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Abstract. Much evidence indicates that recognition memory involves two separable processes, recollection and
familiarity discrimination, with familiarity discrimination being dependent on the perirhinal cortex of the temporal
lobe. Here, we describe a new neural network model designed to mimic the response patterns of perirhinal neurons
that signal information concerning the novelty or familiarity of stimuli. The model achieves very fast and accurate
familiarity discrimination while employing biologically plausible parameters and Hebbian learning rules. The fact
that the activity patterns of the model’s simulated neurons are closely similar to those of neurons recorded from
the primate perirhinal cortex indicates that this brain region could discriminate familiarity using principles akin to
those of the model. If so, the capacity of the model establishes that the perirhinal cortex alone may discriminate the
familiarity of many more stimuli than current neural network models indicate could be recalled (recollected) by all
the remaining areas of the cerebral cortex. This efficiency and speed of detecting novelty provides an evolutionary
advantage, thereby providing a reason for the existence of a familiarity discrimination network in addition to
networks used for recollection.

Keywords: recognition memory, novelty detection, hippocampal region, computational model, spike-response
model

1. Introduction

A large body of psychological evidence suggests that
recognition memory involves two separable processes,
recollection and familiarity discrimination (see, e.g.,
Mandler, 1980; Hintzman et al., 1998). Indeed, per-

sonal experience indicates that it is not uncommon to
be able to recognize that a person is familiar to us even
though we cannot immediately recollect anything more
about the person or our previous encounters with them.
Work in amnesic patients and in monkeys has estab-
lished that discrimination of the relative familiarity or
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Figure 1. Comparison of activity of actual and theoretical perirhinal neurons. In each display, a cumulated peristimulus-time histogram is
depicted together with a line-by-line raster display of the occurrence times of the neuron’s action potentials during the presentation of each of
10 different pictures.A: Novelty neuron recorded from monkey perirhinal cortex (Xiang and Brown, 1998). Shown is the strong response of
the neuron to 10 novel and short response to 10 familiar pictures. Approximate boundaries of two processing phases are indicated: familiarity
discrimination period and memorizing period.B: Computer simulation of an FDN using Spike-Response Model obtained for a network consisting
of 40 representation neurons, 40 FDNs, and 1 decision neuron. The illustrated FDN has similar response properties to the novelty neuron in
panel A.C: Visually responsive neuron, which does not differ in its response to novel and familiar patterns, recorded from monkey perirhinal
cortex.

novelty of visual stimuli is dependent on the perirhi-
nal cortex (Aggleton and Brown, 1999; Aggleton
and Shaw, 1996; Brown and Xiang, 1998; Murray,
1996; Murray and Bussey, 1999). The perirhinal cortex
(Brodmann’s areas 35 and 36) is located along the bor-
der of the parahippocampal gyrus, inferomedially in the
temporal lobe. The cortical inputs to the perirhinal cor-
tex carry multimodal information and come from asso-
ciation cortical, including visual areas. The perirhinal
cortex also has close connections with the amygdala,
the hippocampus (mainly via the entorhinal cortex),
and the striatum (Murray and Bussey, 1999). Dam-
age to the perirhinal cortex results in impairments in
recognition memory tasks that rely on discrimination
of the relative familiarity of objects (Murray, 1996).
Within the monkey’s perirhinal cortex,∼25% of neu-
rons respond strongly to the sight of novel objects but
respond only weakly or briefly when these objects are
seen again (Brown and Xiang, 1998; Xiang and Brown,
1998) (Fig. 1a). The population of such responses at-
tests to very fast discrimination of the novelty or fa-
miliarity of stimuli: response differences occur within
100 ms of stimulus onset (Xiang and Brown, 1998).
This finding accords with the ability of human sub-
jects to make such discriminations rapidly (Seeck et al.,

1997; Hintzman et al., 1998). Additionally, the popula-
tion of these neuronal responses manifests a very large
storage capacity as the responses of individual neurons
continue to signal the novelty or familiarity of objects
even when many hundreds of objects have been seen
(Xiang and Brown, 1998). This capacity is in accor-
dance with the ability of human subjects who, after
seeing thousands of different pictures once, can still
recognize the individual pictures as familiar (Standing,
1973).

The above evidence suggests that the familiarity dis-
crimination aspect of recognition memory is dependent
on the perirhinal cortex. This raises the question of how
this relatively small area of the brain can perform famil-
iarity discrimination for such large numbers of stimuli
with such efficiency. A further, related question is why
the brain should possess separate familiarity discrimi-
nation and recollection processes. The purpose of this
study is to provide answers to these questions through
the description of a neural network model that per-
forms familiarity discrimination and whose behavior
is consistent with experimental observations. By vary-
ing synaptic weights, the model efficiently stores infor-
mation about the occurrence of stimuli. The network
determines whether a stimulus has been encountered
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before but not its associations; accordingly, the model
cannot be used to achieve associative recall. With this
restriction, the network achieves much higher storage
capacity for familiarity discrimination than other neural
networks achieve for recall. A brief theoretical analy-
sis of such a method of familiarity discrimination was
presented by Bogacz et al. (1999). Here we show how
a neural network may be constructed using realistic
parametric assumptions and plausible learning rules
and compare the activity of its neurons with that of
real perirhinal neurones.

To our knowledge, this is the first published model of
familiarity discrimination designed to mimic process-
ing in the perirhinal cortex. It differs from previous neu-
ral network models of how familiarity discrimination
may be performed in the brain, as these use networks
possessing the ability to recall information and hence
do not achieve such high storage capacity (e.g., Kazer
and Sharkey, 1999; Borisyuk et al., 1999). The model
also differs from the artificial neural networks used
for familiarity discrimination in industrial applications
(e.g., Roberts and Tarassenko, 1995; Granger et al.,
1998). In these approaches familiarity discrimination
is considered as detecting typical patterns of device
behavior, since untypical (that is, novel) patterns may
be a sign of malfunctions. Hence such models assume
that familiar patterns create clusters in representation
space (and the synaptic weights of their neurons often
encode prototypes of familiar patterns)(e.g., Granger
et al., 1998). By contrast, the model outlined here does
not require any assumptions concerning the distribution
of patterns, and it discriminates whether a particular
pattern was presented previously rather than whether
the pattern is typical. The proposed network differs also
from the novelty filter (Kohonen, 1989), which deter-
mines which bits of the delivered pattern differ from
the closest familiar pattern. The proposed model has
just a single output but may discriminate familiarity
for many more patterns than a novelty filter. Although
the information processing in the proposed network is
similar to that in a novelty detector (Kohonen et al.,
1974; Kohonen, 1989), the novelty detector is an ab-
stract model of a single neuron, with correspondingly
limited storage capacity. The proposed model is a net-
work of neurons with a very large storage capacity.
Furthermore, the performance of the novelty detector
was analyzed for an abstract case in which each familiar
pattern was presented infinitely many times (Kohonen
et al., 1974; Kohonen, 1989), while for the network de-
scribed here, the storage capacity is calculated for the

case in which each familiar pattern is presented only
once before testing.

The network is designed to model familiarity dis-
crimination and not other perirhinal functions (Suzuki,
1996; Murray and Bussey, 1999). Among perirhi-
nal neurons,∼25% respond differently depending on
the previous occurrence of visual stimuli (Xiang and
Brown, 1998). Another∼30% are visually responsive
but do not change their response depending on prior oc-
currence (see Fig. 1c). (For a computational model of
such neurons, see Saksida and Bussey, 1998.) Further-
more, there are three types of neurons with responses
carrying information of use to recognition memory—
novelty, recency, and familiarity neurons—each with a
different pattern of responsiveness (Xiang and Brown,
1998). This article focuses on modeling computations
performed by novelty neurons (∼10% of perirhinal
neurons) that respond strongly to the first presentations
of novel stimuli but only briefly to presentations of
familiar stimuli. Neuronal simulations were made us-
ing the spike-response model (Gerstner, 1998b). This
model takes into account the timing of action poten-
tials, conduction delays, neuronal refractory periods,
and shapes and linear summation of postsynaptic po-
tentials. This spike-response model is used later in the
article. For simplicity of explanation and mathematical
analysis, a model based on binary neurons (McCulloch
and Pitts, 1943) is used to introduce the network.

