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SUMMARY

To optimally balance opposing demands of speed
and accuracy during decision-making, we must flex-
ibly adapt how much evidence we require before
making a choice. Such adjustments in decision
thresholds have been linked to the subthalamic
nucleus (STN), and therapeutic STN deep-brain stim-
ulation (DBS) has been shown to interfere with this
function. Here, we performed continuous as well as
closed-loop DBS of the STN while Parkinson’s
disease patients performed a perceptual decision-
making task. Closed-loop STN DBS allowed tempo-
rally patterned STN stimulation and simultaneous
recordings of STN activity. This revealed that DBS
only affected patients’ ability to adjust decision
thresholds if applied in a specific temporally confined
time window during deliberation. Only stimulation in
that window diminished the normal slowing of
response times that occurred on difficult trials
when DBS was turned off. Furthermore, DBS elimi-
nated a relative, time-specific increase in STN beta
oscillations and compromised its functional relation-
ship with trial-by-trial adjustments in decision
thresholds. Together, these results provide causal
evidence that the STN is involved in adjusting deci-
sion thresholds in distinct, time-limited processing
windows during deliberation.

INTRODUCTION

In everyday decisions, we need to determine how much evi-

dence we wish to collect before committing to a choice. For

example, dwelling over which meal to pick during a lunch break

might make us miss out on valuable time that we could spend

chatting with our friends, whereas quickly choosing a menu

option without proper thought might make us overlook a better
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alternative. In a modeling framework, optimizing this trade-off

between the speed and accuracy with which we make decisions

can be implemented through a decision threshold that specifies

the amount of evidence that is required formaking a choice [1–3].

It has been inferred from behavioral data that humansmay adjust

their decision threshold on the basis of both the instruction to be

fast or accurate given before a task [4, 5] and the difficulty of the

decision to be made as the task unfolds [6–8]. The process of

adjusting the decision threshold according to task difficulty

was recently investigated in a behavioral study, which suggested

that humans determine the difficulty of the current decision after

a brief period of integrating evidence, and only then adjust the

decision threshold in a single abrupt change [6].

Converging evidence from computational, electrophysiolog-

ical, and neuroimaging studies points to a pivotal role of the

subthalamic nucleus (STN) in adjustments of such a decision

threshold [9–14]. For example, a study recording STN activity

during decision-making reported that the amplitude of beta

oscillations (13–30 Hz) changed according to instructions early

into a given task (150–400 ms after stimulus onset) and accord-

ing to task difficulty later during the task (after �500 ms) [12].

This has received further support from behavioral studies in

Parkinson’s disease (PD) patients who are treated with STN

deep-brain stimulation (DBS), a highly effective treatment for

PD and other neurological disorders [15, 16]. While alleviating

motor dysfunction in PD, STN DBS has been shown to

decrease the time that patients take for making difficult deci-

sions, sometimes resulting in suboptimal choices [17–19].

However, the mechanisms underlying these behavioral obser-

vations remain elusive. One hypothesis is that DBS reduces

the effective decision threshold on difficult trials by removing

the ‘‘braking signal’’ that the STN applies throughout the deci-

sion process. An alternative hypothesis is that STN DBS only

interferes with the mechanism setting the decision threshold

to the required level. These two hypotheses make different

predictions on the window in which DBS should have an effect:

the first hypothesis predicts an effect of DBS around the time of

choice (when the decision threshold is reached), whereas the

second hypothesis predicts an earlier effect (when the decision

threshold is set).
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Figure 1. Experimental Setup and Task

(A) During the experiment, bipolar local field

potential (LFP) recordings were pre-processed

(analog 3–37 Hz filter; amplification with common-

mode rejection; analog-to-digital conversion) and

analyzed online (digital filter around individual beta

peak; rectification andmoving averaging) to obtain

a continuous measure of beta activity. Whenever

beta activity crossed a pre-defined threshold

(median of beta power), stimulation was triggered.

Pseudo-monopolar 130 Hz DBS was ramped up

for 250 ms and ramped off again when beta fell

below the threshold. Task events (moving dots

cue onset and responses) were recorded in the

same software (Spike2) that recorded LFPs and

controlled stimulation.

(B) The task design comprised speed versus ac-

curacy instructions (effect of instruction) and

moving dots cues with either low (8%) or high

(50%) coherence (effect of coherence).

(C) All patients performed the task three times; off

DBS; with continuous DBS; and with adaptive

DBS, where stimulation was trigged by beta

activity (see above).

See also Figures S1 and S5 and Table S1.
The aim of this study is to probe the mechanisms by which the

STN influences decision making, as revealed by DBS in patients

with PD. We applied DBS in specific times during decision

making, which allowed us to distinguish between the alternative

mechanisms of DBS described above and to assess their neural

correlates. We assessed 10 PD patients who performed a

perceptual decision-making task in the immediate postoperative

period after STN DBS surgery in three separate sessions: off

DBS, with continuous DBS (cDBS), and with adaptive DBS

(aDBS). Seven patients completed the study. During aDBS,

130 Hz stimulation was only turned on when simultaneously

recorded STN beta activity exceeded a threshold defined by

the median beta power of each individual patient and turned

off again as soon as beta activity fell below that threshold. This

has been shown to improve motor function in PD to at least a

similar extent as ‘‘conventional’’ cDBS [20] and to abort dynamic

elevations in beta oscillatory activity [21], despite the fact

that aDBS delivers stimulation <50% of the time (see Figures

1A and S1A).

RESULTS

In addition to the large stun effect (53% on average), which

reflects the temporary clinical improvement after DBS electrode

insertion without applying stimulation or intake of dopaminergic

medication, we found that DBS alleviated motor symptoms on

average by a further 22% (Z = �2.35; p = 0.019) compared to

off DBS. This clinical effect did not differ between cDBS and

aDBS (median improvement during cDBS was 22.2% versus

22.9% during aDBS; Z = �0.73; p = 0.463).

Dynamic Effects of STN DBS on Decision-Making
During the task, patients had to decide whether a cloud of

moving dots appeared to move to the left or to the right on a

computer screen. The percentage of dots moving coherently

to one direction was either high (50%) or low (8%), and patients
1170 Current Biology 28, 1169–1178, April 23, 2018
were instructed to respond as fast or as accurately as possible.

Thus, patients had to adapt to differing levels of difficulty (effect

of coherence) and to explicit task instructions (Figures 1B and

1C). Without stimulation (off DBS), patients responded signifi-

cantly slower during low- compared to high-coherence trials

(median difference: 677 ms; Z = 2.37; p = 0.018) and responded

faster when instructed to weight speed over accuracy (median

difference: 149 ms; Z = 2.2; p = 0.028; see Figures 2A and 2B).

The effect of coherence did not significantly differ depending

on speed versus accuracy instruction and vice versa (Z =

0.315; p = 0.753). Accuracy rates were lower during low-

compared to high-coherence trials (78% versus 98%; Z = 2.37;

p = 0.018) but were not significantly different between speed

and accuracy instructions (88% after accuracy versus 84% after

speed instruction; Z = 0.51; p = 0.612; see Figures 2A and 2B).

Together, these results are in line with a previous study testing

a separate group of PD patients and healthy participants using

the identical task [12].

Applying DBS diminished the extent to which participants

slowed down responses depending on task difficulty, i.e., it

reduced the response time (RT) difference between low- and

high-coherence trials, on average by 7% (Z = �2.12; p = 0.034),

and this effect did not differ depending on the types of stimulation

(median reduction in slowing down during cDBS was 6.5%

versus 8.8% during aDBS; Z = 0.52; p = 0.6; see Figure 2C).

