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ABSTRACT: This study compares the efficiency and plausibility of pub-
lished computational models of familiarity discrimination in the perirhinal
cortex. Substantial evidence indicates that the perirhinal cortex is in-
volved in both the familiarity discrimination aspect of recognition mem-
ory and in perceptual functions involved with representations of complete
stimuli (i.e., object identification). Published models of how the perirhinal
cortex may perform familiarity discrimination can be divided into two
groups. The first group assumes that a proportion of perirhinal neurons
form a network specialised just for familiarity discrimination (these mod-
els may be based on Hebbian or anti-Hebbian synaptic plasticity). In
contrast, the second group assumes that both familiarity discrimination
and learning representations of complete stimuli are performed within a
single combined network. This study establishes that when the responses
of neurons that provide input to the familiarity discrimination network are
correlated (as indicated by experimental data), specialised networks
based on anti-Hebbian learning may recognise the previous occurrence of
many more stimuli (i.e., have a capacity up to thousands of times larger)
than specialised networks based on Hebbian learning. The currently pub-
lished combined models do not learn an optimal stimulus representation
(they do not fully extract statistically independent features), and hence
their capacities are even lower than those of the specialised models based
on Hebbian learning. Hence, the combined models published thus far are
critically less efficient than the specialised models based on anti-Hebbian
learning. This study also compares the consistency of the models with
experimental observations concerning what is known of synaptic plastic-
ity in the perirhinal cortex and the responses of its neurons. Many theo-
retically important parameters remain undetermined, and experiments
are suggested to provide information critical for refining and distinguish-
ing between the various models. However, the above theoretical argu-
ments and currently published data favour the existence of a separate
network specialised for familiarity discrimination. Hippocampus 2003;13:
494–524. © 2003 Wiley-Liss, Inc.
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INTRODUCTION

Work in monkeys has established that discrimination
of the relative familiarity or novelty of visual stimuli is
dependent on the perirhinal cortex. This finding is con-
sistent with studies of amnesic patients (Eichenbaum et
al., 1994; Aggleton and Shaw, 1996; Murray, 1996; Su-
zuki, 1996; Brown and Xiang, 1998; Buffalo et al., 1998;
Aggleton and Brown, 1999; Murray and Bussey, 1999;
Brown and Aggleton, 2001). Thus, damage to the
perirhinal cortex results in impairments in recognition
memory tasks that rely on discrimination of the relative
familiarity of objects (Murray, 1996; Brown and Aggle-
ton, 2001). Moreover, within the monkey’s perirhinal
cortex, �25% of neurons respond strongly to the sight of
novel objects but respond only weakly or briefly when
these objects are seen again (Brown et al., 1987; Riches et
al., 1991; Fahy et al., 1993; Li et al., 1993; Miller et al.,
1993; Sobotka and Ringo, 1993; Brown and Xiang,
1998; Xiang and Brown, 1998). Analysis of the popula-
tion of such responses attests to very fast discrimination
of the novelty or familiarity of stimuli: response differ-
ences occur within 100 ms of stimulus onset (Miller et al.,
1993; Xiang and Brown, 1998). This finding accords
with the ability of human subjects to make such discrim-
inations rapidly (Seeck et al., 1997; Hintzman et al.,
1998). In addition, the population of these neuronal re-
sponses manifests a very large storage capacity, as the
responses of individual neurons continue to signal the
novelty or familiarity of objects even when many hun-
dreds of objects have been seen (Fahy et al., 1993; Li et
al., 1993; Xiang and Brown, 1998). This finding is in
accordance with the huge capacity of human recognition
memory. Standing (1973) examined this capacity using
single trial learning and forced-choice recognition. After
seeing 10,000 pictures subjects could recognise them
with an average accuracy of 83%. Furthermore, the num-
ber of stimuli retained in the recognition memory as a
function of the amount of material presented followed a
power law, which led Standing (1973, p 207) to con-
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clude: “The capacity of recognition memory for pictures is almost
limitless.”

The perirhinal cortex has other functions, including involve-
ment in the perception and categorisation of complex stimuli
(Murray and Bussey, 1999). Thus, damage to the perirhinal cortex
results in impairment in tasks requiring perception of whole stim-
uli (e.g., distinguishing between complex objects) but does not lead
to impairment in tasks requiring perception of only individual
features (e.g., distinguishing between objects of different colours)
(Buckley and Gaffan, 1998). Therefore, it has been suggested that
perirhinal cortex neurons represent conjunctions of features of
visual stimuli, perhaps resulting in representation of complete
stimuli (“objects”), whereas regions earlier in the visual processing
stream contain neurons that represent simple features from which
these complex conjunctions are formed (Murray and Bussey,
1999). Accordingly, there is evidence that the perirhinal cortex is
involved in both the familiarity discrimination aspect of recogni-
tion memory and perceptual functions involved in representations
of complete stimuli. This study discusses whether perirhinal neu-
rons belong to a single network that performs combined feature
extraction and familiarity discrimination or to two separable net-
works, one specialised for familiarity discrimination and another
for perceptual feature extraction.

The published models of how the perirhinal cortex may perform
familiarity discrimination can be divided in two groups. Models of
the first group assume that a proportion of the perirhinal neurons
form a network specialised just for familiarity discrimination, and
are referred to as the specialised models (Bogacz et al., 2001a,b). In
contrast, models of the second group assume that both familiarity
discrimination and learning representations of complete stimuli
are performed within a single network. They are referred to as
combined models (Sohal and Hasselmo, 2000; Norman and
O’Reilly, 2001).

Bogacz et al. (1999, 2001a) showed that, under specific condi-
tions, specialised networks can achieve very high storage capacity.
If the perirhinal cortex worked similarly to the specialised models,
it alone could discriminate the familiarity of many more stimuli
than current neural network models indicate could be recalled
(recollected) by all the remaining areas of the cerebral cortex. This
efficiency and speed of detecting novelty provide an evolutionary
advantage, providing a reason for the existence of a familiarity
discrimination network in addition to networks used for recollec-
tion. The networks combining familiarity discrimination with
learning representations have been simulated, but it remains to be
established whether they, too, can achieve such efficiency.

This study compares the efficiency and consistency with exper-
imental observations of the proposed specialised and combined
models of familiarity discrimination in the perirhinal cortex. The
capacity achieved by various models is calculated and compared
with the results of simulations. The analysis of the biological plau-
sibility of the models and their efficiency is then used to indicate
types of neuronal networks that might perform familiarity discrim-
ination in the perirhinal cortex.

The present report is presented in three major sections, followed
by Conclusions and an Appendix section. The first major section,
Description of Networks That Can Perform Familiarity Discrim-

ination, introduces and reviews all the published models of famil-
iarity discrimination in the perirhinal cortex. The second major
section, Comparison of the Models’ Efficiencies, compares the
capacity of the models. The third major section, Consistency of the
Models With Experimental Observations, compares the consis-
tency of the models with experimental observations and suggests
further experiments. The derivations of capacity and details of
simulations are given in the Appendices. Accordingly, the main
text of this study is presented with minimal use of equations so as
to be understandable without a computational modelling back-
ground. The first and second major sections after the Introduction
focus on modelling computations performed by novelty neurons,
the �10% of perirhinal neurons that respond strongly to the first
presentations of novel stimuli, but only briefly or weakly to pre-
sentations of previously seen stimuli (Xiang and Brown, 1998;
Brown and Xiang, 1998).

DESCRIPTION OF NETWORKS THAT CAN
PERFORM FAMILIARITY DISCRIMINATION

As introduced above, the models of familiarity discrimination in
the perirhinal cortex may be divided in two groups: specialised
models assuming that a proportion of perirhinal neurons form a
network specialised just in familiarity discrimination (Bogacz et al.,
2001a,b), and combined models assuming that familiarity discrim-
ination and learning representations of complete stimuli are per-
formed within a single network (Sohal and Hasselmo, 2000; Nor-
man and O’Reilly, 2001). Hence, the division between the
specialised and the combined models is based on their function as
given by their authors, rather than on the other features of the
models (e.g., their architecture or assumed plasticity). The two
groups of models will now be briefly described; additional infor-
mation, including the mathematical description of the simulated
versions of the models is presented in Appendix A.

For ease of explanation and mathematical analysis, the networks
are introduced using a simple model of neurons, similar to that of
McCulloch and Pitts (1943). This model does not consider
changes of the membrane potentials of neurons in time. The orig-
inal models proposed by Norman and O’Reilly (2001) and Sohal
and Hasselmo (2000) were simulated with continuous neurons.
Therefore, the present study analyses simplified versions of these
models, although the simplifications do not invalidate the major
conclusions. We assume that each visual stimulus is represented by
a specific pattern of activity of the neurons providing input to the
familiarity discrimination network and that the activities of these
input neurons represent features of the stimuli. We further assume
that the neurons providing input to the network may be in one of
two states: active or inactive. For example, after presentation of a
visual stimulus, the active state of an input neuron corresponds to
an increase in its activity (i.e., a response) and the inactive state to
no increase (i.e., to no response). However, as demonstrated pre-
viously (Bogacz et al., 2001a), it is possible to extend a model of a
perirhinal network based on binary neurons to a model based on
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more realistic spiking neurons (Gerstner, 1998), with the opera-
tional principles, capacity, and efficiency remaining essentially un-
changed.

Specialised Models

Three specialised models are described, each differing in the
assumed synaptic plasticity of the synapses on to the novelty neu-
rons. First, the plasticity of a single neuron from each model is
described, followed by a description of how the neurons may be
combined into a network.

Synaptic plasticity of novelty neurons

A proportion of neurons in the perirhinal cortex have weaker
responses after presentation of familiar stimuli than of novel stim-
uli (Brown et al., 1987; Riches et al., 1991; Fahy et al., 1993; Li et
al., 1993; Miller et al., 1993; Sobotka and Ringo, 1993; Brown
and Xiang, 1998; Xiang and Brown 1998). A number of synaptic
and network mechanisms may underlie this decrease of response;
three of these mechanisms are illustrated in Figure 1a–c (see the
section, Independent Responses of Novelty Neurons, for a discus-
sion of Fig. 1d).

Figure 1a presents the anti-Hebbian model (Bogacz and Brown,
2002; Brown and Xiang 1998; Kohonen, 1989) i.e., one based on
decreases rather than increases in synaptic strength. After presen-
tation of a novel stimulus, the synaptic weights of connections
from active input neurons are decreased as if by homosynaptic

long-term depression (LTD) (Kemp and Bashir, 2001). This syn-
aptic modification decreases the sum of the synaptic weights of the
novelty neuron. Hence to maintain the overall excitability of the
neuron, the synaptic weights of connections from inactive input
neurons must be increased (Fig. 1a). When the same stimulus is
presented again, the membrane potential of the novelty neuron
will be lower (because the weights of synapses of inputs that were
active for this stimulus have been reduced), and the novelty neuron
will be inactive (or, more generally, less active). Thus, the neuron
responds more strongly to novel stimuli than to familiar stimuli.

Figure 1b shows the Hebbian model (Bogacz et al., 1999,
2001a) based on Hebbian synaptic plasticity. After presentation of
a novel stimulus, synaptic weights from active inputs are increased
as if by long-term potentiation (LTP) (Bliss and Collingridge,
1993), while weights from inactive units are decreased as if by
heterosynaptic LTD (Ito, 1989). These changes produce an ini-
tially higher response of novelty neurons for familiar stimuli than
for novel. However, in the network, the novelty neurons project to
inhibitory neurons; the result is a higher level of inhibition for
familiar than for novel stimuli, and the increased inhibition leads
to a smaller neuronal response for familiar stimuli than for novel
stimuli (Fig. 1b).

Figure 1c shows the Hebbian inhibitory model based on Heb-
bian learning in synapses connecting inhibitory interneurons to
novelty neurons. It assumes that presentation of a visual stimulus
produces a unique pattern of activity across inhibitory neurons, as
well as in the excitatory inputs. After presentation of a novel stim-

FIGURE 1. Synaptic and network mechanisms that may underlie
the decrease of perirhinal neurons’ response for familiar stimuli. In
each panel, the triangle represents an excitatory novelty neuron
(Xiang and Brown, 1998; Brown and Xiang, 1998), and the circle
represents an inhibitory interneuron. Lines on the left side of each
panel denote inputs to the network, which are axons of neurons whose
activity encodes visual stimuli. “Spikes” over the lines indicate that
the corresponding neuron is active, a lack of spikes, that it is inactive.
The thickness of the lines indicates the strength of the synaptic con-
nections. The top row of panels illustrates synaptic weights and neu-
ronal responses for a novel stimulus, and the lower row of panels when
this stimulus is presented again (i.e., for a familiar stimulus). Three
mechanisms are illustrated based on (a) anti-Hebbian learning, (b)

Hebbian learning, and (c) Hebbian learning between inhibitory in-
terneurons and novelty neurons. d: Synaptic weight modification in
the Hebbian model. For simplicity, the inhibitory neurons (men-
tioned in the text and shown in b) are not shown. After presentation of
a novel stimulus, the number of active novelty neurons is limited
(only the upper one is active), for example by nonmodifiable connec-
tions with high synaptic weights (denoted by double lines, for sim-
plicity only one is shown for each neuron). The synaptic weights of
the active novelty neurons are modified as in panel b, while the
weights of the inactive neurons are modified in the opposite way, e.g.,
the synaptic weight from the active input to the inactive novelty
neuron is decreased as if by homosynaptic LTD.
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ulus, synaptic weights from active inhibitory neurons to active
novelty neurons are increased, while weights from inactive inhib-
itory neurons are decreased. Therefore, for subsequent presenta-
tions of the same stimulus, the novelty neuron will receive more
inhibition and hence decrease its response.

One could also design a model in which synaptic strengths
(weights) from inputs to the inhibitory interneurons are modified
according to Hebbian rules. Thus, inhibition would be increased as
a result of stronger input to the inhibitory neuron for familiar than
for novel stimuli, rather than as a result of strengthening the output
synapses of the inhibitory neuron. It is also possible to create mod-
els combining two of the above models, in particular a model
combining the anti-Hebbian and Hebbian inhibitory models, in
which the occurrences of familiar stimuli are stored in both mod-
ifiable excitatory (from input neurons) and inhibitory (from inhib-
itory neurons) synapses of the novelty neurons. However, for sim-
plicity, such complex models are not analysed in this study.

Independent responses of novelty neurons

Each of the familiarity discrimination models includes a single
layer of novelty neurons receiving projections from the input neu-
rons. If each novelty neuron makes its own decision about stimulus
familiarity, the overall response (“answer”) of the network is en-
coded in the population activity of the novelty neurons. In each of
the models, it is necessary to ensure that individual novelty neurons
remain independent assessors of familiarity if the information stor-
age capacity of the network is to be maximised (Bogacz et al.,
2001a). Otherwise, should all the novelty neurons be active after
the presentation of each of a series of novel stimuli, then the syn-
aptic weights of each of the novelty neurons would be modified in
the same way, and hence all the novelty neurons would come to
have highly correlated weights. Thus, eventually, they would all be
active or inactive together and the whole network would have the
same capacity as a single novelty neuron. To avoid this problem,
the number of novelty neurons active for any one stimulus must be
limited; that is, only a subset of novelty neurons must respond to
any given stimulus.

There are at least two means of limiting the number of active
novelty neurons. The first means is inhibitory competition: only
the fraction of neurons with the highest membrane potentials are
selected to be active, the activity of the remainder being suppressed
by inhibition, and only these most active neurons have their
weights modified (Norman and O’Reilly, 2001). This method of
limiting the number of active novelty neurons is used in the com-
bined models (based on Hebbian learning) (see the section, Com-
bined Models) and in the anti-Hebbian model.

The second method of ensuring this selectivity of response of the
novelty neurons is to provide specific connections with high syn-
aptic weights from the network inputs to subsets of novelty neu-
rons. Although this method requires the additional assumption of
the existence of specialised connections (and therefore may seem
less plausible), it makes mathematical analysis of network behav-
iour simpler. Therefore, the Hebbian model as analysed in this
study assumes that the number of active neurons is limited by
specific connections with high synaptic weights. As the more plau-

sible models that limit the number of active novelty neurons by
competition are much more difficult to analyse, for these models
only approximate expressions for capacity may be found mathe-
matically. However, many properties that may be proved mathe-
matically for the Hebbian model with strong connections are also
valid for other familiarity discrimination networks based on Heb-
bian learning (Bogacz and Brown, 2002).

In fact, experiments show that novelty neurons are stimulus
selective, as required by the models (Xiang and Brown, 1998; Li et
al., 1993; Miller et al., 1993). However, note that for a network
specialised for familiarity discrimination (and not learning repre-
sentations), this selectivity is required solely to increase the effi-
ciency of the network, and not because the implied representation
of the visual stimuli is used for some further processing within the
network (such representations provide the assumed inputs to the
familiarity discrimination network). Nevertheless, the activity of
the different groups of novelty neurons could potentially provide
information about which of a set of perceived object(s) is novel in
the case when an animal views a scene consisting of a number of
objects. It should be noted that the theoretical argument concern-
ing maximising capacity provides one explanation for the observed
selectivity of perirhinal neuronal responses.