The article starts with a description of the proposed
network in Section 2. Then the storage capacity and
other properties of the proposed network are presented
in Section 3. Section 4 discusses how the model relates
to experimental observations. The storage capacity of
the network is calculated in Appendices A, B, and C.
Appendices D and E give all the implementation details
to allow replication of the presented simulations.

2. Description of the Model

The computations performed by the network are simi-
lar to the discrimination of familiarity by checking the
energy function of the Hopfield network. As shown
in Appendix A, this provides an efficient method of
familiarity discrimination. Checking the Hopfield en-
ergy is an abstract algorithm, which cannot be per-
formed directly by a biologically plausible network.
Simulations have established that there are several neu-
ral networks performing analogous computation and
achieving a similarly high storage capacity. However,
few of those networks exhibit behavior consistent with



8 Bogacz, et al.

experimental observations. Networks that have be-
havior consistent with experimental observations have
been found to share many features. Accordingly, the
most biologically plausible of such networks is pre-
sented here, with possible variants being discussed in
Section 4.

The model will be described in detail in the fol-
lowing sections. In essence, it operates in two peri-
ods, a familiarity discrimination period followed by a
memorizing period. The critical elements are familiar-
ity discrimination neurons (FDNs) that correspond to
the novelty neurones of the perirhinal cortex and make
individual decisions about the novelty or familiarity
of a stimulus during the familiarity discrimination pe-
riod. The synapses of FDNs are modified according to
Hebbian rules during the memorizing period. The other
features of the model are to optimize the operation of
the network.

2.1. Phases of Processing

The model operates in two phases: a brief initial pe-
riod when the discrimination of familiarity is achieved
(familiarity discrimination period) and a subsequent,
longer period during which information storage is
effected (memorizing period). Work in information the-
ory and in analysis of experimental observations re-
lating to information theory indicates that the first im-
pulses in a spike train carry the most information (Rieke
et al., 1997; Rolls and Tovee, 1994). Consonant with
this, the model assigns a special computational role in
judging familiarity to the first spike(s) after stimulus
presentation—that is, the spikes occurring in a brief
initial interval, in which novelty neurons are active for
both novel and familiar patterns (see Fig. 1a). The sub-
sequent memorizing period has high-frequency spike
activity for a novel but not for a familiar stimulus. This
high-frequency activity produces differential modifi-
cations of synaptic weights, thereby storing the occur-
rence of the novel stimulus. At this time, there is no
high-frequency activity for familiar stimuli (Fig. 1a)
because their occurrence has already been stored in the
network and hence further synaptic weight modifica-
tion is not necessary.

After presentation of a novel stimulus, the high-
frequency activity during the memorizing period
(Fig. 1a) effects the redistribution of synaptic weights
according to Hebbian learning rules: increases in
weights simulate, for example, long-term potentia-
tion (LTP), and decreases simulate, for example, long-

term depression (LTD) (Bliss and Collingridge, 1993;
Ito, 1989). The redistribution of weights results in an
increase in the magnitude of postsynaptic potentials
produced by the first spikes evoked by a future occur-
rence of that stimulus. The consequent increase in neu-
ronal firing during the familiarity discrimination period
when a stimulus reappears results in the stimulus being
judged familiar. It might be thought that this increase
during the familiarity discrimination period would be
observable in the histogram of Fig. 1a. However, simu-
lations demonstrate that the increase need not be large,
need not affect many neurons, and hence cannot be
expected to be readily observable on such histograms
(see also Fig. 1b). Moreover, the memorizing period
follows the familiarity discrimination period immedi-
ately, so that any increase in the histograms will tend
to be masked by the onset of the faster activity of the
memorizing period.

2.2. Information Processing in the Familiarity
Discrimination Period

The model has three layers (Fig. 2a). The first layer of
N neurons provides inputs to the familiarity discrimi-
nation network. These neurons correspond to visually
responsive neurons, which do not alter their responses
according to the novelty or familiarity of a pattern
(Fig. 1c) and are here referred to asrepresentation neu-
ronsbecause they collectively provide a representation
of the stimulus. Almost all visually responsive neurons
in the perirhinal cortex are stimulus selective (Brown
and Xiang, 1998) so there is a particular pattern of ac-
tivity of representation neurons associated with each
presented stimulus. Here, for simplicity, the pattern for
each stimulus is encoded as a sequence ofN bits, where
1 denotes that the corresponding representation neu-
ron belongs to the assembly of neurons that fires for
that stimulus, while 0 indicates that it does not. In this
model the representation neurons are considered just
as an input to the network. One possible model of how
such representation neurons may be produced is given
in Saksida and Bussey (1998).

The second layer consists offamiliarity detection
neurons (FDNs); these correspond to experimentally
observed novelty neurons (Xiang and Brown, 1998).
FDNs make individual, independent decisions about
the familiarity of the stimulus. The modifiable connec-
tions of the model result in more FDNs being active for
familiar patterns than for novel ones during the initial
period of processing (Fig. 3). The synaptic efficacies of
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Figure 2. Architecture of the neural network model.A: 3-layer
network (of representation, familiarity discrimination, and decision
neurons) performing 3 steps of processing. Differential activity after
the first period of processing may be achieved using inhibition. After
presentation of a familiar stimulus, decision neurons (here for sim-
plicity only one is shown) are activated and trigger the excitation of
inhibitory neurons, denoted in the figure by “Inhibitory,” which pre-
vent activity in the FDNs during the memorization period. For novel
patterns, the decision neuron is not active; hence the inhibition is not
increased, and the FDNs are active during the memorization period.
Since FDNs are active in the memorizing period for novel patterns,
they could potentially activate the decision neuron for a novel pattern.
To prevent the decision neurons from firing during pattern memo-
rization, inhibitory neurons denoted by “Slow Inh.” (here again for
simplicity only one is shown) are introduced. The activity of these
inhibitory neurons is delayed compared to activity from the FDNs,
so allowing the decision neurons to fire only in the initial familiarity
discrimination period (until the “Slow inh.” neurons turn the deci-
sion neurons off).B: Schematic activity of the perirhinal neurons
from the model. In the brief initial period, the majority of FDNs are
active for familiar patterns and inactive for novel (correct). Although
a fraction of FDNs may behave in the opposite way (incorrect), the
network results in decision neurons being active for familiar and in-
active for novel stimuli with high accuracy. Hence in the memorizing
period appropriate FDNs are active for novel and inactive for familiar
stimuli.

inputs to FDNs active during the memorizing period for
novel patterns are redistributed according to Hebbian
rules. In the model, the weights from active inputs to
an FDN are increased by 1/N (simulating long-term
potentiation) (LTP). To keep average excitability lev-

Figure 3. Behavior and synaptic plasticity of FDNs.A: The mem-
brane potential of an FDN (the number in the triangle) is determined
by the sum of the weights of its active inputs (the sample FDN has
N = 6 inputs). Hence the higher the correlation between the weights
and the input pattern for any individual FDN, the higher its mem-
brane potential in the initial period. The FDN will be active only
if its membrane potential exceeds a threshold. For simplicity, ini-
tially all synaptic weights are equal (the initial value of all weights
in the example is 1). The threshold of each FDN is set such that
most FDNs are inactive for novel patterns—that is, it is set above the
value of the membrane potential averaged across the whole popula-
tion. It is defined in the example as 1/2(N× initial value of weights)
+1/4; it equals 314 . In the example, after delivery of a sample pat-
tern (110010), the membrane potential is equal to 3; this is below
the threshold and the FDN is inactive.B: Modification of synaptic
weights according to Hebbian rules during the memorizing period.
When the same pattern is seen again, the value of the membrane
potential is higher in the initial period (312) and the FDN is active.

els within the network constant, other synapses are
weakened (simulating hetero-synaptic long-term de-
pression) (LTD) (Fig. 3). Thus, during learning, synap-
tic weights become correlated to the FDN inputs active
for that pattern. Hence, when the same pattern is seen
again, the value of the membrane potential is higher in
the initial period, and the FDN is more likely to fire. To
ensure the decisions made by FDNs are independent
of the number of representation neurons that are active
(that is, to compensate for differences in the level of
activity for different patterns), inhibitory neurons (de-
noted “Inhibitory” in Fig. 2a) increase the threshold of
FDNs in proportion to the number of such neurons that
are active. A similar function for inhibitory neurons
was proposed in the neocortex model of Marr (1970).
In order for the adjustment to be effective, the inhibition
must reach FDNs approximately at the same time as the
excitation from the representation neurons. Hence, the
inhibitory neurons receive input from axons afferent to
the representation neurons rather than from axons of
the representation neurons themselves. Such a mech-
anism is satisfactory under the plausible assumption
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that this afferent activity predicts the activity of the
representation neurons.