Conversely, DBS did not significantly affect the extent to which

patients reduced RT after speed versus accuracy instructions

(during DBS, patients showed on average 5.9% more RT

reduction after speed instructions, Z = 1.41, p = 0.158; change

during cDBS �1.1% versus 8.1% during aDBS, Z = �1.57, p =

0.116; see Figure 2D). There were no effects of DBS on accuracy

rates (coherence: effect of stimulation Z = 1.41, p = 0.158; cDBS

versus aDBS Z = 0.32, p = 0.753; instruction: effect of stimulation

Z = 0.71, p = 0.48; cDBS versus aDBS Z = 0.1, p = 0.917; see

Figures 2C and 2D). In summary, the behavioral results show

that DBS affected the increases in RT due to difficult stimuli.
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Figure 2. Behavioral Results

(A) Effects of coherence on RT and accuracy rates are shown for each individual patient (n = 7).

(B) Same as (A) for effects of instruction.

(C) Effects of coherence and instruction on RT and accuracy during stimulation (adaptive and continuous DBS) versus off DBS for each patient (n = 6 in 2 different

stimulation regimes).

(D) Same as (C) for effects of instruction.
Using aDBS allowed us to determine in which temporal win-

dow stimulation might have an effect. During aDBS, stimulation

was triggered by STN beta power, i.e., DBS was turned on

when beta power was high and turned off when beta power

was low (Figure S1A). Due to variations in beta power over

time and between trials (Figure S1B), stimulation during aDBS

was applied at different time windows in different trials. In a first

step, we assessed whether stimulation was applied or not in

each trial over dynamically shifting time windows. This showed

that, after onset of the moving dots, cue stimulation was applied

on�45%of trials on average until about 700ms postcue, when it

decreased to �35% (Figure 3A). We then compared RT for

stimulation and no-stimulation trials in each time window and

tested whether stimulation altered the extent to which patients

slowed down depending on task difficulty (effect of coherence)

and explicit instructions. This was computed for windows rela-

tive to cue onset and motor response, respectively, and cor-

rected for the high number of statistical tests using cluster-based

permutation tests (see STARMethods for more details). Analysis

of moving windows aligned to the moving dots cue revealed a

highly significant effect of stimulation on the extent to which

participants slowed down their responses according to task

difficulty but only in a specific time window �400–500 ms after

cue onset (Figure 3B). This effect remained stable with the use

of different moving windows (of 50 ms, 100 ms, and 200 ms;

Figure S2). Conversely, we did not find any significant effects

of cue-locked stimulation on RT differences between speed

and accuracy instructions or any effects of response-locked

stimulation (Figure S3). Furthermore, the observed effect of
cue-locked stimulation 400–500 ms postcue was significantly

stronger than that of response-locked stimulation (from 500 ms

prior to responding until the response) when compared directly

against each other (Z = 2.028; p = 0.043; Wilcoxon signed rank

test). In summary, the effect of DBS on the speed of difficult

decisions was confined to a remarkably brief period during the

deliberation process.

Because stimulation during aDBS was triggered by beta

power, it is possible that the observed stimulation effects on pa-

tients’ ability to slow down were driven by trial-wise fluctuations

in beta power rather than stimulation per se. To control for this

possible confound, we repeated the same timewindow analyses

as above using ‘‘surrogate stimulation’’ off DBS as a control con-

dition, whichwe computed offline by assessing when stimulation

theoretically would have been triggered in the off DBS condition

(see STAR Methods and Figure S1C for more details). Both real

stimulation during aDBS and surrogate stimulation off DBS were

closely related to temporal changes in STN beta power, but only

during aDBS was real stimulation applied. We did not find any

behavioral effects of surrogate stimulation in the time windows

analysis (effect of coherence during surrogate stimulation

400–500 ms postcue was on average �20 ms, Z = 0, and

p = 1, which was significantly weaker than the effect of real stim-

ulation 400–500 ms postcue, Z = 2.37 and p = 0.018, Wilcoxon

signed rank tests), showing that the timing-specific behavioral

effects during aDBS were due to stimulation, not changes in

beta power. Furthermore, there were no differences in the % of

trials in which stimulation was applied between low- and high-

coherence trials during aDBS 400–500 ms postcue (44%
Current Biology 28, 1169–1178, April 23, 2018 1171
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Figure 3. Analysis of Stimulation Patterns during aDBS

(A) During aDBS, stimulation was turned on and off depending on STN beta activity. Therefore, stimulation was applied at different time points in different trials.

For 100-ms-long time windows, which were shifted relative to cue onset and response, respectively, trials were marked as ‘‘stimulation’’ and ‘‘no stimulation’’.

This is shown schematically for three consecutive time windows (blue, green, and red rectangles). The number of trials in which stimulation was applied varied

depending on task-related changes in beta power (see STARMethods), but throughout all time windows, the% trials with stimulation turned on ranged between

35% and 45% on average (right panel). Dotted lines indicate median % trials on stimulation over time.

(B) Stimulation significantly decreased the extent to which participants slowed down responses depending on task difficulty (negative values indicate that the

effect of coherence was lower during stimulation versus no stimulation) in a distinct time window 400–500 ms postcue, but not in other time windows. Mean ±

SEM inms is shown in the left panel and absolute Z scores (mean/SD) in the right panel. Note that the effect of stimulation in each given time window is compared

against trials in which stimulation could occur in any other time window. The statistical threshold for each time window was set to Z = 2.24 to correct for the four

separate tests, and correction for multiple timewindowswas conducted using cluster-based permutation tests. An uncorrected threshold of Z = 1.65 is shown for

illustration purposes. Shaded areas represent SEM.

(C) Changes in effect of coherence during 400–500 ms postcue stimulation shown for individual patients. For remaining tests (effect of instruction and response-

aligned windows), see Figure S3.

See also Figure S2 and Table S2.
versus 48%; Z = 1.18; p = 0.237; Wilcoxon signed rank test),

indicating that the behavioral effect was not related to changes

in the likelihood of aDBS being applied in trials with different

coherence.

DBS Alters Dynamic Modulations of Decision
Thresholds
How can STN DBS affect patients’ behavior during decision

making? One possibility is that stimulation interferes with (phys-

iological) adjustments of decision thresholds, which have been

related to modulations of STN activity during deliberation

[11–14]. However, gross measures of task performance, such

as response times, alone cannot disentangle the different mech-

anisms underlying decision-making. Therefore, we computed

the latent decision-making processes underlying the observed

behavior using drift diffusion modeling (DDM). During perceptual

decision making, sensory information (here, direction of moving
1172 Current Biology 28, 1169–1178, April 23, 2018
dots) has to be transformed into a categorical choice (here, right

versus left button press). In the DDM framework, this process is

characterized by the accumulation of noisy evidence with drift

rate v until the accumulated evidence reaches a boundary or de-

cision threshold a (see Figure 4A). Whereas the drift rate is mainly

determined by the sensory cue (high-coherence trials are

thought to have a high drift rate compared to low-coherence

trials, resulting in fast and accurate decisions), the decision

threshold determines how cautiously people respond, i.e., how

much evidence they require before committing to a choice.

Finally, the model has a parameter t, the non-decision time,

which reflects all processes not directly related to deliberation,

such as afferent delay, early sensory processing, and motor

execution. In a first step, wemodeled the latent decision-making

parameters underlying the observed task-related changes in

behavior without stimulation (off DBS) using Bayesian hierarchi-

cal drift diffusion modeling (HDDM) [22]. We used a simple a



Figure 4. Effects of DBS onDecisionMaking

Parameters

(A) Schematic illustration of the drift diffusionmodel.

Evidence for choice A versus choice B is accumu-

lated over time until it reaches either boundary for

choice A or B. When the boundary is reached, the

respective choice is selected. The slope of the

accumulated evidence depends on drift rate v. The

distance between the two boundaries is determined

by decision threshold a. The non-decision time t is

related to afferent delay, sensory processing, and

motor execution. The blue trace schematically rep-

resents a trial in which choice A wins over choice B.

