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Connectionist models are abstract models of how in-
formation processing occurs in the brain during perfor-
mance of psychological tasks (Rumelhart, McClelland,
& the PDP Research Group, 1986). In these models, task
performance is simulated by the flow of activity between
sets of processing units that comprise processing path-
ways. Connectionist models have been successfully used
to explain a variety of effects observed in psychological
experiments (e.g., Cohen, Dunbar, & McClelland, 1990;
Cohen, Servan-Schreiber, & McClelland, 1992; Holroyd
& Coles, 2002; Rumelhart, McClelland, & the PDP Re-
search Group, 1986; Spencer & Coles, 1999; Usher &
McClelland, 2001; Yeung, Botvinick, & Cohen, 2004).
Furthermore, such models provide a natural bridge be-
tween theories about cognitive processes and their imple-
mentation in the brain. However, they often involve many
parameters that must be fit to the data to be explained.

To introduce the problem of parameterization, we first
describe an example of a connectionist network that mod-
els the behavior of subjects in the Eriksen flanker task
(Eriksen & Eriksen, 1974). In one version of the Eriksen
task, subjects are presented with one of the following visual
stimuli: “� � � � �,” “� � � � �,” “� � � � �,” or
“� � � � �,” and have to indicate the direction of the
middle arrow by pressing the left or the right button. Stim-
uli in which the direction of the “flanker” arrows is the
same as that of the middle arrow are called compatible,
and those in which the direction of the flankers is opposite
that of the middle arrow are called incompatible. A num-
ber of interesting effects are observed with this paradigm.
For example, incompatible stimuli generate more errors

and have longer correct response latencies than do com-
patible stimuli, whereas mean response latencies for error
responses are shorter than those for correct ones. Cohen
et al. (1992) proposed a connectionist model that simu-
lated many of these behavioral effects. Here we consider a
simplified version of that model (shown in Figure 1).

The model consists of two layers of units: a stimulus
layer and a response layer. The stimulus layer includes
three pairs of units. The middle pair represents informa-
tion about the direction of the middle arrow in the stim-
ulus. If, on a given simulated trial, the middle arrow is
pointing left, the input to the left unit in the pair is set to
1 and the input to the right unit is set to 0, and vice versa
if the middle arrow is pointing to the right. The two other
pairs of units represent the direction of the left and right
flanker arrows in the stimulus in a similar way (for sim-
plicity, there is just one pair of units representing possi-
ble values of left flankers, and one pair of units repre-
senting right flankers). The box at the bottom of Figure 1
shows how each possible stimulus is represented by the
values of the inputs. The middle units in the stimulus
layer also receive input from a unit representing atten-
tional bias (the unit with an exclamation mark in Fig-
ure 1), which is always set to 1.

Once the input is turned on, activation is allowed to flow
among the units of the model, along the connections
shown in Figure 1. The flow of activity between the units
of the model is described by a set of stochastic differential
equations. The model makes a response when the activity
of one of the response units exceeds a decision threshold.

In psychological experiments, subjects repeat the task
many times, and various descriptive statistics can be com-
puted regarding subjects’ performance, such as error rate,
mean reaction time for correct and error trials, standard de-
viation of the reaction times, and so forth. We will refer to
these descriptive statistics simply as statistics. Similarly,
the connectionist model of a task can be executed many
times, and the same statistics can be calculated for the
model. Such a repeated execution of the model in order to
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evaluate the statistics will be termed a run of the model in
the remainder of this article. The behavior of the connec-
tionist model, and thus the values of the model’s statistics,
are controlled by a set of parameters. For example, the net-
work in Figure 1 is controlled by five parameters listed in
the box at the bottom right corner of the figure.

Usually, in order to claim that a connectionist model can
account for experimental data regarding behavior in a
given task, researchers show that the statistics describing
the model’s performance have the same or very similar val-
ues to those for subjects in the experiment (e.g., Botvinick,
Braver, Barch, Carter, & Cohen, 2001; Holroyd & Coles,
2002; Usher & McClelland, 2001). However, in order to
show this, it is necessary to find the values of model pa-
rameters that result in the required behavior of the model.