Since any individual FDN may make a mistake—
that is, be active for a novel stimulus during this initial
period—a mechanism is required to sample the activ-
ity of the population of FDNs and make a judgment
based on their conjoint activity. In the current model,
this mechanism is supplied by a third layer ofdeci-
sion neurons. Decision neurons receive inputs from
the FDNs and are activated only when a majority of
their inputs are active. These decision neurons govern
the subsequent activity of the network, particularly the
activity that will produce changes in synaptic efficacy
according to Hebbian learning (LTP or LTD) (Bliss
and Collingridge, 1993; Ito, 1989) for novel but not
familiar patterns. Essentially, these neurons act as en-
forcers of the network decision. These neurons could
be regarded as the output of the network in that they
carry its decision; however, the FDNs provide a sig-
nal that is more biologically useful for distribution to
other networks (brain regions) as it potentially carries
more information, and, moreover, this information is
accurate following the enforcement of the FDNs’ ac-
tivity provided by the decision neurons. As all the deci-
sion neurons perform the same task, theoretically there
need be only one decision neuron in the whole network.
However, limitations on the number of synapses of a
single neuron mean that one neuron could not sample
the whole population of perirhinal FDNs. Assuming
a perirhinal decision neuron has 104 synapses, there
need be only one decision neuron to every 104 FDNs.
However, to make the network resistant to damage, the
number of decision neurons may be increased to, for
example, one to every 1000 FDNs without significantly
increasing total network size.

Various neuronal circuits can implement the con-
ditions necessary for controlling the modification of
synaptic weights. Here, inhibitory connections are used
(Fig. 2a); these result in the behavior of the neurons
in the network mimicking those of experimentally ob-
served perirhinal neurons (Fig. 1b) (Xiang and Brown,
1998) and are consistent with findings on homosynap-
tic LTD (described in Section 4). Whatever circuitry or
underlying synaptic plastic mechanism is used, it needs
to be sufficiently fast to produce the observed reduction
in perirhinal neuronal responses that occurs even when
a stimulus is repeated within less than a second (Miller
and Desimone, 1993).

To maximize the information storage capacity of the
network, it is necessary to ensure that individual FDNs

remain independent assessors of familiarity. For exam-
ple, if all FDNs were active during the memorizing
period, then the synaptic weights of all FDNs would
be modified in the same way and all the FDNs would
come to have highly correlated weights. Hence, even-
tually, they would all be active or inactive together, and
the whole network would have the same capacity as a
single FDN. To avoid this problem, the number of active
FDNs must be limited during memorizing. It is there-
fore necessary that only a subset of FDNs respond to
any given stimulus. One simple way of ensuring this
selectivity of response is to provide specific connec-
tions with high synaptic weights that are not changed
during learning (double lines in Fig. 4) from the rep-
resentation neurons to the FDNs. For simplicity of an-
alyzing network behavior, in this article we consider
such connections as one-to-one connections, but they
may be realized as few-to-few connections (For ex-
ample, within local groups of neurons in the perirhi-
nal cortex) without necessarily compromising storage

Figure 4. Synaptic weight modification in the network after deliv-
ery of a sample novel pattern.A: Weight modification. Double lines
denote powerful, nonmodifiable connections; thick lines, weights
that are increased during learning; thin lines, weights that are de-
creased. The f3 neuron does not receive activation through a strong
nonmodifiable connection; hence it is not activated even after a de-
crease of inhibition. The weights of the FDNs are modified in a
Hebbian manner—for example, weights between active units r1-f2,
r2-f1 are increased (as if due to LTP); weights from inactive to active
units r3-f1, r3-f2 are decreased (as if due to heterosynaptic LTD);
and weights from active to inactive units r1-f3, r2-f3 are decreased
(as if due to homosynaptic LTD).B: Corresponding network activity,
as for Fig. 2b.
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capacity (as indicated by simulations). These connec-
tions ensure that for an FDN to be active, the corre-
sponding neuron in the first layer must also be active.
The FDNs are thus made input sensitive and respond
to only a subset of patterns—as do real perirhinal neu-
rons (Xiang and Brown, 1998). Limitation of the num-
ber of active FDNs may additionally or alternatively
be achieved by inhibition. Further to uncorrelate the
activity of FDNs, the weights of connections between
active representation neurons and inactive FDNs are
reduced—as if, for example, by homosynaptic LTD
(see Fig. 4; a more formal explanation of this weight
reduction may be found in Appendices B and D). This
reduction also ensures that the average synaptic weight
and hence the mean excitability of the network re-
mains constant. Mathematical analysis of this network
is shown in Appendix B. Appendix D gives details of
the simple binary model, and Appendix E of the spike-
response model. Modeling of precise spike timing de-
scribed in Appendix E does not bring any new com-
putational properties, but it allows observation of the
behavior of neurons in the network (Fig. 1b) and hence
comparison with the activity of real perirhinal neurons.

3. Storage Capacity and Other Properties
of the Network

The computations performed by the network in the
initial familiarity discrimination period are similar to
those of the abstract algorithm of familiarity discrimi-
nation by checking the energy function of the Hopfield
network (Bogacz et al., 1999). This method allows
a neural network havingN neurons to discriminate
familiarity with 99% reliability for 0.023N2 patterns
(see Appendix A). This capacity is much greater than
the standard capacity of the Hopfield network for
retrieval—namely, 0.145N (Amit, 1989). The storage
capacity of the network in the model is two times
smaller—that is, assuming the probability of error 1%,
the network includingN FDNs can discriminate fa-
miliarity for 0.012N2 patterns (which is proven in
Appendix B). If a higher reliability is required, the
familiarity discrimination capacity slightly decreases,
but it still is of order N2 (For example, for an error
probability of 10−6 the capacity is about 0.003N2).
Figure 5 compares the capacities of the perirhinal net-
work model and the Hopfield model found in simula-
tions, with the corresponding theoretical predictions.

The above formulae are true in the case of a fully
connected network. However, the capacity of the pro-

Figure 5. Comparison of the simulated familiarity discrimination
capacities of the perirhinal network and the Hopfield model, with the
corresponding theoretical predictions (standard capacity for retrieval
is also shown). For each number of inputsN, and for each number of
previously stored patternsP, the behavior of the network was tested
repeatedly with sets of random patterns until it had been tested with
500 previously stored patterns and 500 random patterns for which
the absolute value of the correlation with each stored pattern was
less than 0.5. For each number of inputsN, Pmax is taken as the
maximum number of stored patternsP, for which the error rate is
≤1%. To illustrate the precision of the simulation process, for one
data point (N = 100), the capacity was estimated 10 times using the
above method. The standard deviation of the maximum number of
stored patterns was+/−8.64 (shown by error bar).

posed familiarity discrimination network remains pro-
portional to the number of synapses rather than the
number of neurons, even for networks that are not fully
connected (see Appendix C and Fig. 6). Making a fa-
miliarity judgment may be considered to be a single
bit classification, and storage capacity has been also
found to be proportional to the number of synapses for
classification networks based on a single neuron classi-
fier (Cover, 1965) and for a multilayer perceptron with
one output (Kowalczyk, 1997).

In the Hopfield network the inverse patterns to stored
patterns (where all the zeros are replaced by ones and
ones by zeros, such as 1001011 and 0110100) have the
same energy value as corresponding original patterns.
Therefore, in theory such inverted patterns would be
classified by the proposed network as familiar, although
they are very different from those stored. However, ex-
perimental and theoretical work indicates that patterns
are likely to be encoded in a sparse way—that is, for
a given pattern the fraction of neurons that are simul-
taneously active will be much less than a half (there
will be fewer ones than zeros in the binary representa-
tions of patterns) (Foldiak and Young, 1995). With this
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Figure 6. Comparison of the simulated familiarity discrimination
capacities of the perirhinal network for different degrees of sparse-
ness of connectivity, with the corresponding theoretical predictions.
Method of simulation as in Fig. 5.

constraint, the inverted patterns cannot exist (because
they would consist of more ones than zeros) so that
mistakes involving inverted patterns would not occur.
In this article, however, sparse coding is not used. For
simplicity it is assumed that the probabilities of neu-
ron being active and inactive in a particular pattern are
equal. This simplification was made to make analysis
of network properties in the Appendices simpler and
clearer. However, simulations establish that the oper-
ation of the network is essentially unchanged should
encoding be sparse.

