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Abstract

Much evidence indicates that discrimination of the familiarity of visual stimuli is dependent on
the perirhinal cortex of the temporal lobe. A stimulus can become familiar to animals or humans
either when a stimulus is seen once but is behaviourally signi-cant, or when a stimulus is not
signi-cant but repeats many times. This paper shows that a previously developed network model
of familiarity discrimination in the perirhinal cortex is also able to judge familiarity for these
di0erent types of stimuli. The network continues to achieve high capacity and discriminative
accuracy. c© 2002 Published by Elsevier Science B.V.
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1. Introduction

Work in amnesic patients and in monkeys has established that discrimination of the
relative familiarity or novelty of visual stimuli is dependent on part of the brain’s tem-
poral lobe, the perirhinal cortex [1,4,5]. We have previously developed a biologically
plausible model of the familiarity discrimination network in the perirhinal cortex [3].
We calculated the capacity of the familiarity discrimination network, which we de-ne
as the maximum number of presented stimuli for which a network can discriminate
familiarity with an accuracy of 99%. The capacity of the model establishes that the
perirhinal cortex alone may discriminate the familiarity of many more stimuli than cur-
rent neural network models indicate could be recalled (recollected) by all the remaining
areas of the cerebral cortex [3].
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Our own experience suggests that a stimulus can become familiar to us in more
than one way, for example: (i) when a stimulus is seen once but is behaviourally
signi-cant (e.g. a person with whom we had an important conversation), and (ii)
when a stimulus is not signi-cant but repeats many times (e.g. a person who happens
to travel everyday on the same bus as ourselves). In other words in case (i), stimuli
are presented only once, but since they are important, the goal of the network is to
discriminate whether a given stimulus has been encountered previously or not. The
previous work [3] established the capacity of familiarity discrimination networks for
the case (i).
This paper calculates the capacity for case (ii), when the goal of the network is to

recognise frequently repeating stimuli. In case (ii), stimuli are presented a number of
times among other stimuli, and the goal of the network is to discriminate frequently
repeating stimuli from others. It is assumed that insigni-cant stimuli produce weaker
weight modi-cations, so that a single presentation is not suEcient for such a stim-
ulus to be classi-ed as familiar when it next occurs, but repeated presentations do
cause suEcient cumulated weight modi-cations for correct classi-cation to be made
eventually.
In the previous work we have shown that familiarity discrimination may be per-

formed very eEciently by evaluating Hop-eld energy [2]. Using this method, a net-
work of N neurons may discriminate familiarity for case (i) with accuracy 99% for
0:023N 2 stimuli [2]. We further demonstrated that this algorithm may be implemented
by a biologically plausible network that mimics responses of perirhinal neurons [3].
In this paper, for simplicity of analysis and calculation, we consider capacity of the
Hop-eld network for case (ii), but the presented results may be readily extended to
the biologically plausible network [3].

2. Model

Let us consider a Hop-eld network [6] with N neurons. Let the activity of neuron i
be denoted as xi. The network is presented with a sequence of binary patterns of N bits.
Essentially, each pattern represents the encoding of the presented stimulus into inputs to
the network. Bit j of a pattern presented � time steps ago is denoted by ��j and may be
equal to −1 or +1 (corresponding to inactive and active states of a neuron). In the con-
sidered task, P stimuli repeat L times at an interval of K time steps as shown in Fig. 1.
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Fig. 1. The task of recognising frequently repeating stimuli. P stimuli denoted by capital letters repeat every
K steps for a total of L times (here: P = 4; L= 3; K = 10). x denotes another stimuli (each x is a di0erent
stimulus represented by a random pattern).
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The task of the network is to discriminate between repeating stimuli (denoted by
capital letters in Fig. 1), and novel stimuli (denoted by x in Fig. 1). For simplicity
we assume that if a repeating stimulus is presented at test, its previous presentation
occurred exactly K time steps ago (as shown for stimulus A in Fig. 1). This task is
arti-cial—stimuli do not repeat so regularly in the real world—but this simpli-cation
allows analysis of the capacity of the network.
Initially, all synaptic weights are set to 0. In order to perform the task, for each

presented stimulus, the weights are modi-ed according to the Hebb rule:

wij ← wij +
1
N
xixj; (1)

where  is a constant, which prevents the weights from growing without limit; its
optimal value depends on K and L (see Appendix A). The Hop-eld energy is de-ned
as [6]:

E( Lx) =−1
2

N∑
i=1

N∑
j=1

xixjwij: (2)

The discrimination whether a given stimulus represented by pattern x has
been repeatedly seen or is novel, may be done by setting the activities of the
Hop-eld network’s units to be those given by pattern x and evaluating the
energy immediately after this. In this abstract algorithm the neurons do not per-
form any computation (i.e. there is no relaxation); the familiarity discrimination
is done by an external agency which sets up the activations of the neurons and
calculates the network’s energy for a given pattern.
As shown in Appendix A, the average value of the energy is lower for repeating

patterns than for novel patterns. Hence by taking the middle value as the threshold
discrimination can be achieved: if the energy is below the threshold, the pattern is
classi-ed as repeating, otherwise it is novel.