Finding model parameters that produce a very close
match between the model’s performance statistics and
human subjects’ performance statistics is useful for sev-
eral reasons. First, it shows that the model provides a
quantitative account for the effects observed in the sub-
jects’ behavior. Second, if one tries to distinguish be-
tween two alternative models, one can parameterize both
models as well as possible and then compare to what de-
gree each matches the experimental data. Third, one can
simulate additional experiments without changing the
parameters to make further experimental predictions,
and thereby test the generality of the model.

The parameterization of the model is usually done man-
ually (i.e., researchers run models with different sets of
parameters and search for the set resulting in the closest
match). This can be extremely time consuming and may
fail to yield the best set of parameters. With continued
improvements in computational power, some investigators
have begun to use automated procedures for parameter-
ization of connectionist models (i.e., optimization algo-
rithms to find parameters resulting in the best fit between
the model and subjects’ behavior). As yet, however, these
have not appeared in published reports. Furthermore, in-
sofar as these procedures typically have been designed
for a particular model or task, they may not easily gen-
eralize to other models.

For example, Usher and McClelland (2001) automated
parameterization of their two-choice model, but the op-
timization algorithm that they used was based on random
search. Although this was appropriate for the simple
two-choice model, it is likely to be too slow for larger
models (i.e., models of more complex tasks with more
parameters). Furthermore, they minimized a least-squares
measure of difference between the model’s and subjects’
statistics similar to the one proposed in this article, but
the weights assigned to individual statistics (and there-
fore the relative importance given to them) were chosen
specifically for their model, and thus may not generalize
to other models.

Figure 1. Simplified version of the Eriksen task (Eriksen & Eriksen, 1974) model (simplified from Cohen
et al., 1992). Arrows denote excitatory connections, arches with circles at the end indicate that all the units
in a given layer mutually inhibit one another. Box at the bottom left corner shows values of six inputs (each
column corresponds to the input above) for four possible stimuli.
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Ratcliff, Van Zandt, and McKoon (1999) automated
parameterization of their diffusion model of two-choice
tasks. They used the simplex optimization algorithm
(Nedler & Mead, 1965)—a type of algorithm that we
have also found useful for parameterization of connec-
tionist models. Ratcliff et al. (1999) found that automatic
parameterization was very useful: “it was only when the
parameter space could be automatically searched . . .
[that] . . . the model . . . fit the different patterns of error
reaction times” (Ratcliff et al., 1999, p. 268). This gives
hope that automatic parameterization procedures would
similarly allow the finding of closer fits of other psycho-
logical models to experimental data.

Although there are well-described methods for opti-
mizing certain parameters of connectionist networks
(such as the back-propagation algorithm for setting con-
nection strengths—e.g., Rumelhart, Hinton, & Williams,
1986), setting other parameters of the model (e.g., the
level of noise on the input) is more challenging for sev-
eral reasons. First, the analytic expressions describing
how the model’s statistics depend on the parameters are
not fully described and can be very complex (Brown &
Holmes, 2001). For example, although back-propagation
can be used to find connection weights that minimize
error, it has not been specified how to do so for a partic-
ular mean or distribution of reaction times.

Furthermore, connectionist models often incorporate
noise, so that the statistics calculated during two differ-
ent runs of the model with the same set of parameters
will differ from each other. This demands that the model
be run multiple times for each set of parameters to be
tested, and it requires methods for comparing the statis-
tics generated by one run with another.

This report describes an algorithm for parameterization
of connectionist models that seeks to address the chal-
lenges outlined above. It can be used for any connectionist
model implemented as a computer program. In this article,
we focus on connectionist models, but the method can
also be adapted to other psychological models that quan-
titatively describe behavior. In some cases, the algorithm
can find the required parameters automatically. In other
cases, it may help accelerate the process of manual param-
eterization. The algorithm employs a statistically moti-
vated cost function, which indicates whether the model’s
statistics are significantly different from those obtained
in the empirical experiment.