When such a network rather than a single neuron is considered
in the Hebbian model described by Bogacz et al. (2001a), another
synaptic change is introduced: the weights of connections between
active inputs and inactive novelty neurons are reduced as if, for
example, by homosynaptic LTD (Fig. 1d). This decrease is re-
quired for the decision of the network to be given by its total
activity, rather than a more complex function, namely the differ-
ence between activity of the most active and the least active neu-
rons (Bogacz and Brown, 2002), and hence makes more plausible
its implementation in the real brain. The anti-Hebbian and Heb-
bian inhibitory models require analogous weight modifications if
the decision of the network is to be given by its total activity or, for
their biologically plausible implementation, may require the deci-
sion of the network to be given by a more complex function than
the total activity of its neurons (Bogacz and Brown, 2002), but
these details will not be further considered here. The mathematical
description of the simulated versions of the Hebbian and anti-
Hebbian models are contained in Appendices A.1 and A.2.

The description of the Hebbian inhibitory model (see the sec-
tion, Synaptic Plasticity of Novelty Neurons) leaves undetermined
the function of the excitatory connections to the novelty neurons,
and how their weights might be modified. Therefore, the Hebbian
inhibitory model is not simulated in this study and its capacity is
not analysed. Note, however, that if we assume in the Hebbian
inhibitory model that the excitatory input weights of the novelty
neurons are not modified and the number of active novelty neu-
rons is limited by competition, then the operation of the Hebbian
inhibitory model is equivalent to the operation of the anti-Heb-
bian model, because the Hebbian learning at inhibitory synapses is
equivalent to the anti-Hebbian learning at excitatory synapses.
Therefore, the Hebbian-inhibitory model may potentially also
achieve the same efficiency with respect to the number of synapses
used for recognition memory, as does the anti-Hebbian model.
However, that there are fewer inhibitory than excitatory synapses
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(Thompson et al., 2001) (as is pointed out in the section, Synaptic
Plasticity).

Combined Models

To understand the operation of the combined models, it is
necessary first to illustrate principles underlying networks that
learn stimulus representations. This is done using the simple ex-
ample illustrated in Figure 2.

Learning representations

The responses of neurons in areas higher in the hierarchy of
visual system processing represent more and more complicated
features (Felleman and Van Essen, 1991), for example, from sim-
ple features such as changes of luminance on receptors in the retina
(Meister and Berry, 1999), to the complex features of entire stimuli
in perirhinal neurons (Murray and Bussey, 1999). Connections
between neurons resulting in these representations are partly en-
coded genetically, but they are also tuned by experience (Wiesel
and Hubel, 1965). Barlow (1989) suggested that the goal of sen-
sory processing is to reduce redundancy in sensory information
and to achieve a representation in which the activities of sensory
neurons encode independent features. The process of learning such
a representation is often referred to as feature extraction, as illus-
trated in Figure 2.

Many network models for feature extraction have been pro-
posed (e.g., von der Malsburg, 1973; Grossberg, 1976; Foldiak,
1990; Olshausen and Field, 1996; Harpur and Prager, 1996; Bell
and Sejnowski, 1997; Bogacz et al., 2001c). Many of these network
models include Hebbian competitive learning. Such models work
in the following way. After presentation of a stimulus, only a pro-
portion of neurons, those with the highest membrane potentials
are active—these are the neurons representing features that best
describe that stimulus. The weights of the active neurons are then
modified according to Hebbian rules; this in turn further tunes the
features represented by the neurons. In this way, the weight mod-
ification is similar to that in the Hebbian model of familiarity
discrimination.

Combining learning representations with
familiarity discrimination

Combined models assume that the inputs to the network per-
forming familiarity discrimination come from different areas,
which encode different aspects of a stimulus. The activities of the
inputs may be correlated, as by hypothesis these networks have not
yet completed feature extraction.

Li et al. (1993) suggested that the reduction of the number of
perirhinal neurons that are active after presentation of familiar
compared with novel stimuli was caused by learning a sparse rep-
resentation of the stimuli. After presentation of a novel stimulus,
synaptic weights are modified such that neurons that do not rep-
resent features of the stimulus very well will not be active during
subsequent presentations of the stimulus (as in the feature extrac-
tion process described above). Thus, during the process, a more
precise and sparse representation of a familiar stimulus is formed

(Li et al., 1993). This idea is implemented in the models of Nor-
man and O’Reilly (2001) and Sohal and Hasselmo (2000).

Norman and O’Reilly (2001) proposed a computational model
of human recognition memory. The model includes two parts: a
neocortical part responsible for the familiarity discrimination as-
pect of recognition memory and a hippocampal part responsible
for the recollective aspect. The model proposed by Norman and
O’Reilly (2001) provides a clear explanation for the results of many
psychological experiments (see the section, Psychological Fea-
tures). Here we analyse a simplified version of the neocortical part
of the Norman and O’Reilly (2001) model, referring to it as the
combined competitive model. (For a discussion of the relationship
between the original Norman and O’Reilly model and the com-
bined competitive model, see the section, Psychological Features.)

The combined competitive model is similar to the Hebbian
model (Fig. 1b), with the exception of two features. First, the
limitation of the number of active novelty neurons is achieved not
by special strong connections, but by inhibition and competition:
the active novelty neurons are those which have the highest mem-
brane potentials. Second, only the weights of active novelty neu-
rons are updated (i.e., there is no homosynaptic LTD, as illustrated

FIGURE 2. Example of correlated patterns and a network ex-
tracting features. a: Patterns consisting of randomly occurring vertical
or horizontal lines of three pixels in length. If we assume that there are
nine sensory neurons, each representing one pixel, for these line stim-
uli many pairs of neurons would have correlated, i.e., nonindepen-
dent, activity, as shown below. These sensory neurons do not achieve
optimal feature extraction. The correlation between pixels X1 and X2

is 1

2
, which intuitively comes from the fact that if X1 is on, then with

probability at least 1

2
there is a vertical line, so that X2 should be on as

well. This correlation may be computed formally as follows. Let us
denote the active state by 1, the inactive by 0, and the probability of
being active by a. Therefore, X1 and X2 have mean a and variance
a�a2. The probability of X1 and X2 being active simultaneously is
a(1

2
�1

2
a). Hence the covariance between X1 and X2 is equal to 1

2
(a�a2),

so the correlation between them is 1

2
. b: A sample network transform-

ing patterns from a) into independent features. This feature extrac-
tion may be achieved by appropriately connecting these neurons to a
second layer of neurons. Each box of nine squares denotes a neuron,
and the pattern on the box denotes the feature of a stimulus to which
the neuron responds. Lines denote connections between neurons. The
activities of neurons in the output (right) layer of this network encode
independent features (i.e., lines), so the correlation between each pair
of neurons is zero, and satisfactory feature extraction has been accom-
plished.
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in Fig. 1d). The mathematical description of the simulated version
of the combined competitive model is contained in Appendix A.3.

Sohal and Hasselmo (2000) proposed a model to explain the
responses of perirhinal neurons during recognition memory tasks.
Two separate mechanisms were proposed for long-term and short-
term recognition memory. As this study is concerned with long-
term recognition memory, only the part of the Sohal and Hasselmo
(2000) model concerned with long-term familiarity discrimina-
tion is analysed here. It is termed the double threshold model.

The double threshold model also employs Hebbian rules of
learning, but the decrease in the number of neurons active for
familiar stimuli is not caused by inhibition. The way in which this
network discriminates familiarity is illustrated in Figure 3. After
presentation of a novel stimulus, the membrane potentials of the
novelty neurons may be assumed to follow a normal distribution
(Fig. 3a). The proportion of neurons with membrane potentials
that are higher than a certain value, denoted as the plasticity thresh-
old in Figure 3, have their synaptic weights modified as for active
novelty neurons in the specialised Hebbian model (Fig. 1b): the
weights from active inputs are increased and the weights from
inactive inputs are decreased. The weights of neurons with mem-
brane potentials below the plasticity threshold are modified as for
inactive novelty neurons in the specialised Hebbian model (see the
inactive neuron in Fig. 1d): the weights from active inputs are
decreased. These weight modifications mean that when the novel
stimulus is presented subsequently the membrane potentials are
even higher for the neurons which were above the plasticity thresh-
old on the first presentation (they follow the change indicated by
the right arrow connecting Fig. 3a with 3b), while the membrane
potentials for other neurons are even lower (they follow the left
arrow in Fig. 3). In the double threshold model, there is an activa-
tion threshold—neurons with membrane potentials above this

threshold are active—which is smaller than the plasticity threshold
(Fig. 3). If the activation threshold is set appropriately (for example
by inhibition within the network), more neurons are active for
novel than for familiar stimuli (compare the areas under the distri-
bution density curves to the right of the activation threshold in Fig.
3a,b). The number of active novelty neurons can thus be used as
the familiarity criterion. The mathematical description of the dou-
ble threshold model is contained in the Appendix A.4.

COMPARISON OF THE MODELS’
EFFICIENCIES

This section compares the capacity for familiarity discrimina-
tion of the models. First, the capacity is presented with the simpli-
fying assumption that activities of all the novelty neurons and the
network inputs are uncorrelated (see Capacity for Uncorrelated
Input, below). For this case, it is shown that all the models achieve
very high capacity. Then, it is shown that the currently published
combined models are unable to extract fully independent features
(see Feature Extraction by Combined Models). Next, what is
known about the correlation between perirhinal neurons is re-
viewed (see Correlation Between Responses of Real Perirhinal
Neurons). It is then established that when the responses of neurons
providing input to the familiarity discrimination network are cor-
related, the Hebbian model has a much lower capacity than the
anti-Hebbian model (see Capacity for Correlated Input Patterns).
The theoretical upper limit of capacity of the combined models is
slightly above the capacity of the Hebbian model, but the currently
published combined models do not extract statistically indepen-
dent features and hence have capacities below even that for the
Hebbian model. The recognition capacity of human perirhinal
cortex is estimated (see Estimation of Capacity of Large Networks),
and the abilities of the networks to detect unusual stimuli are
analysed (see Detecting Unusual Stimuli).

Capacity for Uncorrelated Input Patterns

Storage capacity is defined as the number of presented stimuli
for which a network can discriminate familiarity with an accuracy
of 99%. Bogacz and Brown (2002) show that for the simplifying
assumption that activities of all the novelty neurons and the net-
work inputs are uncorrelated, all the models achieve very high
storage capacity. For example, the Hebbian model has a storage
capacity that is equal to 0.023 times the total number of modifiable
synapses of all the novelty neurons (Bogacz and Brown, 2002). The
capacity calculated by Bogacz et al. (2001a) is one-half that given
here because of differences in the assumptions made concerning
the precise form of the decision function/learning rule; these as-
sumptions are discussed by Bogacz and Brown (2002). A similar
capacity for uncorrelated input patterns may also be achieved by
the anti-Hebbian model (Bogacz and Brown, 2002).

Both the combined competitive and the double threshold net-
works may also be used for familiarity discrimination in the case
where inputs already encode independent features, as for the spe-

FIGURE 3. Intuitive explanation of the double threshold model.
Distribution of membrane potentials for (a) a novel stimulus, and (b)
a familiar stimulus. The horizontal axis denotes membrane potential
and the vertical axis the number of neurons with a given membrane
potential. Dashed lines show two thresholds: the activation threshold,
above which neurons are active, and the plasticity threshold separat-
ing neurons whose synaptic weights are modified in different ways.
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cialised models. Bogacz and Brown (2002) have shown that for this
case both combined models achieve a capacity similar to that of the
specialised models.

It is especially noteworthy that the capacity of the familiarity
discrimination models is much greater than the capacity of asso-
ciative memories for recall. The former is proportional to the num-
ber of synapses in the network, the latter to that number divided by
the number of neurons (Amit, 1989). This difference may be in-
tuitively explained by comparing the two tasks: recall—for exam-
ple, you see a person and you want to recall his/her name and the
episode of the previous meeting with the person—and familiarity
discrimination—you see a person and you want to determine
whether you have seen this person before. In the first case, the
network has to recall the whole representation of the name and the
episode, which is encoded in the activity of a number of neurons—
let us denote this number by N. By contrast, for familiarity dis-
crimination, there is just a binary output: the stimulus is novel or
familiar. The number of outputs in the case of familiarity discrim-
ination is N times smaller (so, in this sense, familiarity discrimina-
tion is N times easier than recall). Therefore, intuitively, the capac-
ity for familiarity discrimination is of order N times higher.

Using estimates of the size of the human perirhinal cortex (areas
35 and 36) (Insausti et al., 1998) and assuming “idealised” noise-
free neurons with uncorrelated activities, Bogacz et al. (2001a)
estimated that according to the specialised familiarity discrimina-
tion models the human perirhinal cortex should be able to discrim-
inate familiarity (with probability of error 10�6) for �108 stimuli.
This would mean that a person living for 100 years (� 3 � 109 s)
who was presented with a picture every 30 s could still recognise
almost all these pictures as familiar. For a 1% probability of error,
the capacity of human perirhinal cortex for the above assumption
would be of order of 109 stimuli, i.e., equivalent to storing the
occurrence of a new picture every 3 s.

To summarise, this section establishes that under the assump-
tion of uncorrelated activity of the inputs, all models can achieve
very high capacity.

Feature Extraction by Combined Models

This section investigates the quality of features extracted by the
published networks combining familiarity discrimination and fea-
ture extraction. This quality determines the efficiency of the com-
bined models and, in particular, their capacity.

Although both combined competitive and double threshold
models are able to extract features (Sohal and Hasselmo, 2000;
Norman and O’Reilly, 2001) neither of them extracts fully inde-
pendent features. Consider, as a simple example, the case of the
stimuli consisting of lines, illustrated in Figure 2a. After learning
(i.e., repeated presentation of stimuli consisting of lines, as those in
Fig. 2a), the activity of a combined network’s neurons would rep-
resent the presence of lines in the stimuli but, in the combined
models as published, there is no mechanism to ensure that different
neurons represent different lines. Thus, in these models as pre-
sented, feature extraction will in general be inefficient: although
the neurons will learn to represent features of stimuli, one feature
may be represented by a group of neurons and other features may

not be represented at all. As, for instance, the responses of neurons
representing the same feature are necessarily correlated, overall, the
activities of the network’s neurons will not be uncorrelated. Previ-
ous work has established that networks including only feedforward
connections between input and output layers cannot learn to ex-
tract fully independent features. To ensure that neurons represent
completely independent features, network models have to employ
additional mechanisms—such as plastic inhibitory connections
between neurons (e.g., Foldiak, 1990) or backprojections from
feature neurons to input neurons (e.g., Olshausen and Field, 1996;
Harpur and Prager, 1996).

The fact that the combined competitive and the double thresh-
old networks do not have mechanisms to ensure that all the inde-
pendent features present in the patterns are represented by novelty
neurons would be likely to be a major disadvantage, since a feature
carrying behaviourally relevant information might be missed.
However, the probability of such a feature being missed can be
reduced by increasing redundancy, i.e., by having more novelty
neurons than there are independent features in the input patterns.
Appendix B.1 shows that a feature extraction network such as the
combined competitive and the double threshold networks, that has
k times more neurons than features to be extracted, will on average
miss a proportion of features given by approximately e�k (where e
�2.71). For example, if there is the same number of neurons as
features, such a network will miss �37% of the features (by con-
trast to specialised feature extraction networks that can extract a
complete set of features, see Bogacz et al., 2001c). In order to miss
�1% of the features, there must be �4.6 times more neurons than
features.

Furthermore, in the case analysed in Appendix B.1 all the fea-
tures were assumed to occur equally often and were represented by
an equal number of input neurons. The behaviours of the networks
change if (1) a group of features is more frequently present than the
rest, (2) a group of features is represented by larger numbers of
inputs than the rest, or (3) the neurons representing the features of
the group are more active. In this case, in the combined competi-
tive or the double threshold networks the features evoking greater
than average activity will come to be represented by the great
majority of the novelty neurons. This occurs because the stronger
features “attract” the novelty neurons more strongly during feature
extraction (O’Reilly and Munakata, 2000), and there is no mech-
anism of communication between the novelty neurons in these
models to counteract this process. Hence the stronger features will
be overrepresented and the weaker underrepresented.

To verify the above prediction, we analysed features extracted by
a combined competitive network of 50 neurons and a double
threshold network of 50 neurons. The input patterns were gener-
ated by superposition of some of 50 independent features. Each
feature is represented by the activity of 5 input neurons, and each
pattern is created by superposition of 5 features chosen randomly
from the set of 50 features (e.g., Fig. 4a). Furthermore, 10 of these
50 independent features were stronger; that is, the neurons repre-
senting these features evoked an activity that was strength times
larger (e.g., Fig. 4b; for details of the pattern generation, see Ap-
pendix B.2). Hence a value for strength � 1 corresponds to all
features being equal, and larger values of strength correspond to the
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10 features being stronger. After presentation of 5,000 such pat-
terns, the neurons’ weights were matched with the independent
features used to generate the patterns, to find which feature was
represented by which novelty neuron (see Appendix B.2). Then
the numbers of features not represented by any neuron, repre-
sented by one neuron, by two, etc. were counted. The results of
simulations are shown in Figure 4c,d.

Figure 4c,d shows that both combined models extract features in
a similar way: for equally strong features (the front row of bars)
�30% of features are not represented by any of the novelty neu-
rons, which is close to the prediction of Appendix B.1. The larger
the strength of the strong features, the larger is the proportion of
missed features. For strength � 1.6 (the back row of bars in Fig.
4c,d), almost 80% of the features are not represented, and all the
novelty neurons represent almost exclusively the strong features.

