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SUMMARY

If humans are faced with difficult choices when mak-
ing decisions, the ability to slow down responses be-
comes critical in order to avoid suboptimal choices.
Current models of decision making assume that the
subthalamic nucleus (STN) mediates this function by
elevating decision thresholds, thereby requiring
more evidence to be accumulated before responding
[1–9]. However, direct electrophysiological evidence
for theexact roleofSTNduringadjustmentofdecision
thresholds is lacking. Here, we show that trial-by-trial
variations in STN low-frequency oscillatory activity
predict adjustments of decision thresholds before
subjects make a response. The relationship between
STN activity and decision thresholds critically de-
pends on the subjects’ level of cautiousness. While
increased oscillatory activity of the STN predicts
elevated decision thresholds during high levels of
cautiousness, it predicts decreased decision thresh-
olds during low levels of cautiousness. This context-
dependent relationship may be mediated by
increased influence of the medial prefrontal cortex
(mPFC)-STN pathway on decision thresholds during
high cautiousness. Subjects who exhibit a stronger
increase in phase alignment of low-frequency oscilla-
tory activity in mPFC and STN before making a
response have higher decision thresholds and
commit fewer erroneous responses. Together, our re-
sults demonstrate that STN low-frequency oscillatory
activity and corresponding mPFC-STN coupling are
involved in determining how much evidence subjects
accumulate before making a decision. This finding
might explain why deep-brain stimulation of the STN
can impair subjects’ ability to slow down responses
and can induce impulsive suboptimal decisions.

RESULTS AND DISCUSSION

The main goal of this study was to test whether neural activity of

the subthalamic nucleus (STN) is related to modulations of deci-
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sion thresholds during perceptual decision making. This has

been suggested by computational models of decision making

[1, 4] and studies using fMRI [3, 6]. Here, we directly recorded

STN local field potentials (LFPs) in Parkinson’s disease (PD) pa-

tients through electrodes implanted in the STN several days after

deep-brain stimulation (DBS) surgery, while patients performed

two versions of a moving dots task [10]. In both tasks, coherence

rates of the moving dots linearly increased over time until 50% of

all dots moved coherently in one direction. Participants pressed

a button with their right or left index finger as soon as they

perceived that the majority of dots were moving in the right or

left direction. This design allowed us to assess neural activity,

which is not related to abrupt stimulus changes or motor prepa-

ration, because changes in spectral STN activity were observed

well before any choice was executed. Combining single-trial LFP

analysis and drift diffusion modeling (DDM) allowed us to eluci-

date context-dependent relationships between single-trial oscil-

latory STN activity and features of decision making, which are

not evident with conventional analyses of reaction times (RTs)

and accuracy rates. For a detailed analysis of trial-averaged

time frequency spectra related to the tasks, the reader is referred

to previous reports by Zavala and colleagues [11, 12].

In task A, differences in the rate at which dots increased coher-

ence were used to alter the rate of sensory evidence accumula-

tion (left column in Figure 1A). Trials with low unidirectional

coherence had significantly higher RTs relative to trials with

medium unidirectional coherence (mean RT increase 38.1% ±

13.5 SD, z(10) = 2.934, Pcorrected = 0.012). Conversely, trials with

high unidirectional coherence had significantly lower RTs relative

to medium unidirectional coherence (mean RT decrease

22.4% ± 8.1 SD, z(10) = �2.934, Pcorrected = 0.012). Changing

coherence in task A did not affect accuracy rates (change in

accuracy during low unidirectional coherence relative tomedium

unidirectional coherence �3.7% ± 7.7 SD, z(10) = �1.481,

Pcorrected = 0.556; change in accuracy during high unidirectional

coherence relative tomedium unidirectional coherence�1.8%±

4.1 SD, z(10) = �1.680, Pcorrected = 0.372), see Figures 1B–1D. In

task B, in 50% of trials the number of dots moving coherently

both to the right and left increased until 0.83 s, after which the

dots moving into the incorrect direction no longer increased in

coherence, while the dots moving into the correct direction

further increased coherence (right column in Figure 1A). There

was thus no relative evidence for either direction in the first

0.83 s, particularly as neural integrators are thought to integrate

the difference in dot coherence [13]. The remaining trials in task B
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Figure 1. Experimental Tasks and Behavioral Analyses