The algorithm has been implemented in Matlab and is
free for download from the Psychonomic Society Web
archive at http://www.psychonomic.org/archive/. It re-
quires a user only to write a short Matlab script that ex-
ecutes the model and returns a vector containing the
model’s statistics as outputs. A user’s manual for the pro-
gram implementing the algorithm is contained in the ap-
pendix of the report that can be downloaded from the
Web site above.

The algorithm is described in the parameterization al-
gorithm section below. The case study section below
demonstrates how the method performs in the param-

eterization of the sample connectionist model described
above. Various issues related to use of the method are
discussed in the discussion section below.

Parameterization Algorithm
The process of parameterization of connectionist mod-

els described in this report is based on least-squares es-
timation; that is, on minimization of a cost function that
is sensitive to differences between the statistics describ-
ing the behavior of the model and those derived from
empirical data concerning human subject performance.
An optimization algorithm is used to find the values of
the model parameters for which the value of the cost
function is minimized.

The pseudocode of the algorithm is given in the List-
ing. The procedure consists of three phases: (1) finding
the starting point of optimization by a random search,
(2) finding parameters minimizing the cost function with
the optimization algorithm, and (3) tuning parameters to
minimize the cost function with statistics weighted by
their variability. The details of these three steps in the al-
gorithm are described in the next three subsections, fol-
lowed by subsections that consider additional issues as-
sociated with these steps.

Finding a starting point of optimization. The start-
ing point of optimization may either be specified by the
user or established with random search. In the second
case, the user specifies the number of search iterations S,
and values pi for each parameter i defining the range of
search. Specifically, each of S sets of parameters is gen-
erated randomly, such that each parameter i is chosen as
a random number from range [0, 2pi] (the user can spec-
ify the minimum and maximum values). For each set of
parameters, the model is executed a number of times,
corresponding to the number of trials in the experiment
from which statistics are being fit, and the same statis-
tics are calculated for the model. After each run, the cost
function is evaluated. The set of parameters that resulted
in the lowest value of the cost function is taken as the
starting point of optimization.

Cost function. Let us denote the statistics of the model
by mi and the statistics obtained from the experiment by
ei and the number of statistics being fit by N. The cost
function describes the degree to which mi differs from ei:

(1)

In Equation 1, ni denotes the normalization factor for
statistic i. This must be introduced to ensure that each
statistic contributes equally to the cost function, because
different statistics may have values that differ in scale
(e.g., error rate may be equal to 0.1 and reaction time to
400). A natural choice for the normalization factor might
be ni � ei, but we found that a somewhat different set of
values is superior. As we will describe below, the method
worked best when we used two different normalization
factors: one for the first two phases (finding a starting
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point and optimization of parameters) and another for
the third phase (tuning of parameters).

If a simple normalization ni � ei were used, statistics
that have values very close to zero (e.g., an error rate for
a given condition may be smaller than 1%) could con-
tribute to the cost function much more than others be-
cause for them the denominator of Equation 1 would be
very close to 0. To avoid this problem, during the two
first phases (finding a starting point and optimizing pa-
rameters), the normalization factors ni of the cost func-
tion are assigned in the following way. The user provides
information for each statistic about whether it is related
to error rates, reaction times, or variations in reaction
times (information on the types of statistics is also given
in the section on matching time units below). For each type
of statistic, the average value of the empirical statistics
ei belonging to that type is calculated. The normalization
factor for a given statistic is taken as the average goal
statistic for its type. For example, if statistic i is of type
error rate, the normalization factor ni is equal to the av-
erage value of all statistics of type error rate. This choice
was driven by the fact that the statistics belonging to the
same type usually have values that are similar in scale.