The proposed network may still under certain cir-
cumstances classify a novel pattern as familiar (that is,
mimic false alarms during recognition memory tests).
The patterns for which this error may be made corre-
spond to spurious attractors in the Hopfield network—
states having lower values of the energy function than
the stored patterns (Amit, 1989). By decreasing the
number of stored patternsP, the probability of such
errors may be decreased, but spurious attractors exist
even for very smallP (Amit, 1989). For example, mix-
tures of stored patterns (that is, patterns showing sub-
stantial overlap with many of the stored patterns) have
a high probability of being spurious attractors (Amit,
1989). Although for a given set of stored patterns it
is not difficult to construct novel patterns that will be
classified as familiar (as illustrated in Section 4), the
probability that a random novel pattern is classified as
familiar is very small until the network is near satura-
tion (Appendix B).

The network demonstrates generalization and is re-
sistant to disruption by noise. A pattern will still be
classified as familiar even if it differs in a substantial
proportion of its bits from its previous representation
(as might result from changes in, for example, the ori-
entation of the stimulus or part of the stimulus being
obscured). More precisely, a pattern will be classified as
familiar if the Hamming distance (number of different
bits) between the pattern and one of the stored patterns
is small. It is plausible that presentations of very sim-
ilar stimuli would indeed result in similar patterns of
activity of the representation neurons. It is predicted by
the majority of algorithms modeling feature extraction
in the cortex, such as independent component analysis
(Olshausen and Field, 1996), and is consistent with the
neurophysiological observations in area TE adjacent to
the perirhinal cortex (Kobatake et al., 1998). The net-
work is also very resistant to damage. The model will
work after the removal of synapses of FDNs, or even
whole FDNs, with the capacity per synapse remaining
the same (see Appendix C). As few decision neurons
are needed, it is not costly to build redundancy into the
network by increasing their numbers. Moreover, as all
the decision neurons perform the same task, the net-
work’s capacity will not be affected by loss of their
synapses or even of whole decision neurons.

The proposed network has two processing layers. In
artificial neural networks, multilayer networks are used
when the problem is nonlinearly separable (Hertz et al.,
1991). Familiarity discrimination may be perceived as
a simple linearly separable problem and may be solved
by a single neuron (Bogacz et al., 1999). However,
the single neuron has a very limited storage capacity.
The two layers of the proposed network are required to
achieve high storage capacity.

If the human perirhinal cortical network operates
on similar principles to the proposed model, its the-
oretical capacity may be estimated on the assumption
that it contains∼4× 107 pyramidal neurons (Insausti
et al., 1998), of which∼4× 106 are novelty neurons,
each with∼104 potentially modifiable synapses. With
a probability of error of 10−6, the perirhinal network
of novelty neurons could discriminate familiarity for
∼108 patterns. For comparison, the human hippocam-
pal subfield CA3, which has been modeled as an au-
toassociative memory (Marr, 1971; Rolls, 1996), con-
tains∼2.3× 106 pyramidal neurons (Cassell, 1980)—
a number in the same range as that of perirhinal
novelty neurons—with∼40,000 potentially modifi-
able synapses per neuron (Cragg, 1975). If the storage
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capacity of this network were calculated according to
the model proposed by Rolls (1996) with the model’s
parameters (sparseness= 0.02 and structure of connec-
tivity factor= 0.2), then the human CA3 could perform
recall for only∼105 patterns.

Furthermore, familiarity discrimination in the pro-
posed network is very fast. To discriminate familiarity
after the information about a stimulus reaches the rep-
resentation neurons, the information needs to be pro-
cessed by only two layers of neurons and so may take
less than∼10 ms. In contrast, associative memories
that perform recall require a longer relaxation process
(Amit, 1989).

4. Model Behavior and Experimental
Observations

Computer implementation of this network using pa-
rameters concerning excitatory and inhibitory postsy-
naptic potential durations, refractory periods, and con-
duction delays for cortical neurons (Fohlmeister et al.,
1995) (see Appendix E for details) obtained the be-
havior for the FDNs exemplified in Fig. 1b. The ac-
tivity patterns of neurons in the network are closely
similar to those observed experimentally for neurons
in the perirhinal cortex (Xiang and Brown, 1998). In
particular, the responses of FDNs are much shorter
and/or weaker for subsequent than for first presenta-
tions, as for real novelty perirhinal neurons (Xiang and
Brown, 1998). Studies of cross-correlograms of neu-
rons recorded from the perirhinal cortex suggest that
there are likely to exist direct connections from repre-
sentation neurons to FDNs (Brown and Xiang, 1998),
consistent with the structure of connections in the pro-
posed network.

According to the model, homosynaptic LTD should
occur at synapses between active representation neu-
rons and inactive FDNs for novel stimuli but not for fa-
miliar stimuli. In this context it may be significant that
in slices of the perirhinal cortex maintainedin vitro, ho-
mosynaptic LTD is more readily induced when the level
of inhibition in the network is decreased (Ziakopoulos
et al., 1999; Cho et al., 2000). This finding is consistent
with the model, where the level of inhibition is low for
novel and high for familiar patterns.

In the model, the computation of stimulus familiarity
is performed by the first spike(s) of the train. Markram
and Tsodyks (1996) have found that LTP at synapses
of cortical neurons can increase the probability of the
first spike in a train generating alargepostsynaptic po-

tential. Thus under these conditions, synaptic efficacy
changes may be utilized by computations involving the
first spikes(s) of the train.

The model is also consistent with the observation
that gross stimulation or epileptic attacks involving the
temporal lobe in human epileptic patients may result
in déjà vu, the patients reporting inappropriate subjec-
tive feelings of familiarity (Bancaud et al., 1994). In
the model, epileptic seizures would be likely to cause
simultaneous excitation of large numbers of FDNs, so
leading to the network classifying (falsely) many stim-
uli as familiar.

If a novel pattern shows substantial overlap with a
number of previously stored patterns, it may mistak-
enly be judged as familiar by the proposed network (see
Section 3). In this respect it demonstrates false mem-
ory, as do human subjects under similar conditions.
Thus when subjects are read a list of semantically re-
lated words (such as sugar, taste, sour, chocolate, etc.)
and then asked about words that are semantically re-
lated to the presented words but that were not on the
list (such as sweet), they commonly mistakenly claim
such words were presented (they produce false alarms)
(Roediger and McDermott, 1995). A similar, simulated
recognition memory test was presented to the proposed
network. During simulations, first a random patternA
of N = 50 bits was generated. Then 15 patterns sharing
20% bits (that is, 10 bits) with patternA (different bits
were shared by different patterns) were presented to the
network but not patternA itself. Such overlap in the bi-
nary representations of the patterns was chosen to sim-
ulate semantic overlap between words in psychological
experiments. When the network judged the familiarity
of patternA, it was mistakenly classified as familiar in
62.4% of 1000 performed experiments, a figure within
the range of false alarms reported for human subjects
in tests of false memory (Roediger and McDermott,
1995). Note that the generation of such false memories
requires there to be numerous similar repetitions. In the
simulations, overlap between patterns was only 20%;
hence such an error would not occur if the number of
similar patterns were small (such as 3 patterns). Anal-
ogously, in the Roediger-McDermott paradigm false
memories do not occur if the list of words has just
a few items. The suggestion that the perirhinal net-
work may be involved in creation of false memories
under such conditions is consistent with studies of
amnesic patients with damage in the medial tempo-
ral lobes (Schacter et al., 1998). Amnesic patients dur-
ing such tests make more nonrecognition errors and
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more false alarm errors for words nonsemantically re-
lated to the presented words than do controls, but they
make fewer false alarms for words semantically related
to the presented words. PET studies also demonstrate
that the parahippocampal region is involved in recog-
nition memory and that during recognition memory
tests according to the Roediger-McDermott paradigm,
the neuronal activity during recognition of false mem-
ories and real memories are similar (Schacter et al.,
1996). This is also consistent with the behavior of the
model, where neuronal activity is similar for stored
patterns and “false memory patterns.” This model does
not allow explanation of all types of false memories
(Schacter, 1999), but its behavior is consistent with
false memories during recognition memory tests.