(B) Quantile probability plots showing the observed

(x) and predicted (ellipses) RT against their cumula-

tiveprobabilities (10, 30, 50, 70, and90percentiles3

accuracy rates). The widths of the ellipses represent

uncertainty (SD of the posterior predictive distribu-

tion). Blue symbols are used for correct and red

symbols for incorrect trials. Note that predictions of

accuracy can be inferred from the horizontal align-

ment of ellipses (predictions) and crosses (observed

data). The black crosses represent RT from an in-

dependent patient group (n = 11) [12] that was not

used for model fitting and shows the generalizability

of the model predictions.

(C) Posterior probability densities of model param-

eters for changes in decision thresholds in low-

versus high-coherence trials during aDBS. Decision

thresholds increased in low- versus high-coherence

trials if stimulation was not applied 400–500 ms

postcue,but thiseffectwasabsentwhenstimulation

was applied in this time window.

(D) Posterior probability densities of model param-

eters for changes in decision thresholds in low-

versus high-coherence trials for cDBS and off DBS.
priori-defined model, which was fitted to the observed behavior.

The drift rate was allowed to vary between low- and high-coher-

ence trials and the decision threshold between speed and accu-

racy instructions [12]. Based on ideal observer models and

empirical evidence [7, 8, 23], we also allowed thresholds to

vary between trials with low and high coherence. Importantly,

posterior predictive checks (QP plots; see STAR Methods)

showed that this simple model predicted the observed behavior

well (Figure 4B) and even closely predicted the behavior from our

previous study in an independent patient group with 11 subjects

[12], which was not used for model fitting (black crosses in Fig-

ure 4B). Assessment of model parameters showed that drift

rates were lower in low- compared to high-coherence trials

(100% posterior probability) and decision thresholds were lower

after speed compared to accuracy instructions (100% posterior

probability). Furthermore, decision thresholds were also modu-

lated by task difficulty with higher thresholds in low- compared

to high-coherence trials (100% posterior probability).

Given that changes in drift rates, decision thresholds, and non-

decision times all affect response times, the observed timing-

specific effects of stimulation on patients’ ability to slow down

could be related to any of these mechanisms. To disentangle ef-

fects of stimulation on distinct decision-making processes, we

fitted the model to the observed behavior during aDBS, marking

each trial as ‘‘stimulation’’ if, in this given trial, stimulation was

applied 400–500 ms postcue and ‘‘no stimulation’’ if DBS had

not been delivered in this time window. We allowed stimulation
to alter drift rates, decision thresholds, and non-decision times

and inspected the posterior parameter distribution to assess

significant changes of stimulation on model parameters (see

STAR Methods). This revealed that decision thresholds were

affected by cue-locked stimulation, depending on the type of

coherence (98% probability for stimulation3 coherence interac-

tion), but not depending on instructions (78% probability for

stimulation 3 instruction interaction), nor was there a significant

main effect of stimulation (93% probability). Furthermore, there

were no effects of stimulation on drift rates or non-decision times

(all probabilities <80%). Post hoc tests showed that decision

thresholds were higher in low- versus high-coherence trials if

no stimulation was applied 400–500 ms after the cue (>99.5%

probability), but this effect was absent when stimulation was

applied in this time window (33% probability for thresholds in

low coherence > high coherence; see Figure 4C). Furthermore,

including the stimulation 3 coherence interaction improved

model evidence compared to a model without this interaction

(deviance information criterion [DIC] 1,906 versus 1,910; lower

values indicating stronger evidence). This was only the case for

cue-locked stimulation 400–500 ms postcue, whereas including

a stimulation3 coherence interaction for response-locked stim-

ulation prior to the response (see above) did not improve model

evidence (DIC 1,910) nor was the interaction with coherence sig-

nificant for response-locked stimulation (69% probability). Thus,

during aDBS, both task performance and task-related adjust-

ments in decision-making parameters were highly similar to off
Current Biology 28, 1169–1178, April 23, 2018 1173
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Figure 5. Changes in STN Activity

(A) Changes in beta power after cue onset off DBS shown for low (black trace) and high (yellow trace) coherence separately. Traces are plotted until median RT of

the respective conditions. Shaded areas represent SEM.

(B) Beta power 500–800 ms postcue during low coherence trials off DBS predicts increased decision thresholds at the single-trial level.

(C) Same as (B) for an independent patient group (n = 11) [12].

(D) Change in beta power from 0 to 1 s postcue for off DBS, cDBS, and aDBS (400–500ms postcue stimulation). All conditions arematched for fluctuations in beta

power (see STAR Methods for more details). Data from an outlier in cDBS are omitted from this plot but do not affect statistical results (see main text). Shaded

areas represent SEM.

(E) Changes in 500–800 ms beta power postcue for all individual patients during cDBS and aDBS (400–500 ms postcue stimulation). Data from the outlier omitted

in (D) are arrowed.

(F) Same as (B) and (C) but for cDBS and aDBS. The relationship between beta power 500–800 ms postcue and trial-by-trial adjustments in decision thresholds

that was observed off DBS is absent in cDBS and aDBS. Note that, in (B), (C), and (F), non-standardized regression coefficients are shown.

See also Figure S4.
DBS as long as stimulation did not fall into the time window 400–

500 ms after the moving dots cue, whereas—if stimulation was

applied in this time period—patients’ ability to slow down

responses in difficult trials was diminished in tandem with an

abolished difficulty-related increase in decision thresholds (see

Figures 3C, 4C, and 4D). Finally, we analyzed whether decision

thresholds were modulated according to task difficulty (coher-

ence) during cDBS by conducting the same HDDM analysis as

off DBS, including the behavioral data recorded during cDBS

in themodel. This showed a significant interaction between stim-

ulation (cDBS) and no stimulation (>99.9% probability), because

thresholds were only higher in low- compared to high-coherence

trials off DBS (100% probability), but not during cDBS (42%

probability for thresholds in low coherence > high coherence;

Figure 4D).

Neural Correlates of DBS-Induced Changes in Decision
Making
Previous studies have demonstrated that decision threshold

adjustments are reflected by changes in STN activity using im-

planted DBS electrodes for LFP recordings [12, 13]. The
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custom-built DBS device [24] used in the current study allowed

us to record STN beta activity not only when DBS was turned

off but also during stimulation (see STAR Methods) in order

to assess the effects of stimulation on STN activity. We first

verified that STN beta power was modulated according to

task instructions. Beta power decreased early after cue onset

(�150–400 ms postcue) to a similar extent as observed in pre-

vious studies [12, 25, 26]. Replicating the results from our

previous study [12], we found that this cue-induced decrease

in beta power was steeper after speed compared to accuracy

instructions (Z = 2.2; p = 0.028), but not different between

low- and high-coherence trials (Z = 0.169; p = 0.866), and pre-

dicted decreased decision thresholds at the single-trial level

(96% probability; see Figure S4). This relationship between

STN beta power and decision thresholds can, however, not

explain the observed behavioral effects of STN stimulation

on patients’ ability to slow down, which occurred later

(400–500 ms postcue) and depended on dots coherence not

task instructions. Thus, we plotted changes in STN beta power

after the cue separately for low- and high-coherence trials (Fig-

ure 5A). Here, differences in beta power became apparent



starting �500 ms after cue onset, at which point beta further

decreased in high-coherence trials and showed a relative in-

crease in low-coherence trials lasting until �800 ms. Because

stimulation during aDBS lagged behind changes in STN beta

power (see STAR Methods), the difference in beta from 500

to 800 ms postcue between low- and high-coherence trials

did not lead to differences in the likelihood of aDBS being

applied in the same time window (stimulation was turned on

in 40% of trials in this time period both for low- and high-coher-

ence trials; Z = 0; p = 1; Wilcoxon signed rank test). Also of

note, beta power in low-coherence trials 500–800 ms postcue

was only very weakly, and not significantly, correlated with

the early (150–400 ms) cue-induced beta decrease (Spearman

correlation was significant in 1/7 patients; average rho = �0.1;

p = 0.078; Wilcoxon test on r to z transformed within subject

correlation coefficients). However, differences in beta power

between low- and high-coherence trials might simply reflect

the strong RT difference, because beta power is known to

decrease during the motor response [12]. Thus, to more directly

test whether the observed relative beta increase during low-

coherence trials was related to changes in decision thresholds,

we entered single-trial estimates of beta power from 500 to

800 ms postcue during low-coherence trials in the HDDM

regression analysis (see STAR Methods for more details). This

revealed a positive relationship between beta power and

decision thresholds (98% probability), i.e., high beta power be-

tween 500 and 800 ms predicted increased thresholds (Fig-

ure 5B). This remained significant even when excluding trials

with RT < 800 ms and was reproducible in an independent

PD group of 11 subjects [12] (99% probability; Figure 5C).