Tuning of parameters. Although the method for cal-
culating ni described above works well for f inding a
starting point and the first round of optimization (Phases
1 and 2), a different method based on the statistic’s vari-
ability across runs is used for tuning parameters based on
a differential weighting of statistics (Phase 3). This is be-
cause some parameters are associated with statistics that
vary widely from run to run, even when these parameters
are held constant, whereas other parameters are associ-
ated with statistics that are more stable (i.e., have very
similar values across different runs of the model with the
same parameters). Therefore, for final tuning, it is best

to focus on parameters associated with statistics that are
stable rather than ones that differ substantially from run
to run. Such emphasis can be achieved by setting the nor-
malization factors ni of the cost function to the standard
deviations of the statistics of the model.

For these reasons, at the beginning of the third phase
(tuning of parameters), the model is run 10 times for the
parameters found in the second phase. For each of the
statistics mi of the model, the standard deviation across
the 10 runs is calculated, and it is taken as the normal-
ization factor for this statistic ni in the cost function dur-
ing parameter tuning in the third phase.

Normalization factors are not set to the standard devia-
tion in the initial two phases because during the optimiza-
tion in the second phase, the solution moves substantially
in parameter space. As a result, the cost function is evalu-
ated for very different values of parameters, so the model
statistics may have very different values and standard
deviations within the second phase.

Optimization algorithm. The same optimization al-
gorithm is used in the second (optimization) and third
(tuning) phases. We compared the performance of dif-
ferent optimization algorithms (including standard Mat-
lab routines) in parameterization of a simple connec-
tionist model. The best performance was achieved by an
algorithm called subplex (Rowan, 1990). In this article,
we do not describe this comparison (details may be found
in the report attached to the parameterization code avail-
able for download under the address given in the intro-
duction). Below, we briefly describe the subplex algo-
rithm, its advantages over other algorithms, and our
choice of parameters for subplex.

Subplex is a modification of the simplex algorithm
(Nedler & Mead, 1965). A simplex in n-dimensional pa-
rameter space is a set of n � 1 points that bound part of

LISTING
Pseudocode of the Parameterization Algorithm

/*Finding starting point */
Repeat specified number of times

Generate a random set of parameters
Run the model for above parameters
Compute the cost function
If cost function the lowest so far

Starting point � this set of parameters

/* Optimization of parameters */
Current parameters � Starting point
Repeat specified number of times

Run the model for current parameters
Compute the cost function
Let optimization algorithm choose new parameters

/* Tuning of parameters */
Run model 10 times and compute standard deviation of statistics
Repeat specified number of times

Run the model for current parameters
Compute the normalized cost function
Let optimization algorithm choose new parameters

Run model 10 times and test fit statistically
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that space. For example, on a plane (i.e., a two-dimensional
space, where the two dimensions correspond to values of
the two parameters being estimated), a simplex is a tri-
angle. The simplex defines the region in which the algo-
rithm looks for the minimum of the cost function. The
simplex algorithm starts by defining a simplex in the pa-
rameter space of a given size centered on a given point
(i.e., the starting point of optimization). It evaluates the
cost function for every point within the simplex (by run-
ning the model). Then, in the following steps, the set of
parameters (i.e., a point of the simplex) that results in the
highest value of the cost function is replaced by a new set
of parameters (chosen on the basis of the values of the
cost function in the current vertices of the simplex; for
details, see Nedler & Mead, 1965), and the cost function
for it is evaluated anew.

The subplex method (Rowan, 1990) was designed to
generalize the simplex algorithm to better handle noisy
functions—that is, functions that may have different val-
ues for the same set of parameters. For this reason, the
subplex algorithm seems well suited for parameterizing
connectionist models, which typically incorporate noise
into processing. Subplex works by decomposing high-
dimensioned problems into low-dimensioned subspaces
that are easily handled by the simplex method (for de-
tails, see Rowan, 1990).

We also tested gradient-based optimization algorithms,
but they seldom found parameters resulting in low values
of the cost function. They performed poorly because
they were not well suited to the noisiness of the cost
function. For example, they tried to calculate the gradi-
ent at the starting point of optimization numerically by
running the model for the values of the parameters in dif-
ferent directions in the parameter space. However, this
estimate of the gradient was imprecise because the cost
function is noisy, and the optimization algorithms did
not take this into account. It is possible that further re-
finements of gradient-descent algorithms could address
these issues (e.g., Kelley, 1999), and this remains an in-
teresting challenge for future research.

