.9. Data are averaged over 10,000 trials. (a) Error
rates as functions of starting point X0 for large tc = 3 s: the solid vertical line
indicates the optimal starting point predicted by Eq. (11). (b) Error rates as functions
of tc for the starting point of Eq. (11), compared with the error rate for unbiased
starting point X0 = 0. Note that the error rates of the reflecting WDM with biased
starting points approach that for X0 = 0 at large tc .

respond within 200 ms of a cue (approximating the TC paradigm).
Three subjects were tested with ten different viewing times (lags)
and three levels of difficulty, 190 trials being administered for each
combination of lag and difficulty. For no subject did the error rate
in the most difficult condition approach zero, even at the longest
tc : see Fig. 9.
The unbounded WDM can be extended to account for these

data by adding the variability of the drift, which predicts that the
error rate does not decrease to zero for large tc (see Section 2.3).
However, Usher and McClelland (2001) have shown that it is
inferior to an O–U model in describing the shape of the error rate
as a function of tc . Ratcliff (2006) then proposed that the poor fit
of the WDM is due to the absence of boundaries and showed that
the absorbing WDM fitted the data from a combined IC and TC
experiment better than or equally well as alternative models.
We now provide further support for Ratcliff’s claim that

boundaries allow the WDM to account for TC data. In Fig. 9 we
compare the fits of the O–U model and bounded WDM to the data
of Usher andMcClelland (2001). To fit the O–Umodel, each subject
is characterized by five parameters: drifts µ1, µ2, µ3 under three
difficulty conditions, the coefficient λ, and the component T0 of
tc not due to the decision process (analogous parameters were
used by Usher and McClelland (2001)). For simplicity, and without
loss of generality, the noise level is set to σ = 1. To allow fair
comparison, we fit bounded WDMs that are also characterized by
five parameters: drifts in three difficulty conditions, the boundary
level±b, and the non-decision part of the tc (T0). SinceWDMswith
absorbing and reflecting boundaries produce the same error rate
under the TC paradigm (see Section 3.3), their data fits are also the
same. Hence we do not specify the boundary types in Fig. 9.
We estimated the above parameters using a maximum likeli-

hood approach, computing the likelihood of subjects’ accuracy un-
der each experimental condition (corresponding to each data point
in Fig. 9) from a binomial distribution (Usher & McClelland, 2001).
The likelihood of accuracy under condition i in which the subject
made ni correct decisions in N (N = 190) trials is equal to

Pr (ni|model) =
N!

ni! (N − ni)!
pnii (1− pi)

N−ni . (12)

In Eq. (12), pi denotes the probability of a correct choice predicted
by the model for the mean tc of a given subject under condition
i. The probability pi is equal to 1 − P(tc) in condition i. P(tc) is
calculated from Eq. (A.16) in Appendix A for the bounded WDM,
while for the O–U model it is equal to (Busemeyer & Townsend,
1992)

P (tc) = Φ

(
−
µ

σ

√
2
(
eλtc − 1

)
λ
(
eλtc + 1

)) , (13)

where Φ is the normal standard cumulative distribution function.
The total likelihood of the model for a given subject is equal to
the product of likelihoods of the accuracies in all 30 (10 lags × 3
difficulty levels) experimental conditions:

Pr (data|model) =
30∏
i=1

Pr (ni|model) . (14)

We used the Subplex optimization algorithm (Rowan, 1990) to
maximize this total likelihood over the five free parameters in
both the O–U model and the bounded WDM. The values of the
estimated parameters and the likelihood ratios of experimental
data given by the models are listed in Table 1. The curves in Fig. 9
show the accuracies predicted by the O–Umodel and the bounded
WDM. The fits are very similar and cannot differentiate between
the models. Although the likelihood ratios imply that overall the
data are about 3.5 times more likely to have been produced by the
bounded WDM than by the O–U model, this preference was not
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Fig. 9. Accuracies as a function of reaction time for three subjects in the TC
paradigm, from Usher and McClelland (2001). Different symbols indicate different
difficulty levels; solid and dashed lines show fits of the bounded WDM and O–U
model for the three difficulty levels. Estimated parameters used to generate the
curves are given in Table 1.

