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Summary

Neurocomputational models of optimal decision making

ascribe a crucial role—the computation of conflict between
choice alternatives—to the subthalamic nucleus (STN)

[1–3]. Specifically, these models predict that deep brain
stimulation (DBS) of the STN will diminish the influence of

decision conflict on decision making. In this work, patients
with Parkinson’s disease judged the direction of motion in

random dot stimuli [4] while ON and OFF DBS. To induce de-
cision conflict, we varied the task difficulty (motion coher-

ence), leading to increased reaction time (RT) in trials with

greater task difficulty in healthy subjects. Results indicate
that DBS significantly influences performance for percep-

tual decisions under high decision conflict. RT increased
substantially OFF DBS as the task became more difficult,

and a diffusion model best accounted for behavioral data.
In contrast, ON DBS, the influence of task difficulty on RT

was significantly reduced and a race model best accounted
for the observed data. Individual data fits of evidence accu-

mulation models demonstrate different information pro-
cessing under distinct DBS states. Furthermore, ON DBS,

speed-accuracy tradeoffs affected the magnitude of deci-
sion criterion adjustment significantly less compared to

OFF DBS. Together, these findings suggest a crucial role
for the STN in adjusting decision making during high-con-

flict trials in perceptual decision making.
Results

Corticobasal ganglia (cortico-BG) networks control the
expression of competing response alternatives and mediate
decision making [5–8]. It has been reported that the subthala-
mic nucleus (STN) plays a central role in these networks
during decision making [1, 2, 5, 6, 9, 10]. The STN is integrated
in parallel motor and nonmotor cortico-BG thalamic loops,
and distinct motor, limbic, and associative subterritories
have been identified [11–13]. As a consequence, STN activity
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efficiently regulates the expression of actions as well as exec-
utive processes such as decision making [12, 14, 15]. Modula-
tion of STN activity induced by deep brain stimulation (DBS)
may thus influence cognitive, motor, and limbic circuits at
the same time [15–17].
It has recently been suggested that the STN computes con-

flict between choice alternatives and mediates decision mak-
ing accordingly [1, 2, 15]. Bogacz and colleagues [2, 3] outlined
how cortico-BG networks can implement an optimal decision-
making procedure, the multihypothesis sequential probability
ratio test (MSPRT; cf. [18]). According to the MSPRT, sensory
evidence is accumulated only as long as it is necessary to gain
a required level of confidence. Thus, the MSPRTminimizes the
decision time for any specified level of accuracy [18]. In the
model of [2], information regarding the activity of sensory neu-
rons selective for rightward motion affects the activity of neu-
rons selective for leftward choices via the STN and vice versa
(Figure 1A). For two alternatives, the MSPRT produces the
same pattern of behavior as a diffusion model (Figure 1B)
[18]. The decision mechanism integrates the difference be-
tween the accumulated evidence supporting the two alterna-
tives until the evidence crosses a threshold (Figure 1B).
Thus, according to the MSPRT model for cortico-BG net-
works, normal STN functioning results in decision behavior
that is best described by a diffusionmodel [2]. On the contrary,
under DBS, which disrupts information processing in the STN,
resulting in impulsive decision making [15, 17], the MSPRT
model predicts that DBS will make the activity of neurons se-
lective for left choices more independent of sensory neurons
selective for rightward motion. Furthermore, because STN
neurons are the only highly nonlinear neurons in the MSPRT
model, silencing of the STN results in activities of neural
populations in the final stage of the model that are linearly pro-
portional to the integrated evidence for the corresponding
alternative (Figure 1C). Hence, under impaired STN computa-
tion, the resulting behavioral data should be best described
by a simpler choice model, such as the race model, in which
sensory inputs for the two alternatives are integrated indepen-
dently [2, 3, 18]. We tested the prediction according to which
DBS applied to STN decreases the effect of task difficulty dur-
ing perceptual decision making [1–3, 15] by employing a direc-
tion-of-motion discrimination task (Figure 2). This prediction
stems from the fact that reducing the difference in the two sen-
sory inputs increases reaction times (RTs) to a larger extent
when the inputs are integrated according to diffusion model
(which integrates the difference between inputs) rather than
the race model. Note that we induced decision conflict by
means of task difficulty.

Behavior

With increasing stimulus coherence, participants were faster
[F(5,35) = 165.157, p < 0.001] and more accurate [F(5,35) =
451.842, p < 0.001; Figures 3A and 3B], as with higher coher-
ence the taskwas easier. The rate of change in RT as a function
of coherence was lower when DBS was turned on (ON DBS) in
the accuracy condition [Coherence * DBS: F(5,35) = 24.182, p <
0.001; Coherence *DBS * Instruction, F(5,35) = 9.219, p < 0.001;
Figure 3B]. There was a similar but weaker effect on the slope
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Figure 1. Computational Architectures for

Models of Binary Decision Making

(A) A network implementing the MSPRT [3, 19].