An important constraint for the optimization algorithm
is that it must be fast; that is, it must find the minimum
of the cost function with as few runs of the model (i.e.,
sampling the parameter space) as possible. This feature
is critical because one run of a complex connectionist
model may take a significant period of time. Therefore,
we did not test optimization algorithms that involve ex-
tensive random search, such as genetic algorithms and
simulated annealing.

The initial size of the simplex in dimension i of the pa-
rameter space is taken as 30% of the starting value of 
parameter pi in the second (optimization) phase, and
15% of pi in the third (tuning) phase (these values were
determined empirically). The number of model runs al-
lowed to be executed by the subplex algorithm in the
second and third phases is specified by the user.

Matching time units of model and experiment. Sta-
tistics describing the reaction time of the model are ex-

pressed in time units of the model (i.e., number of itera-
tions of updating units’ activations required for a deci-
sion unit to cross a given threshold), whereas in the ex-
periment they are expressed in milliseconds. In some
models, the relation between model time and real time is
an explicit assumption of the model (e.g., it is assumed
that one step of the model corresponds to 50 msec; An-
derson, 1993). However, in most connectionist models
such explicit assumptions are not made, and the reaction
time statistics must be converted post hoc from model
time units to milliseconds. For our present purposes, this
conversion must be performed after each run of the model
(i.e., repeated execution of the model in order to com-
pute statistics) before the cost function can be evaluated,
because the relationship may depend on the specific pa-
rameters used. Furthermore, the cost function includes
terms expressing the difference between reaction times
of the model and the experiment. In order for this to be
meaningful, they need to be in the same units. This con-
version is described below.

It is usually assumed that a connectionist model does
not capture all information processing during a task (e.g.,
it may not capture early visual processing or motor execu-
tion). This can be accommodated in the following regres-
sion equation, which expresses the relationship between
the reaction time in model units (RTunits; i.e., the number
of iterations until the response is made) and experimen-
tally observed reaction time in milliseconds RTmsec:

RTmsec � a RTunits � b. (2)

In Equation 2, slope a denotes how many milliseconds
correspond to one time unit of the model, and intercept
b denotes the duration of processing not captured by the
model (in milliseconds; we assume for simplicity that it
is constant across trials and conditions). Our goal is to
find the values of a and b, minimizing the differences
between the model statistics converted to milliseconds
and the statistics describing human behavior in the psy-
chological experiment. Thus a and b are “hidden” pa-
rameters that can improve the fit between the model and
human data during optimization. We can find the values
of a and b by performing a standard linear regression.

Some statistics of the model may correspond to dif-
ferences between reaction times in different experimen-
tal conditions or standard deviations of reaction times.
The relationship between such statistics in model units
Vunits and in milliseconds Vmsec can be expressed by the
following equation:

Vmsec � aVunits. (3)

In Equation 3, the same conversion factor a is used as
in Equation 2, but there is no intercept b because these
statistics are differences between reaction times, and
thus the period of processing not captured by the model
is subtracted (since it is assumed to be constant across
trials and conditions).

If reaction times assume an ex-Gaussian distribution
(Cousineau & Larochelle, 1997; Ratcliff, 1978) with
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mean m and standard deviation s of the Gaussian com-
ponent, and exponential time constant t, the relation be-
tween the statistic m in model units and in milliseconds
is expressed by Equation 2, and the relationship of the
statistics s and t in model units to milliseconds is ex-
pressed by Equation 3. For simplicity, we will refer to all
statistics whose relation of units is described by Equation 3
as statistics concerning variations of reaction times.