(A) Experimental tasks A and B. In task A (first column), the rate of coherently moving dots changed between conditions (low, medium, and high unidirectional

coherence). Black traces illustrate how coherence changed over time in the different conditions. In task B, 50% of trials showed dots moving coherently in

opposite directions until dots moving in the incorrect direction were capped (red trace in right upper panel), while the remaining 50% of trials were identical to

medium unidirectional coherence trials in task A.

(B) RT histograms and accuracy rates of all conditions are shown.

(C and D) Effects of the experimental manipulations on RT and accuracy. Columns reflect delta values. Error bars indicate SD. Asterisks indicate significance at

pcorrected 0.05.
were identical to trials with medium unidirectional coherence in

task A. However, RTs in these trials in task B were significantly

higher compared to identical trials in task A (relative increase in

RT: 15.7% ± 17.1 SD, z(10) = 2.578, Pcorrected = 0.040), while

accuracy was similar (change in accuracy 0.1% ± 5.6 SD,

z(10) =�0.105, Puncorrected = 0.917; Figures 1B–1D). This observa-

tion was in line with our a priori hypothesis that the presence of

intermixed trials with initial bidirectional coherence in task B

increased patients’ level of cautiousness. Thus, they accumu-

lated more evidence before making a decision in trials with me-

dium unidirectional coherence in task B compared to task A.

Finally, in task B RTs were similar in trials with initial bidirectional

coherence and trials with unidirectional medium coherence (dif-

ference in RT: 4.3% ± 9.4% SD, z(10) = 1.511, Pcorrected = 0.524),

while accuracy significantly decreased by 5.6% ± 4.9% SD

(z(10) =�2.668, Pcorrected = 0.032; Figures 1B–1D). This finding in-

dicates that participants committed more erroneous responses

in trials with initial bidirectional coherence when they did not

accumulate sufficient evidence.

In order to test whether the observed behavioral effects could

be related to modulation of the rate of evidence accumulation

and decision thresholds, wemodeled these latent processes un-

derlying the observed behavior in the drift diffusion framework

[14]. In DDM, sensory evidence is accumulated over time until
the integrated evidence crosses the decision threshold and the

choice is executed (see third column in Figure 2A). We applied

a hierarchical Bayesian estimation of DDM parameters

(HDDM), which is particularly suited for studies with relatively

few trials [15]. As expected from the behavioral results, changing

the amount of coherently moving dots significantly modulated

drift rates; i.e., drift rates were lower in trials with low unidirec-

tional coherence and initial bidirectional coherence and higher

in trials with high unidirectional coherence compared to trials

withmedium unidirectional coherence (100%posterior probabil-

ity for all effects being different than 0). Including trials with initial

bidirectional coherence in task B significantly elevated decision

thresholds, i.e., thresholds were higher in task B compared to

task A (100% posterior probability). Please see Figure S1 and

Supplemental Experimental Procedures for more details. This

model had much stronger evidence compared to models pro-

posing only changes in drift rate (difference in deviance informa-

tion criterion [DIC], 34) or threshold (difference in DIC 121) and

adequately predicted the observed behavior (Figure S1). We

additionally validated HDDM by applying a non-hierarchical

DDM (NHDDM) to the data, which yielded highly similar model

parameter estimates at the group and individual subject level

(Figure S2), and by applying HDDM to a simulated dataset (Fig-

ure S3; see also Supplemental Experimental Procedures). The
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Figure 2. HDDM Analysis

(A) The time frequency plots show a pre-response increase in LFO power (time 0 indicates the response) relative to baseline averaged across conditions in both

tasks (first column). Single trial LFPs were Z-scored for each task separately before entering them into the HDDM (second column). In DDM, t is the non-decision

time (e.g., related to afferent delays and motor execution), and v is the drift rate indicating the rate of evidence accumulation until threshold a is reached and the

response is executed (third column). Blue and red traces are examples of a single correct and incorrect response, respectively. Please note that this is a

schematic illustration and does not show the actual model parameters.