The black and gray circles denote neural popula-

tions selective for movement toward the left and

right, respectively. Labels next to the populations

denote the brain areas where they are located

(‘‘Integrators’’ denotes cortical integrator neu-

rons, and ‘‘Output’’ denotes the output nuclei of

the BG: the internal segment of the globus pal-

lidus and the substantia nigra pars reticulata).

The arrows denote excitatory connections, and

the lines ending with circles denote inhibitory

connections. The labels above and below the

models indicate the values of inputs and outputs,

respectively. The labels xT
L and xT

R denote the

activities of sensory neurons selective for motion

toward the left and right, respectively, at the

current time T. f is a monotonic function equal to f(s) = –log[1 + exp(2gs)], where g is a positive model parameter and s the sum of the difference between

both alternatives for each output unit.

(B) In the diffusion model, the difference between sensory inputs for the two alternative choices is integrated. A choice is made once this integrated differ-

ence exceeds a decision threshold. Only the difference between sensory inputs affects the values of the integrators.

(C) The simplest model of binary choice is the race model. Two independent integrators accumulate sensory evidence supporting each of the two choice

alternatives (here, motion to the left or right). A choice is made once the activity of any integrator exceeds a fixed threshold.

See also Figures S2–S4 and S6–S8 and Tables S3–S5.
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of accuracy as a function of coherence; it was less steep ON
DBS during the accuracy condition [Coherence * DBS,
F(5,35) = 4.419, p = 0.003; Coherence * DBS * Instruction,
F(5,35) = 9.219, p < 0.001; Figure 3A]. In summary, DBS resulted
in diminished effects of task difficulty on both the RT and accu-
racy in perceptual decision making, indicating that STN func-
tion is central to sensory-based action selection (Figure 3 and
Figure S1 available online).

Under the speed instruction, participants had lower mean
RTs [F(1,7) = 135.039, p < 0.001] and lower accuracy [F(1,7) =
114.701, p < 0.001; Figures 3A and 3B] compared to the
accuracy instruction condition. The effect of instruction on
RT was greater for low- than for high-coherence trials
[Coherence * Instruction: F(5,35) = 15.345, p = 0.001). DBS
appeared to affect the patients’ overall response profiles,
i.e., ON DBS patients were faster [F(1,7) = 85.18, p < 0.001]
and less accurate [F(1,7) = 120.627, p < 0.001] compared to
OFF DBS patients. The effect of instruction was greater during
OFF DBS [DBS * Instruction: F(1,7) = 6.329, p = 0.04], which is
consistent with models assuming a critical role of the STN in
controlling the decision threshold [1, 15, 17].

On several coherence levels, some patients had the same
accuracy OFF DBS with speed instruction and ON DBS with
accuracy instruction. Figure S2 shows that when these
patients’ performance is compared on equal accuracy levels,
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they are actually faster OFF DBS than ON DBS (analogously
to the way the diffusion model or MSPRT is faster than the
race model when matched on accuracy; see Table S3).
To test whether our results could be related to motor defi-

cits, we compared patients with Parkinson’s disease to a
group of age-matched controls (see Table S1).
Modeling

We fitted various MPSRT-derived versions of the race model
and diffusion model to individual data sets and compared
these models initially to a simple baseline model (assuming
equal parameters across DBS conditions) and subsequently
to more complex model instantiations (varying parameters
between conditions; Figures S3 and S4; Tables S4–S8). As pre-
dicted, a diffusion model account better described the behav-
ioral data in OFF DBS, whereas a race model account better
described the behavior under DBS (Tables S4–S6 and S8).
Additionally, to test the effects of DBS on decision thresholds,
we estimated a so-called conflictmodel that implements sepa-
rate thresholds for low-conflict and high-conflict trials (for de-
tails, see the Supplemental Experimental Procedures) and
compared the magnitude of modulation between response in-
structions (Table S7). We found that DBS changed the degree
to which subjects were able to adjust their decision thresholds
Mean
RT:        1214 mscorrect 

Meanaccuracy:     60%
t 

d Feedback Figure 2. Experimental Design

(A) Accuracy instruction.

(B) Speed instruction.

Judgments were made in blocks of 20 trials

randomly distributed over six levels of motion

coherence, with speed or accuracy response in-

structions given at the beginning of each block.