To match statistics that involve both reaction times and
variations of reaction times (i.e., to ensure that they are
constrained by the same value of regression parameter a),
we choose the values of a and b by the following extended
version of the regression. First, the statistics from the ex-
periment concerning reaction times are denoted by RTexpi

,
statistics concerning variations of reaction times by Vexpj

,
and the numbers of these statistics being matched by NRT
and NV, respectively. We then choose the values of a and
b that minimize the following function:

(4)

In order to find the minimum for Equation 4, we have to
find values of a and b for which derivatives of E are
equal to 0:

(5)

Solving the set of Equation 5, the expressions at the bot-
tom of this page [(6) and (7)] are obtained. Note that
when we do not fit statistics concerning variations of re-
action times (i.e., NV � 0), Equations 6 and 7 reduce to
the standard expression for regression coefficients.

If we consider fits of the model to experimental data
more generally, each statistic can be assigned to one of
three types: (1) those that do not require the change of
units described in this section (e.g., error rates), (2) those
being fit by regression with intercept (e.g., reaction times),
and (3) those being fit by regression without intercept
(e.g., variations of reaction times). After every run of the
model, the regression coefficients are calculated accord-

ing to Equations 6 and 7. If any of the coefficients is neg-
ative, it is made equal to 0 (negative values of a and b do
not make sense; they are not likely to occur for parameters
found during optimization, but may occur while finding
the starting point of optimization when parameters are
chosen randomly). Then the model statistics involving
reaction times and variations of reaction times are con-
verted to milliseconds according to Equations 2 and 3.
After the conversion, the cost function is calculated.

Statistical testing of model fit. At the end of the en-
tire parameterization procedure, the model is run an ad-
ditional 10 times to evaluate the statistical significance
of the final solution. The mean values of the model sta-
tistics and their standard deviations are calculated and
used to compute the final value of the cost function.

This final value of the cost function has a statistical
interpretation—namely, the expression

(8)

(where m�i denotes the mean model statistics i, and de-
notes the standard deviation of the model statistics over
10 runs) indicates how far the distribution of the values
of statistics generated in different runs of the model for
the final solution deviate from their goal values. If ei and
mi come from the same distribution, then zi has approxi-
mately a standard normal distribution (it would be normal
if m�i and were the true mean and standard deviation
instead of estimates). Thus, the final value of the cost func-
tion has approximately a c2 distribution with N degrees of
freedom. However, the precise distribution of the cost
function is slightly different, as is derived in the Appen-
dix. Since the cumulative distribution F of the cost func-
tion is known, one can test whether the model and ex-
perimental statistics are signif icantly different. In
particular, the significance of the difference between the
experimental and model statistics is equal to p � 1 �
F(cost). The significance p is also calculated by the tool.

There are more precise methods to determine whether
the model statistics differ from those of the experiment
(e.g., to compare mean reaction times in a certain condi-
tion, one can use a t test for reaction times of all trials of
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the experiment and the model within one run). However,
it is a useful property that the cost function can provide
a first indication of the degree of fit.

This section has described a single session of param-
eterization. Since the optimization process may find
only a local minimum of the cost function, the optimiza-
tion sessions may be repeated. The number of such rep-
etitions can be specified by the user.

Case Study
To evaluate how our parameterization procedure per-

forms on an actual model, we have used it to parameter-
ize a connectionist model of the Eriksen flanker task
(Eriksen & Eriksen, 1974) described in the introduction.
Recently, Yeung et al. (2004) conducted an empirical
study using this task. We tried to fit the model to the val-
ues of the statistics, describing the mean performance of
subjects in that experiment.

Seven statistics describing performance of the model
were fit to the experimental data; they are listed in the
left column of Table 1. These statistics describe the main
effects observed in the Eriksen task (i.e., the difference
in error rate and reaction times between compatible and
incompatible trials, and the difference in reaction times
between correct and error trials; see the introduction for
details). Note that since the number of parameters is
fewer than the number of statistics being fit, there is not
a guaranteed solution.

During a single run, the model was executed for 13,056
trials to generate the statistics to be compared with the data
from human subjects for a given set of parameter values
(13,056 is the number of stimuli across subjects used in the
Yeung et al., 2004 experiment). The order of stimuli was
also the same in the simulations as in the experiment. Dur-
ing each optimization session, the model was run 50 times
in the first phase (searching for a starting point for opti-
mization), 150 times in the second phase (optimization),
and 100 times in the third phase (tuning). The entire opti-
mization session was repeated 200 times, which took about
one day of computation using a computer with a Pentium II
processor (processor speed: 450 MHz, RAM: 128 MB).