Thus, the simulations shown in Figure 4c,d highlight a serious
weakness of the combined models: if a group of features is stronger
than the rest (e.g., by 60% in Fig. 4c,d), almost all the novelty
neurons represent the strong features, and nearly all the other
features are discarded. Discarding very weak features may some-
times be profitable to emphasise the most important aspects of
stimuli (O’Reilly and Munakata, 2000), but Figure 4c,d shows

that the combined models discard not only very weak features, but
almost all but the strongest. The combined models discard all
features that are weaker than 50% of the strongest features—but
such features may contribute very significantly to input patterns
and may carry behaviourally relevant information.

The fact that many neurons represent the same strongest fea-
tures (e.g., in the back row of Figure 4c,d, each feature is repre-
sented by five neurons) introduces further significant correlation
between the responses of the novelty neurons.

The original model of Sohal and Hasselmo (2000) has a feature
extraction mechanism similar to that of the double threshold
model, hence it is similarly likely to miss weaker features, as dem-
onstrated in Figure 4d. The mechanisms of feature extraction in
the neocortical part of the Norman and O’Reilly (2001) model are
more complex than in the combined competitive model analysed
here (which is a simplified version of the neocortical part of the
original Norman and O’Reilly, 2001 model), but it is likely that
the original model will also miss many features. Furthermore, the
original Norman and O’Reilly (2001) model includes the mecha-
nism of weight contrast enhancement, i.e., increasing the largest
weights and suppressing the smallest, in addition to weight modi-
fications due to Hebbian learning. Norman and O’Reilly (2001)

FIGURE 4. Example of feature extraction by the combined mod-
els. a,b: Sample patterns used in simulations. Darkness of each square
corresponds to the level of activity of one input neuron. a: Pattern
generated by superposition of equally strong features. b: One feature
was stronger (the right vertical line). The features in a and b are shown
as lines of 5 pixels for simplicity of explanation, but the features used
in simulations were not necessarily lines, i.e., they were randomly
chosen sets of five inputs (see Appendix B.2 for details) c,d: Propor-
tions of features represented by different numbers of neurons in the
combined competitive model (c) and the double threshold model (d).

Simulations were performed for networks of N � 50 neurons. In each
simulation session, the weights were initialised to random values then
5,000 patterns were presented and the weights modified according to
the learning rules of the given model (Appendices A.3, A.4). Then the
numbers of features represented by different numbers of neurons
were found. For each value of the parameter strength for strong fea-
tures (shown on y-axis), the simulations were repeated 50 times. The
average proportions of features represented by different numbers of
neurons (number of neurons is shown on x-axis) are plotted as bars.
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state that the weight contrast enhancement further increases the
network’s tendency to focus on the strongest features and to ignore
the weaker ones, hence this mechanism will further increase the
tendency of the original model to miss weaker features.

To summarise, in the published combined models the neurons
“choose” the feature to represent independently from one another,
hence there is a probability that many features will be missed. If all
the features are equally strongly represented, redundancy may be
used to avoid missing features; however, if some features are stron-
ger than others, the neurons have a tendency to represent stronger
features and to ignore weaker ones. Hence such networks tend to
represent only the strongest features, ignoring (even slightly)
weaker features. The fact that many novelty neurons represent the
same strongest features in such a case introduces large correlations,
hence a very significant reduction in the capacity for familiarity
discrimination (see below).

Correlation Between Responses of Real
Perirhinal Neurons

The capacities of the models have been analysed assuming that
responses of both novelty neurons as well as inputs are uncorrelated
(see above, Capacity for Uncorrelated Input Patterns). However,
this is likely to be an oversimplification of the real situation in the
perirhinal cortex. It will be shown that the existence of correlation
between responses can have a major deleterious effect on capacity
(see below, Capacity for Correlated Input Patterns). In the present
discussion, evidence that perirhinal neuronal responses are corre-
lated is presented.

Erickson et al. (2000) recorded the responses of 169 pairs of
distant visually responsive perirhinal neurons (recorded from two
electrodes separated by 0.5–8 mm) of behaving monkeys. For each
pair of neurons they recorded responses during presentation of 16
or 24 different stimuli, and each stimulus was presented an average
of 71 times. For each pair of neurons, they estimated the correla-
tion between the mean responses of the neurons to these stimuli.
They obtained a distribution of these estimated correlations with
mean r̂� �0.05 and standard deviation r̂� �0.313.

It is possible to show that it is very unlikely that such a distribu-
tion of estimated correlations was obtained by chance, i.e., it is very
unlikely that the mean responses of the recorded neurons were in
reality uncorrelated (note that the correlation estimated from a
relatively few pairs of random numbers drawn from uncorrelated
distributions is usually different from 0). Thus, the estimated cor-
relation between 16 pairs of uncorrelated numbers is expected to
have mean r0� � 0 and standard deviation r0� �0.258 (as found
numerically by estimating correlations between 16 random num-
bers 107 times). Both mean r̂� and standard deviation r̂� observed
by Erickson et al. (2000) are significantly larger than the values
expected by chance (r̂� � r0� with P 	 0.05; r̂� � r0� with P 	
0.0001). Appendix C.2 uses Monte Carlo methods to estimate the
most likely real underlying distribution of the correlations. Hence
the observations of Erickson et al. (2000) strongly suggest that it is
very unlikely that mean responses of all distant perirhinal neurons
are uncorrelated. They rather suggest that some pairs of neurons

have positive correlations between their mean responses for differ-
ent stimuli and some have negative.

Furthermore, Gawne and Richmond (1993) and Erickson et al.
(2000) recorded also from pairs of neighbouring visually respon-
sive neurons in inferior temporal cortex (i.e., recorded from a single
electrode). These correlations between mean responses of adjacent
perirhinal neurons were even greater (i.e., had larger mean and
variance) than for the nonadjacent perirhinal neuron pairs. In es-
timations of the capacity of the familiarity discrimination network
in the human perirhinal cortex, the smaller estimate of the corre-
lations between responses of perirhinal neurons is used (ignoring
that correlations between adjacent pairs may be even larger) to
obtain upper limits of the capacities that can be achieved by various
models (see later, Estimation of Capacity of Large Networks).
However, simulations will be performed for values of mean corre-
lation covering a range of 0–1, thereby including not only such
larger values of mean correlation, but all values likely to exist in the
perirhinal cortex (see below, Capacity for Correlated Input Pat-
terns).

Capacity for Correlated Input Patterns

In the followng discussion, we investigate by how much corre-
lation between the responses of different neurons decreases the
capacity of the different familiarity discrimination networks. We
describe the results of calculations and simulations, first for the
Hebbian model, then for the combined models and finally for the
anti-Hebbian model. At the end we give an intuitive explanation of
the differences in capacities achieved by the various models.

For simplicity of explanation, the capacity was tested using very
simple binary patterns. Furthermore, sparse coding was not as-
sumed, i.e., the probability of each input neuron being active was
50%. This simplification may be made as Bogacz and Brown
(2002) have shown that the sparseness of coding does not have a
great influence on the capacity of familiarity discrimination net-
works.

These simple binary patterns were generated such that (the
modulus of) the correlation between each pair of input neurons
was constant. The patterns were generated in the following way. At
the beginning of a simulation a binary template pattern xtemp was
generated randomly. All the patterns x were biased towards xtemp,
such that the probability of x � xtemp equalled 1

2

 1

2
b, where b is

the parameter that controls bias. For example, for 10 inputs, the
template pattern may look like: xtemp � 
��
�

��
,
where 
 denotes that the corresponding input is active, and � that
is inactive. If the bias is, for example, equal to 0.6, then on average
two inputs in the patterns are different from the template (because
the probability of x � xtemp equals 1

2

 1

2
of 0.6 � 0.8), so a sample

pattern used in the simulation may look like: x �
���
�


�
. In addition, to keep the level of activity
constant across the neurons, the template was inverted, i.e., each
bit in the template was switched (xtemp4�xtemp) at random mo-
ments in time. For patterns generated in this way, the correlation rij

between a pair of inputs was equal to b2 or �b2.
Analysing capacity using more realistic input patterns (derived

in the section, Feature Extraction by Combined Models) is com-
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plex and also produces results that are qualitatively the same as
those about to be reported (for a detailed discussion, the reader is
referred to Bogacz (2001).

In the simulations described in this section, we use the patterns
with different levels of correlations between input neurons. The
correlations between the responses of the novelty neurons depend
on the correlations between the inputs and the learning rule of a
particular model. Hence the level of correlations between the re-
sponses of novelty neurons is not a free parameter that we modify
ourselves, but rather in each of the models it is determined by the
bias parameter b of the input patterns. In particular, the Hebbian
model assumes for simplicity of analysis that the number of active
novelty neurons in the network is limited by the connections with
high synaptic weights, hence the correlations between activities of
the novelty neurons are the same as between the inputs. If the
combined models were extracting independent features, the re-
sponses of the novelty neurons would be uncorrelated. However,
in currently published combined models (as shown earlier, in the
section, Feature Extraction by Combined Models), groups of neu-
rons often represent the same feature, hence their responses are
correlated and the magnitudes of correlations between the novelty
neurons in the currently published combined models also depend
on b.

Appendix C calculates the capacity for the Hebbian model for
the case in which activities of the input neurons are correlated. The
analytic expression for capacity is found in Appendix C: it shows
that the capacity depends on the average correlations between pairs
of inputs. Figure 5a compares the theoretical predictions with the
results of simulations and shows that the network capacity de-
creases very markedly even when the correlation is very small. For
example, for a network of 200 neurons, the capacity is less than one
fifth of that for uncorrelated patterns when �rij� � 0.04 (a value
similar to the mean correlation between distant pairs of neurons
found by Erickson et al., 2000; on the x-axis in Fig. 5a, see:
sqrt(�rij�) � 0.2).

Appendix C also shows that the impact of correlation on the
Hebbian model’s capacity is reduced when the connections be-
tween input neurons and novelty neurons are sparse. Thus, when
neuronal activities are correlated, the capacity per synapse is greater
for sparse connections (note that here we are considering sparse
connections, not sparse coding). Figure 5b compares the theoret-
ical predictions with the results of simulations for a network of 100
neurons. The results of the simulations show that a network in
which each novelty neuron receives connections from 40% of the
network’s inputs achieves approximately one-half the capacity of
the fully connected network for uncorrelated patterns (i.e., �rij� �
0). But for �rij� � 0.04 (on the x-axis in Fig. 5b, see: sqrt(�rij�) � 0.2)
the capacity of the sparsely connected network is reduced less than
that of the fully connected network so that the two capacities now
differ by only 15%, and for �rij� � 0.09 (on the x-axis in Fig. 5b see:
sqrt(�rij�) � 0.3) they are equal.

Appendix D gives the upper bound for capacity for correlated
input patterns of the class of single layer combined models with
Hebbian learning. It shows that correlation in the input patterns
decreases the capacity of the combined models according to an
equation similar to that for the Hebbian model. However, if a

combined network were to complete feature extraction (i.e., with
statistically independent activities of the novelty neurons), corre-
lation in the input patterns would reduce the capacity of the com-
bined models less than for the Hebbian model. However, it has
been demonstrated that the currently published combined models
do not extract statistically independent features (as shown earlier,
in the section, Feature Extraction by Combined Models). There-
fore, they do not achieve this upper limit. Furthermore, Figure 5c
shows that there is a decrease in capacity for both the combined
competitive and the double threshold models that is even greater
than that for the Hebbian model. For example, for �rij� � 0.04 (on
the x-axis in Fig. 5c see: sqrt(�rij�) � 0.2) and 200 neurons, the
capacity is less than one sixth of that for uncorrelated input pat-
terns.

Appendix E calculates the capacity of the anti-Hebbian model
for correlated input patterns, and shows that the anti-Hebbian
model is very robust to the correlation between the responses of the
input neurons. This prediction is consistent with the results of
simulations presented in Figure 5d, which shows that the correla-
tion between responses of input neurons reduces the capacity of the
anti-Hebbian model much less than other models. For example,
for �rij� � 0.04 (on the x-axis in Fig. 5d see: sqrt(�rij�) � 0.2) and
200 neurons, the capacity is almost 90% of that for uncorrelated
input patterns.

Furthermore, in the familiarity discrimination networks based
on Hebbian learning, the influence of the correlation between
responses of input neurons on capacity increases when the size of
the network grows. For example, for the Hebbian model, the ca-
pacity for �rij� � 0.01 (on the x-axis in Fig. 5a see: sqrt(�rij�) � 0.1)
is �90% of that for uncorrelated input patterns for N � 100
neurons, �70% for N � 200 neurons, and �50% for N � 300
neurons. By contrast, in the anti-Hebbian model, the influence of
the correlation between responses of input neurons on capacity
decreases when the size of the network grows. For example, for the
anti-Hebbian model, the capacity for �rij� � 0.25 (on the x-axis in
Fig. 5d see: sqrt(�rij�) � 0.5) is �42% of that for uncorrelated input
patterns for N � 100 neurons, �61% for N � 200 neurons, and
�66% for N � 300 neurons. Hence for large networks, the anti-
Hebbian model achieves a capacity much greater than any of the
networks based on Hebbian learning when there are even very
small correlations between the responses of the input neurons.

This difference in capacities of the combined models and anti-
Hebbian model may be explained intuitively by the fact that the
combined models extract features, hence they focus on the ele-
ments common to all the input patterns (i.e., features), while the
anti-Hebbian model ignores the features and focuses on the ele-
ments characteristic for individual patterns.

This principle is illustrated in Figure 6, which compares the
weight changes of the combined competitive and the anti-Hebbian
models during presentations of features repeating in the stimuli. In
the scenario of Figure 6, four patterns are presented, which include
repeating features: the same feature is present in the first and third
patterns and another feature is present in the second and fourth.
Let us imagine that Figure 6 shows only a part of the input patterns
and a part of the familiarity discrimination network, i.e., each of
the input stimuli is encoded by the four inputs shown in Figure 6,
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and also by a number of other inputs that are unique for each of the
stimuli but are not shown. The combined competitive model ex-
tracted the features, and the weights of each neuron represented
one feature. By contrast, the anti-Hebbian model ignored the re-
peating features, and the repeated presentation of the features did
not change the weights in the network. This example illustrates

that the combined models learn the features common to all the
stimuli, and since the features occur in many stimuli, they are
represented in the weights of the novelty neuron with much higher
magnitude than the elements characteristic for individual input
patterns. By contrast, the anti-Hebbian model ignores the repeat-
ing features—they are not represented in the weights with large

FIGURE 5. Capacities (number of stored patterns, P) of familiar-
ity discrimination networks for correlated (square root of �rij�) pat-
terns. a: Capacity of the fully connected Hebbian model with corre-
lated novelty neurons and correlated inputs. The theoretical
predictions (a and b) are slightly higher than the results of simulations
due to the approximations made in Appendix C.1 (discarding cases 2
and 3 from Table 1). b: Capacity of the Hebbian model of N � 100
neurons with diluted connectivity for a fully connected network (se-
ries c � 1) and a network with 40% of the connections present (series
c � 0.4). c: Simulated capacity of combined models. d: Simulated
capacity of the anti-Hebbian model. Note that the influence of corre-
lation on the capacity of the combined models (c) is similar to that for
Hebbian model (a), and much stronger than on capacity of the anti-
Hebbian model (d). Methods of calculating capacity as in Bogacz et al.
(1999, 2001a). For each network and for each number of neurons N,
the familiarity discrimination error was estimated for different num-
bers of stored patterns P, and the capacity Pmax was taken as the
maximum number of stored patterns P, for which the error rate was
<1%. For given N and P, the discrimination error was estimated in
the following way. During each test, P patterns were presented to the

network, and then accuracy was tested on all the presented patterns
(i.e., from the list) and equal number of novel patterns (i.e., patterns
not from the list, but also generated in the same way as for stored
patterns). These tests were repeated until the network had been tested
with 5,000 previously presented patterns and 5,000 random (novel)
patterns, e.g., for P � 100, the tests were repeated 50 times. The
average accuracy over the tests is taken as a result. To illustrate the
precision of the simulation process, for one data point (100 neurons),
the capacity was estimated 10 times using the above method. The
standard deviation of the estimated capacities was �5.4 (i.e., about
2.5% of the mean). The capacity was tested on randomly generated
patterns, such that the modulus of the correlation between any two
inputs was constant: �rij� � const. (for details of pattern generation,
see Capacity for Correlated Input Patterns), and the square root of �rij�
is shown on the x-axes. The square root of �rij� is equal to the bias
towards template b (see Capacity for Correlated Input Patterns) and it
is plotted to emphasise the rapid drop of capacity even for very small
values of correlation �rij�. The y-axes show capacity P (note that the
scales are different).
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magnitude—and hence the weights can represent elements char-
acteristic for individual patterns. Therefore, whenever there exists
even a small correlation between the activities of the input neurons
(i.e., input patterns share some features), the anti-Hebbian net-
work can judge the familiarity of many more individual stimuli
than the combined models. Assuming that feature extraction net-
works have been used to achieve perceptual identification of visual
stimuli on the way to and within perirhinal cortex, it is perhaps not
surprising that a network based on a different learning rule is then
more efficient in performing a different type of task (familiarity
discrimination).

To summarise, this section shows that any correlation between
responses of input neurons reduces the capacity of the Hebbian
model very substantially. The theoretical upper limit of capacity of
the combined models is slightly above the capacity of the Hebbian
model, but since the currently published combined models do not
extract statistically independent features, simulations indicate that
they achieve capacities even lower than the Hebbian model when
the activities of inputs are correlated. By contrast, the anti-Heb-
bian model achieves a much higher capacity than the models based
on Hebbian learning when the activities of inputs are correlated.
This comes from the fact that the combined models learn features
common to all the stimuli, while the anti-Hebbian model learns
elements characteristic for individual input patterns, and hence can
recognise many more individual stimuli than the combined net-
works.