3. Capacity

Appendix A shows that the network may discriminate whether a pattern is novel or
repeating with an accuracy of 99% for the following number of repeating patterns:

Pmax = 0:023N 2 − 3K
2L
: (3)

The results of the simulations in Fig. 2 match this theoretical prediction of capac-
ity. Simulations (“irregular” series in Fig. 2) were also performed for a more real-
istic scenario illustrated in Fig. 3. In this case, half of the stimuli repeat L times
within the last KL presentations; the other half (bold letters in Fig. 3) are presented
once only, but the magnitudes of their weight modi-cations are L times larger (in
Eq. (1) term (1=N )xixj is replaced by (L=N )xixj) to correspond to, for example, greater
attention being paid during presentation of these stimuli.
Results (“irregular”, Fig. 2) show that for this case, the capacity is lower but -tting

data of Fig. 2 by multilinear regression indicates that this capacity may be approximated
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Fig. 2. Comparison of simulated capacity for recognising frequently repeating stimuli with theoretical predic-
tions. For di0erent values of K; L; N and P, accuracy of network classi-cation was tested on 2000 patterns
(1000 repeating and 1000 novel patterns). In each case, the simulated capacity is taken as the maximum
number of stored patterns P, for which the error rate is 6 1%.
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Fig. 3. Example of a more realistic testing scenario. The network should store the occurrences of P = 4
stimuli. Half of them (denoted by bold letters: C, D) occur once only but they produce larger weight
modi-cations. The other half (denoted by letters: A, B) repeat L = 3 times and the average number of
intervening stimuli between their two successive presentation is equal to K = 10.

by 0.013 times the number of synapses in the network minus a constant depending on
K and L. For this case the optimal value of  is slightly larger than in the regular case.
These results also show that both ways of acquiring familiarity (by a single signi-cant
exposure and by multiple presentations) may be eEciently implemented within a single
network.

4. Discussion

The calculations of this paper show that for repeating stimuli in a sequence, the
number of stimuli which the network can accurately recognise is proportional to the
number of synapses in the network decreased by a constant that depends on the pattern
of repetition of the stimuli (see Eq. (3)). Therefore, the capacity in this case is not
much smaller than in case of recognising single presentations of important stimuli
even though the task of recognising frequently repeating stimuli seems more diEcult,
because the network is exposed to a much larger number of patterns.
Both ways of acquiring familiarity are useful for living organisms, and both may

be implemented in a single network in which the magnitude of weight modi-cation is
larger for behaviourally more signi-cant stimuli.
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Appendix A. Derivation of capacity

Let us calculate the value of minus double the Hop-eld energy after presentation of
a repeating pattern A (see Fig. 1).

− 2E(A) =
N∑
i=1
j=1

AiAjwj =
1
N

N∑
i=1
j=1

AiAj
∞∑
�=1

�−1��i �
�
j : (A.1)

Among patterns ��, some are the previous presentations of A, others represent presen-
tations of other repeating patterns (like B in Fig. 1) and, -nally, the remainder are
non-repeating patterns (like × in Fig. 1). Hence, split the summation from Eq. (A.1)
into three corresponding sums.

− 2E(A)≈ 1
N




N∑
i=1
j=1

L∑
�=1

K�A2i A
2
j +

P∑
�=2

L∑
�=1

K�
N∑
i=1
j=1

Ai�
K−�
i Aj�

K−�
j

+
∞∑
�=1

�−1
N∑
i=1
j=1

Ai�
�
i Aj�

�
j


 : (A.2)

Since Aj ∈{−1; 1} then A2j =1. From the equation for the sum of a geometric series:
L∑
�=1

K� = K
1− KL
1− K : (A.3)

Denote the above sum by s. The summation
∑N

i=1; j=1 Ai�
�
i Aj�

�
j in Eq. (A.2) may

be treated as a random variable with a binomial distribution of mean 0 and standard
deviation 2N [2]. Hence it may be approximated by the normal distribution �(0; 2N ).
Eq. (A.2) becomes

−2E(A)≈ 1
N


N 2s+

P∑
�=2

s�(0; 2N ) +
∞∑
�=1

�−1�(0; 2N )




≈Ns+ �(0; s
√
2P) +

√
2�


0;

√√√√ ∞∑
�=0

2�




= Ns+ �

(
0;

√
s22P +

2
1− 2

)
: (A.4)
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After presentation of a novel pattern, the average value of −2E is 0 but the variance
remains the same. Therefore, by taking as a threshold the middle value Ns=2, the −2E
will be usually above the threshold for repeating patterns and below for novel. The
probability of correct classi-cation is equal to

Pr

(
�

(
0;

√
s22P +

2
1− 2

)
¡
Ns
2

)

= Pr


�(0; 1)¡ N

2
√
2
√
P + 1

(1−2)s2


 : (A.5)

In order to maximise the probability of correct classi-cation, one has to -nd max that
maximises � = (1 − 2)s2. Such an max was not found analytically, but numerical
simulations show that it may be approximated by max ≈ (1=3)1=KL and for max; � ≈
2L=3K . Hence the maximal number of repeating patterns Pmax, for which network’s
accuracy is 99% may be found by solving the following equation:

Pr


�(0; 1)¡ N

2
√
2
√
Pmax + 3K

2L


= 0:99: (A.6)

By checking the value of the inverted standard normal cumulative distribution for 0.99
and solving Eq. (A.6), one gets Eq. (3).
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