How were these changes in beta power and their relationship

with decision threshold adjustments affected by DBS, which

has previously been shown to suppress STN beta power

[27–29]? To investigate this, we analyzed STN activity during

low-coherence trials during aDBS (400–500 ms postcue stimu-

lation), cDBS, and off DBS. Stimulation abolished the relative

increase in beta power during low-coherence trials in the

500–800 ms postcue period (Z = 1.98; p = 0.048). This effect

was driven by cue-locked stimulation during aDBS, which

decreased beta power in this time period more strongly than

cDBS (Z = 2.37; p = 0.018; see Figures 5D and 5E). Both sta-

tistical tests also remained significant when excluding an outlier

value (see Figure 5E; Z = 2.69, p = 0.007 for DBS versus off and

Z = 2.2, p = 0.028 for aDBS versus cDBS). Given that stimula-

tion reduced STN beta power in a time period where beta

power normally, i.e., off DBS, correlated with modulations of

decision thresholds, stimulation might compromise the relation-

ship between changes in STN activity and threshold adjust-

ments. To test this, we entered single-trial estimates of STN

beta power 500–800 ms postcue during aDBS and cDBS into

the HDDM analogously to the HDDM regression analysis off

DBS. Both cDBS and aDBS abolished the relationship between

threshold adjustments and STN beta power, with the most

likely regression coefficient (mean of the posterior distribution)

being close to 0 (0.02 for cDBS and 0.01 for aDBS; 73% and

64% probability for regression coefficient >0, respectively;

see Figure 5F). Thus, stimulation did not only affect the power

of STN beta activity but also its relationship with trial-by-trial

modulations of decision thresholds.
DISCUSSION

When making decisions, we do not only have to decide what to

choose but also when to choose it. Like Buridan’s donkey being

stuck midway between an equally appealing stack of hay and

bucket of water, we must decide how much time we can spend

on deliberation before committing to a choice. Importantly, in

ecologically realistic situations, decision thresholds have to be

flexibly adapted to changing environments. For example, if we

realize that the value of two options is nearly identical, the

optimal decision-making policy is to decrease decision thresh-

olds and to pick one of the options, even if their relative

difference is close to zero [7, 23, 30, 31]. Conversely, in other

scenarios, e.g., making sequential decisions with differing (low-

to-medium) difficulty, it might be advantageous to increase our

thresholds once we realize that the current decision is relatively

difficult as suggested by ideal observer models and empirical

evidence [7, 8, 23]. Similar to the latter scenario, in the current

task, we found that patients had relatively increased decision

thresholds in difficult compared to easy trials as well as lower

decision thresholds after instructions emphasizing speed over

accuracy. We show that DBS affected patients’ ability to adjust

decision thresholds according to task difficulty, but only if

applied in a specific temporally confined time window during

deliberation. Stimulation 400–500 ms after onset of the moving

dots cue alone diminished slowing of response times that

occurred on difficult trials off DBS. Furthermore, it eliminated a

relative, time-specific increase in STN beta oscillations and

compromised its functional relationship with trial-by-trial adjust-

ments in decision thresholds, implicating this time-specific beta

modulation in the process of decision threshold adjustment ac-

cording to task difficulty.

Remarkably, DBS did not influence RT when applied later than

500 ms after stimulus onset, despite the fact that the vast major-

ity of responses during difficult trials (>99%) were made later

than 500 ms. This argues against the idea that DBS reduces

the elevation of STN activity during difficult trials removing a

braking signal that the STN exerts throughout the decision pro-

cess. Instead, we found that DBS reduced the dependence of

RT on difficulty only when applied in a brief (�100 ms) window.

This implies that DBS interfered with a time-limited process of

setting the decision threshold to the required level according to

task difficulty. As mentioned earlier, it has been recently pro-

posed that decision threshold is set according to task difficulty

in a single abrupt change depending on information gathered

in an initial period [6], which is in line with a computational model

developed by Frank and colleagues [8, 10]. Our results identify a

potential neural correlate of this process and raise the possibility

that it is dependent on the STN. The time-limited effect of

stimulation we observed is consistent with optogenetic studies

in rodents [32, 33] showing that behavioral effects of stimulation

are only observed for specific ‘‘critical’’ time windows during

deliberation.

It is likely that other factors determining adjustments in

decision threshold also involve changes in STN activity that

take place in relatively brief, discrete, and context-determined

time windows. Indeed, the results of the present study taken

together with those of a previous study using the same paradigm

off DBS [12] reveal three distinct mechanisms adapting decision
Current Biology 28, 1169–1178, April 23, 2018 1175



threshold, whose signatures are visible in the local field potential

(LFP) recorded in STN. First, beta power showed a consistent

decrease from �150 to 400 ms after onset of the moving dots

cue, and in line with a previous study [12], this was modulated

by task instructions with a steeper decrease after speed

compared to accuracy instructions and correlated with trial-

by-trial variations in decision thresholds. Second,�500ms post-

cue, beta power further decreased in easy trials but showed a

relative increase in difficult trials. Single-trial variations in beta

power during this relative increase �500–800 ms after the cue

did not correlate with the earlier (150–400 ms) cue-induced

decrease in beta power but were significantly correlated with

trial-by-trial variations in decision thresholds. Third, the previous

study [12] also reported that activity in 2–8 Hz oscillations (which

we were not able to record using the closed-loop device applied

in the current study) differed after speed and accuracy instruc-

tions. This difference started �500 ms after stimulus onset,

and similar to another study [13], 2–8 Hz power only correlated

with decision threshold when patients responded with caution,

i.e., after accuracy instructions. Furthermore, there was no cor-

relation between instruction-related changes in STN beta and

2–8 Hz power. Changes in theta power have also been related

to decision threshold adjustments at the cortical level. Cavanagh

et al. [17] found correlations between trial-by-trial adjustments in

decision thresholds and single-trial recordings of theta power re-

corded over prefrontal cortex in healthy people and patients with

Parkinson’s disease. Interestingly, this relationship was inverted

when STNDBSwas applied. In addition, a recent study indicated

that low-frequency (4 Hz) STN DBS might improve patients’

ability to adjust decision thresholds in an interval-timing task

[34]. Together, these data suggest that distinct changes in STN

activity and interconnected cortical areas underscore dynamic

within-trial changes in decision thresholds. The fact that

proactive changes in decision threshold engendered by speed

over accuracy instruction may involve more than one processing

window [12] might also explain why DBS did not significantly

abolish instruction-related RT effects in the present study.

The extent to which the changes in STN activity reflectedmod-

ulations of ‘‘decision-related’’ prefrontal STN and movement-

related motor STN computations remains to be clarified.

Because of current spread around the stimulated electrode,

we do not believe that DBS in the current study was necessarily

only delivered to the motor subregion of the STN, even though

the contact for stimulation was based on the strongest expres-

sion of beta oscillations, which have been primarily related to

the ‘‘motor’’ areas of the STN [35]. Rather, there are several indi-

cations that, in the current study, DBS interfered with processes

related to deliberation rather than motor processing, consistent

with the spread of stimulation to adjacent ‘‘cognitive’’ or ‘‘asso-

ciative’’ parts of the STN. First, the critical effect of DBS occurred

400–500 ms after the moving dots cue, which is �1 s before the

average motor response in low-coherence trials. Second, there

were no behavioral effects of stimulation when aligned to the

response, which would be expected for effects of DBS onmove-

ment preparation per se.