Estimation of Capacity of Large Networks

Figure 7 shows the predictions of the capacity of putative net-
works of novelty neurons in the human perirhinal cortex, for a
network of 4 � 106 novelty neurons, each receiving either 10,000
(Fig. 7a) or 1,000 (Fig. 7b) input connections. The curves with
filled diamonds show the capacity of the Hebbian model. The
curves are based on the predictions of capacity calculated in Ap-
pendix C and verified in the simulations of Figure 5a,b. The curves
with open squares show the capacity of the anti-Hebbian model.
They are based on the predictions of capacity calculated in Appen-
dix E and verified in the simulations of Figure 5d. These curves are
constant, as the correlations considered in Figure 7 are too small to
have any effect on the capacity of so large network (such correla-
tions have already little and diminishing effect on the capacity of
the relatively small networks considered in Fig. 5d). The expected
capacities of the combined competitive and double threshold mod-
els are not illustrated, but it could be extrapolated from simulations
that they would lie below the capacity of the Hebbian model (i.e.,
below the lines with filled diamonds) (see above, Capacity for
Correlated Input Patterns).

Figure 7 shows that the average correlation (defined as in the
legend of Fig. 7) must be extremely small (i.e., 	0.00001), for the
capacity of the Hebbian model to be the same as for the uncorre-
lated patterns. When the correlation is larger (i.e., �0.0001), then
the capacity of the Hebbian model decreases by 1.5 orders of
magnitude (��30) when the correlation increases by one order of
magnitude (�10). This power law is also evident from the equa-
tions for capacity in Appendices C and D.

FIGURE 6. Comparison of example weight modifications of (a)
combined competitive and (b) anti-Hebbian model. Notation as in
Fig. 1. The upper row of panels shows initial values of the weights and
is the same for both networks. Four stimuli are presented to each
network and the following four rows of panels show the weights
resulting from the weight modification according to the stimulus in
the panel above. The four patterns include two repeating features. The
first feature is represented by the activity of the two upper neurons,
and the second feature by the activity of the two lower neurons. Note
that after stimulus presentations the combined competitive model
learned the features (i.e., the weights of each neuron represent one of
the features), while the anti-Hebbian model ignored the features (i.e.,
the weights after stimulus presentations are exactly the same as at the
beginning).
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Comparing Figure 7a and 7b shows that for larger correlations
(�0.001) the capacity of the Hebbian model when each novelty
neuron receives 10,000 inputs is the same as that when each nov-
elty neuron receives 1,000 inputs. Hence, above a certain average
value of the correlation, there is no advantage in increasing the
number of synapses of each neuron above a particular number.
Thus, the magnitude of the correlation in a network such as that of
the Hebbian model may determine the optimal number of syn-
apses per neuron.

Figure 7 shows that for larger correlations between responses of
input neurons the anti-Hebbian model achieves a capacity much
larger than the networks based on Hebbian learning. In particular,
the larger squares and diamonds show the capacity for a correlation
of 0.05, close to the value measured by Erickson et al. (2000). For
this value of correlation, the anti-Hebbian model achieves capacity
1,000–10,000 times larger than the capacity of the networks based
on Hebbian learning.

In addition, the capacity shown in Figure 7 is an overestimation
of the capacity of the human perirhinal network that may be
achieved by the various models, because the capacity of familiarity
discrimination networks is decreased by noise (Bogacz, 2001).
Moreover, the correlation of 0.05 is an underestimation of the
mean correlation between responses of perirhinal neurons, because
it does not take into consideration the larger correlations found
between responses of adjacent perirhinal neurons (see above, Cor-
relation Between Responses of Real Perirhinal Neurons). It follows
that if we assume that the correlation between responses of input
neurons is similar to that observed by Erickson et al. (2000), the
currently published models based on Hebbian learning cannot
achieve a capacity sufficient to explain human recognition capabil-
ities. However, this conclusion does not apply to the anti-Hebbian
model; its capacity remains sufficiently high in the presence of
correlated activity and noise.

However, it should be noted that there is no evidence that the
correlations observed by Erickson et al. (2000) were measured
between pairs of neurons such that both were providing input to
the familiarity discrimination network. There are many different
functional types of neurons in the perirhinal cortex (Fahy et al.,
1993; Xiang and Brown, 1998; Brown and Xiang, 1998; Murray
and Bussey, 1999). It will be very important to establish which of
them are correlated with which other types, as well as the mean
correlations between the various groups of neurons (see below,
Suggested Experiments), because it will establish whether the mod-
els based on Hebbian learning could explain human recognition
abilities.

Detecting Unusual Stimuli

If we assume that correlation in the responses of input neurons
arises from regularities in experienced stimuli, unusual stimuli
should result in a pattern of activity of input neurons that differs
from that usually observed. The problem of finding unusual pat-
terns that belong to a different distribution from that of typical
patterns is often called novelty detection, and many neural net-
work algorithms for it have been proposed (e.g., Bishop, 1994;
Roberts and Tarassenko, 1995; Parra et al., 1996). All the models
reviewed in this study can also detect unusual stimuli. The proba-
bility of correct detection of an unusual stimulus by the Hebbian
model is calculated in Appendix F and presented in Figure 8a,
which shows that the larger the correlation between inputs for
typical stimuli and the bigger the size of the network, the smaller is
the probability of error. The currently published combined models
have a similar ability to detect unusual stimuli (Fig. 8b). However,
the anti-Hebbian model detects unusual stimuli with much less
accuracy (Fig. 8b); this could be expected as the anti-Hebbian
model ignores the features common to usual stimuli (see above,
Capacity for Correlated Input Patterns).

FIGURE 7. Predictions of capacity (P) for a network of novelty
neurons in the human perirhinal cortex. Predictions are made for a
network of 4 � 106 novelty neurons, each receiving 10,000 connec-
tions from inputs (a) or 1,000 connections (b); y-axis shows the ca-
pacity; x-axis shows the correlation in the input patterns defined as a
cube root of parameter r3 defined in Appendix C (note that x-axis
shows correlation rather than square root of correlation as used in Fig.
5). This measure of correlation is closely related to the average abso-
lute correlation between all pairs of inputs. The two measures are

exactly equal (i.e., correlation � �rij�) when the values of correlation
between pairs of inputs are the same for all pairs of inputs (as they are
in the simulations of Fig. 5). Both axes have a logarithmic scale.
Larger symbols show capacity for correlation equal to 0.05. The value
of 0.05 is the average correlation between responses of distant perirhi-
nal neurons measured by Erickson et al. (2000), and it is also very
close to the cube root of parameter r3 calculated for the values of
correlations between responses of distant perirhinal neurons (see Ap-
pendix C.2).
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The ability to detect unusual stimuli or features is likely to be
very useful during feature extraction as novel unusual stimuli may,
for example, require greater amendment to their representation.
Hence, it seems quite possible that an ability to detect such novelty
may be a general characteristic of networks extracting features in
the earlier stages of visual processing and during the early stages of
an individual’s development.

DISCUSSION

It has already been established that when the responses of neu-
rons providing input to a familiarity discrimination network are
correlated (as is indicated by experimental data), specialised net-
works achieve higher capacity than combined networks, because
the currently published combined models do not extract statisti-
cally independent features (see the section, Comparison of the
Models’ Efficiencies). Furthermore, the specialised anti-Hebbian
model may achieve capacity a few orders of magnitude higher than
the specialised Hebbian and combined models, because the latter
models learn features common to multiple stimuli, while the anti-
Hebbian model learns elements characteristic for individual stim-
uli. Hence, the combined models as so far published are critically
less efficient than the specialised model based on anti-Hebbian
learning.

Attempts to combine feature extraction with familiarity dis-
crimination encounter a number of problems that are avoided
when the processes are separated. Thus, it has been shown that the
currently published combined models have a tendency to ignore
(i.e., not extract) many of the features present in the input patterns
(see above, Feature Extraction by Combined Models). If all the
features are equally strong, there need to be 4.6 more novelty

neurons than features to miss only 1% of features. However, if
some features are stronger than others, the great majority of the
novelty neurons represent the stronger features, while (even
slightly) weaker features are ignored. It is likely that features
present in natural visual stimuli are not equally strong. This criti-
cally limits the ability of the currently published combined models
efficiently to extract features. Furthermore, the fact that many
novelty neurons represent the same strongest features introduces
correlations that will very significantly reduce capacity. It remains
possible that a combined familiarity discrimination network with
an architecture designed to ensure extraction of independent fea-
tures may achieve the high theoretical limit of capacity. However,
as yet it has not been possible either to design or to prove that such
networks exist.

There is evidence that representation of visual stimuli in the
inferior temporal cortex is modified by experience in adult mon-
keys. Kobatake et al. (1998) trained monkeys to distinguish be-
tween the elements of a set of similar geometrical figures. These
investigators found that the responses of inferior temporal neurons
before training were very similar for the different figures. After
training the responses differed more greatly between the different
figures, which presumably allowed monkeys to discriminate more
accurately between them (Kobatake et al., 1998). However, one
may argue that learning representations is a long-lasting process
requiring gradual small synaptic changes after repeated presenta-
tions of stimuli. This process may be expected to be most intensive
in development and childhood. By contrast, recognition memory
is a process requiring rapid changes in synapses even after a single
stimulus presentation (to allow recognition of its prior occurrence
during a subsequent presentation), which occurs during both
childhood and adulthood. In other words, a network extracting
independent features may require a different (i.e., smaller) magni-
tude of synaptic weight modifications after a single stimulus pre-

FIGURE 8. Error of discrimination between normal and unusual
stimuli. For each network, 1,000 typical correlated patterns were pre-
sented and the probability of error was approximated by taking the
error of discrimination for 5,000 typical patterns (i.e., patterns com-
ing from the same distribution as the previous 1,000), and 5,000
unusual patterns (i.e., random). Patterns as in Fig. 5; x-axis shows the
square root of correlations between inputs, as in Fig. 5, y-axis shows

the proportion of correct discriminations. a) Comparison of error of
the Hebbian model obtained in simulations with predictions of Ap-
pendix F. b) Comparison of errors of different networks obtained in
simulations for N � 100 neurons. Note that networks based on Heb-
bian learning detect unusual stimuli with greater accuracy than the
anti-Hebbian model.

____________________________________ PERIRHINAL FAMILIARITY DISCRIMINATION NETWORKS 507



sentation than a network discriminating familiarity. It remains to
be established whether the same magnitude of weight modification
after a single stimulus presentation may allow a combined network
to learn a sufficiently stable representation and at the same time
recognise a stimulus as familiar on its second presentation.

In particular, most of the novel stimuli we are normally exposed
to are merely new combinations of known features, e.g., the face of
a person we meet for the first time is a combination of previously
known feature types (e.g., eyes, lips, nose) similar to those seen in
other people. Hence, such novel stimuli do not require large alter-
ations of representation (i.e., feature extraction), but they do re-
quire a large modification of the weights of the novelty neurons in
order to recognise the stimuli during their future occurrences. In
contrast, a large alteration in representation is required when we
are exposed to unusual stimuli with features we have never seen
before, e.g., if surrounded by extraterrestrial aliens or, as in the
Kobatake et al.’s (1998) experiment, where discrimination among
a set of similar stimuli is behaviourally important. Hence, feature
extraction networks should significantly alter representations only
when they detect unusual stimuli. Feature extraction networks
have the ability to detect unusual stimuli independent of their
capacity for familiarity discrimination (see above, Detecting Un-
usual Stimuli). So the fact that most novel stimuli we perceive seem
not to require large alterations of the weights of the feature extrac-
tion network (as they are combinations of known features), but do
require significant alterations of the weights of the familiarity dis-
crimination network, also suggests that feature extraction and fa-
miliarity discrimination should be performed by separate net-
works. An interesting possibility is that if the principles of the
combined models are used in more posterior stimulus categorisa-
tion networks, the reduction in the number of neurons that re-
spond to repeated stimuli in such models might provide a neuronal
basis for the facilitation of performance (increased perceptual flu-
ency) seen in repetition priming.

We have not presented an analysis of the capacity of the Heb-
bian inhibitory model (Fig. 1c). However, because the operation of
the Hebbian inhibitory model is equivalent to the operation of the
anti-Hebbian model (see above, Independent Responses of Nov-
elty Neurons), the Hebbian-inhibitory model may potentially also
achieve a similar very high efficiency with respect to the number of
synapses used for recognition memory, similar to that of the anti-
Hebbian model (i.e., a capacity proportional to the number of
modifiable synapses). In a comparison of the consistency of this
model with the results of experimental observations (see below,
Synaptic Plasticity), it is pointed out that its capacity is necessarily
lower than that of the anti-Hebbian model as the potential number
of modifiable synapses (being inhibitory rather than excitatory) is
lower (Thompson et al., 2001).

To summarise, it is established that when the responses of neu-
rons providing input to a familiarity discrimination network are
correlated, the Hebbian model has a much lower capacity than the
anti-Hebbian model (see the section, Comparison of the Models’
Efficiencies). For the combined models, it is necessary to assume
that activities of the inputs may be correlated, as by hypothesis
these networks have not yet completed feature extraction. The
theoretical upper limit of capacity of the combined models is

slightly above the capacity of the Hebbian model, but the currently
published combined models do not extract statistically indepen-
dent features. This produces a marked reduction in their capacity
due to three effects: (1) correlations between the activities of nov-
elty neurons; (2) the redundancy required in the number of novelty
neurons in order to extract most of the equally strong features
(which further reduces capacity at least 4.6 times); and (3) the fact
that the novelty neurons represent only the strongest features while
ignoring the weaker ones may reduce the capacity many times
depending on the disproportions in strength of the features. Fur-
thermore, if a combined network is to be considered as a viable
solution, it needs to be demonstrated that the same magnitude of
weight modification after a single stimulus presentation will allow
the combined network to learn a sufficiently stable representation
at the same time as achieving single exposure learning. Even with-
out these considerations, if the correlations between the input neu-
rons have values similar to those measured between the responses
of distant perirhinal neurons by Erickson et al. (2000), then famil-
iarity discrimination networks of the size of that in the human
perirhinal cortex working according to the models based on Heb-
bian learning (i.e., Hebbian and combined models) would achieve
a capacity a few orders of magnitude lower than a network working
according to the anti-Hebbian model. Accordingly, the arguments
concerning efficiency favour there being a separate, specialised net-
work for familiarity discrimination in perirhinal cortex.

CONSISTENCY OF THE MODELS WITH
EXPERIMENTAL OBSERVATIONS

This section compares the consistency of the models with what
is known of possible types of synaptic plasticity and of the re-
sponses of perirhinal neurons. In addition, psychological features
and other experimental results that have a bearing on whether or
not there exists a network in the perirhinal cortex specialised only
for familiarity discrimination are described, and further experi-
ments are suggested.

Psychological Features

Norman and O’Reilly (2001) compared how networks per-
forming familiarity discrimination and recall behave in recognition
memory tasks. Their full model is much more complex than the
simple combined competitive model analysed in this study and
includes more sophisticated models of the neurons, their dynam-
ics, and synaptic plasticity. Hence their model explains in an ele-
gant way various results of psychological experiments, for example:
the shape of ROC curves, the effect of list strength, and the effects
of lesions to the medial temporal lobe (Norman and O’Reilly,
2001).

Although Norman and O’Reilly (2001) proposed that the net-
work in the inferior temporal cortex combines feature extraction
and familiarity discrimination, they performed all their simula-
tions for a very small number of stimuli (e.g., 20). Thus, rather
than establishing that their model could extract features, these
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investigators focused on the consistency of the model’s behaviour
in recognition memory tests with the results of psychological ex-
periments. Norman and O’Reilly (2001) used patterns with cor-
related responses for the inputs in their simulations, as this corre-
lation may be expected often to exist in patterns representing
stimuli used in psychological experiments because these stimuli
often share many features (e.g., all of them are words). The Nor-
man and O’Reilly (2001) model could also work as a specialised
network with an efficiency similar to that of the Hebbian model
(the efficiency of the combined competitive model for uncorre-
lated input patterns has been analysed by Bogacz and Brown,
2002). Hence the differences between the properties of the famil-
iarity discrimination and recollection networks shown by Norman
and O’Reilly (2001) are valid no matter whether it is assumed that
there exists a specialised or a combined network in the perirhinal
cortex. Thus, Norman and O’Reilly’s (2001) analysis is focused on
establishing which additional mechanisms are necessary to observe
not only efficiency but also the shortcomings and mistakes made
by human subjects in recognition memory tasks (K. Norman, per-
sonal communication). By contrast, here we analyse which basic
network mechanisms allow the capacity to be large enough to store
all of the patterns that we encounter (and can discriminate be-
tween) over a lifetime.

Bogacz et al. (2001a) demonstrated the Hebbian model shows a
false memory effect, but it is plausible that the behaviour of all the
models would be consistent with this observation, because of the
similarity in their computational bases.