In each trial, participants had up to 2 s to respond.

Either a response or the deadline terminated a

trial. Participants received immediate feedback

on each trial. See also Tables S2 and S5.
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Figure 3. Behavioral Results

(A) Mean RT (top panel) and mean accuracy (bot-

tom panel) as a function of stimulus coherence

during the speed condition.

(B) Mean RT (top panel) and mean accuracy (bot-

tom panel) as a function of stimulus coherence

during the accuracy condition.

Dark-gray lines indicate ON DBS sample, broken

black lines indicate control sample (shaded area

represents the SEM), and light-gray lines depict

OFF DBS sample. Error bars represent the

SEM (dark gray, ON DBS; light gray, OFF DBS).

Stars indicate significant differences between

controls and PD patients on the specific coher-

ence level. See also Figures S1–S4 and Tables

S1–S3 and S5–S8.
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for the low-coherence trials compared with the high-coher-
ence trials [low < high: t(7) = 23.9002, p = 0.0059].

Discussion

Our results reveal a significant effect of STN DBS on percep-
tual decision making under task difficulty, supporting the
assertion that cortico-BG networks implement system-level
computations that optimize decision making [2, 3]. Individual
data sets are well described by the race and diffusion models,
accounting for changes in information processing under
different DBS conditions, as predicted by the MSPRT model
of cortico-BG network computations.

The top-down mechanism implementing adjustments of
decision making under task difficulty appears to be too weak
to overcome the automatic bottom-up computations of the
BG network under DBS [15]. This is in line with previous find-
ings in which the application of a race model to RT data from
a DBS sample led to the interpretation that DBS (1) amplifies
the descending cortical signals to the motor structures and
(2) reduces the tonic background inhibition that suppresses
unwanted premature responses [20].

The exact effects of DBS on the target structures are still
unclear [21–23]. One idea is that under DBS, STN activity is
influenced to a lesser extent by cortical input, which inter-
feres with STN computations of the conflict in response to
cortical signals representing alternative response plans.
Furthermore, it seems paradoxical that DBS has effects
similar to a suppression of STN activity in some tasks (e.g.,
[17] and this study) even though experimental data suggest
that DBS activates axons of STN neurons [24]. A computa-
tional insight into this paradox is provided by the following
idea: when DBS is turned on, the downstream neurons
(e.g., in the thalamus) adapt their response threshold to
increased STN activity so they can still transmit striatal inputs
as if this constant STN input due to DBS were not present
[25]. An alternative explanation is that DBS leads to suppres-
sion of the target area but an excitation of nearby fibers by
way of a complex mechanism of inhibi-
tion (i.e., direct inhibition but also via
inhibitory recurrent neurons that are
excited by DBS) and excitation of
efferent neurons to projection areas
(i.e., STN projections and fibers of the
internal globus pallidus) [23, 26].

The present data provide converging
support not only for the MSPRT [2, 3]
(Figure S2; Table S3) but also for other models proposing
that the STN is involved in threshold regulation (which is not
a prediction of MSPRT) [1, 15]. This illustrates the importance
of considering and comparing different models of information
processing for different states [19, 27] to account for the pat-
terns of behavior.
In summary, we show for the first time that STN computa-

tions are crucial during perceptual decision making under
task difficulty using a multi-method approach. We present
empirical evidence in support of theories that suggest the
cortico-BG networks’ capacity for optimal computation of
decision making under task difficulty.

Experimental Procedures

A detailed description of the experimental procedures, data analysis, and

computational modeling can be found in the Supplemental Experimental

Procedures. All participants gave informed consent to participate according

to a protocol approved by the local ethics committee.

Supplemental Information

Supplemental Information includes Supplemental Experimental Proce-

dures, four figures, and eight tables and can be found with this article online

at http://dx.doi.org/10.1016/j.cub.2013.07.001.
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Wagenmakers, E.J., Bogacz, R., and Turner, R. (2010). Cortico-

striatal connections predict control over speed and accuracy in

perceptual decision making. Proc. Natl. Acad. Sci. USA 107, 15916–

15920.

8. Stephenson-Jones, M., Samuelsson, E., Ericsson, J., Robertson, B.,

and Grillner, S. (2011). Evolutionary conservation of the basal ganglia

as a common vertebrate mechanism for action selection. Curr. Biol.

21, 1081–1091.

9. Isoda, M., and Hikosaka, O. (2008). Role for subthalamic nucleus

neurons in switching from automatic to controlled eye movement.