LFPs are thought to represent coordinated synaptic input [36,

37]. If correct, then this implies that changes in beta synchroni-

zation are being imposed by afferents to the STN, so that the

STN, together with its efferent connections, may help implement
1176 Current Biology 28, 1169–1178, April 23, 2018
the change in threshold rather than decide it. Our results pertain

to patients with PD, and the extent to which they generalize to the

healthy state remains to be clarified. Given its invasive nature, we

were not able to apply DBS in a healthy control group. However,

a previous study using the identical task has shown that

differences in instructions and coherence levels lead to similar

changes in task performance as well as latent decision-making

processes in PD patients and healthy people [12]. Another short-

coming of our study is the limited sample size and trial count, and

for this reason, we did not conduct extensive model compari-

sons comprising all possible interactions between task manipu-

lations, DBS, and model parameters. Further studies with larger

sample sizes and detailed analyses of movement kinematics are

warranted in this regard.

Together, we demonstrate and define a causally important

time window of STN involvement in the process of decisionmak-

ing. Together with modulations in other frequency bands, in

particular low-frequency/theta power [11–13, 17], and activity

changes in cortical areas [11–13, 17, 38–40], our observations

add to the converging evidence that decision thresholds are

adjusted through dynamic modulations of cortico-basal ganglia

networks.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Participants
The current study was conducted in Parkinson’s disease (PD) patients in the immediate post-operative period after DBS surgery of

the bilateral subthalamic nucleus (STN). Between September 2015 and August 2017, ten patients (8 males, average age 57 years)

were enrolled in the study (Table S1). Three of the included patients were not able to perform the task due to fatigue and had to

be excluded. Thus, seven patients completed the experiment 2–7 days after electrode implantation. As described below this rela-

tively small sample size was estimated to be sufficient given the scale and variance of predicted effects. In addition, we were careful

to collect a high number of experimental trials (720 trials per patient resulting in 5040 trials combined for the single trial analyses, see

below), and we also validated our findings in archival cohorts where possible (see results). All patients were right-handed as revealed

by the Edinburgh-Handedness Inventory [41]. Lead localization was verified by stereotactic intraoperative magnetic resonance im-

aging (London) or by monitoring the clinical effect and side effects of test stimulation during operation and immediate postoperative

stereotactic computerized topography (Oxford). During the experiment local field potential (LFP) recordings from bilateral STN and

DBSwere performed through electrode extension cables, whichwere externalized in the time period between electrode insertion and

implantation of the subcutaneous pacemaker approximately one week after the first operation. All experiments were conducted in

the morning after overnight withdrawal of dopaminergic medication, since STN beta power (13-30 Hz), which was used as feedback

signal for aDBS, is more pronounced at low levels of dopamine [20].

In accordance with the declaration of Helsinki, participants gave written informed consent to participate in the study, which was

approved by the local ethics committee (Oxfordshire REC A), and registered at ClinicalTrials.gov (NCT02585154).

METHOD DETAILS

Sample size
We conducted a sample size estimation using G*Power [42] before conducting the experiment. Since there are no previous studies

reporting how adaptive deep brain stimulation (aDBS) affects decision-making processes, we based our experimental task on a pre-

vious continuous DBS (cDBS) study [19]. In this previous study cDBS diminished the effect of task difficulty (manipulated using

different coherence levels in a moving dots task) on response times (RT). Accordingly, we analyzed the required sample size for

the difference between cDBS and off DBS. In the study by Green et al. [19] RT difference between the coherence levels 8% and

50% (which were used in the current study) was approximately 75 ± 50 ms standard error of the mean (SEM) with stimulation and

230 ± 50 ms SEM without stimulation (when averaged across speed versus accuracy instructions). Assuming a correlation between

on and off stimulation measures of 0.8 (correlation in the current study was �0.9), this resulted in an effect size of 1.75 and, given an

alpha of 0.05 and power of 0.9, a required sample size of n = 6 for aWilcoxon signed rank test. To allow for drop-outs and ‘small-study

effects’, which posit that studies with low sample sizes often overestimate effect sizes [43], we opted to include ten patients.

Determining contacts for LFP recordings and electrical stimulation
First, we obtained bilateral STN LFP recordings from the implanted quadripolar macroelectrodes (model 3389, Medtronic Neurolog-

ical Division, Minneapolis, MN, USA) during rest for �1 min. The four contacts were numbered from 0 to 3 with contact 0 being the
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most ventral and contact 3 being themost dorsal. LFPs were recorded in a bipolar montage between contact 0 and 2 (ventral bipolar)

as well as between contact 1 and 3 (dorsal bipolar) using a custom-built closed-loop device (see below). Then, we computed the

Fourier transform of the recorded signal using Spike2 software (Cambridge Electronic Design, Cambridge, UK) with a frequency res-

olution of 1Hz and visually inspected the resulting frequency spectra between 1 and 50Hz. For each patient, the individual peak in the

beta frequency bandwas noted and its power compared between the ventral and dorsal bipolar recordings. The bipolar channel with

the strongest beta power was used for subsequent recordings and online analysis of beta power. In two patients, octopolar non-

directional macroelectrodes (model DB-2202, Boston Scientific, Marlborough, MA, USA) were implanted. In these patients, we first

recorded from all eight contacts using a TMSi porti (TMS International, Enschede, the Netherlands) and then connected the four

consecutive contacts showing strongest beta power to the closed-loop device. The following steps were identical for quadripolar

and octopolar electrodes.

Adaptive DBS
The system for aDBS has been validated and described in detail previously [20, 24, 44]. In short, LFPs were recorded with a band-

pass filter between 3-37 Hz and amplified using commonmode rejection with a custom-built device, and analog-to-digital converted

using a 1401 data acquisition unit (Cambridge Electronic Design, Cambridge, UK). This approach enabled us to record STN power in

the beta band, however we were not able to record low frequency oscillations around the theta-frequency (�2-8 Hz), which also have

been related to decision threshold adjustments. Signal processing was carried out using Spike2 software on a portable computer.

Based on the rest recordings we defined the individual beta peak frequency (see above) and filtered the signal around this peak (fre-

quency band shown for each patient in Table S1). This digitally filtered signal was then rectified and smoothed using a 400msmoving

window. Based on previous studies [20, 24, 44] we set the threshold so that stimulation was triggered�50% of the time. To mitigate

paraesthesias induced by abrupt stimulation onset, stimulation was ramped up and down for 250 ms (see Figure S1A). A 500 ms

lockout period after the trigger-off signal was used to prevent any putative trigger-off artifacts from triggering stimulation. It is impor-

tant to note that stimulation was triggered �50% of the time, but that stimulation at the clinically effective voltage was applied

considerably less frequently, since stimulation always ramped up before reaching the clinically effective voltage. The active contact

(cathode) for applying stimulation was localized in between the contacts used for LFP recordings (i.e., contact 1 when recording from

0-2 or contact 2 when recording from 1-3) enabling commonmode rejection tominimize the stimulation artifact. A self-adhesive elec-

trode (Pals, Nidd Valley Medical, Bordon, UK) attached at the lower neck (�C7) served as reference for pseudo-monopolar

stimulation.