(B) Illustration of HDDM. Parameters a, v, and t were estimated simultaneously for the group (circles outside the plates with group mean m and variance s) and

subjects S (circles in outer plate). Variations in a and v were modulated by experimental manipulations (coh, coherence: trials with low and high unidirectional

coherence and trials with initial bidirectional coherence relative to medium unidirectional coherence; task, task B relative to task A) at each trial T (circles in inner

plate). Observed data are represented by shaded circles. They comprised responses (with RT and accuracy) and single-trial STN activity. The four neural HDDMs,

which were compared, are shown in the box under the HDDM graphic. Please see Figure S1 for parameters of the HDDMwithout neural data and Figures S2 and

S3 for validation of the HDDM.

(C) Model comparison. DIC values are shown relative to DIC of the HDDM not containing any neural data. Relative DIC were �29 (model 1), +30 (model 2), �8

(model 3), and �4 (model 4).
observation that participants did not have significantly longer

RTs in trials with an initial bidirectional coherence compared to

trials with medium unidirectional coherence in task B indicates

that decision thresholds might have changed not only between

tasks, but also between conditions in task B. Allowing thresholds

to change between conditions in task B in HDDM showed that

thresholds were higher in both conditions in task B compared

to task A (> 99% posterior probability), but also higher in the me-

dium unidirectional coherence trials in task B compared to trials

with initial bidirectional coherence (>99% posterior probability).

Nevertheless, as the main aim of this study was to investigate

the role of the STN during perceptual decision making, we

used a less complex, a-priori-defined model postulating thresh-

olds adjustments between tasks, not conditions, below.

Accordingly, we assessed whether trial-by-trial measure-

ments of STN activity—as reflected by LFP changes before the

response—modulated different latent decision-making parame-

ters at each trial using HDDM regression analysis. To this

end, we computed single trial estimates of STN power in the

time period preceding participants’ responses (from �3 s until

the response) and Z-scored these values separately for task

A and B before including them in the HDDM (Figures 2A and

2B). We then estimated and compared four neural HDDMs

based on a-priori-defined hypotheses, which differed in the pre-

cise frequency range of STN-LFP activity (2–8 Hz low-frequency

oscillations [LFOs] versus 13–30 Hz beta oscillations) and the

latent variable, which was modified by STN activity (threshold

versus drift rate). Of note, there was no significant overall differ-

ence in pre-response STN LFO power between task A and B (t =

1.646, p = 0.115). Allowing trial-by-trial STN-LFO to modulate

threshold estimates in the HDDM significantly improved model
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evidence compared to the model not containing any neural

data (difference in DIC 29), and also clearly outperformed the

alternative neural HDDMs (Figure 2C). Thus, model selection

provided strong evidence that trial-by-trial variations in decision

thresholds are modulated by STN-LFO.

Next, we aimed to investigate the exact relationship between

STN-LFO and decision thresholds. To this end, we analyzed

how decision thresholds varied as a function of STN LFO during

both tasks by inspecting the posterior probability distribution of

model parameters. We found a significant main effect of task, a

significant main effect of STN-LFO and, critically, a significant

interaction between task and STN-LFO (100% posterior proba-

bility for all parameters being different than 0, see Figure 3A).

This interaction indicates that the effect of STN-LFO on decision

thresholds critically depends on the level of cautiousness, which

was higher in task B (see above). These results did not change

when using non-Z-scored single trial estimates of STN activity

or when using different wavelet lengths for computing STN po-

wer (see Supplemental Experimental Procedures). Post hoc

tests of the effect of STN-LFO in task A (low cautiousness) and

task B (high cautiousness) revealed that high power of STN-

LFO predicted decreased decision thresholds in task A (100%

posterior probability), while it predicted elevated decision

thresholds in task B (95% posterior probability; Figure 3B).