J. Neurosci. 28, 7209–7218.

10. Temel, Y., Blokland, A., Steinbusch, H.W.M., and Visser-Vandewalle, V.

(2005). The functional role of the subthalamic nucleus in cognitive and

limbic circuits. Prog. Neurobiol. 76, 393–413.

11. Nambu, A., Tokuno, H., and Takada, M. (2002). Functional significance

of the cortico-subthalamo-pallidal ‘hyperdirect’ pathway. Neurosci.

Res. 43, 111–117.

12. DeLong, M.R. (1990). Primate models of movement disorders of basal

ganglia origin. Trends Neurosci. 13, 281–285.

13. Parent, A., and Hazrati, L.N. (1995). Functional anatomy of the

basal ganglia. II. The place of subthalamic nucleus and external

pallidum in basal ganglia circuitry. Brain Res. Brain Res. Rev. 20,

128–154.

14. Baunez, C., Humby, T., Eagle, D.M., Ryan, L.J., Dunnett, S.B., and

Robbins, T.W. (2001). Effects of STN lesions on simple vs choice reac-

tion time tasks in the rat: preserved motor readiness, but impaired

response selection. Eur. J. Neurosci. 13, 1609–1616.

15. Cavanagh, J.F., Wiecki, T.V., Cohen, M.X., Figueroa, C.M., Samanta, J.,

Sherman, S.J., and Frank, M.J. (2011). Subthalamic nucleus stimulation

reverses mediofrontal influence over decision threshold. Nat. Neurosci.

14, 1462–1467.

16. Wylie,S.A.,Ridderinkhof,K.R.,Elias,W.J., Frysinger,R.C.,Bashore,T.R.,

Downs, K.E., van Wouwe, N.C., and van den Wildenberg, W.P. (2010).

Subthalamic nucleus stimulation influences expression and sup-

pression of impulsive behaviour in Parkinson’s disease. Brain 133,

3611–3624.

17. Frank, M.J., Samanta, J., Moustafa, A.A., and Sherman, S.J. (2007). Hold

your horses: impulsivity, deep brain stimulation, and medication in

parkinsonism. Science 318, 1309–1312.

18. Bogacz, R., Brown, E., Moehlis, J., Holmes, P., and Cohen, J.D. (2006).

The physics of optimal decision making: a formal analysis of models of

performance in two-alternative forced-choice tasks. Psychol. Rev. 113,

700–765.

19. Maia, T.V., and Frank, M.J. (2011). From reinforcement learning

models to psychiatric and neurological disorders. Nat. Neurosci. 14,

154–162.

20. Temel, Y., Visser-Vandewalle, V., and Carpenter, R.H.S. (2008).

Saccadic latency during electrical stimulation of the human subthalamic

nucleus. Curr. Biol. 18, R412–R414.

21. Montgomery, E.B., Jr., and Gale, J.T. (2008). Mechanisms of action of

deep brain stimulation(DBS). Neurosci. Biobehav. Rev. 32, 388–407.

22. Lozano, A.M., and Neimat, J.S. (2010). Neurostimulation: from verifica-

tion to exploration. Neurobiol. Dis. 38, 327–328.

23. McIntyre, C.C., and Hahn, P.J. (2010). Network perspectives on the

mechanisms of deep brain stimulation. Neurobiol. Dis. 38, 329–337.

24. Carlson, J.D., Cleary, D.R., Cetas, J.S., Heinricher, M.M., and Burchiel,

K.J. (2010). Deep brain stimulation does not silence neurons in

subthalamic nucleus in Parkinson’s patients. J. Neurophysiol. 103,

962–967.
25. Rubin, J.E., McIntyre, C.C., Turner, R.S., andWichmann, T. (2012). Basal

ganglia activity patterns in parkinsonism and computational modeling

of their downstream effects. Eur. J. Neurosci. 36, 2213–2228.

26. McIntyre, C.C., Savasta, M., Kerkerian-Le Goff, L., and Vitek, J.L. (2004).

Uncovering the mechanism(s) of action of deep brain stimulation: acti-

vation, inhibition, or both. Clin. Neurophysiol. 115, 1239–1248.

27. Forstmann, B.U., Wagenmakers, E.-J., Eichele, T., Brown, S., and

Serences, J.T. (2011). Reciprocal relations between cognitive neurosci-

ence and formal cognitivemodels: opposites attract? Trends Cogn. Sci.

15, 272–279.


	Reduction of Influence of Task Difficulty on Perceptual Decision Making by STN Deep Brain Stimulation
	Results
	Behavior
	Modeling

	Discussion
	Experimental Procedures
	Supplemental Information
	Acknowledgments
	References