The value of the cost function for the best solution
found by the parameterization procedure was 27.6. On
the basis of the value of the cost function, the statistics
of the model differ significantly from those of the ex-

periment with p � .033. Although these differences are
significant, they are not large: The values of the individ-
ual statistics are compared in Table 1. One source of
these differences may be our approach of fitting a single
model to data averaged across subjects, thus ignoring
variability between subjects.

The use of this optimization procedure may also indi-
cate problems with the model and thus help in improv-
ing its design. For example, we attempted to simplify the
model of the Eriksen task from its original form as much
as possible (Cohen et al., 1992), and beyond the form
shown in Figure 1, by removing the right flanker units.
Thus, all flankers were represented by a single pair of
units (note that the number of model parameters did not
change). We were unable to parameterize this model sat-
isfactorily; in particular, we were not able to achieve re-
action times on error trials that were shorter than those
on correct trials, as was the case for the empirical data.
This suggests that the model with just one pair of flanker
units is a less adequate model of the Eriksen task than the
model with two pairs of flanker units.

Discussion
This article describes an algorithm for parameterization

of connectionist models and an example of its application
to a particular model. The method can be used for param-
eterization of any connectionist model implemented as a
computer program. The optimization procedure uses a sta-
tistically motivated cost function that indicates whether
the statistics of the model differ significantly from those
obtained in the experiment.

Since the algorithm may find a local minimum of the
cost function, it is important to perform a suitable num-
ber of optimization sessions. For example, in the simu-
lations described above, the parameterization procedure
yielded sets of parameters resulting in a low value of the
cost function (i.e., resulting in p � .01) in only about
10% of the sessions.

We have noticed that the quality of the solution found
by the algorithm strongly depends on the initial range of
parameters pi from which starting points of optimization
are taken. If the method cannot find good solutions, it
may simply be searching in the wrong part of the pa-
rameter space and converging to local minima. There-
fore, in such situations, it may be worth trying to run the

Table 1
Comparison of the Values of the Statistics Describing the Behavior of Subjects in Yeung et al.’s
(2004) Experiment and the Simplified Connectionist Model for the Best Solution Found by the

Parameterization Algorithm

Statistics Experiment Model

Error rate for compatible stimuli 1.9% 1.3%
Error rate for incompatible stimuli 18.7% 19.1%
Mean reaction time for compatible stimuli (msec) 351.3 352.2
Mean reaction time for incompatible stimuli (msec) 403.2 402.3
Difference between mean reaction times for correct and incorrect responses 67.4 66.5
Standard deviation of reaction times for compatible stimuli 73.9 77.3
Standard deviation of reaction times for incompatible stimuli 100.9 99.3
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model with different parameters to determine how they
affect the behavior of the model. This may help one
choose the appropriate range of parameters pi from which
starting points of optimization are taken. Of course, such
manual exploration of parameters may also lend insight
about the functioning of the mechanisms of the model,
and the critical goal of model building in the first place.

When a run of a connectionist model takes a long
time, it may take many days for our procedure to para-
meterize the model. In this case, it is worth trying to
speed the computer program implementing the model
(e.g., if the model is implemented in Matlab, it could be
translated into C). In order to find an approximation of
parameters, one can modify how the model is executed,
reducing the execution time. For example, one can try to
decrease the number of model executions in one run, or
if the model is described by continuous differential equa-
tions, one can also try to make its discrete approximation
coarser. Although this may reduce the precision of the
estimate of the model’s statistics, or make them noisier,
the result may provide useful guidance in the choice of a
starting point for optimization of the full but slowly ex-
ecuting model.