This context-dependent relationship did not change when using

a more complex model where thresholds could vary between all

conditions. In this additional control analysis all significant

regression coefficients were negative in task A (100%probability

for trials with low and high unidirectional coherence) and positive

in task B (100% probability for trials with initial bidirectional

coherence).



Figure 3. Neural Modulations of Decision Thresholds

(A) Posterior probabilities formodulation of decision thresholds by task (task B relative to task A), LFO, and their interaction. Peaks reflect the best estimates, while

width represents uncertainty.

(B) Post hoc analysis showed an opposite relationship between LFO and thresholds for task A and B.

(C) Second (group) level regression between change in FCz-STN coupling (task B versus task A) and adjustments of decision thresholds derived from NHDDM

(p = 0.032).

(D) Regression between change in FCz-STN coupling and participants’ ability to control erroneous responses during trials with initial bidirectional coherence

(p = 0.007).
These results indicate that STN activity, as reflected by LFO,

does not simply reflect increases in decision thresholds, but

that this relationship critically depends on the level of cautious-

ness. A possible explanation for this observation is a flexible

reorganization of cortico-STN networks depending on task de-

mands enabling the medial prefrontal cortex (mPFC) to increase

its influence over STN function [2–4, 7, 9, 11, 16]. To test this

hypothesis, we analyzed connectivity between electroencepha-

lography (EEG) electrode FCz and STN by computing the inter-

site-phase clustering (IPC) (see Supplemental Experimental

Procedures) reflecting how reliably the phases of oscillations in

FCz and STN were aligned prior to the response. We then tested

whether the extent to which IPC changed between task A and B

predicted howmuch participants adjusted their decision thresh-

olds estimated using NHDDM. This analysis showed that while

there were no overall changes in FCz-STN IPC between tasks

(z(10) = 1.067, p = 0.286) the extent to which participants

increased FCz-STN IPC significantly predicted adjustments in

decision thresholds (r2 = 0.416, p = 0.032), see Figure 3C.

Furthermore, adjustments in FCz-STN IPC also predicted partic-

ipants’ ability to control erroneous responses (r2 = 0.579, p =

0.007), see Figure 3D. Of note, these results stayed significant

even when accounting for individual differences in drift rates
(thresholds: r2 = 0.413, p = 0.045; accuracy: r2 = 0.601, p =

0.008). These results suggest that mPFC-STN communication

through phase alignment might be an important mechanism for

adjusting decision thresholds and thereby controlling erroneous

responses when participants are more careful in making deci-

sions, although it should be noted that regression analyses

were based on relatively few observations (n = 11).

In conclusion, we report three novel findings in this study. First,

our results demonstrate for the first time that oscillatory STN ac-

tivity reflects trial-by-trial modulations of decision thresholds,

i.e., how much evidence subjects integrate before making a

decision. This relationship is specific for the latent mechanism

underlying decision making (thresholds, but not drift rates) and

frequency range of oscillatory activity (LFO, but not beta oscilla-

tions). Second, we show that STN activity does not uni-direction-

ally increase decision thresholds but can have opposing effects

on thresholds depending on subjects’ level of cautiousness.

Finally, we found that modulations of the phase alignment

between mPFC and STN, a mechanism that might optimize

information transfer between these two regions [17], predicts ad-

justments of decision thresholds and participants ability to con-

trol erroneous responses. Thus, a context-dependent integration

of STN in dynamic cortico-STN networks might be critical in the
Current Biology 26, 916–920, April 4, 2016 ª2016 The Authors 919



ability to adjust behavior to changing environments and give rise

to the context-specific relationships between STN activity and

modulation of decision thresholds observed in this study. This

neural mechanism might be affected in individuals who express

impulsive behavior during therapeutic stimulation of the STN

[2, 4, 5]. It remains to be elucidated whether such unwanted ef-

fects of DBS can be avoided by specifically targeting abnormal

(beta) oscillations in PD [18] leavingmodulations of LFO relatively

intact.
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