We determined the clinically effective voltage of aDBS by slowly increasing the voltage in steps of 0.5 V until a clear benefit in

rigidity and / or bradykinesia was observed or side effects (most notably paresthesia) became apparent. The voltage that yielded

clinical benefit without evoking side effects was noted and used throughout the experiment. Stimulation voltage and timing was

optimized and controlled independently for both hemispheres [24, 44]. DBS pulses were charge-balanced with a pulse width of

60 ms, a 20 ms delay between the symmetrical anodal and cathodal pulse and a fixed frequency of 130 Hz. Of note, the stimulation

settings were optimized for aDBS and due to time limitations and to avoid patient fatigue (the experiment lasted �3 h), we used the

same parameters for cDBS.

Experimental task
We used a modified moving dots task validated in a previous study [12]; see Figure 1A. The task was presented on a MacBook Pro

(OS X Yosemite, version 10.10.3, 13.3 inch Retina display, 60 Hz refresh rate) using PsychoPy v1.8 [45]. The display was viewed from

a comfortable distance while allowing the subjects to interact with the keyboard. At the beginning of each trial a text cue indicated

whether participants should respond as quickly (‘‘Fast!’’) or as accurately as possible (‘‘Accurate!’’). The duration of this cue was

randomly jittered between 0.75 and 1.25 s with an average duration of 1 s. Then, a cloud of 200 randomly moving white dots was

presented on a black background. The diameter of the cloud was 14 cm and dot size was 10 pixels. Each dot moved in a straight

line at a rate of 0.14 mm per frame for 20 frames before moving to another part of the cloud where it moved in a new direction chosen

pseudorandomly between �180� and 180�. While some of the dots were moving randomly, the remaining dots moved coherently in

one direction, which made the cloud of dots appear to move to the left or right. Participants were instructed to press a key with their

right index finger (‘‘/’’ on the right side of the laptop keyboard) if they perceived that the cloud was moving to the right and to press a

key with their left index finger (‘‘z’’ on the left side of the laptop keyboard) when they perceived a leftward movement. Between

responses both index fingers rested on the respective keys. The percentage of dots moving coherently in one direction was either

50% (high coherence) or 8% (low coherence). These two cues were pseudorandomly presented with equal probability so that par-

ticipants could not predict whether the next trial would contain dot movements with high or low coherence. The trial was terminated

by a response or after a 3 s deadline in case participants did not respond followed by immediate visual feedback, which was shown

for 500 ms. During accuracy instructions ‘‘incorrect’’ was shown as feedback both for errors of commission and errors of omission,

while ‘‘correct’’ was shown for all correct trials. During speed instructions ‘‘in time’’ was shown for all responses within the 3 s win-

dow, while ‘‘too slow’’ was shown if patients did not respond within the 3 s deadline. Cue onset and responses triggered a TTL pulse

that was sent to Spike2 through a labjack u3 system (Labjack Corporation, Lakewood, CO, USA) in order to synchronize task events

with the LFP recordings and stimulation pulses. Similar to previous studies of speed-accuracy adjustments in PD, we did not impose

a more restricted time window for responding during speed instruction [19, 46], since motor function varies considerably between

PD patients. While trials with different coherence levels were randomly interspersed, accuracy and speed trials alternated in blocks
e2 Current Biology 28, 1169–1178.e1–e6, April 23, 2018



of 20 trials [19]. These blocks were repeated 6 times each resulting in 240 trials for the whole test (Figure 1B), which lasted approx-

imately 10 min. Before commencement of the experimental recordings patients could practice the task for as long as they wished

(usually approx. 40 trials).

Order of sessions and clinical evaluation of DBS
The patients performed the task three times: off DBS, during cDBS and during aDBS. After adjustments of the stimulator settings in

each condition (off DBS, cDBS and aDBS) patients rested for 10min and then performed the experimental task. The order of sessions

was pseudorandomized and counterbalanced across subjects (since seven subjects completed the task, the order ‘‘aDBS-off

DBS-cDBS’’ was used twice; the other five possible combinations were used once) in order to control for changes in motivation

and arousal state. After patients completed the task in each condition, the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS),

part III was assessed and videotaped to allow blinded evaluations. After completion of the study, which lasted �3 h in total, patients

received their usual dopaminergic treatment and returned to the ward.

The UPDRS-III ratings were conducted offline by a movement disorder specialist blinded to the type of stimulation except for

rigidity, which was rated by a medically trained researcher during the experiment.

QUANTIFICATION AND STATISTICAL ANALYSIS

Analysis of behavioral data
Prior to statistical analyses, trials without responses (errors of omission) or RT < 0.25 s were excluded (combined 0.02% of all trials).

Furthermore, patient #4 had to abort the experiment after 60 trials in the third condition (off DBS) due to fatigue leaving 540 of 720

trials available for analyses for this patient. Due to the low sample size, we used non-parametric tests for all analyses. First, we tested

the effect of coherence (high versus low) and instruction (speed versus accuracy) on RT and accuracy rates off DBS by comparing the

observed effects (n = 7) against 0. Then we tested whether these effects were affected by DBS irrespective of the type of

stimulation (i.e., both aDBS and cDBS) and whether this differed between aDBS and cDBS. For this, we used the % change, e.g.,

(RTlowcoherence-RThighcoherence) / RThighcoherence, to control for overall changes in RT. We also show corresponding results when using

the absolute change (ms), which were highly similar to % change, in Table S2. Of note, despite using a fixed lockout period after

triggers were turned off (see ‘‘Adaptive DBS’’) aDBS was triggered by an unusually prolonged trigger-off artifact in one patient.

The artifact was elicited when stimulation was turned off and had spectral properties in the beta-range, which triggered stimulation

(Figure S5). Therefore, this patient (patient #7) had to be excluded from the latter analysis leaving n = 6 for direct comparison of aDBS

and cDBS. All comparisons were conducted using Wilcoxon signed rank tests in MATLAB (R2015a, The MathWorks, Natick, MA,

USA) with an alpha of 0.05. Z-values thus refer to Wilcoxon’s z (approximation).

Analysis of stimulation patterns during aDBS
During aDBS, stimulation was turned on and off depending on the level of beta power. Since beta power is also modulated by the

experimental task employed in the current study, with a decrease in beta power shortly after onset of the moving dots cue and a

decrease in beta power around the time of the response (see [12] for more details), we assessed whether the stimulation patterns

during aDBS also changed dynamically during the task. To this endwe computed the% time inwhich stimulationwas turned on using

100 ms windows, which were shifted by 10 ms from 1 s before until 1.5 s after the cue and response, respectively, and averaged the

resulting values across trials. For example, a value of 25% indicates that during the respective 100 ms window, stimulation was

turned on for 25ms on average. Importantly, we considered the clinically effective voltage (see ‘‘Adaptive DBS’’) as stimulation

ON so that the 250 ms in which stimulation was ramped up was considered as stimulation OFF. Therefore, the time in which clinical

effective stimulation was applied was considerably shorter (�20% on average) than the time in which the trigger was turned on

(�50%). This is illustrated in Figures S1A and S1B. To derive a ‘hypothetical’ pattern of aDBS in which DBS follows beta power mod-

ulations, but no actual stimulation is applied, we used the off DBS condition and computed when stimulation would have been trig-

gered. In more detail, we set a surrogate trigger to ON whenever beta power crossed a�50% threshold (we used the exact %which

was used during aDBS for each patient, since the% trigger ON varied slightly across patients) and toOFFwhen beta power fell below

this threshold. Then, the first 250ms of trigger ONwere removed (set to OFF) to account for ramping up of stimulation and to derive a

‘surrogate stimulation’ off DBS. In other words, this surrogate stimulation indicates when stimulation would have been triggered in the

off DBS condition, but no actual stimulation was delivered (Figure S1C). This control condition was important in order to test whether

the observed timing-specific effects of aDBS on behavior and STN activity (see below) were related to actual stimulation or rather to

fluctuations in beta power (which triggered stimulation).