consistent among subjects as the bounded WDM fits two subjects
better, and the O–U model better fits the third subject.
In summary, Usher andMcClelland (2001) showed that the O–U

model fits the data shown in Fig. 9much better than an unbounded
WDM.Herewe have shown that boundedWDM fit the data at least
aswell as theO–Umodel, and theWDMwith absorbing and reflect-
ing boundaries fit the data equally well.
Table 2
Comparison of properties of boundedWDMs. ‘+’ denotes superiority of themodel in
a given criterion (better fit to data), ‘−’ denotes inferiority, and ‘=’ denotes equality.

Weighting of inputs Absorbing Reflecting
Primacy effect Recency effect

Error rate

Pure =

Variable µ =

Variable X0 − +

Biased X0 + −

Fit data =

Unification of IC & TC + −

5. Discussion

The present study compared the performance and consistency
of WDMs with absorbing and reflecting boundaries with existing
experimental data, as summarized in Table 2.We first showed that
both boundary types introduce differential weighting of evidence
within trials, yielding a primacy effect for absorbing boundaries
and a recency effect for reflecting boundaries (Fig. 4; we return to
these effects below in discussing experimental predictions).
We then showed that, in spite of the different probability

densities of their solutions (Fig. 3), the absorbing and reflecting
WDMs produce the same error rates under the TC paradigm with
and without variability of drift rate (Figs. 5 and 6). Thus, simple
comparisons of performance between bounded WDMs cannot
provide clear evidence in support of either model. However, for
starting point variability resulting from premature sampling, the
reflecting WDM yields lower error rate due to the recency effect,
while if the starting points reflect estimates of prior probabilities,
the absorbing WDM is superior (Figs. 7 and 8).
Finally, we compared model fits to existing experimental data,

showing that both absorbing and reflecting WDMs produce the
same fit to behavioural data from TC experiments (Fig. 9). A
bounded WDM produces as good a fit as the O–U model on the
given data set. We claim that both absorbing and reflectingWDMs
should be considered as useful models in the TC paradigm.
Boundarymechanisms are not limited to theWDM, but can also

be applied to decision making models based on absolute evidence.
Bogacz et al. (2007) analyse the LCA model (Usher & McClelland,
2001) with one reflecting and one absorbing boundary in both IC
and TC paradigms. They show that the reflecting boundary can
improve performance in the IC paradigm as the number of choice-
alternatives increases. Although whether the decision is rendered
based on relative or absolute information is still an open question,
the concept of boundary modification is versatile and important to
both categories of model.
Nevertheless, we feel that the existing experimental data are

insufficient to differentiate between the two types of bounded
model and that further studies are required. We have shown
that the two types of boundary introduce different weighting of
evidence, so it seems that this should provide clear experimental
predictions. Unfortunately, the primacy and recency effects are
also predicted by the O–U model (Busemeyer & Townsend, 1993).
Hence even if such effects are detected, it will be unclear whether
they are caused by the boundaries or by the linear term in the O–U
model.
One limitation of the WDM with dual reflecting boundaries is

its deficiency in describing the IC paradigm, while the absorbing
WDM provides an account of performance in both IC and TC
paradigms (Ratcliff, 2006, and cf. Table 2). However, since the
state variable of the integrator of the WDM only reflects abstract
evidence accumulated from sensory information, rather than a
specific quantity directly encoded by neural systems (Ratcliff,
Cherian, & Segraves, 2003), it is possible that the boundaries of
the WDMwould change for different paradigms. To illustrate this,
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we compare the neural recording data from experiments under
the IC (Churchland, Kiani, & Shadlen, 2008; Huk & Shadlen, 2005)
and TC (Kiani, Hanks, & Shadlen, 2008; Shadlen & Newsome, 2001)
paradigms and notice an interesting regularity: the firing rate of
integrator neurons after stimulus onset is much lower in the TC
paradigm than in the IC paradigm (for comparison, see Figures 7
and 9 in Roitman and Shadlen (2002)). This is consistent with the
idea that there are differences in the neural implementation of
these two paradigms, so it seems reasonable to propose different
models for the two paradigms.
The two types of boundarymight be differentiated by consider-