Synaptic Plasticity

The primary synaptic mechanism in the anti-Hebbian model is
homosynaptic LTD (or equivalent mechanism). The model also
assumes an increase in the strength of synaptic connections from
inactive inputs (Fig. 1a). Homosynaptic LTP and LTD have been
demonstrated in the perirhinal cortex (Bilkey, 1996; Ziakopoulos
et al., 1999; Cho et al., 2000). Furthermore, homosynaptic LTD is
easier to produce in perirhinal slices if the postsynaptic neuron is
depolarised than if it is hyperpolarised (Cho et al., 2000). This
pattern is consistent with the anti-Hebbian model because the
weights of active novelty neurons should be modified, but the
weights of inactive should not. However, these brain slice experi-
ments indicate that homosynaptic LTD is produced in perirhinal
slice by low-frequency stimulation (1 Hz), while high-frequency
stimulation produces LTP (Cho et al., 2000; Ziakopoulos et al.,
1999). This appears to be inconsistent with the anti-Hebbian
model which assumes that the weights from more active inputs
should be decreased while the weights from less active increased.
Because the relationship between slice experiments and plasticity
in the functioning brain is still unclear, the role of perirhinal LTD
in familiarity discrimination needs to be clarified. In particular, it is
important to establish the type of synaptic change produced in
perirhinal neurons studied in vitro when stimulation patterns
mimic those indicated by perirhinal neuronal responses in vivo.

Experimentally, LTP in the perirhinal cortex is induced by ac-
tivating both presynaptic and postsynaptic neurons, while in this
model the compensatory increase in synaptic strength of synapses

not undergoing LTD should be produced by heterosynaptic LTP
at inactive synapses. Such an increase has not been observed at
synapses of inputs from one side of the perirhinal cortex (e.g., the
temporal side), after producing LTD at synapses of inputs from the
other side (e.g., the entorhinal) (K. Cho, personal communica-
tion), and has not been reported for any other brain region. How-
ever, to our knowledge, this kind of synaptic weight increase con-
sequent upon LTD within the same pathway (e.g., the same side)
has not yet been sought in the perirhinal cortex. Nevertheless, such
a mechanism of heterosynaptic LTP may seem somewhat implau-
sible. However, the necessary effect could be achieved simply by
increasing the strength of the other synapses of a given neuron,
after homosynaptic LTD at some of its synapses, in such a way as to
maintain the neuron’s excitability, thereby removing the require-
ment for heterosynaptic LTP.

Recently, the homeostatic mechanisms that act to maintain av-
erage neuronal activity and thus promote network stability have
been reported in cultures and slices of cortical neurons (for review
see Turrigiano and Nelson, 2000). The homeostatic mechanisms
include the following:

1. Scaling synapses: Turrigiano et al. (1998) reported that a de-
crease in activity of neurons in a culture caused an increase in
postsynaptic responsiveness to glutamate agonists
2. Regulation of neuronal excitability: Desai et al. (1999) reported
that a decrease in activity of neurons in a culture caused a decrease
of the threshold for spike generation
3. Regulation of synapse number: it has been observed that synaptic
density in slices and cultures varies inversely with neuronal activity
(Kirov et al., 1999; Kirov and Harris, 1999; Segal, 2001).

Such homeostatic mechanisms could also be employed to maintain
network excitability should the principles of the anti-Hebbian
model be implemented in the real perirhinal cortex.

The models based on Hebbian learning, i.e., the Hebbian model
and all the combined models, rely upon homosynaptic LTP, ho-
mosynaptic LTD, and heterosynaptic LTD. The occurrence of
heterosynaptic LTD has not been described in the perirhinal cor-
tex, though it has been found elsewhere (Ito, 1989).

The Hebbian inhibitory model assumes the existence of plastic
synapses between inhibitory and excitatory neurons in the perirhi-
nal cortex. Such plasticity is known to exist in the cerebellum
(Mitoma and Konishi, 1999), but there are no published reports of
such plasticity in the perirhinal cortex. Furthermore, in the perirhi-
nal cortex, the number of excitatory synapses is much larger than
the number of inhibitory synapses (Thompson et al., 2001). Ac-
cordingly, the capacity of the perirhinal cortex for familiarity dis-
crimination would be greatly reduced should it be mediated by the
plasticity of only a small fraction of its synapses.

To summarise, all the proposed models assume the existence of
one or more synaptic mechanisms they have not yet been identified
in the perirhinal cortex. But the most plausible synaptic plasticity is
assumed by the models based on Hebbian learning and the least
plausible by the Hebbian inhibitory model. The anti-Hebbian
model relies on a mechanism of compensatory excitability changes
that is not yet proven, although not implausible.
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Responses of Perirhinal Neurons

The double threshold model predicts that the neurons which
initially are the most active for a novel stimulus should increase
their activity even more for subsequent presentations of the stim-
ulus, while neurons initially less active should decrease their activ-
ity for subsequent presentations of the stimulus.

Li et al. (1993) sought this effect in the responses of 72 visually
responsive anterior inferior temporal, including perirhinal, neu-
rons during repeated presentations of initially novel stimuli. For 24
of the 72 neurons, there was a significant change in response with
repetition: in all cases this change was a decrease. Similarly, Xiang
and Brown (1998) found only 8 (	1%) of 1122 visually respon-
sive neurons had responses that increased (and none of them
strongly) upon stimulus repetition, whereas responses decreased
for 446 (40%) of the sample. Furthermore, Li et al. (1993) ob-
served that for a given neuron, the stimuli that elicited a strong
initial response (during their first presentations) showed a greater
response decrement over their subsequent presentations than did
stimuli that were initially less effective (i.e., which elicited a weaker
response during their first presentations).

Thus, the experimental observations in perirhinal cortex are
opposite to the predictions of the double threshold model. How-
ever, an increase in the response of a neuron for a certain stimulus
as it becomes familiar has been observed earlier in the visual pro-
cessing stream, in cortex near the superior temporal sulcus (Rolls et
al., 1989). Nevertheless, this area is not involved in long-term
familiarity discrimination, because presentation of a novel stimu-
lus influences the neuronal response to a subsequent presentation
of this stimulus only when the presentations are separated by less
than 7 trials, i.e., �1 minute (Rolls et al., 1989).

Miller and Desimone (1994) observed that in a delayed match-
ing to sample task when monkeys had been trained that response to
a repeated sample stimulus was rewarded while other repeated
stimuli were not, some inferior temporal neurons had larger re-
sponses to the second presentation of the target stimulus. How-
ever, such increases have only been described when an animal has
been so trained and have not been established for more general
conditions when more than one stimulus must be held in mind at
a time. Indeed, even those neurons for which such increases were
found tended to show reduced responses to the repeated presenta-
tions of incidental stimuli. Hence such response increases must be
part of a different mechanism from that for general familiarity
discrimination (Brown and Xiang, 1998).

The perirhinal observations reported by Li et al. (1993) are
consistent with the anti-Hebbian and the Hebbian inhibitory
models. The observations can be also explained within the Heb-
bian and the combined competitive models if it is assumed that the
magnitude of weight modification is higher for stimuli that are
classified as novel with higher confidence (as manifested by the
higher population activity of the novelty neurons). Bogacz et al.
(2000) have shown that this mechanism is easy to implement
within a biologically plausible familiarity discrimination network,
and it further increases the capacity.

In both the Hebbian and the combined competitive models, the
response of novelty neurons is lower for familiar stimuli due to

inhibition, but according to these models the response of novelty
neurons should be higher for familiar stimuli in the brief initial
interval (before suppression by inhibition). However, simulations
(Bogacz et al., 2001a; 2001) show this interval may be very brief
(e.g., 10 ms) and, due to temporal jitter, the increase in firing rate
for familiar stimuli is not readily visible in peristimulus time his-
tograms of either simulated or real neuronal responses.

The Hebbian and the combined competitive models assume
that inhibitory neurons should have higher responses for familiar
than for novel stimuli. Neurons with such responses have not been
found in monkey perirhinal cortex, although large numbers of
neurons have been analysed (Fahy et al., 1993; Xiang and Brown,
1998; Li et al., 1993; Sobotka and Ringo, 1994). However, there is
in fact no evidence that inhibitory neurons have ever been re-
corded. Furthermore, neither model requires there to be large
numbers of such inhibitory cells.

Note that the Hebbian inhibitory model (in contrast to the
Hebbian and the combined competitive models) does not predict
increased activity of inhibitory neurons for familiar stimuli—their
activity remains the same, but each neuron receives more inhibi-
tion after presentation of familiar stimuli due to the synaptic
weight modifications. The Hebbian inhibitory model also predicts
that at least some inhibitory perirhinal neurons should be stimulus
selective. Although a large proportion of perirhinal neurons are
stimulus selective (Li et al., 1993, Miller et al., 1993; Xiang and
Brown, 1998), it is unknown whether inhibitory neurons are
among them.

To summarise, the anti-Hebbian model is fully consistent with
the observation of the responses of perirhinal neurons, the predic-
tions of the double threshold model contradicts the observation
that initially most active neurons decrease their responses most (Li
et al., 1993), while all the other models require verification of their
predictions concerning the responses of inhibitory neurons.

Combined or Specialised Network?

The idea of a network combining familiarity discrimination
with feature extraction has the advantage of elegance. One could
speculate that such networks are present in the perirhinal cortex
and in the earlier sensory areas, and the perirhinal cortex discrim-
inates the familiarity of whole stimuli just because this is the first
area where the entire stimulus (as opposed to its individual fea-
tures) is represented (Buckley and Gaffan, 1998; Murray and Bus-
sey, 1999). If this were so, it is plausible that an increase in firing for
novel stimuli is not observed in earlier sensory areas because indi-
vidual features (e.g., lines, colours) are already highly familiar, as
they have previously been repeatedly experienced as part of very
many different stimuli. Nevertheless, certain findings relating to
the perirhinal cortex favour the possible existence of a specialised
familiarity discrimination network.

First, the perirhinal cortex differs anatomically from earlier sen-
sory regions, suggesting its possible functional specialisation. True
perirhinal cortex, Brodmann’s area 35, does not have a layer IV
(Suzuki and Amaral, 1993; Burwell, 2000). In addition, the
perirhinal cortex does not have a columnar organisation, in con-
tradistinction to neocortical areas (Suzuki and Amaral, 1993). Fur-
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ther, the inputs to the perirhinal cortex from other areas do not
have a clustered topographic organisation (Suzuki and Amaral,
1993). Moreover, the adjacent area 36 has extensive intrinsic con-
nections, such that any location is connected to the entire subre-
gion (Burwell, 2000). In these respects, the connectivity of the
perirhinal cortex is distributed rather than clustered, and so has
similarities to that of the hippocampus.

Second, experimental observations suggest that the neurons in-
volved in familiarity discrimination in the perirhinal cortex create
a separate network. Xiang and Brown (1999) recorded responses of
perirhinal neurons while monkeys were performing a serial recog-
nition task, and then recorded the responses of the same neurons
while monkeys were performing a conditional visual discrimina-
tion task. They showed that perirhinal neurons that responded
differentially in the serial recognition task (i.e., during familiarity
discrimination) constituted a population separate from the perirhi-
nal neurons that respond differentially in the conditional visual
discrimination task.

Third, Baxter and Murray (2001) compared the performance of
four monkeys in object identification and recognition memory
tasks both before and after a neurotoxic lesion to rhinal cortex
(perirhinal and entorhinal). These investigators observed that the
effects of the lesion on discrimination learning were not reliably
correlated with the deficits in recognition memory (Baxter and
Murray, 2001). Hence, the magnitude of the discrimination learn-
ing impairment did not predict the magnitude of the recognition
memory impairment. The absence of an association between ob-
ject discrimination impairment and object recognition impair-
ment suggest that these memory functions are mediated by sepa-
rate mechanisms within the rhinal cortex (Baxter and Murray,
2001).

Fourth, an interesting indication of the existence of a separate
familiarity discrimination network is the specialisation of neurons
involved in familiarity discrimination. Xiang and Brown (1998)
recorded the responses of perirhinal neurons after presentation of
four types of stimuli:

Novel-first (N1): stimuli seen by the monkey for the first time
Novel-second (N2): unfamiliar stimuli presented for the second
time during the recording session
Familiar first (F1): stimuli familiar (well known) to the monkey
presented for the first time during the day of recording
Familiar second (F2): familiar stimuli presented for the second time
during the session

Xiang and Brown (1998) found that the neurons with different
responses for novel and familiar stimuli can be divided into three
categories: novelty neurons that respond strongly only to the first
presentations of novel stimuli (N1); recency neurons that respond
strongly to stimuli which were not presented recently (N1 and F1);
and familiarity neurons that respond strongly to unfamiliar stimuli
(N1 and N2). Specific temporal dependencies exist among the
activities of the three populations of neurons, suggesting the exis-
tence of specific connections between them (Xiang and Brown,
1997; Brown and Xiang, 1998). Bogacz et al. (2001b) have shown
that these connections may be efficiently used to increase the reli-

ability of discriminating whether stimuli are being seen for the first
time.

The existence of novelty, recency, and familiarity neurons in the
perirhinal cortex allows a network to determine not only whether a
stimulus is presented for the first time, but also whether it was
presented recently (Brown and Xiang, 1998). According to the
model proposed by Bogacz et al. (2001b), the neurons of each type
create subsystems, each of which could have any of the network
architectures for novelty neurons (as discussed earlier, in the sec-
tion, Description of Networks That Can Perform Familiarity Dis-
crimination). The different behaviours of the neurons in the dif-
ferent subsystems may be reproduced by introducing specialised
synaptic properties for recency neurons (synapses that have a
shorter memory, e.g., lasting hours, and are reset after a short
period of time) and familiarity neurons (synapses that have a de-
layed or slowly developing plasticity), based on the experimentally
observed responses of these neurons (Xiang and Brown, 1998;
Brown and Xiang 1998).

The existence of three types of neurons with different temporal
characteristics of plasticity may be easily incorporated in the spe-
cialised models (Bogacz et al., 2001b). However, their presence
seems likely to interfere with the process of feature extraction,
assuming the existence of a network combining feature extraction
with familiarity discrimination. During feature extraction, a stable
code should be learned with neurons representing independent
features. Having neurons with delayed plasticity and neurons with
short-term plasticity would probably disrupt the stability of the
code.

Finally, even within one category (novelty, recency, or familiar-
ity) different neurons have different memory spans (the longest
interval after initial presentation of stimuli for which representa-
tion of the same stimuli results in a significant change in activity)
(Xiang and Brown, 1998). Having neurons with different memory
spans inside the network performing feature extraction would
probably further disrupt the stability of the code, so providing
another argument against the combined models.

In summary, current evidence provides strong, although not yet
conclusive, reasons in favour of the existence of a specialised famil-
iarity discrimination network in perirhinal cortex that is separate
from any network specialised for feature extraction.

Suggested Experiments

The following experiments establishing the properties of neu-
rons in the perirhinal cortex seem to be the most critical for distin-
guishing between the models described in this study:

1. To clarify what capacity could be achieved by the human
perirhinal cortex working according to various models, it is neces-
sary to find what types of perirhinal neurons have correlated re-
sponses. In particular, it would be very useful to know what are the
correlations between responses of neurons providing input to the
familiarity discrimination network. Answering this question pre-
cisely would require measurement of correlations between the re-
sponses of the visually responsive neurons that project to the nov-
elty, recency, and familiarity neurons. Besides looking for such
correlations amongst groups of simultaneously recorded neurons,
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an indirect means of obtaining a closer approximation of these
required correlations (than that given by Erickson et al., 2000) is
provided by determining the distribution of correlations between
perirhinal neurons that are not connected (i.e., which do not have
short latency peaks in cross-correlograms, see Gochin et al., 1991).
Furthermore, Erickson et al. (2000) found that the distributions of
correlation between adjacent perirhinal neurons are different for
highly familiar and relatively new stimuli. It would be also inter-
esting to know between which types of perirhinal neurons the
changes occur.
2. To provide further support for the anti-Hebbian model, one
needs to demonstrate that homosynaptic LTD could be the basis
for the decrease of synaptic weights in the anti-Hebbian model.
This could be demonstrated by showing that homosynaptic LTD
may be induced in some perirhinal neurons by stimulation with a
frequency �1 Hz (e.g., by stimulation with patterns such as those
recorded from the perirhinal cortex in vivo), or that perirhinal
LTD is easier to induce in vivo when animal is exposed to novel
visual stimuli (i.e., an experiment analogous to that by Manahan-
Vaughan and Braunewell, 1999).
3. To provide further support for the anti-Hebbian model, there is
a need to establish whether homosynaptic LTD at some synapses
produces an increase in the weights of other synapses of the same
neuron, i.e., whether there exists a mechanism of compensatory
excitability change that will maintain the excitability of individual
perirhinal neurons.
4. To provide further support for the Hebbian inhibitory model,
it must be established whether synapses connecting inhibitory and
excitatory neurons are plastic.
5. The Hebbian inhibitory model also predicts that inhibitory
neurons are stimulus selective. It is known that a large proportion
of perirhinal neurons are stimulus selective, but it is not known
whether inhibitory neurons are among them. This could be tested
after inhibitory neurons have been identified by, for example,
matching the shape of action potentials and the firing patterns of
perirhinal neurons as has been done for inhibitory and excitatory
neurons recorded in the prefrontal cortex (Wilson et al., 1994).
Further, identifying the responses of inhibitory neurons in vivo
would also allow test of whether some of them are more active for
familiar than for novel stimuli, as is predicted by the Hebbian and
the combined competitive models.
6. Wang et al. (2000) found that blocking inhibition in inferior
temporal cortex causes neurons to start to respond to stimuli to
which they did not respond previously, but which produced activ-
ity in adjacent neurons. The Hebbian inhibitory model predicts
that in a similar experiment (i.e., after blocking inhibition) nov-
elty, recency and familiarity neurons should have the same re-
sponses for novel and familiar stimuli, hence such an experiment
provides a critical test of the Hebbian inhibitory model.
7. Important evidence would be provided by identifying recency,
novelty and familiarity neurons in vitro. If one finds in vitro neu-
rons having synapses with slowly developing plasticity, and other
neurons having synapses with rapidly developing plasticity, and
the proportion of these neurons matches the one observed in vivo
(Xiang and Brown, 1998), then the type and properties of these
synapses will distinguish between the anti-Hebbian model, the

Hebbian inhibitory model, and the models based on Hebbian
learning (the Hebbian model, the combined competitive model,
and the double threshold model).