The model furthermore makes the following testable
predictions:

1. There will be specific connections between, for ex-
ample, representation neurons (visually responsive
neurons) and FDNs (differentially responsive neu-
rons), and particular connections will, as indicated
in Fig. 4, variously undergo LTP-like or LTD-like
modifications or be not plastic.

2. Drugs that block changes in synaptic efficacy with-
out affecting normal transmission (for example,
blockers of N-methyl-d-aspartate or metabotropic
glutamate receptors) will leave familiarity discrimi-
nation unimpaired unless a novel stimulus presented
during drug action is re-presented (when it will be
judged to be still novel). Behaviorally, it would be
as if familiarity discrimination were normal except
for the rapid forgetting of the occurrence of novel
items.

3. Interfering stimulation at the time of the first few
spikes evoked by a stimulus will disrupt familiarity
discrimination and storage, whereas such stimula-
tion slightly later in the train will disrupt only stor-
age. Consistent with this suggestion, brief electrical
stimulation of a monkey’s temporal cortex during
acquisition disrupts subsequent familiarity discrim-
ination (Ringo, 1995).

4. Increasing inhibition (for example, byγ -aminobu-
tyric acid agonists) will impair storage (due to inhi-
bition of FDNs during the memorizing period) and
may lead to increases in nonrecognition errors dur-
ing recognition memory tests (due to inhibition of
FDNs during familiarity discrimination).

5. Overexcitation of the network by decreasing inhibi-
tion or prolonged abnormal stimulation or epilepsy

will potentially result in increases in false alarm er-
rors in recognition memory tests (due to excitation
of a large number of FDNs).

In creating the model of the network, different ar-
chitectures were tested before finally developing the
current model whose behavior parallels experimental
findings. For example, initially recurrent networks
were used (inspired by the model of Hopfield, 1982).
However, the spike trains generated by these networks
were very regular—that is, the intervals between spikes
in trains were very similar (as is typical for recurrent
networks: Gerstner, 1998a). The irregularity of the real
spike trains of perirhinal neurons (see Fig. 1a) led to
the use of a network with primarily feed-forward rather
than recurrent connections.

The computational part of the network (that is,
FDNs) is consistent with many experimental observa-
tions. Here we consider how the control part of the
network (decision neurons, slow inhibitory neurons,
triggering connections) might be recognized experi-
mentally. The number of inhibitory neurons that are
involved in controlling the activity of the FDNs and
decision neurons need not to be large. Moreover, not
all perirhinal inhibitory neurons will be involved in
these processes; others will control the activity of rep-
resentation neurons, for example. If as is possible, these
neurons can produce the necessary levels of inhibition
without large changes in firing rate; then identifying
such neurons will be experimentally difficult. Accord-
ing to the model, decision neurons also do not need
to be numerous (see Section 2.2), and therefore they
are likely to be difficult to find in recording experi-
mentsin vivo. The current architecture results in deci-
sion neurons having a brief response to familiar stimuli
during the familiarity discrimination period. However,
the model indicates that this response need only be
weak, and therefore, even if the activity of such neu-
rons has been sampled, their responses are unlikely
to have been specifically identified. Other architec-
tures, which would also allow familiarity discrimina-
tion and be consistent with observations concerning
FDNs, would make decision neurons even more un-
likely to be identified. For example, if “Slow inh.” neu-
rons have projections to “triggering” synapses connect-
ing the decision to the inhibitory neurons (instead of di-
rectly to the decision neurons), decision neurons would
be briefly active for familiar patterns in the familiarity
discrimination period and more active for novel pat-
terns during memorizing period. Thus in this model,
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the decision neurons would have responses similar to
FDNs (novelty neurons). Alternatively, if the FDNs
projected directly to the inhibitory neurons with the
“triggering” synapses (and “Slow inh.” neurons pro-
jected to these synapses), the network would contain
no decision neurons. Thus, because such architectures
are quite plausible, searching experimentally for de-
cision neurons is unlikely to yield a critical test of the
model. Only further, precise experimental observations
will be able to discriminate between such variants of
the model.

Simulations have also showed that behavior consis-
tent with experimental observations is exhibited by a
network in which the weights of FDNs are modified
according to anti-Hebbian learning—that is, in the op-
posite way to the current model (using LTD instead of
LTP). In this model FDNs detect novelty (instead of fa-
miliarity), and the decision neurons are active for novel
patterns.

The model is potentially capable of being extended to
take account of the interactions and the temporal depen-
dencies between different types of neurons (novelty, re-
cency, and familiarity) in the perirhinal cortex (Xiang
and Brown, 1997, 1998; the extension is described in
Bogacz et al., in press). Additionally, the model uses
an idealized representation of information—that is, the
representation neurons belonging to an assembly rep-
resenting a particular stimulus start to fire approxi-
mately synchronously after stimulus presentation (see
Appendix E). Such a high reliability and synchroniza-
tion of representation neurons has not been observed in
the perirhinal cortex (Brown and Xiang, 1998; Xiang
and Brown, 1997). However, such variability need not
cause a major problem as long as the familiarity dis-
crimination period is not too brief, and the activity af-
ferent to the FDNs is required to exceed a threshold
before the FDNs become active. Thus in the brain the
exact timing of the familiarity discrimination period
may vary from one stimulus to another. It will be pos-
sible to update the model once further research has
established more details of how the information is rep-
resented in the perirhinal cortex.

The consistency of the model with observations sug-
gests that the fundamental computational principles
presented here are correct. However, it is probable that
the structure of circuits in the real perirhinal cortex dif-
fers from those proposed here, and further experiments
(such as those suggested above) are necessary to dis-
close to what extent the model’s proposed architecture
does indeed parallel that in perirhinal cortex.

5. Conclusion

If, as experimental evidence makes plausible, the brain
possesses a familiarity discrimination neural network
operating on similar principles and with a speed,
capacity, and accuracy even approaching those of the
model, neural networks involved in categorization, as-
sociation, and recall would not need to perform famil-
iarity discrimination. Storage of the occurrence of a
novel stimulus could be achieved within the familiar-
ity discrimination network, rendering it unnecessary to
change synaptic connections within perceptual and cat-
egorization networks to perform this function (Xiang
and Brown, 1998). In contrast, storing new and recol-
lecting old associations of a stimulus, including its con-
text of occurrence, necessitates the existence of systems
additional to such a familiarity discrimination network.
The model thus suggests why recognition memory in-
volves two separable processes, one for familiarity dis-
crimination and one for associative recollection.

Appendix A: Familiarity Discrimination
in the Hopfield Network

The Hopfield network provides a simple model of asso-
ciative memory (Hopfield, 1982). It is a fully connected
recurrent neural net consisting ofN neurons, whose ac-
tivations are denoted byxi . The active state of a neuron
is represented by 1, and the inactive state by−1. The
patterns stored by the network are denoted byξµ, and
the number of these patterns byP. The weight of the
connection between neuronsj andi is denoted bywi j

and computed according to the Hebb rule (Hopfield,
1982):

wi j =


1

N

P∑
µ=1

ξ
µ

i ξ
µ

j for i 6= j

0 for i = j

. (1)

The energy of the Hopfield network is defined by
(Hopfield, 1982)

E ¯(x) = −1

2

N∑
i=1

xi

N∑
j=1

xjwi j . (2)

The value of the energy function is usually lower for
stored patterns and higher for other patterns (Amit,
1989). Therefore, the value of the energy may be used
for familiarity discrimination, which in this context cor-
responds to checking whether a pattern is stored in the
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Hopfield network (Bogacz et al., 1999). Normally, the
Hopfield network is used for retrieval of information
by updating one-by-one the activities of the neurons
(a process calledrelaxation), and the network can per-
form this task if the number of stored patterns does
not exceed 0.145N (Amit, 1989). In the approach pre-
sented in this Appendix, the neurons do not perform
any computations (there is no relaxation), but the fa-
miliarity discrimination is done by checking the value
of the energy function after delivering a pattern. In other
words, the discrimination is done not by the Hopfield
network itself but by an external agency that sets up
the activations of the neurons according to a discrim-
inated pattern and calculates the network’s energy for
this pattern. The remainder of this Appendix shows that
this agency is able to discriminate familiarity even if
the number of stored patterns is so high that the net-
work cannot retrieve any information (that is, it is in
the spin-glass state).