ing their possible neural implementations. As mentioned before,
accumulating sensory information is a common mechanism ob-
served in many brain functions, including decision making. Accu-
mulation up to a threshold is equivalent to applying an absorbing
boundary to the integrating process. Some previous studies show
that absorbing boundaries can be explicitly implemented in neural
circuits (Lo &Wang, 2006;Mazurek, Roitman, Ditterich, & Shadlen,
2003), or implicitly achieved by attractor dynamics (Wang, 2002;
Wong, Huk, Shadlen, & Wang, 2007; Wong & Wang, 2006). On the
other hand, Zhang and Bogacz (2008) proposed that a reflecting
boundary can be implemented by a network including the LIP area,
the basal ganglia, and the SC.
Most recently, Kiani et al. (2008) provided support for absorbing

boundaries when monkeys performed the motion discrimination
task under the TC paradigm. In their experiment, neuronal activity
in the LIP area was maintained after a certain latency, even when a
stimuluswas still available, suggesting the influence of a boundary.
Further, they observed the primacy effect (Kiani et al., 2008, Figure
4c), which is consistent with an absorbing boundary. Nevertheless,
as Kiani et al. (2008) also pointed out, in their experiment tc
varied widely (80 ms–1500 ms) between trials, which might have
encouraged the animal to make choices quickly and be ready
to respond, thus adopting a strategy that can be modelled by
absorbing boundaries. There is as yet no neurophysiological study
supporting the reflecting boundary or recency effect. However,
given its complementary characteristics and similar performance
to the absorbing boundary, we think it is necessary to test the
existence of such boundary mechanism, e.g., in tasks in which tc
is not varied within a block of trials.
A version of the TC paradigm in which, on some trials, the

stimulus changes within a trial could also distinguish between the
types of boundary. One approach is to perturb the stimulus during
the decision process by introducing an informative background
texture, as used byHuk and Shadlen (2005). Another approach is to
consider a time varying stimulus (Rouder, 2000; Smith, 1995). For
example, in the motion coherence task (see Section 2.1), initially
the coherent dots could move left, and then right (as proposed
by Wang (2002)). Stimuli would have to be carefully constructed
to ensure that the integrator hits a boundary before the change
in the stimulus, but such a condition is hard to guarantee in
the classical moving-dots paradigm. One alternative would be
to employ sequences of different geometrical shapes, with each
shape carrying a certain amount of information, as in the weather
prediction task (Yang & Shadlen, 2007). The shapes could first be
evaluated under the IC paradigm to determine which sequence
induces a boundary hit, and then the sequence can bemanipulated
to serve as the stimulus under the TC paradigm (e.g., by adding
or changing individual shapes). Under these conditions, the two
types of boundary would lead to different predictions: choices
being dominated by information before the change in the case
of absorbing boundaries and by information after it for reflecting
boundaries. Recordings of neuronal firing rates during such an
experiment would further illuminate the underlying mechanisms.
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Appendix A. The probability density function for reflecting
boundaries

Here we derive the probability density function p(X, t) for the
WDM with reflecting boundaries. To simplify the calculations, we
fix the unit noise variance (σ = 1), boundaries at 0 and 2b, and
(symmetric) initial condition

dX = µ dt + dW , with X(0) = b. (A.1)

As shown in Bogacz et al. (2006, Appendix), only the parameter
ratiosµ/σ and b/µ influence the following expressions, sowemay
set σ = 1 without loss of generality. To obtain expressions for the
case ±b and X(0) = 0 treated in the main text, one replaces X by
X + b. We note that a Laplace-transformed version of the solution
to this problem appears in Khantha and Balakrishnan (1983), but
explicit expressions such as those given below do not appear to be
readily available.
The probability distribution p(X, t) for the solution of (A.1) sat-

isfies the forward Kolmogorov or Fokker–Planck equation (Gar-
diner, 1985):