After having established task effects of aDBS stimulation patterns, we asked how these temporal patterns of stimulation affected

patients’ behavior. During aDBS, the average duration of stimulation pulses was �200 ms excluding ramping. Thus, whether or not

stimulation was applied varied during the task-related time windows and over trials, which is illustrated in Figure 3A. In this example,

in timewindow1 (blue rectangle in the figure) starting 50ms after the cue and lasting 100ms, stimulationwas applied in trial 1, 2 and 4,

but not 3, while in later time windows (green and red rectangles) stimulation was applied only in trials 1, 3 and 4 and 1-3, respectively.

For each trial, we noted for each 100 ms time window whether stimulation was applied or not (irrespective of the duration of stimu-

lation) and then shifted the time window by 10 ms from onset of the moving dots cue to 1 s after the cue and 1 s before the response

until the response. Thus this analysis indicated on a trial-by-trial basis whether stimulation was applied in different task-related time
Current Biology 28, 1169–1178.e1–e6, April 23, 2018 e3



windows. While the number of trials in which stimulation was applied varied to some extent depending on the time window

(analogously to the time-of-stimulation analysis in Figure S1B), its rangewas limited to 35%–45%on average across all timewindows

(right panels in Figure 3A). Thus, this analysis allowed us to assess behavioral effects of stimulation (i.e., trials with stimulation versus

trials without stimulation) within the aDBS condition for distinct task-related timewindows.We computed the effect of coherence (low

versus high coherence) and instruction (accuracy versus speed) and then subtracted trials without stimulation from trials with stim-

ulation, i.e., for the effect of coherence we used (RTlowcoherence_stim-RThighcoherence_stim) - (RTlowcoherence_nostim-RThighcoherence_nostim)

and for the effect of instruction we computed (RTAccuracy_stim-RTSpeed_stim) - (RTAccuracy_nostim-RTSpeed_nostim). Thus, for effects of

coherence, negative values indicate that patients’ slowed down less depending on task difficulty, while for the effect of instructions

negative values indicate that patients’ reduced RT less after speed instructions during stimulation compared to no stimulation. Of

note, in this analysis all seven patients could be included (patient #7 was excluded in the previous behavioral DBS analysis), since

here we were only interested when stimulation was applied, not whether it was triggered by beta power. To correct for the multitude

of tests conducted in this analysis we applied cluster-based permutation tests. First, values at each time point were z-scored and

thresholded at alpha = 0.05 correcting for multiple comparisons by computing norminv(1 – 0.05/4) = 2.24, where norminv is the

normal inverse cumulative distribution function. Thus, this test corrected for the four tests conducted (effect of coherence and effect

of instruction for cue- and response-related timewindows). Next, the resulting clusters, which consisted of all time points that exceed

this threshold, were compared against the probability of clusters occurring by chance by randomly shuffling between condition labels

(stimulation versus no stimulation) using 1000 permutations. Only clusters in the observed data that were larger than 95% of the dis-

tribution of clusters obtained in the permutation analysis were considered significant thereby correcting for the number of time points

tested in each analysis.

Importantly, this analysis contained a possible confound, since aDBS stimulation was triggered by beta power. Thus, any effects

observed when stimulation was turned on could simply be related to beta power being high during that time window (or more

precisely several hundred ms before the time window, since stimulation ramped up for 250 ms). To control for this, we used the ‘sur-

rogate stimulation’ off DBS described above and carried out the identical analysis as before. That is, we again assessed whether

there were any time window specific effects on coherence and instruction for cue- and response-aligned time windows, but now

we used the surrogate stimulation off DBS instead of real stimulation during aDBS. Both analyses were related to time-variant

changes in beta power, but only during aDBS real stimulation was applied.

Drift Diffusion Model
In the drift diffusion model (DDM) framework, perceptual decision-making between two alternatives is reflected by a continuous inte-

gration of relative sensory evidence over time until sufficient evidence has been accumulated and the choice is executed. DDM has

been widely applied over the last decades and has been shown to accurately predict behavior over a range of different tasks [4].

There are three main parameters in DDM. First, the drift rate v reflects the rate of evidence accumulation. If a cue clearly favors

one over the other choice the drift rate is high resulting in fast and accurate decisions, while ambiguous cues will lead to low drift

rates and thus slow and error-prone choices. Second, the decision threshold a defines how much evidence is accumulated before

committing to a choice. Thus, the decision threshold constitutes a decision criterion, which transforms a continuous variable (sensory

evidence) into a categorical choice (option A or B). The third parameter in DDM is the non-decision time t, which is thought to be

related to afferent delay, sensory processing and motor execution.

We applied a Bayesian hierarchical estimation of DDM (HDDM) [22], implemented in Python 2.7. The hierarchical design assumes

that parameters vs, as and ts from individual participant s are not completely independent, but drawn from the group distributions with

means mv, ma, mt and standard deviations sv, sa, st allowing variations from the means given sufficient evidence to overwhelm the

group prior. Prior distributions of mv, ma, mt and sv, sa, st were informed by 23 previous studies [22]. The starting parameter (bias

parameter) zwas fixed to 0.5, because leftward and rightwardmovements were equally likely. In a first step, we constructed a simple

model in which the drift rate varied between trials with different levels of coherence, the decision threshold varied according to task

instructions (speed versus accuracy) and the non-decision time was kept constant based on [12] Furthermore, decision thresholds

were allowed to vary depending on task difficulty (coherence) based on evidence from empirical studies and ideal observed models

[7, 8, 23].

as;k = as + b1Instrk + b2Cohk
vs;k = vs + b3Cohk (Equation 1)

where as,k and vs,k are the decision threshold and the drift rate of participant s on trial k, Instrk the Instruction on trial k (0 for

accuracy, 1 for speed), Cohk the coherence on trial k (0 for high coherence, 1 for low coherence) and b1-3 the estimated regression

coefficients.

Rather than exploring a large model space with different combinations of interactions between experimental manipulations and

model parameters, we used this simple model and then assessed model performance, i.e., the ability of the model to predict the

observed data, using posterior predictive checks (see below). Markov chain Monte Carlo sampling was used for Bayesian

approximation of the posterior distribution of model parameters. To ensure model convergence we inspected traces of model
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parameters, their autocorrelation and computed the R-hat (Gelman-Rubin) statistics [22]. To assess model performance we

computed quantile probability plots [4], in which predicted (ellipses) and observed RT (crosses) for the 10, 30, 50, 70 and 90 percentile

were plotted against their predicted and observed cumulative probability for each condition. Of note, the group ‘average’ in Bayesian

hierarchical models refers to the group prior from which the individual parameters are drawn. Error trials were only plotted for the low

coherence condition due to the paucity of errors in the high coherence condition (< 4%). Note that in these plots the probability on

the x axis is the product of the quartile (e.g., 0.9) times the accuracy (e.g., 0.95). For example in Figure 4B, the probability of correct

trials (blue) is lower during low coherence trials compared to high coherence trials (i.e., shifted to the left on the x axis) due to the

higher amount of errors during low coherence. Thus, if the model does not properly predict accuracy rates, the spheres (predictions)

would bemoved to the left or right of the crosses (observed data). Thus both predictions of RT and accuracy can be inferred from the

plots. To assess the generalizability of our model, we also plotted the observed cumulative probability of RT from an independent

patient group performing the identical task [12]. Parameters of the model were analyzed by Bayesian hypothesis testing. For all

HDDM analyses, we considered posterior probabilities R 95% of the respective parameters being different than zero significant

[11–13]. In other words, model parameters were significant if R 95% of samples drawn from the posterior were different from

zero. For comparisons between conditions, model parameters were considered significant if samples drawn from the posterior

were different from the distribution they were compared to (e.g., stimulation versus no stimulation) in R 95% of the iterations/

samples.