The (double) value of the energy function after de-
livering to the network one of the stored patterns, (such
asξ1) is given by (Bogacz et al., 1999):

2E(ξ̄1)=−
N∑

i=1

ξ1
i

N∑
j=1

ξ1
j wi j

=−
N∑

i=1

ξ1
i

N∑
j=1

ξ1
j

1

N

P∑
µ=1

ξ
µ

i ξ
µ

j

=− 1

N

N∑
i=1

ξ1
i

P∑
µ=1

N∑
j=1

ξ1
j ξ
µ

i ξ
µ

j

=− 1

N

N∑
i=1

ξ1
i

(
N∑

j=1

ξ1
j ξ

1
i ξ

1
j +

P∑
µ=2

N∑
j=1

ξ1
j ξ
µ

i ξ
µ

j

)

=− 1

N

N∑
i=1

N∑
j=1

(
ξ1

i ξ
1
j

)2
− 1

N

N∑
i=1

N∑
j=1

P∑
µ=2

ξ1
i ξ

1
j ξ
µ

i ξ
µ

j . (3)

According to signal-to-noise analysis (Amit, 1989), the
first term in Eq. (3) is called “signal” and the second
“noise.” Sinceξµj may be equal to−1 or+1, elements
of the summations in the signal term are equal to 1,
so the signal term reduces to−N. The elements of the
summations in the noise term are equal either to−1
or+1, so assuming random patterns they may be treated
as discrete random variables, which can be equal to−1
or+1 with equal probabilities. So these variables have
mean 0 and variance 1. The noise term is a sum of

N2(P − 1) such variables (so it may be approximated
by a sum ofN2P variables) divided byN. The noise has
binomial distribution and may be approximated with a
normal distributionθ(µ, σ ), with meanµ = 0. From
the above it could be expected that the standard devia-
tion of the noiseσ = P1/2. However, due to the sym-
metry of weights in the Hopfield model, the elements
of the summations in the noise term are symmetrical
after exchanging indicesi and j . Since the summing is
done over both indices (andwi j = 0), there are pairs of
the same elements in the sum. Hence, one can add them
once and multiply the result by 2, as follows (Bogacz
et al., 1999):

2E(ξ̄1) = −N− 2

N

N∑
i=1

N∑
j=i+1

P∑
µ=2

ξ1
i ξ

µ

i ξ
1
j ξ
µ

j

≈ −N + θ(0,
√

2P). (4)

Hence due to the symmetry of weights in the network
the variance of the noise is two times higher. Simi-
larly, the (double) value of the energy after delivering
a random pattern that is not correlated with any stored
pattern satisfies

2E(R̄) ≈ θ(0,
√

2P). (5)

In both cases (Eqs. (4) and (5)) the noise has mean
zero, and the average value of 2E for stored patterns
is −N, while for novel patterns it is 0. Therefore, by
taking as threshold the middle value−N/2, we can
define a familiarity discrimination criterion—namely,
if 2E<−N/2, or equivalentlyE<−N/4, then the
pattern is considered familiar; otherwise, it is novel.

This familiarity discrimination algorithm works well
when the noiseθ is small. We consider the algorithm as
working well if the probability of error is less than 1%.
An error occurs if the noise is higher than the threshold
−N/2. To calculate the maximum acceptable number
of stored patternsPmax, we must solve the following
equation:

Pr

(
θ
(
0,
√

2Pmax
)
<

N

2

)
= 0.99, (6)

where Pr denotes probability. Equation (6) is equivalent
to

Pr

(
θ(0, 1) <

N√
8Pmax

)
= 0.99. (7)

Since the noise may be estimated by a normal distri-
bution, Eq. (7) may be solved by checking the value of
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the inverted standard normal cumulative distribution
for 0.99:

N√
8Pmax

≈ 2.33. (8)

Solving Eq. (8) with respect toPmax, we get (Bogacz
et al., 1999)

Pmax≈ 0.185

8
N2 ≈ 0.023N2. (9)

Figure 5 compares the capacities found in simulations
with this theoretical prediction. In the case of famil-
iarity discrimination, the storage capacity is dependent
on the assumed acceptable probability of error. In con-
trast, in the case of the retrieval from the Hopfield net-
work, there exists an independent capacity boundary—
namely, 0.145N (Amit, 1989). This difference comes
from the fact that during the retrieval process the asso-
ciative memories undergo a relaxation process, during
which different attractors compete between themselves
and so to calculate capacity mean-field methods are
used (Amit, 1989). In contrast, the familiarity discrim-
ination is performed simply by calculating the value of
the energy function, and the capacity is obtained from
the signal to noise analysis.

Appendix B: Familiarity Discrimination
by a Feed-Forward Network

The energy of the Hopfield network is an artificial func-
tion whose value is calculated by a double summa-
tion (see Eq. (2) in Appendix A). The model described
in Section 2 effectively calculates a similar function
also by a double summation: one summation is per-
formed by FDNs, and the other by decision neurons.
This Appendix shows how the energy function may
be transformed to a form computed by a feed-forward
network and what is the storage capacity for familiarity
discrimination of the resulting network.

We wish to define a decision function that is positive
for familiar patterns and negative for novel ones. From
Appendix A, the simplest such function is given by

d1 ¯(x) =
N∑

i=1

xi

N∑
j=1

xjwi j − N

2
. (10)

We now transformd1 to a form that may be computed
by a neural net. By bringing the threshold term into the

sum and splitting the sum into two terms, we get

d1 ¯(x) =
N∑

i=1
xi=1

(
N∑

j=1

xjwi j − 1

2

)

+
N∑

i=1
xi=−1

−
(

N∑
j=1

xjwi j − 1

2

)
. (11)

We create a decision function using only the first term
of Eq. (11), as follows:

d2 ¯(x) =
N∑

i=1
xi=1

(
N∑

j=1

xjwi j − 1

2

)
. (12)

Assuming that the inner summation is computed by
FDNs and the outer by decision neurons, the de-
cision neurons sum only over the subset of FDNi

such thatxi = 1. In the model this is implemented by
strong nonmodifiable (“driving”) connections between
representation neurons and corresponding FDNs (see
Section 2). These connections ensure that to activate a
FDN, the corresponding representation neuron must
also be active, so Eq. (12) is already close to the
required form.

Intuitively, dropping one term from Eq. (11) (as we
did to get Eq. (12)) does not change the critical prop-
erties of this function very much (it is still positive for
familiar patterns and negative for novel ones). How-
ever, the storage capacity of the network becomes two
times smaller because the network “uses information
from half of the neurons.” Here, we show using signal-
to-noise analysis the value of the storage capacity for
familiarity discrimination when the decision function
d2 (Eq. (12)) is applied. The value ofd2 after delivering
to the network one of the stored patterns, (such asξ1)
is given by

d2(ξ̄
1) =

N∑
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=
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ξ1
j ξ
µ

i ξ
µ

j . (13)

Again, the first term corresponds to the signal, and the
second to noise. The signal has a binomial distribution,
so it may be approximated with a normal distribution
with meanN/4 and varianceN/16. As in Appendix A,
assuming random patterns, the elements of the summa-
tion in the noise term may be treated as discrete random
variables, having value−1 or+1 with equal probabili-
ties. The noise term is the sum of approximatelyN2P/2
such variables (on average) divided byN, so it has
binomial distribution and may be approximated with
normal distribution with mean 0. As with the Hopfield
network (Appendix A), it could be expected that the
noise has variance equal toP/2; however, the variance
of the noise is actually twice as large due to symmetry
of the weights:

d2
(
ξ̄1
) ≈ θ(N

4
,

√
N

16

)
+ θ(0,√P

)
= N

4
+ θ

(
0,

√
N + 16P

16

)
. (14)

We consider the algorithm as working well if the prob-
ability of error is less than 1%. An error occurs when
d2 is negative for a familiar pattern. To calculate the
maximum acceptable number of stored patternsPmax,
we must solve the following equation:

Pr

(
θ

(
0,

√
N + 16Pmax

16

)
≤ N

4

)
= 0.99. (15)

This is equivalent to

Pr

(
θ(0, 1) <

N√
N + 16Pmax

)
= 0.99. (16)

Solving Eq. (16) with respect toPmax (as in Appendix
A) we obtain

Pmax≈ 0.185N2− N

16
≈ 0.012N2. (17)

Equation (17) shows the maximum number of patterns
for which probability of nonrecognition error is 1%.
Similarly, it can be shown that the maximum number
of patterns for which the probability of false alarm error
is equal to 1% is exactly the same. Therefore, in either
case, Eq. (17) is a general capacity for a network im-
plementing functiond2 for familiarity discrimination
with the probability of error 1%.