∂p(X, t)
∂t

= −µ
∂p(X, t)
∂X

+
1
2
∂2p(X, t)
∂X2

, (A.2)

and reflecting boundaries imply the following no-flux boundary
conditions:

− µp(X, t)+
1
2
∂p(X, t)
∂X

= 0 at X = 0 and X = 2b. (A.3)

To solve (A.3) we separate variables (Boyce & DiPrima, 1997) and
seek a solution of the form

p(X, t) =
∞∑
j=1

ωj(t) φj(X), (A.4)

obtaining the following eigenvalue problem:

1
2
φ′′ − µφ′ + λφ = 0;−2µφ(0)+ φ′(0) = 0

= −2µφ(2b)+ φ′(2b), (A.5)

and ODEs for the time-dependent coefficients ωj(t):

ω̇j = −λjωj ⇒ ωj(t) = ωj(0)e−λjt . (A.6)

Applying the boundary conditions (A.3) to the general solution

φ = e(µ±
√
µ2−2λ)X (A.7)

of (A.5), we find a single eigenvalue λ0 = 0 with eigenfunction
φ0(X) = e2µX and an infinite set of the form

λj =
j2π2

8b2
+
µ2

2
, φj(X)

= eµX
[
cos

(
jπX
2b

)
+
2µb
jπ
sin
(
jπX
2b

)]
, (A.8)
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for j = 1, 2, . . .. Hence, from (A.4), the general solution of the
Fokker–Planck equation may be written as an infinite series:

p(X, t) = ω0(0) e2µX +
∞∑
j=1

ωj(0) e−λjt eµX

×

[
cos

(
jπX
2b

)
+
2µb
jπ
sin
(
jπX
2b

)]
; (A.9)

thismay be computedwith arbitrary accuracy by summing finitely
many terms.
The coefficients ωj(0) in (A.9) are obtained from the initial

probability distribution p(X, 0) = p0(X). To compute them, it
is convenient to use a weighted inner product with respect to
which the (non-normalized) eigenfunctions (A.8) are orthogonal.
Upon multiplication by e−2µX the non-self-adjoint boundary value
problem (A.5) becomes a regular Sturm–Liouville problem (Boyce
& DiPrima, 1997):

(e−2µXφ′)′ + 2λe−2µX φ = 0, (A.10)

and hence the eigenfunctions are pairwise orthogonal with respect
to the weighted inner product:

(φj, φk)µ =

∫ 2b

0
φj(X) φk(X) e−2µX dX = ckδjk,

for j, k = 0, 1, 2, . . . , (A.11)

with normalization constants

c0 =
e4µb − 1
2µ

, and ck = b
(
1+

4µ2b2

k2π2

)
for k ≥ 1. (A.12)

Equating (A.9) to p0(X) at t = 0, and taking inner products, we
obtain

ωj(0) =
(p0, φj)µ
cj

, for j ≥ 0. (A.13)

As t → ∞, the terms in the sum of (A.9) all decay to zero
and p(X, t) approaches the equilibrium probability distribution
p∞(X) = ω0(0)e2µX , so for normalized initial data

∫
p0(X)dX = 1

it must follow that∫ 0

2b
ω0(0)e2µX dX = 1⇒ ω0(0) =

1
c0
=

2µ
e4µb − 1

. (A.14)

For the delta function initial condition p0(X) = δ(X − b), the
remaining coefficients for j ≥ 0 may be computed directly from
(A.13) as

ωj(0) =
e−µb

[
cos

( jπ
2

)
+
2µb
jπ sin

( jπ
2

)]
b
(
1+ 4µ2b2

j2π2

)
=

e−µb
[
(−1)

j
2

(
1+(−1)j

2

)
+
2µb
jπ (−1)

j−1
2

(
1−(−1)j

2

)]
b
(
1+ 4µ2b2

j2π2

) . (A.15)