CONCLUSIONS

The calculations and simulations in this study establish that
when the responses of neurons providing input to a familiarity
discrimination network are correlated (as suggested by experimen-
tal data), then specialised networks based on anti-Hebbian learn-
ing achieve much larger capacities (up to thousands of times larger)
than specialised networks based on Hebbian learning. The cur-
rently published combined models do not learn an optimal stim-
ulus representation (they do not fully extract statistically indepen-
dent features), and hence their capacities are even lower than the
specialised models based on Hebbian learning. Hence, the com-
bined models as so far published are critically less efficient than the
specialised models based on anti-Hebbian learning.

Currently published experimental observations do not provide
sufficient evidence to establish definitively the means by which the
perirhinal cortex discriminates familiarity. However, a number of
experimental observations favour the existence of a network spe-
cialised for familiarity discrimination. Nevertheless, whether fa-
miliarity discrimination is performed by a specialised network or
by a network that can also perform feature extraction (i.e., one that
learns representations of stimuli), this study indicates that the ca-
pacity is potentially enormous for the commitment of a very re-
stricted number of neurons. Thus, by providing this small propor-
tion (	0.1%) of the total number of cortical neurons, the brain
gains a fast and highly accurate means of detecting things that have
not been encountered before and allows neural networks involved
in categorisation, association, and recall to be relieved of the need
to perform familiarity discrimination. This economy suggests why
recognition memory may involve two separable processes, one for
familiarity discrimination and one for associative recollection (Bo-
gacz et al., 2001a; Brown and Aggleton, 2001).
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APPENDIX A. DESCRIPTION OF THE
SIMULATED MODELS

This Appendix describes all the models whose simulations are
mentioned in the main text. The two following paragraphs de-
scribe the notation used in the Appendix and each of the following
subsections describes the details of one of the models.

The notation in the Appendix is similar to that used in previous
work on autoassociative memories (Amit, 1989). Assume that a
network consists of N novelty neurons, receiving information from
N input neurons whose activity pattern represents a visual stimu-
lus. For simplicity assume that each novelty neuron is connected to
all the input neurons and denote the strength of the synaptic con-
nection between input neuron j and novelty neuron i by wij. De-
note the activity of input neuron j by xj, and define the membrane
potential of novelty neuron i as:

hi � �
j � 1

N

wijxj (A.1)

Denote the number of presented stimuli (previously stored pat-
terns) by P and the activity of input neuron j after presentation of
stimulus � by xj

�, so stimulus � is represented by the pattern of
activity of the input neurons given by vector x�.

A.1. Hebbian Model

In the specialised models analysed and simulated here, the active
state of a neuron is denoted by 1, and the inactive state by �1 (such
notation is also used in models of associative memories, e.g., Hop-
field, 1982). Denoting the inactive state of neurons by �1, rather
than 0, simplifies calculation of capacity, and does not change the
capacity of familiarity discrimination networks (see Bogacz et al.,
2001a). Furthermore, in the specialised models considered here,
sparse coding is not assumed, in order to simplify the calculations
while still allowing comparisons between the models; i.e., in the
following discussion, it is assumed that the probability that an
input neuron is active is 50%. Bogacz and Brown (2002) showed
that the capacities of familiarity discrimination networks are little
influenced by sparseness of coding.

The number of active novelty neurons in familiarity discrimina-
tion networks must be limited (see above, Independent Responses
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of Novelty Neurons). The Hebbian model assumes for simplicity
of calculation that novelty neuron i may be active only if input
neuron j is also active. This would correspond to the existence of
strong nonmodifiable connections between a novelty neuron and a
corresponding input, such that input through this connection is
necessary for the novelty neuron to be active. This assumption is
made for simplicity of notation and to allow mathematical analysis
of the properties of the model. Limiting the number of active
novelty neurons may be alternatively achieved by strong connec-
tions between groups of neurons rather than between pairs of neu-
rons, or by competition (Bogacz et al., 2001a).

Let d(x) denote the initial network response in the Hebbian
model after presentation of input pattern x, i.e., the sum of activ-
ities of all novelty neurons just after input reaches the network (this
network response determines the level of inhibition in the follow-
ing period). Let us assume that novelty neurons need to receive
input through the strong connections in order to have level of
activity larger than zero. Hence, the strong connections ensure that
d(x) is equal to the response (proportional to the membrane po-
tential) of neurons receiving input through these strong connec-
tions (i.e., xi � 1) (Bogacz et al., 2001a):

d�x
 � �
i � 1

N

xih�i � �
i,j � 1
i � j

N

xiwijxj (A.2)

Thus, d(x) is a dot product of the input pattern and a vector of
membrane potentials. The detailed explanation of how such a
function may be calculated by a biologically plausible neural net-
work is quite long and hence is not given here but can be found in
Bogacz et al. (2001a) and Bogacz and Brown (2002). In Equation
A.2, h’i denotes the membrane potential of novelty neuron i as a
result of activity in all connections except the strong connection wii

(the strong connections are assumed to be nonmodifiable, hence
their weights do not encode occurrences of the stimuli):

h�i � �
j � 1
j � i

N

wijxj (A.3)

As a result of the Hebbian weight modifications produced by pre-
vious occurrences, d is higher for familiar patterns than for novel.
In the Hebbian model, d regulates the level of inhibition and hence
population activity in the network in the following period (the
detailed description of the full network architecture of the Heb-
bian model is long hence it is not given here but may be found in
Bogacz et al., 2001a). Therefore, the familiarity of stimuli may be
discriminated reliably by evaluating d or the total network activity
in the following period, which is low for high d and high for low d.
For simplicity, during simulations described in this study, the bi-
ologically plausible network computing d (and activity in the fol-
lowing period) is not simulated explicitly, but instead the familiar-
ity of a stimulus is evaluated by the simulator program computing
function d of Equation A.2. The familiarity discrimination thresh-
old may be taken as the middle value between the average decision
function d for novel and for familiar stimuli. Before testing the
capacity of any network using simulations, the average values of d

for novel and familiar stimuli are estimated by presenting to the
network 5,000 novel and 5,000 familiar stimuli.

In the Hebbian model, if a presented stimulus x� is classified as
novel, then in the following period the novelty neurons receiving
input via the strong connections fire with high frequency (details of
a biologically plausible network resulting in such activity are given
in Bogacz et al., 2001a). Hence, in the following, memorising
period, the pattern of activity of the novelty neurons is the same as
the pattern of activity of input neurons, i.e., it is equal to x�. The
Hebbian weight modifications after presentation of novel stimulus
x� may be expressed by modifying every synaptic weight of the
novelty neurons by the term:

�wij �
1

N
xi

�xj
� (A.4)

In this rule, synaptic weights are changed according to the activity
of the presynaptic input neuron equal to xj

� and the postsynaptic
novelty neuron equal to xi

�: LTP for xi
� � 1, xj

� � 1; heterosyn-
aptic LTD for xi

� � 1, xj
� � �1; homosynaptic LTD for xi

� � �1,
xj

� � 1. Equation A.4 also implies that the weights between inac-
tive inputs and inactive novelty neurons (xi

� � �1, xj
� � �1)

should be increased, but Bogacz and Brown (2002) show that it is
not a critical element of the model and may be removed. However,
the change of weights between inactive neurons is used here to
simplify the model, in the same way as for other memory models
(Hopfield, 1982; Amit, 1989). In Equation A.4, 1/N is a constant
normalising the magnitude of weight modification—as used in
associative memories (where the inactive state of a neuron is de-
noted by �1) (Hopfield, 1982; Amit, 1989).

In simulations, the weights are initialised to 0. The values of
weights in the Hebbian model after presentation of P patterns are
(Bogacz et al., 2001a):

wij �
1

N �
� � 1

P

xi
�xj

� (A.5)

According to Equation A.5, the values of the weights of novelty
neurons may be either positive or negative; however, it was as-
sumed that the novelty neurons are excitatory (see the section,
Description of Networks That Can Perform Familiarity Discrim-
ination). To satisfy the assumption that all novelty neurons are
excitatory, all weights may be increased by a constant. In the case in
which patterns have different numbers of active bits, the novelty
neurons must receive inhibition (additional to any already being
used) proportional to the number of active inputs (for details, see
Bogacz et al., 2001a). That this modification does not change the
capacity is demonstrated by Bogacz et al. (2001a).

A.2. Anti-Hebbian Model

In the anti-Hebbian model (and in the simulated version of the
combined competitive model), the number of active novelty neu-
rons is limited not by strong connections but by competition. After
presentation of a stimulus �, the membrane potentials of novelty
neurons are calculated according to Equation A.1 and a threshold
set such that exactly the half of the novelty neurons with the high-
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est membrane potentials are selected to be active. In a real network,
such selection of a proportion of the most active neurons may be
achieved by inhibition and competition (see, e.g., O’Reilly and
Munakata, 2000). The pattern of activity of the novelty neurons
after presentation of a stimulus � is denoted by y�, namely yi

� � 1
if neuron i belongs to the group of one-half of the novelty neurons
with the highest membrane potential; otherwise yi

� � �1. The
weights of the active novelty neurons are updated according to the
rule (illustrated in Fig. 1a):

�wij � �
�

2N
�yi

� � 1
xj
� (A.6)

In Equation A.6, � denotes the learning rate—a parameter deter-
mining the magnitude of weight modification; its optimal value
depends on N. During simulations, for each size of the network, a
learning rate � which gives the highest capacity is found (the ca-
pacity given in Fig. 5 is for the optimal �). The optimal value
ranged from 0.3 to 0.7 for different networks.

In the simulations of the anti-Hebbian and both combined
models, the synaptic weights are initialised to random values. After
each weight modification (after simulated stimulus presentations)
the weights are normalised such that for each neuron the mean of
its weight is 0 and the variance is 1. This normalisation ensures
equal chances of activation for each neuron. However, the normal-
isation also means that stimuli presented initially are not as well
remembered as ones presented subsequently. To avoid this prob-
lem, the stimuli were presented twice during training in each sim-
ulation session, the second presentation being in the reverse order
to the first presentation. To investigate the effect of such normal-
isation and double presentation on capacity, they were also simu-
lated for the Hebbian model (see Bogacz and Brown, 2002): the
simulations established that they do not have a large effect on the
capacity of the Hebbian model. The double presentation of learn-
ing sequences is not essential for the anti-Hebbian model to work.
If the weights are normalised as described above and patterns are
presented once only, the capacity decreases about two times both
for the Hebbian and the anti-Hebbian models, as shown by simu-
lations (not given here). Hence double presentation is introduced
here to allow “fair comparison” of capacity with the Hebbian
model described in Appendix A.1, in which weights are not nor-
malised after stimulus presentation.

The decision about stimulus familiarity is made by evaluating
the following decision function, similar to that of Equation A.2 of
the Hebbian model.

d�x
 � �
i � 1

N

yihi (A.7)

The value of d given by Equation A.7 is larger for novel patterns
and lower for familiar, hence the middle value of the average d for
novel and for familiar stimuli may be taken as the familiarity cri-
terion.

A.3. Combined competitive model

In the combined models analysed in this study (i.e., the com-
bined competitive and double threshold models), the active state of

a neuron is denoted by 1 and the inactive state by 0. This conven-
tion is used to allow implementation of the sparse coding necessary
for testing feature extraction by the combined models. Let us de-
fine the sparseness of coding as the proportion of neurons active in
a given pattern or the mean level of activity of the input patterns,
and denote it by a, i.e.:

a �
1

N �
j � 1

N

xj
� (A.8)

In the simulated version of the combined competitive model, the
number of active novelty neurons is limited by competition (as
described for the anti-Hebbian model). After presentation of a
stimulus �, the membrane potentials of novelty neurons are cal-
culated according to Equation A.1 and a threshold set such that
precisely the aN novelty neurons with the highest membrane po-
tentials are selected to be active. In a real network, such selection of
a number of the most active neurons may be achieved by inhibition
and competition (see e.g., O’Reilly and Munakata, 2000). The
pattern of activity of the novelty neurons after presentation of a
stimulus � is denoted by y�. The weights of the active novelty
neurons are updated according to the rule (developed from Nor-
man and O’Reilly, 2001):

�wij �
�

Na�1 � a

yi

��xj
� � a
 (A.9)

The expression 1/Na(1�a) in Equation A.9 is a simplifying pro-
portionality constant—as used in associative memories (when the
inactive state of the neuron is denoted by 0; Amit, 1989).

In the simulations, as for the Hebbian model, the decision about
stimulus familiarity was made by evaluating the decision function
of Equation A.10 expressing the difference in activity between the
most and the least active neurons (for motivation for this decision
function see Bogacz and Brown, 2002). As for the Hebbian model,
d is larger for familiar than novel patterns, and the value of the
decision threshold is taken in simulations as the average of the
mean decision function values for novel and familiar stimuli.

d�x
 � �
i � 1

N

�yi � a
hi (A.10)

A.4. Double Threshold Model

In the model as analysed here, the weights are initialised as
described at the beginning of section A.2, and after every simulated
stimulus presentation, the weights are updated according to the
following rule (simplified from Sohal and Hasselmo, 2000; the
original equation for the weight updating rule in their study is very
complex; the simplifications made below do not change the oper-
ational principles of the model and hence its capacity, while mak-
ing possible its mathematical analysis):

�wij �
�

Na�1 � a

�yi

� � a
�xj
� � a
 (A.11)

In Equation A.11, yi
� is equal to 1 if neuron i is above a plasticity

threshold, and is 0 otherwise. In the original Sohal and Hasselmo
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(2000) model the plasticity threshold is fixed. But here for simplic-
ity of analysis, assume that exactly aN novelty neurons with the
highest membrane potentials are above the plasticity threshold.
This would mean that the plasticity threshold is chosen for each
stimulus such that the above criterion is satisfied. Although this
assumption is not easily implemented biologically, it simplifies the
calculations and, importantly, in this model it does not decrease
the capacity of the network (see Bogacz and Brown, 2002).

During simulations, the decision about stimulus familiarity is
made by evaluating a decision function that is equal to the number
of the novelty neurons with membrane potential above the activa-
tion threshold of �a/2 (see Bogacz and Brown, 2002). As for
previously described models, the value of the decision threshold is
taken in simulations as the average of the mean decision function
values for novel and familiar stimuli.

APPENDIX B. FEATURE EXTRACTION BY
COMBINED MODELS

Appendix B.1. Proportion of Missing Features

This Appendix calculates the average fraction of features that
will be missed by a feature extraction network in which neurons
choose independently of one another features to represent, as in the
combined competitive and double threshold networks.

Let us denote the number of independent features from which
the input patterns are built by F, and the number of the output
neurons (that learn to represent features) by M. Let us assume that
each neuron has learnt to represent one feature and this feature was
selected independently from those selected by other neurons. The
probability that neuron i represents feature j is 1/F; hence the
probability that feature j is not represented by neuron i is equal to
1�1/F. Therefore, the probability that feature j is not represented
by any neuron is (1�1/F)M, so the average number of missed
features is M(1�1/F)M, and the average fraction of missed features
is (1�1/F)M.

Let us assume that there are k times more neurons than features,
i.e., M � kF; thus, the average fraction of missed features is (1�1/
F)kF. Let us calculate the limit of this fraction as F goes to infinity:

lim
F3 �

�1 �
1

F�kF

� � lim
F3 �

� F
F � 1�F�� k

�
n � F � 1� lim

n3 �

n � 1

n �n � 1

n �n�� k

� e � k (B.1)

In Equation B.1, the transformation from the first to the second
line involves a change of variables. The term (n
1)/n in the ex-
pression in the second line converges to 1, so it may be discarded.
The limit is then equal to the definition of the Euler constant e.
Since the sequence defining e converges very rapidly, e�k is a very
precise approximation of (1�1/F)kF for larger F (e.g., F �100).

To summarise, this Appendix shows that for a feature extraction
network in which neurons choose features to represent indepen-
dently from one another, and which has k times more neurons than
independent features, underlying input patterns will on average
miss a proportion of approximately e�k features.

B.2. Patterns Used for Feature Extraction

Patterns used for testing the ability of combined models to ex-
tract features (see the section, Feature Extraction by Combined
Models) were generated in the following way. At the beginning of
the simulation session, M independent features Fm were generated;
these were random binary sequences with 5 bits equal to 1 and the
rest equal to 0 (M was also equal to the number of novelty neurons,
and in the simulations M � N). To ensure that an equal probabil-
ity of different input neurons is active, the following constraint was
forced:

� i �
m � 1

M

Fi
m � const (B.2)

In the case in which all the features were equally strong (i.e.,
strength � 1), each pattern x� was a sum of five randomly chosen
Fm, so xj

� were natural rather than binary numbers. Let us denote
the binary vector describing the independent features present in
pattern x� by Y� (thus, in Y� there are 5 values equal to 1 and the
rest of the values are equal to 0) so that:

xj
� � �

m � 1

M

Ym
�Fj

m (B.3)

In the case in which some features were stronger than others, in the
feature vectors Fm of the 10 strong features (m�{1,…10} ) all the
1s were replaced by the value of the parameter strength describing
the strength of the strong features relative to the others. As for the
case of equally strong features, the constraint of Equation B.2 was
forced to ensure an equal probability that different input neurons
would be active, and the patterns were generated according to
Equation B.3.