After having conducted the HDDM analysis for patients off DBS, we assessed whether DBS during specific time windows altered

model parameters using the behavioral data from aDBS for model fitting. We marked each trial as ‘on’ if stimulation was applied and

‘off’ if no stimulation was applied during the respective timewindows. Based on the behavioral results we extended our model so that

model parameters (a, v and t) could also be modulated by cue-locked stimulation in addition to their task-related modulations.

as;k = as + b1Instrk + b2Cohk + b3Stims;k + b4Instrk � Stims;k + b5Cohk � Stims;k

vs;k = vs + b6Cohk + b7Stims;k + b8Cohk � Stims;k

ts;k = ts + b9Stims;k

where ts,k is the non-decision time of participants s on trial k and Stims,k the presence of cue-locked stimulation for participants s on

trial k (0 for Off, 1 for On).

We then assessed whether these effects were significant using Bayesian hypothesis testing (see above) and explored significant

stimulation effects (Coh*Stim, see results) using post hoc tests for the significant interaction, i.e.

as;k = as + b1Instrk + b2Coh_Stims;k + b3Coh_noStims;k + b4Stims;k

vs;k = vs + b5Cohk

where Coh_Stims,k is the coherence during trial k on stimulation of subject s and Coh_noStims,k is the coherence during trial k off

stimulation of subject s.

Finally, we conducted the same analysis for cDBS, where Stim refers to the cDBS condition and noStim to off DBS.

Analysis of electrophysiological data and HDDM regression analyses
We analyzed the recorded STN LFP using a hypothesis-driven approach. First, we assessed whether there were correlations

between the early (150-400 ms) cue-induced decrease in beta power off DBS and trial-by-trial adjustments in decision thresholds

as observed in our previous study [12] for replication purposes and to validate that STN beta power was related to changes in

decision thresholds. Second, we analyzed STN beta power during high and low coherence trials following cue onset, since here

DBS-related changes in patients’ ability to slow down responses were observed (see results).

For LFP analysis, we analyzed the analog filtered (3-37 Hz) bipolar signals using MATLAB. Trials with artifacts were discarded after

visual inspection. After removal of trials based on behavioral data (see above) and artifacts in the electrophysiological data on

average 622 trials (86.4%) remained per patient resulting in 4354 trials combined. Data were down-sampled to 200 Hz and high-

pass filtered at 1 Hz. Power of LFPs were computed using the continuous wavelet transform with 2 cycles per frequency for the

lowest considered frequency (3 Hz) which linearly increased to 5 cycles per frequency for the highest considered frequency

(30 Hz) in 1 Hz steps. Power of each frequency was normalized to the mean signal of that frequency across the whole experiment.

Since we selected the channel showing the stronger beta power for LFP recordings (see ‘‘Adaptive DBS’’) and stimulation triggers

induced a low-frequency artifact, we only analyzed beta power between 13-30 Hz (for individual beta peak frequencies see Table S1).

The resulting traces were aligned to the onset of themoving dots and averaged across hemispheres resulting in one STN channel per

patient.

First, we assessed task-related changes in STN beta power off DBS. We computed changes in beta power averaged across all

conditions, separately for speed and accuracy instructions and separately for low and high coherence trials. In order to take into ac-

count RT differences between conditions we computed the change in beta power over time until the response was executed, i.e., the

time series of each trial was capped at the time of the response. We then averaged these time series across trials from 100ms before
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dots onset until the point in timewhen 50%of trials (for the respective conditions) contributed to the average. Therebywe ensured the

inclusion of at least 50%of trials at all considered time points for all considered conditions [12]. To compare beta power changes after

speed versus accuracy instructions, we computed the differences in beta power from 100-150 ms postcue (highest beta power after

the cue) to the individual beta trough �400 ms (±100 ms) after the cue (see Figure 5A) based on [12]. Then, we compared this early

cue-induced beta decrease between speed and accuracy conditions, as well as between low and high coherence, using Wilcoxon

signed rank tests. In a next step, we then assessed whether STN activity changes were related to adjustments in decision thresholds

on a trial-by-trial basis. Identical to our previous work [12] we computed the cue-induced change in beta power (using the individual

beta frequency peaks) for each trial as detailed above. Then, values were z-scored by subtracting the mean and dividing by the stan-

dard deviation for each subject. The resulting values were then entered into the HDDMand regressed against estimates of thresholds

at each trial during model estimation. In other words the regression coefficients between STN activity and decision thresholds were

estimated within the same model, which was used to estimate the decision-making parameters themselves. Specifically, on a given

trial the threshold a was defined by:

as;k = as + b1Instrk + b2Cohk + b3Betadecreases;k

where Betadecrease is the cue-induced beta decrease (continuous variable) of participant s on trial k.

Thus, this model specifically tested whether trial-by-trial variations in the cue-induced beta decrease predicted changes in deci-

sion threshold (irrespective of trial type) based on our previous observations [12]. As before, the drift rate was assumed to depend on

coherence (analogously to Equation 1). Posteriors of regression coefficients for trial-wise regressors were estimated only at the group

level to address potential collinearity among model parameters, for regularizing parameter estimates and to prevent parameter ex-

plosion [11, 22]. Statistical inference on regression coefficients was based on the distribution of the posterior probability densities

(see above).

In a second step, we analyzed beta power in low versus high coherence trials. While beta power in high coherence trials further

decreased after the early cue-induced beta decrease presumably due to the low RTs in this condition, beta power showed a relative

increase from�500-800ms after the cue in low coherence trials (see Figure 5A). Since this change in beta frequency occurred imme-

diately after the time period in which stimulation affected patients’ ability to slow down (400-500 ms postcue, see results), we

analyzed whether STN beta power in this time period also reflected changes in decision thresholds. Analogously to the HDDM anal-

ysis using the cue-induced beta decrease described above, we entered single trial z-scored estimates of beta power from

500-800 ms into the HDDM and tested whether trial-by-trial fluctuations in beta power correlated with changes in decision thresh-

olds. Of note, this was conducted for low and high coherence trials separately, since the relative beta increase was only observed in

low coherence trials and the response (with a concomitant decrease in beta power) fell into the 500-800mswindow in high coherence

trials. Thus, the threshold was defined by:

as;k = as + b1Instrk + b2Cohk + b3Beta_LCs;k + b4Beta_HCs;k (Equation 2)

where Beta is the beta power from 500-800 ms postcue for low coherence (LC) and high coherence (HC) trials k of participant s.

Tomake sure that any correlations were not driven by trials in which the response fell into the 500-800mswindow, we repeated this

HDDM analysis excluding all low coherence trials with RT < 800 ms from the regression analysis. Furthermore, we tested the

reproducibility of the results by conducting the same analysis (excluding RT < 800 ms) using data from a group of 11 independent

PD patients [12].

Finally, we analyzed how stimulation altered task-related modulation of STN beta power. During aDBS, stimulation was triggered

by beta power and therefore beta power was necessarily high in stimulation trials a few hundred ms (stimulation was ramped for

250 ms) before the respective time window. To control for this when comparing stimulation and no stimulation trials, we compared

trials in which stimulation was applied 400-500 ms postcue during aDBS to ‘surrogate’ stimulation trials off DBS and during cDBS

(see above). We focused our analysis on the time window 500-800 ms after the cue in low coherence trials based on the results

off DBS (see above). Beta power in this timewindowwas compared between off DBS andDBS (irrespective of the type of stimulation)

and between aDBS and cDBS using Wilcoxon signed rank tests. Then, we entered single trial estimates of beta power 500-800 ms

postcue into the HDDM for cDBS and aDBS analogously to the HDDM analysis with post-cue beta power off DBS (Equation 2). Of

note, for this analysis aDBS was not further subdivided into stimulation versus no stimulation 400-500 ms postcue, since only low

coherence trials could be used for regression analyses, which would leave less than 20% of trials when subdividing the data further.

As above, statistical inferences on regression coefficients were based on the distribution of the posterior probability densities.

DATA AND SOFTWARE AVAILABILITY

Behavioral and neurophysiological data related to the project is freely available at https://ora.ox.ac.uk/objects/uuid:

0cdf0eda-3a1d-4b66-8edd-0f51d824f6cc.
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