Substituting (A.14) and (A.15) in (A.9), we obtain an explicit series
representation of p(X, t).
The error rate P(tc) at given tc is computed by integrating

p(X, tc) between the left boundary and the starting point:

P(tc) =
∫ b

0
p(X, tc) dX

=
1

1+ e2µb
+

∞∑
j=1

ωj(0) eλjtc
2beµb sin jπ2

jπ
. (A.16)
As t increases, p(X, tc) converges to the equilibrium distribution

lim
tc→∞

p(X, tc) =
2µe2µX

e4µb − 1
, (A.17)

and P(tc) approaches

lim
tc→∞

P(tc) =
1

1+ e2µb
. (A.18)

Appendix B. Equality of the error rate for the bounded WDMs

Here we show that the error rates of the reflecting and
absorbing WDM are the same for arbitrary tc . We again set σ=1,
and take boundaries at 0 and 2b with X0 = b. Since the error
rate for absorbing boundaries cannot be evaluated analytically, we
consider fluxes across the starting point b (Goel & Dyn, 2003):

F = −µp(X, t)+
1
2
∂p(X, t)
∂X

∣∣∣∣
X=b

. (B.1)

For reflecting boundaries, the derivative of p(X, t) at X = b is

∂p
∂X

∣∣∣∣
X=b
=
4µ2e2µb

e4µb − 1
+

∞∑
j=1

exp(−λjt)

b
(
1+ 4µ2b2

j2π2

)
×

[
cos

(
jπ
2

)
+
2µb
jπ
sin
(
jπ
2

)]
×

[
2µ cos

(
jπ
2

)
+

(
2µ2b
jπ
−
jπ
2b

)
sin
(
jπ
2

)]
, (B.2)

where (cf. Eqs. (A.8) and (A.9))

λj =

(
j2π2

8b2
+
µ2

2

)
. (B.3)

Hence from (B.1) the flux across b is

Fref =
∞∑
j=1

exp(−λjt)

b
(
1+ 4µ2b2

j2π2

) [cos( jπ
2

)
+
2µb
jπ
sin
(
jπ
2

)]

×

(
−
µ2b
jπ
−
jπ
4b

)
sin
(
jπ
2

)
= −

∞∑
j=1

[
µ exp(−λjt)

2b

]
sin2

(
jπ
2

)
. (B.4)

For absorbing boundaries, the probability density p(X, t) with
boundary at±b is (Feller, 1968)

p(X, t) =
1
b
eµX/σ

2
∞∑
j=1

sin
(
jπ
2

)
sin
[
jπ(X + b)
2b

]

× exp
[
−

(
j2π2σ 2

8b2
+
µ2

2σ 2

)
t
]
. (B.5)

Upon replacing X by X − b to adapt for absorbing boundaries
at X = 0 and X = 2b, the probability density function (B.5)
becomes (Goel & Dyn, 2003)

p(X, t) = eµ(X−b)
∞∑
j=1

exp(−λjt)
b

sin
(
jπ
2

)
sin
(
jπX
2b

)
, (B.6)

and its derivative at X = b is
∂p
∂X

∣∣∣∣
X=b
=

∞∑
j=1

exp(−λjt)
b

sin
(
jπ
2

)

×

[
µ sin

(
jπ
2

)
+
jπ
2b
cos

(
jπ
2

)]
. (B.7)
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Using (B.1) again, the flux for absorbing boundaries is therefore

Fabs =
∞∑
j=1

exp(−λjt)
b

sin
(
jπ
2

)[
−
µ

2
sin
(
jπ
2

)
+
jπ
4b
cos

(
jπ
2

)]

= −

∞∑
j=1

[
µ exp(−λjt)

2b

]
sin2

(
jπ
2

)
. (B.8)

Since the fluxes (B.4) and (B.8) are identical as functions of t , the
error rates of the WDM with symmetric reflecting and absorbing
boundaries are also equal. Note the remarkable simplicity of the
final flux formula, due to the cancellation of terms.
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