Afterwards, to ensure appropriate sparseness of coding, each
pattern was normalised such that the constraint of Equation A.8
was forced (after this normalisation xj

� were real numbers). The
sparseness of coding was taken as a � 0.1, because 5 of 50 features
were present in each pattern (i.e., 10%) hence 10% of novelty
neurons should be active when the optimal representation is
learned (i.e., when each novelty neuron represents one feature).

Before matching the weights of novelty neurons to the features,
the features were normalised in the same way as the weights of the
novelty neurons in the combined competitive model (see the be-
ginning of section A.2), such that for each feature m, the mean of
Fj

m is 0, and the variance is 1. Then, for each neuron i, the Euclid
distances were compared between the weight vector wi and all the
normalised feature vectors Fm, and it was considered that the neu-
ron i represented the feature Fm that had the shortest Euclid dis-
tance to wi.
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APPENDIX C. STORAGE CAPACITY OF THE
HEBBIAN MODEL FOR CORRELATED

PATTERNS

C.1. Derivation of Capacity

In this Appendix, we calculate the capacity of the Hebbian
model using signal-to-noise analysis (for a clear introduction to
this method see Hertz et al., 1991), as follows. First, we calculate:
(1) the mean value of the decision function d (defined in Equation
A.2) for familiar patterns, (2) the mean d for novel patterns, and
(3) the variance of d across patterns. Using these three values, we
find the probability of discrimination error. Finally, having the
expression for error probability, we find the number of stored
patterns Pmax for which this error probability is 1%; Pmax is then
the capacity.

We assume that the patterns reflect some regularities in the
external world and hence the activities of some input neurons are
correlated. But for simplicity we assume that the average value of
each bit of a pattern is 0, i.e., �xj

��� � 0. Hence the correlation
between inputs i and j is equal to rij � �xi

�xj
���. Denote the matrix

of rij by R (for random uncorrelated patterns, R is the identity
matrix).

Let us calculate the value of the decision function (defined in
Equation A.2) after presentation of the first familiar stimulus.

d�x1
 � �
i � 1

N

xi
1hi � �

i,j � 1
i � j

xi
1xj

1wij �

1

N �
i,j � 1
i � j

N

xi
1xj

1xi
1xj

1 �
1

N �
i,j � 1
i � j

N �
� � 2

P

xi
1xj

1xi
�xj

� (C.1)

The first term in the last line of Equation C.1 is called “signal” in
neural network literature, and the second—“noise” (Amit, 1989).
Since xj

1�{�1,1}, xj
1xj

1 � 1, and the signal term is equal to N. The
expected values of the expressions xi

1xj
1xi

�xj
� in the noise term are

equal to rij
2. Let us denote the average of the squares of the corre-

lations between the neurons’ activities by r2 � �rij
2�i�j (for biased

patterns used in the section, Capacity for Correlated Input Pat-
terns, r2 � b4). Hence, the average value of the noise is equal to
NPr2 (P denotes the number of stored patterns). To calculate the
variance of the noise, let us find the average of the square of the
noise term:

Noise2 �
1

N2 �
i,j � 1
i � j

N �
� � 2

P �
k,l � 1
k � l

N �
� � 2

P

xi
1xj

1xi
�xj

�xk
1xl

1xk
�xl

� (C.2)

Table 1 shows all the possible values of the elements of the sum-
mation of Equation C.2, depending on equalities between indices.
Cases 2 and 3 (Table 1) contribute little to the variance of the noise
(because they occur much less frequently than cases 4 and 5), and
discarding them does not change the estimation of capacity mate-
rially (Fig. 5a). If only cases 1, 4, and 5 are considered, then the
average of the noise squared is equal to 2P
4NP2r3
(NPr2)2,
where r3 is defined by Equation C.3 (for biased patterns used in the
section, Capacity for Correlated Input Patterns, r3 � b6).

r3 � �rijrilrjl�i � j � l (C.3)

Hence, given the above paragraph, the variance of the noise is equal
to 2P
4NP2r3 (because D2(Noise) � �Noise2� � �Noise�2).

The above analysis indicates that the decision function after
presentation of a familiar stimulus has mean N
NPr2 and vari-
ance 2P
4NP2r3, while after presentation of a novel stimulus the
mean is NPr2 (because there is no signal) with the same variance.
Hence d�N/2
NPr2 may be used as a familiarity criterion (i.e., a
population activity of novelty neurons as measured by the decision
function of Equation A.2 above N/2
NPr2 would indicate that
the stimulus is novel, an activity below it, that the stimulus is
familiar). Since it was assumed that all the patterns have the same
regularities, r2 does not change in time and the familiarity discrim-
ination threshold may be set during brain development. We con-
sider the network as working well if the probability of error is less
than 1%. An error occurs if the noise is higher than the threshold.
To calculate the maximum acceptable number of stored patterns
Pmax, we must solve the following equation:

Pr���NPmaxr
2, �2Pmax � 4NPmax

2 r3
 � NPmaxr
2 �

N
2� � 0.99

(C.4)

In Equation C.4, Pr denotes probability. Equation C.4 is equiva-
lent to:

Pr���0, 1
 �
N

�8Pmax � 16NPmax
2 r3� � 0.99 (C.5)

Since the noise may be estimated by a normal distribution, Equa-
tion C.5 may be solved by checking the value of the inverted
standard normal cumulative distribution for 0.99:

TABLE 1.

Elements of Summation in Equation C.2

No. Case No. of cases Average of elements

1 i � k 	 j � l 	 � � �, or i � l 	 j � k 	 � � � 2N2P 1
2 i � k 	 j � l 	 � � �, or i � l 	 j � k 	 � � � 2N2P rij

2

3 (i � k 
 j � 1 
 i � l 
 j � k), and � � � 4N3P rlj
2 (for i � k)

4 (i � k 
 j � l 
 i � l 
 j � k), and � � � 4N3P2 rijrklrjl (for i � k)
5 Otherwise The rest rij

2rkl
2
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N

�8Pmax � 16NPmax
2 r3 � 2.33 (C.6)

Solving Equation C.6 with respect to Pmax, we get

Pmax �
�1 � �1 � 0.185N3r3

4Nr3 (C.7)

Equation C.7 shows that the presence of correlations both between
inputs and between novelty neurons reduces capacity very mark-
edly: even for small values of r3, for very large N, Pmax is propor-
tional to �N, rather than N2.

Equation C.7 gives the capacity for the simplified case when the
network is fully connected. Let us calculate the capacity when the
connections between perirhinal neurons are sparse (i.e., each nov-
elty neuron receives inputs only from a small proportion of input
neurons), which is more likely to reflect the real situation in the
perirhinal cortex. Let us denote the probability of an input neuron
being connected to a novelty neuron by c. Hence, on average, Nc
weights of a novelty neuron have the same values as defined in
Equation A.5, and the rest of the weights are equal to 0 (which
corresponds to a lack of connection). For simplicity, we still do not
consider any spatial organisation of the connections; i.e., let us
assume that the probability of a novelty neuron receiving a con-
nection from an input neuron is equal for all inputs (no matter
what the distance between the input neuron and the novelty neu-
ron). Although this is a simplification, it is at least partially consis-
tent with the pattern of intrinsic connections in the perirhinal
cortex (see above, Combined or Specialised Network?).

Let us investigate how the signal and noise in the decision func-
tion change due to such sparse connectivity. Calculations analo-
gous to those of Equation C.1 show that the average value of the
signal becomes equal to Nc. To calculate the variance of the noise
it is necessary to analyse the values of the elements of summation
from Table 1. In cases in which i � k ∧ j � l, the average values of
the elements should be multiplied by c, and in all other cases the
average values of the elements should be multiplied by c2. Hence,
if, as previously, only cases 1, 4, and 5 from Table 1 are taken into
consideration, then the variance of the noise becomes
Pc
Pc2
4NP2c2r3. Calculations of capacity analogous to those of
the previous part of this Appendix show that the capacity is equal
to:

Pmax �
�1 � c � �(1 � c)2 � 0.74N 3c2r3

8Ncr3 (C.8)

Equation C.8 shows that even when r3 is quite small, Pmax is
proportional to �N, rather than to the number of synapses N2c. A
sparse connectivity reduces the impact on capacity of correlation
within patterns: although Equation C.8 is complex and hence
difficult to interpret directly, the reduced impact of correlation as
sparseness of connections increases is clearly visible in Figure 5b.

Associative memories that have ability to recall information also
show a decrease in capacity when patterns to be stored are corre-
lated (Hertz et al., 1991). In the case of associative memories, the
influence of correlation on capacity may be reduced by repeating
presentations of the stimuli (or the pseudo-inverse rule; Hertz et

al., 1991). However, this approach does not work for the familiar-
ity discrimination networks. Ignoring the fact that what is wanted
is single exposure learning, Bogacz et al. (2000) have shown that
repeating presentations of stimuli to a familiarity discrimination
network, indeed reduces the probability of classifying a familiar
stimulus as novel but does not reduce the probability of error of
classifying a novel stimulus as familiar. Hence the overall proba-
bility of a familiarity discrimination error, which is the average of
the two above probabilities (when it is assumed that the novel and
familiar stimuli occur equally often) may be reduced by no more
than two times by repeating stimulus presentations. Hence repeat-
ing stimulus presentations may increase the capacity slightly (Bo-
gacz et al., 2000), but not sufficiently to overcome the decrease in
capacity due to correlation in the input patterns.

To summarise, this Appendix establishes that any correlation
between the responses of the input neurons reduces the capacity of
the Hebbian model very markedly: even for relatively small values
of correlation, the capacity becomes proportional to �N, rather
than to the number of synapses. Correspondingly, in any real net-
work based on such computational principles, it is essential for
correlation between neuronal responses to be very low, if capacity
is to be maximised.

C.2. Estimation of Correlation Between
Responses of Perirhinal Neurons

Appendix C.1 calculates how the capacity of the Hebbian model
depends on the correlations between input neurons. However, the
capacity that may be achieved by the Hebbian model remains
undetermined until parameter r3 is known. The value of r3 likely
for activities of real perirhinal neurons is estimated in this section.

Using Monte Carlo methods, it is possible to estimate the most
likely real underlying distribution of correlations between distant
perirhinal neurons, i.e., its mean r� and standard deviation r�.
Simulations with different values of r� and r� were used to deter-
mine the distribution of correlations between responses of distant
perirhinal neurons most likely to result in the distribution of esti-
mated correlations observed by Erickson et al. (2000) (see above,
Correlation Between Responses of Real Perirhinal Neurons). In
each simulation session, we calculated the estimated correlation
between 107 pairs of simulated neurons. For each pair we took the
correlation r as a random number taken from the normal distribu-
tion with mean r� and standard deviation r�. Then, we generated
16 pairs of random numbers (corresponding to the pairs of re-
sponses to the 16 stimuli used in Erickson et al.’s, experiment)
taken from two distributions with correlation r, and we estimated
correlation r̂ between these 16 pairs of numbers. For each session,
we found the mean r̂� and standard deviation r̂� of r̂. These
numerical simulations showed that the most likely distribution of
estimated correlations with mean r̂� � 0.05 and standard devia-
tion r̂� � 0.313 (the values observed by Erickson et al., 2000), is
obtained when the random numbers are generated according to
random distributions with correlations with mean r� � 0.05 and
standard deviation r� � 0.21.

In the above calculations, the correlation r was estimated from
16 pairs of numbers, rather than 24 (in the experiment carried out
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by Erickson et al., correlations were calculated between mean neu-
ronal responses to presentations of 16 or 24 stimuli) to produce a
more conservative estimate of correlation distribution (i.e., lower
values of r� and r�).

To estimate the value of r3 based on the above calculation, we
generated 107 triplets of random numbers drawn from a normal
distribution with mean r� � 0.05 and standard deviation r� �
0.21 and estimated r3 using definition of Equation C.3, and ob-
tained r3 � 0.0001646. The cube root of the estimated r3 is equal
to 0.055, so it is close to r̂� � 0.05; the latter value is used in
estimation of Figure 7.

APPENDIX D. UPPER LIMIT OF CAPACITY
OF COMBINED MODELS

Appendix C calculated the capacity of the Hebbian model for
correlated input patterns. Since it was assumed for simplicity of
calculation that the pattern of activity of the novelty neurons was
the same as the pattern of activity of the input neurons (due to
one-to-one driving connections), the correlations between activi-
ties of the novelty neurons were the same as between the inputs.
This Appendix calculates (in an analogous way) the upper bound
of the capacity of the combined models, with the assumption that
they perform perfect feature extraction, i.e., the activities of the
novelty neurons are statistically independent (hence uncorrelated).
Therefore, the pattern of activity of the novelty neurons after pre-
sentation of stimulus � must be different from the pattern of
activity of the input neurons, because the novelty neurons’ activi-
ties are not correlated (while the input neurons’ are). Let us denote
the pattern of activity of the novelty neurons after presentation of
stimulus � by y� and the pattern of activity of the input neurons by
x� (as previously).

As in Appendix C, let us define the correlation between inputs i
and j as rij � �xi

�xj
��� and denote the matrix of rij by R. In addition,

let us define the correlation between novelty neurons i and j as ṙij �
�yi

�yj
���, the correlation between novelty neuron i and input neu-

ron j as r̂ij � �yi
�yj

���, and denote the matrices of ṙij and r̂ij by Ṙ and
R̂, respectively. In Appendix C, it was assumed that all these ma-
trices were equal: R � Ṙ � R̂. By contrast, here we assume that Ṙ
is the identity matrix, which means that the activities of the novelty
neurons are not correlated (the correlation between adjacent neu-
rons is not considered here).

For simplicity, let us first consider the case of a fully connected
network (i.e., each novelty neuron receives connections from each
input neuron). The values of the weights of the novelty neurons
after presentation of P stimuli become:

wij �
1

N �
� � 1

P

yi
�xj

� (D.1)

Term yi
� replaces xi

� also in the decision function. Let us calculate
the decision function after presentation of the first familiar stimu-
lus:

d�x1
 � �
i � 1

N

yi
1hi � �

i,j � 1

N

yi
1xj

1wij �

1

N �
i,j � 1

N

yi
1xj

1yi
1xj

1 �
1

N �
i,j � 1

N �
� � 2

P

yi
1xj

1yi
�xj

� (D.2)

As in Appendix C, the signal is equal to N. The average value of
expression yi

1xj
1yi

�xj
� in the noise term is r̂ij

2; hence the average value
of the noise is equal to NP�r̂ij

2�i,j. To calculate the variance of the
noise, we analyse the square of the noise:

Noise2 �
1

N2 �
i,j � 1

N �
� � 2

P �
k,l � 1

N �
� � 2

P

yi
1xj

1yi
�xj

�yk
1xl

1yk
�xl

� (D.3)

The averages of the elements of the summation in the noise term
have different values for different configurations of indices (parallel
to the analysis of Table 1 for the Hebbian model). However, since
we are calculating the upper limit of capacity let us consider only
those cases which contribute most to the variance of the noise.
Taking into consideration other cases as well would result in a
slightly bigger value of the noise and hence in a slightly lower
capacity (therefore, the calculation will slightly overestimate the
upper limit of capacity). Let us consider the three cases correspond-
ing to cases 1, 4, and 5 from Table 1 that were considered during
the calculation of capacity in Appendix C. First, when i � k ∧ j �
l ∧ � � � (there are N2P such cases), all the elements are equal to
1. This case corresponds to the noise which is present independent
of correlation. Second, when i � k ∧ � � � (there are N3P2 such
cases), the average of the elements is rjlr̂ijr̂il. This expression is
different from zero when there exist the following correlations:
between inputs j and l, between input j and novelty neuron i, and
between input l and novelty neuron i. Note that if the network is
doing feature extraction, such correlations must exist for some
triplets of neurons. In particular, if the feature encoded by novelty
neuron i is represented by the activities of input neurons j and l, the
activities of inputs j and l, and novelty neuron i are correlated
because they encode the same feature. Thus, whenever the feature
is present, all three neurons are coactive. Third, when no equality
between indices is present (corresponding to case 5 of Table 1), the
average of the element of summation in Equation D.3 is r̂ij

2r̂kl
2 .

Considering these three cases, it may be shown that the variance of
the noise is P
NP2r̂3 where r̂3 � �rijr̂ijr̂il�ij,l. Knowing this, the
capacity may be calculated using the technique from the previous
Appendix, giving

Pmax �
�1 � �1 � 0.185N 3r̂ 3

2Nr̂ 3 (D.4)

Similar calculations for the case of sparse connections give:

Pmax �
�1 � �1 � 0.185N 3c2r̂ 3

2Ncr̂ 3 (D.5)

Equations D.4 and D.5 are visually similar to Equations C.7 and
C.8. They also establish that even for relatively small r̂3,the capac-
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ity of combined models is proportional to �N, rather than to the
number of synapses. However, note that the upper bounds of
capacity of the combined models (Equations D.4 and D.5) are
higher than the capacities of the Hebbian model (Equations C.7
and C.8) for the same correlation in input patterns (expressed by
matrix R). This follows because r̂3	r3 since it was assumed that the
responses of novelty neurons were not correlated. However, when
the responses of novelty neurons are correlated (i.e., the network
does not complete feature extraction), then r̂3 increases; further-
more, the elements of summation of Equation D.3 will also have
large values for some other combinations of indices (in particular
j � l ∧ � � �), which decreases the capacity.