For largeN, Eq. (12) may be approximated, almost
without loss in capacity (as shown by simulations), by

d ¯(x) = sgn

 N∑
i=1
xi=1

sgn

(
N∑

j=1

xjwi j − 1

2

) . (18)

Figure 5 shows that the storage capacity for familiarity
discrimination of functiond obtained in simulations
matches closely the theoretical predictions of Eq. 17.
The inner part of Eq. (18), as it calculates the sum of
the weights of its active synapses relative to 1/2, may
be performed by a neuron; hence, let us denote it by
yi . Functiond may thus be implemented by a single
neuron, as follows:

d ¯(x) = sgn

 N∑
i=1
xi=1

yi

 where:

yi = sgn

(
N∑

j=1

xjwi j − 1/2

)
. (19)

Hence, familiarity discrimination may be performed by
a neural network with two processing layers, as shown
in Fig. 2a (x corresponds to representation neurons,y
to FDNs, andd to decision neurons). In Eq. (19), the
summation is done only over the activation of those
FDNi for which xi = 1. In the network, this is imple-
mented by driving connections.

Appendix C: Capacity of Familiarity
Discrimination Network with Diluted Connectivity

Appendix B concerns the fully connected familiarity
discrimination network. This Appendix shows that the
network also works with diluted connections with the
capacity per synapse remaining the same.

Assume that the probability that a representation
neuron is connected to an FDN is equal toc and that
Ci denotes the set of representation neurons connected
to FDNi . For simplicity we have assumed that driv-
ing connections are not lost, though, in reality, these
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connections are easily protected by increasing their re-
dundancy. The Hebbian definition of the weights of the
FDNs from Eq. (1) becomes

wi j =


1

Nc

P∑
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ξ
µ

i ξ
µ

j for i 6= j ∧ j ∈ Ci

0 otherwise.

(20)

The value ofd2 (defined in Eq. (12)) after delivering
to the network one of the stored patterns (such asξ1)
becomes

d2
(
ξ̄1
)= N∑

i=1
ξ1

i =1

 N∑
j=1
j∈Ci

ξ1
j

1

Nc

P∑
µ=1

ξ
µ

i ξ
µ

j −
1

2



=
N∑

i=1
ξ1

i =1

 1

Nc

N∑
j=1
j∈Ci

ξ1
j ξ

1
i ξ

1
j

+ 1

Nc

N∑
j=1
j∈Ci

ξ1
j

P∑
µ=2

ξ
µ

i ξ
µ

j −
1

2


≈

N∑
i=1
ξ1

i =1

θ

(
1

2
,

√
1− c

Nc

)
+ θ

(
0,

√
P

c

)

≈ θ
(

N

4
,

√
1− c

2c
+ N

16

)
+ θ

(
0,

√
P

c

)

= N

4
+ θ

(
8(1− c)+ Nc+ 16P

16c

)
. (21)

Performing calculations analogous to those of
Appendix B (Eqs. (15) and (16)), we obtain the ex-
pression for the number of stored patterns for which
the probability of error is 1%:

Pmax≈ 0.185N2c− Nc− 8(1− c)

16
≈ 0.012N2c. (22)

Equation (22) shows that the storage capacity of the
familiarity discrimination network with diluted con-
nectivity is proportional to the number of connections
between representation neurons and FDNs. Hence, the
capacity per synapse is unaltered by the dilution of
connections.

Appendix D: Binary Neuron Model
of the Perirhinal Network

In the model described in Section 2 and detailed here,
the active state of a neuron is denoted by 1, and the
inactive state by 0 (in contrast to models described in
Appendices A and B, where the inactive state is de-
noted by−1). Additionally, both the decision neurons
and the FDNs have positive synaptic weights (denot-
ing excitatory connections). The positive weights are
compensated for by inhibition. In this Appendix, first
we introduce all the changes to the model description
necessary to satisfy the above assumptions, and then
we show that computations performed by the network
described here are equivalent to those of the network
from Appendix B (Eq. (19)).

In this Appendix the variables corresponding to
those from Appendix B are denoted by the same sym-
bols but with a caret. Hence with the transforma-
tion from the{−1, 1} notation to the{0, 1} notation
ξ̂
µ

i = 1
2(ξ

µ

i + 1) andx̂i = 1
2(xi + 1). In the case of the

FDNs the introduction of positive weights is achieved
by initializing the weights with a positive constantK
(in simulations,K = 5/N). The constant value of the
weights of the driving connections is denoted byR (in
simulations,R = 4). The Hebbian definition of the
weights of the FDNs from Eq. (1) becomes (for sim-
plicity the fully connected network is considered again)

ŵi j =


8

N

P∑
µ=1

(
ξ̂
µ

i −
1

2

)(
ξ̂
µ

j −
1

2

)
+ K for i 6= j

R for i = j .

(23)

As a result of the driving connections, the FDNs have
the same activation as that of the corresponding rep-
resentation neurons (ŷi = x̂i = ξ̂ µi ) during the mem-
orizing period for novel patterns. Hence, the term
(ξ̂
µ

i − 1/2)(ξ̂µj − 1/2) from Eq. (23) is equivalent to
(ŷi − 1/2)(x̂i − 1/2) and Eq. (23) expresses a Heb-
bian learning rule, where synaptic weights are changed
according to the activity of presynaptic and postsy-
naptic neurons (LTP for̂xi = 1, ŷi = 1; heterosyna-
ptic LTD for x̂i = 0, ŷi = 1; homosynaptic LTD for
x̂i = 1, ŷi = 0). In the current form Eq. (23) implies
that the weights should also be increased when both
presynaptic and postsynaptic neurons are inactive
(x̂i = 0, ŷi = 0). However, the general form of the above
mentioned term from Eq. (23) is(ŷi −a)(x̂i −a),
where a denotes sparseness of coding (that is, the
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probability that a neuron is active in a given pattern).
As discussed in Section 3, it is assumed thata= 1/2,
but in reality a is likely to be smaller. In the general case
the increase of weight when both neurons are inactive
is 8a2/N, which for smalla is very close to 0 and may
be discarded. Thus the rule in practice approximates
closely to Hebbian learning.

To make the membrane potential of each FDN in-
dependent of the number of active bits in the input
pattern, each FDN receives inhibition proportional to
this number:

Inh=
N∑

i=1

K x̂i . (24)

The threshold of FDNi , which is equal to 1/2 in Eq. (19),
must be increased byR to ensure that only neurons
receiving activation through driving connections are
active. An additional term must also be added to the
definition of the threshold, to effect the transformation
from the{−1, 1} notation to the{0, 1} notation (as will
be seen from Eq. (28)):

Ti = 1

2
+ R+

N∑
i=1
j 6=i

4

N

P∑
µ=1

(
ξ̂
µ

i −
1

2

)(
ξ̂
µ

j −
1

2

)
.

(25)

The additional term in Eq. (25) depends on the stored
patterns, so it could suggest that the threshold should
be modified during learning. However, this term comes
from the fact that the weight modification according to
Eq. (23) creates a possibility that for a particular neuron
the total change of weights (summed over all synapses)
is not zero. This term allows the level of excitability of
an FDN to be increased (or decreased) in compensatory
way. Real neurons also have a mechanism that balances
their level of excitability. For example, if the neuron
is very active, its excitability decreases (Kirov et al.,
1999). Alternatively, the additional term in Eq. (25)
may be removed if the learning rule of Eq. (23) is mod-
ified in a way ensuring that the total change of weight
of a neuron is equal to 0 (that is,∀i :

∑N
j=11wi j = 0),

which is also biologically plausible (Sorra and Harris,
1998).