The cost function used in the algorithm has statistical
meaning, and one may be tempted to use it to compare
different models. For example, if two models of a given
task are compared, and the parameters of the first model
result in a lower value of the cost function than the sec-
ond, one could claim that the first model fits the data bet-
ter than the second. However, it should be remembered
that the value of the cost function depends on the num-
ber of simulated trials in a run, because the number of
trials influences the normalization factors ni of the cost
function. Namely, ni are equal to the standard deviations
of the statistics across trials for a given set of parameters,
and the more simulated trials, the more similar are the val-
ues of statistics across trials. Hence, if the cost function is
used to compare the models, the models must be exe-
cuted with the same number of simulated trials per run.

The proposed method may sometimes be too power-
ful, in the sense that it may find parameters for two very
different models, both of which match the experimental
data equally well. Therefore, the fact that a model may
fit the empirical data should not be treated as proof that
the model is a correct abstraction of the information pro-
cessing (or neural) mechanisms it is meant to simulate.

In the simulations described above, we fit the model to
mean experimental statistics averaged across subjects.
But one could also use the algorithm to fit the model to
the behavior of individual subjects, and then explore in-
dividual differences between subjects with the model.
These methods can be also used to fit neurophysiologi-
cal statistics such as the amplitude or latency of ERPs or
hemodynamic response measurements (such as fMRI).

The parameterization method could be further devel-
oped in a number of directions. First, the subplex opti-
mization algorithm has a number of parameters (e.g., ini-
tial size of the simplex), which we chose on the basis of

our experience. However, the optimal values of these pa-
rameters may differ for different models being opti-
mized; hence one could investigate how to optimally set
up the values of parameters of optimization. Second, we
assume for simplicity that the statistics being fit are in-
dependent. However, such independence may not always
be a correct assumption. For example, the reaction time
in two different conditions may be correlated across sub-
jects. If the statistics are correlated, the least-squares
method should use normalization by covariance matrix1

rather than by standard deviations, as proposed in this ar-
ticle (Koch, 1988, p. 180). Normalization by the covari-
ance matrix should be explored in the future versions of
the method we have proposed.

Recently, Ratcliff and Tuerlinckx (2002) analyzed the
estimation of parameters for diffusion models (related to
connectionist models), and they pointed out that it is cru-
cial that the parameter estimation method be robust (i.e.,
insensitive to trials in which subjects’ responses are not
captured by the model, as occurs with very long reaction
times). They noticed that their weighted least-squares
method, minimizing a cost function similar to the one de-
scribed here, is more robust than the standard maximum-
likelihood approach. 

Ratcliff and Tuerlinckx (2002) also proposed a useful
framework for comparing the quality of different param-
eterization methods. Instead of fitting a model directly to
experimental data, they fitted it to the data obtained from
the simulation of the model with known parameters pi
and assessed how the fitted model parameters mi match
the original parameters pi. It is likely that in the future,
new algorithms for parameterization of psychological
models will be developed. For example, Brown, Reynolds,
and Braver (2003) are currently designing a tool called
RT�� for parameterization of connectionist models de-
veloped under software PDP��. As such tools become
available, it will become increasingly important to com-
pare their ability to accurately and efficiently estimate the
parameters of psychological models, perhaps within the
framework suggested by Ratcliff and Tuerlinckx (2002).
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NOTE

1. Normalization by covariance matrix would yield the following cost
function: cost � (e � m)TC�1(e � m), where e and m are the vectors
of experimental and model statistics, and C is the covariance matrix.
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APPENDIX

This appendix derives the distribution of the cost function. in Equation 8 denotes the estimate of the stan-
dard deviation normalized by 10 (i.e., the number of observations n) rather than 9 (i.e., n � 1). Let us denote
by mi and si the true mean and standard deviation of model statistics mi. Hence, Equation 8 may be rewritten as:

(9)

Three of the terms in Equation 9 have known distributions:

(10)

Hence, from the definition of F distribution:

(11)

Thus, the final value of the cost function has the following distribution:

(12)

The distribution of the sum of F distributions may be calculated numerically with the equation for the distri-
bution of the sums of distributions:

(13)

The tool calculates numerically the cumulative distribution of the cost function and performs the test described
in the section on statistical testing of model fit.
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