Establishing the relative capacities of the Hebbian and the upper
limit of the combined models requires an understanding of the
relationship between r̂3 and r3. No precise analytical solution de-
termining this relationship for all possible feature extraction net-
works has been found. However, a very approximate relationship
between r̂3 and r3 has been found in Bogacz (2001). Analysing
approximations shows two things about r̂3. First, r̂3 is smaller than
r3 (Bogacz, 2001). Hence, comparing Equations D.4 and C.7, it is
clear that for correlated input patterns, networks which complete
feature extraction achieve a larger capacity than networks that do
not complete feature extraction. Second, if r3 grows, r̂3 also grows
(proportionally) (Bogacz, 2001). Hence, a specialised network re-
ceiving uncorrelated inputs will achieve a higher capacity than a
network of the same size receiving correlated inputs, even if the
latter completes feature extraction. Bogacz (2001) describes also an
attempt to find the upper limit of capacity of the combined models
in simulations. The above two predictions are consistent with the
simulations in Bogacz (2001).

The upper limit of capacity calculated in this Appendix may not
be the upper limit of capacity of all possible familiarity discrimi-
nation networks. However, it is the upper limit for the class of
single layer networks based on Hebbian learning because the re-
sponses of the novelty neurons from the model analysed in this
Appendix are uncorrelated, and the capacity will decrease if the
novelty neurons become correlated. Any combined model that
achieved a larger capacity would have to operate on different prin-
ciples from those investigated here. At present the development of
such a model with biologically plausible learning rules seems im-
probable.

To summarise, this Appendix calculates the upper bound of
capacity for the class of combined models that are single layer
networks with Hebbian learning. It shows that when there are
even small correlations in the input patterns, the capacity of
such combined models is proportional to �N, rather than to
the number of synapses. However, if a combined network com-
pletes feature extraction, the capacity of the combined model
can be larger than the capacity of the specialised Hebbian model
for input patterns having the same correlation. Nevertheless,
when the activities of novelty neurons become correlated (i.e.,
the network fails to complete feature extraction), the capacity of
the combined models decreases and so falls below the upper
limit calculated in this Appendix.

APPENDIX E. STORAGE CAPACITY OF THE
ANTI-HEBBIAN MODEL FOR CORRELATED

PATTERNS

The behaviour of the anti-Hebbian model is very complex,
hence its capacity is calculated in this Appendix using the following
approximations.

1. During calculations, the values of various constants are dis-
carded, and thus the Appendix finds analytically only the qualita-
tive relation between the capacity P and the size of the network N,
rather than an exact equation for capacity. Hence we use sign “�”
to denote that two values are approximately equal when the precise
value of a constant has not been determined or that no more than
an approximate proportionality has been established.
2. For simplicity, only a fully connected network is considered
here.
3. The calculations are done only for patterns biased towards the
template (see those used earlier, as described in the section, Capac-
ity for Correlated Input Patterns). A general expression for capacity
(i.e., valid for any patterns) has not been found, and finding it has
proved very difficult. In addition, we assume that the template is
not switched at random moments in time (see above, Capacity for
Correlated Input Patterns). This difference in the method of pat-
tern generation does not have an influence on capacity of the
anti-Hebbian model, as shown by the results of simulations.
4. This Appendix calculates the capacity of a modification of the
anti-Hebbian model, in which the weights of inactive neurons are
also modified. That is, in the network analysed here the weights are
modified according to the following equation instead of Equation
A.6.

�wij � �
�

N
yi

�xj
� (E.1)

The learning rule of Equation E.1 would be difficult to implement
in a biological neural network (see Bogacz and Brown, 2002), but
this modification of the learning rule from that of Equation A.6
simplifies the calculation of capacity, and does not change the
capacity significantly from that of the more realistic rule (as will be
shown in simulations described in this Appendix).

The weights in the anti-Hebbian model after presentation of P
patterns are approximately proportional to

wij � �
1

N �
� � 1

P

yi
�xj

� (E.2)

In Equation E.2, there is an approximate equality, because we have
discarded (1) the fact that the weights were initialised to random
values, not to 0; (2) the constant �; and (3) the weight normalisa-
tion process described in Appendix A.2.

To find the capacity of the anti-Hebbian model, we will use the
signal-to-noise analysis as in Appendices C and D. Let us calculate
the value of the decision function (defined in Equation A.7) after
presentation of the first stimulus:
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d�x1
 � �
i � 1

N

yi
1hi � �

i,j � 1

N

yi
1xj

1wij �

� �
1

N �
i,j � 1

N

yi
1xj

1yi
1xj

1 �
1

N �
i,j � 1

N �
� � 2

P

yi
1xj

1yi
�xj

� (E.3)

In the first line of Equation E.3, there is an approximate equality
after d, because it is assumed that there is the same pattern y1

during two different presentations of the first stimulus; i.e., it is
assumed that the same novelty neurons belong to the group of the
most active neurons (or more precisely the same neurons have their
membrane potentials among N/2 highest membrane potentials in
the network). However, in the anti-Hebbian model, patterns y1

during two different presentations of a stimulus usually only par-
tially overlap.

Calculations analogous to those of Equation C.1 show that the
signal term is equal to �N. To calculate the distribution of the
noise term, rewrite it as

Noise � � �
i � 1

N

yi
1 �

� � 2

P

yi
�

1

N �
j � 1

N

xj
1xj

� (E.4)

We may then calculate the distribution of the noise term from
Equation E.4, starting with the terms in the innermost summa-
tion.

Since the patterns are biased towards the same template and
Pr(x� � xtemp) � 1

2
(1
b) (see above, Capacity for Correlated

Input Patterns), then

�xj
1xj

�� �
�1 � b
2

4
�

�1 � b
2

4
� 2

�1 � b
�1 � b


4
� b2

(E.5)

Since xj
��{�1,1}, (xj

1xj
�)2 is equal to 1. Hence the term xj

1xj
� has

variance equal to 1�b4�1. Thus, the innermost summation of
Equation E.4 may be approximated by the following normal dis-
tribution:

1

N �
j � 1

N

xj
1xj

� � ��b2, �1

N� (E.6)

Let us now estimate the distribution of term

�
� � 2

P

yi
�

From Equation E.4. Note that this term describes how many times
neuron i was activated during presentation of P stimuli. In partic-
ular, if the neuron was activated for exactly one-half of the stimuli,
the term is equal to 0; if the neuron was activated for more than
one-half of the stimuli, the term is positive; and if the neuron was
activated for less than one-half of the stimuli, the term is negative.
Let us define a term si

q describing how many times neuron i was
activated during presentation of first q stimuli:

si
q � �

� � 1

q

yi
� (E.7)

Let us investigate how si
q
1 depends on si

q and q. From Equation
E.7 we get

si
q � 1 � si

q � yi
q � 1 (E.8)

Hence, let us calculate how the probability distribution of yi
q
1

depends on si
q and q. Let us recall that in the anti-Hebbian model,

yi
q
1 is equal to 1 when novelty neuron i has membrane potential

hi(x
q
1), which is among N/2 highest membrane potentials in the

network; and yi
q
1 is equal to �1 otherwise. From Equation A.1,

we can expect that the membrane potentials of novelty neurons are
normally distributed with mean 0, hence for large N, for the great
majority of novelty neurons:

yi
q � 1 � sgn�hi�x

q � 1
� (E.9)

Hence, let us calculate how the probability distribution of hi(x
q
1)

depends on si
q and q:

hi�xq � 1
 � �
j � 1

N

wijxj
q � 1 � � �

� � 1

q

yi
�

1

N �
j � 1

N

xj
�xj

q � 1 (E.10)

From Equation E.6, it follows that Equation E.10 is equivalent to

hi�xq � 1
 � � �
� � 1

q

yi
���b2, �1

N� (E.11)

From the definition of Equation E.7, it follows that Equation E.11
is equivalent to:

hi�xq � 1
 � ���si
qb2, �q

N� (E.12)

From Equations E.9 and E.12, we get

Pr�yi
q � 1 � 1
 � Pr�hi�x

q � 1
 � 0� � Pr����si
qb2, �q

N� � 0�
� Pr���0, 1
 � �si

qb2 �N
q� � ���si

qb2 �N
q� (E.13)

In Equation E.13, � denotes the cumulative standard normal dis-
tribution. Using Taylor’s expansion in vicinity of 0 we get

��x
 �
1

2

1

�2�
x

Hence we can approximate

Pr�yi
q � 1 � 1
 �

1

2
� si

q�b2 � N
2�q� (E.14)

The interpretation of Equation E.14 is that if si
q � 0 (i.e., the

neuron was active for more than one-half the presented stimuli),
the probability that the neuron will respond to the next stimulus is
lower than 1

2
. Furthermore, the larger si

q is (i.e., the more the neuron
was active in the past), the lower the probability that the neuron
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will respond in the future. Conversely, if si
q 	0 (i.e., the neuron

was active for less than one-half the presented stimuli), the proba-
bility of neuron to respond again is �1

2
. Hence the novelty neurons

in the anti-Hebbian model have a natural tendency to be active for
exactly one-half of the stimuli.

Intuitively, the reason for this tendency to respond to one-half
of the stimuli could be explained in the following way. Since all the
patterns are biased towards the template, the more the proportion
of stimuli for which a novelty neuron responds is greater than
one-half, the more anti-correlated its weights become to the tem-
plate (due to anti-Hebbian learning). Hence the next stimulus is
more likely to be anti-correlated to the weights of the neuron, and
the membrane potential for this stimulus is likely to be lower;
hence the neuron is less likely to be active. A similar argument can
be applied if the coding is more sparse.

From Equations E.8 and E.14, it follows that the evolution of si
q

may be described by the following one-dimensional nonhomoge-
neous random walk:

si
q � 1 � � si

q � 1 with prob. � 1
2

� si
qB

si
q � 1 with prob. � 1

2
� si

qB
, where

B � b2 � N
2�q

(E.15)

In Equation E.15, B describes the strength of the bias towards 0;
i.e., the larger B, the more the value of si

q is being attracted towards
0. Numerical simulation shows that after large numbers of itera-
tions, the average position in the walk is 0 (i.e., �si

q� � 0), and the
square of the average distance to 0 is equal to 1/4B, i.e.,

��si
q
2� �

1

4B
(E.16)

The above properties of the random walk of Equation E.15 may
also be shown analytically, by approximating this discrete random
walk by the following stochastic differential equation:

ṡ i � �siB � ε��t
 (E.17)

In Equation E.17, �(t) denotes [white] noise and � denotes the
amplitude of the noise. Holmes et al. (1996) showed that for
Equation E.17 when t3�, the probability distribution of the val-
ues of si becomes a normal distribution with mean 0 and variance:

��si

2� �

ε2

2B
(E.18)

Both Equations E.16 and E.18 show that the variance of si is
inversely proportional to B. Equations E.16 and E.18 differ only
by a numerical constant, i.e., by a factor of 2�2. Because the calcu-
lations of this Appendix show that the proportionality is of greater
significance than the absolute value, this difference will be disre-
garded.

Using Equations E.16 and E.15, we may approximate:

si
q � ��0, � 1

4B� � ��0, � 1

4b2 �2�q
N � (E.19)

Ignoring numerical constants (as assumed in the beginning of the
Appendix) and from the definition of Equation E.7, we get

D2� �
� � 2

P

yi
�� � D2�si

P
 �
1

b2 �P
N

(E.20)

From Equations E.6 and E.20, we can approximate the distribu-
tion of the two inner summations in the noise term (Equation E.4):

�
� � 2

P

yi
�

1

N �
j � 1

N

xj
1xj

� � ��0, �P
N

�
1

b2 �P
N

b4� (E.21)

Hence the noise term may be approximated by:

Noise � ��0, �P � b2�PN
 (E.22)

To summarise, we have calculated that the average value of the
decision function for familiar patterns is lower by about N than for
novel patterns, and the variance of the decision function is equal to

P � b2�PN

Hence d (Equation A.7) may be used as the familiarity criterion,
and the middle value (between the mean d for novel and familiar
patterns) may be used as a familiarity discrimination threshold.

As for the Hebbian model (Appendix C), we consider the net-
work as working well if the probability of error is less than 1%. An
error occurs if the noise is higher than the threshold. To calculate
the maximum acceptable number of stored patterns Pmax, we must
solve the following equation:

Pr���0, �Pmax � b2 �PmaxN
 �
N
2� � 0.99 (E.23)

Checking the value of the cumulative standard normal distribution
for 0.99 as in Appendix C, and ignoring numerical constants we
get

Pmax � b2 �PmaxN � N 2 (E.24)

To solve Equation E.24 we transform it to a polynomial form:

Pmax
2 � Pmax��2N 2 � Nb4
 � N 4 � 0 (E.25)

We use a standard technique to solve quadratic Equation E.25:

� � 4N 3b4 � N 2b8 (E.26)

The second term in Equation E.26 is much smaller than the first;
hence we discard it. Now we solve Equation E.25 and obtain

Pmax �
2N 2 � Nb4 � �4N 3b4

2
(E.27)

Term Nb4 in Equation E.27 is much smaller than the other terms.
We discard it and obtain

Pmax � N 2 � N 3/2b2 (E.28)

As a result of approximations made during the derivation of capac-
ity (in particular due to ignoring all the numerical constants),
Equation E.28 shows only a qualitative relationship between ca-
pacity and the size of the network. To find the precise equation for

____________________________________ PERIRHINAL FAMILIARITY DISCRIMINATION NETWORKS 523



capacity, we fitted two numerical constants, one multiplying each
of the terms in Equation E.28 to the results of simulations. First,
we simulated a version of the anti-Hebbian model analysed here,
where the weights are modified according to Equation E.1. The
capacity estimated in simulations is shown in Figure 9. It can be
described by the following equation (shown by the grey curves in
Fig. 9):

Pmax � 0.0156N 2 � 0.42N 3/2b2 (E.29)

Then we simulated the original anti-Hebbian model described in
Appendix A.2. The capacity obtained in simulations is shown by
the black curves in Figure 5d. The capacity of the original anti-
Hebbian model (Fig. 5d) is slightly lower than the capacity of its
version analysed here (Fig. 9) and may be approximated by the
following equation (shown by the grey curves in Fig. 5d):

Pmax � 0.013N 2 � 0.31N 3/2b2 (E.30)

Comparing Equations E.29 and E.30 demonstrates that using the
learning rule of Equation A.6 instead of Equation E.1 changes only
the values of the numerical constants but not the nature of relation
between capacity and size of the network.

To summarise, Equation E.30 describes the capacity of the fully
connected anti-Hebbian network for patterns biased towards a
template. Note that when N grows, the second term in Equation
E.30 becomes relatively small in comparison with the first term.
Hence, for large networks, the capacity of the anti-Hebbian model
converges to being proportional to the number of synapses in the
network, as for uncorrelated input patterns. Thus, this Appendix

shows that the anti-Hebbian model is very robust to the correlation
in the responses of the input neurons. Correspondingly, for corre-
lated input patterns, the anti-Hebbian model achieves much larger
capacity than the Hebbian model.

APPENDIX F. ABILITY OF THE HEBBIAN
MODEL TO DETECT UNUSUAL STIMULI

This Appendix calculates the ability of the Hebbian model to
discriminate whether a pattern comes from the set of patterns with
correlation matrix R or is an unusual type of pattern from another
set with matrix R�. We showed in Appendix C that the average
value of d after presentation of a novel pattern coming from a
distribution described by R is equal to NPr2. After presentation of
a novel pattern x� coming from a distribution described by R�, d is
equal to

d�x�
 �
1

N �
i,j � 1
i � j

N �
� � 2

P

x�ix�jxi
�xj

� (F.1)

The average of function d in Equation F.1 is equal to NP�rijr�ij�i�j,
and the variance depends on R and R�. For simplicity, let us con-
sider the case when R� is the identity matrix; i.e., patterns x� are not
correlated. The average of d(x�) is then 0; hence a pattern may be
classified as coming from a distribution described by R� if
d	NPr2/2. Analysing the square of d(x�) and then using similar
techniques to those of the previous Appendices, the probability of
correct discrimination is equal to

PrOK �
1

2
��r2

4 � N
r3 � �r2
2� �

1

2
��N

4
�r2� (F.2)

The first term of Equation F.2 corresponds to the probability of
correct classification for patterns coming from the distribution
described by R, and the second term to that from patterns coming
from the distribution described by R�. Note that when r2 is differ-
ent from 0, and N increases, the arguments of both normal cumu-
lative distributions � increase; hence the values of � converge to 1,
and the probability of correct discrimination converges to 1 as well.

To summarise, this Appendix shows that the Hebbian model
can detect unusual input patterns with a probability of error that
rapidly converges to 0 for larger networks. Other familiarity dis-
crimination networks also have this ability as demonstrated in
Figure 8.

FIGURE 9. Capacity of the version of the anti-Hebbian model
analysed in Appendix E. Methods of simulation and notation as in
Fig. 5.
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