The output of FDNi is defined by

ŷi = σ
(

N∑
j=1

ŵi j x̂i − Inh− Ti

)
, (26)

whereσ(z) is equal to 1 for positivezand 0 for negative
ones. The decision neuron is active if the majority of
FDNs receiving excitation through driving connections

are active. The information about the total number of
FDNs receiving excitation through driving connections
is carried by the same inhibition, as those received by
FDNs:

d̂ = σ
(

N∑
i=1

2K ŷi − Inh

)
. (27)

We now prove that the computation of the above net-
work is equivalent to those of Appendix B (Eq. (19))—
that is,d̂ = 1

2(d+ 1). First, we consider FDNs. Due to
driving connections, an FDN is inactive when the cor-
responding representation neuron is inactive—that is,
x̂i = 0⇒ ŷi = 0. Let us prove that if a representation
neuron is active, the activity of the corresponding FDN
defined by Eqs. (26) and (19) are equivalent—that is,
x̂i = 1⇒ ŷi = 1

2(yi + 1):

ŷi = σ
(

N∑
j=1

ŵi j x̂ j − ln h− Ti

)

= σ

 N∑
j=1
j 6=i

(
8

N

P∑
µ=1

(
ξ̂
µ

i −
1

2

)(
ξ̂
µ

j −
1

2

)
+ K

)
x̂ j

+ Rx̂i −
N∑

i=1

K x̂i − 1

2
− R

−
N∑

j=1
j 6=i

4

N

P∑
µ=1

(
ξ̂
µ

i −
1

2

)(
ξ̂
µ

j −
1

2

)

≈ σ

 N∑
j=1
j 6=i

8

N

P∑
µ=1

1

2
ξ
µ

i

1

2
ξ
µ

j

1

2
(xj + 1)

−
N∑

j=1
j 6=i

4

N

P∑
µ=1

1

2
ξ
µ

i

1

2
ξ
µ

j −
1

2


= σ

(
N∑

j=1

xj
1

N

P∑
µ=1

ξ
µ

i ξ
µ

j −
1

2

)

= 1

2

(
sgn

(
N∑

j=1

xjwi j − 1

2

)
+ 1

)

= 1

2
(yi + 1). (28)

The decision neuron defined by Eq. (27) is active when
the number of active FDNs is higher than half of the
number of active representation neurons. Since FDNs
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not receiving input through driving connections are in-
active, Eq. (27) is equivalent to Eq. (19), where the
decision neuron is active when the majority of FDNs
receiving input through driving connections are active.

Appendix E: Spike Response Model
of the Perirhinal Network

The network was implemented in a realistic spiking
neuronal framework by adapting Eqs. (23) to (27) to
the spike-response model (Gerstner, 1998b) with pa-
rameters similar to those used in the model of cortical
neurons by Fohlmeister et al. (1995). In this Appendix,
the spike-response model is briefly introduced, and its
application to the simulation of the perirhinal network
is described. In the spike-response model, the set of
time moments in which the neuroni has fired is de-
noted byFi :

Fi = {ti : yi (ti ) = 1}. (29)

In the implementation, only the most recent spike times
are remembered—those that are important for the com-
putation of current membrane potential (in the imple-
mentation, the 5 most recent spikes are remembered).
The membrane potential of neuroni is influenced by
three sources: excitation, inhibition, and refractoriness:

hi (t) = hexc
i (t)+ hinh

i (t)+ href
i (t). (30)

The excitation of neuroni is defined as a weighted sum
of excitatory postsynaptic potentials (EPSPs) caused by
all the excitatory neurons connected to neuroni :

hexc
i (t) =

N∑
j=1

wi j

∑
t j∈Fj

ε(t − t j −1). (31)

In Eq. (31),1 denotes the axonal delay of excitatory
neurons (in the model1 is taken randomly as 2 or 3),
and ε(r ) is the kernel function for EPSPs, which is
equal to 0 for negativer , and for positiver :

ε(r ) = Rε
r

r 2
ε

exp

(
r

rε

)
. (32)

In Eq. (32),rε denotes the period after which the EPSP
reaches its maximum (in the modelrε = 2 ms), andRε
denotes the magnitude of the EPSP (it was chosen so
that the maximum value ofε(r ) is equal to 1—that is,
Rε = 5.5). Inhibition is defined similarly to excitation
as a weighted sum of inhibitory postsynaptic poten-
tials (IPSP) caused by inhibitory neurons connected to

neuroni :

hinh
i (t) =

∑
j ∈ Inh

winh

∑
t j∈Fj

εinh(t − t j −1inh). (33)

As above,εinh is the inhibitory kernel, which is de-
fined similarly to the excitatory kernel (Eq. (32)), but
with different parameter values (in the modelr inh =
6ms, Rinh = 16.3). The refractoriness of neuroni is
defined as

href
i (t) =

∑
ti∈Fi

η(t − ti ). (34)

In Eq. (34)η(r ) is a kernel function of refraction, which
is defined as

η(r ) =

−∞ for r ≤ δabs

−Rref exp

(
−r − δabs

rref

)
for r >δabs.

(35)

The refraction in a period just after a spike has very
strong negative value, which blocks the neuron from
firing (this period is called theabsolute refractory
period). Subsequently, the refraction converges to 0.
In the model the following parameters were taken:
rref = 4 ms, Rref = 16, δabs= 1 ms.

The behavior of the neuron is stochastic, and the
probability of firing depends on the value of the mem-
brane potential according to the following:

Pr(y = 1) = 1

2
(1+ tanhβ(hi (t)− Ti )). (36)

In Eq. (36), the parameterβ determines the randomness
of the neuron (β = 25).

The representation neurons are activated in a way
that simulates observed behavior in the perirhinal cor-
tex (Fig. 1c). In particular, when the stimulus is not
present, they fire with a very low frequency; when a
stimulus is present, some of them (belonging to the as-
sembly representing the stimulus) start to fire within
∼2 ms of each other with higher frequency (about
35 Hz). The intervals between spikes have an approx-
imate Poisson distribution (Schadlen and Newsome,
1998).

FDNs behave according to the presented spike-
response model. The threshold in Eq. (36) is defined
by Eq. (25), and the weights in Eq. (31) are defined
by Eq. (23). Since all the inhibition neurons denoted
“Inhibitory” in Fig. 2a have the same function, for sim-
plicity they are not implemented. Instead, each FDN
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receives inhibition proportional to its estimated popu-
lation activity (as in Fohlmeister et al., 1995). Hence,
the inhibition received by FDNs is defined by Eq. (33),
where the setInhdescribing inhibitory neurons is equal
to the set of all representation neurons (analogously to
Fohlmeister et al., 1995) andwinh is equal toK during
the familiarity discrimination period. This ensures that
the FDNs receive inhibition analogous to that defined
in Eq. (24). In the memorizing period,winh is modified
according to the activity of the decision neurons. If
the decision neuron is not active in the familiarity dis-
crimination period,winh decreases by 50% during the
memorizing period. In the brain such an effect can be
produced by GABAB presynaptic autoinhibition (Mott
et al., 1993). GABAB autoinhibition has been observed
in the perirhinal cortex (Ziakopoulos et al., 2000). This
reduction in inhibition results in high-frequency activ-
ity of all FDNs receiving input through driving con-
nections. If the decision neurons are active in the fa-
miliarity discrimination period,winh increases by 50%
during the memorizing period (due to a triggering input
from the decision neurons) (see Fig. 2a) and blocks the
high-frequency activity of FDNs.

The behavior of the decision neurons is also given by
the spike response model where the weight in Eq. (31) is
equal to 2K and the decision neurons have two sources
of inhibition. The first one is the same as the inhibition
received by the FDNs, and it ensures that the deci-
sion neurons behave as defined in Eq. (27). The sec-
ond source comes from inhibitory neurons denoted by
“Slow inh.” in Fig. 2a, which block the activity of the
decision neurons during the memorizing period. Again,
these neurons have not been implemented individually,
but the decision neurons receive inhibition according
to their estimated population activity. This inhibition
is defined by Eq. (33), where the setInh describing in-
hibitory neurons is equal to the set of all representation
neurons andwinh is equal toK . Additionally, a longer
axonal delay of1= 6 ms is introduced to model the
information processing by these inhibitory neurons (as
in Fohlmeister et al., 1995).

All software is available from http://www.cs.bris.
ac.uk/∼bogacz/bbc.
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