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Abstract. Familiarity discrimination, i.e. the ability to recognise previ-
ously experienced objects is important to the survival of animals, but it
may also find practical applications in information technology. This pa-
per describes the Familiarity discrimination based on Energy algorithm
(FamE) inspired by the computations of the perirhinal cortex - the area
of the brain involved in familiarity discrimination. In FamE the infor-
mation about occurrences of familiar records is encoded in the weights
of a neural network. Using the network, FamE can discriminate whether
a given record belongs to the set of familiar ones, but cannot retrieve
the record. With this restriction, the network achieves much higher stor-
age capacity for familiarity discrimination than other neural networks
achieve for recall. Therefore, for a given number of familiar records, the
description of the weights of the network occupies much less space in
memory than the database containing the records itself. Furthermore,
FamE can still classify a record as familiar even if it differs in a sub-
stantial proportion of its bits from its previous representation. FamE is
also very fast. Preliminary results of simulations demonstrate that the
algorithm may be applied to real-world problems.

1 Introduction

Animal and humans possess the ability to discriminate familiarity for an impres-
sive number objects. Human subjects, after seeing thousands of different pictures
once, can still recognise the individual pictures as familiar [21]. This ability to
recognise previously seen objects is important to the survival of animals, but it
may also find practical applications in information technology. For example, the
ability to determine whether a web site has been visited or not is very useful
to a software agent searching the web. Familiarity discrimination is analogous
to checking whether a record belongs to a certain set (i.e., the set of familiar
records). From this point of view there exists a wide range of possible appli-
cations. One example could be a program controlling a security camera at the
entrance of a building - it does not need to identify a person (e.g., retrieve its
name), but only discriminate whether this person belongs to the set of persons
authorised to enter the building. Another example could be checking whether a
record is stored in a database without actually searching the database.
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To solve problems related to familiarity discrimination, current methods cre-
ate a database of familiar records and use it to check whether a given record is
contained in the database. Storing the database allows retrieval of information
so this approach is not specialised for familiarity discrimination and hence is
far from optimal. It is used because nowadays disk space is cheap and database
searching is relatively fast. However, in the case when a user does not look for
an exact match in the database but for something similar, database searching
is much slower because one cannot use standard searching techniques such as
indexing or hashing.

This paper describes the recently developed algorithm, Familiarity discrim-
ination based on Energy (FamE) [5] and shows its applicability. In FamE the
information about occurrences of familiar records is encoded in the weights of
a neural network. Using the network, FamE can discriminate whether a given
record belongs to the set of familiar ones, although it cannot retrieve the record.
For example, it cannot retrieve the record after being given only partial informa-
tion (e.g., a key). With this restriction, the network achieves much higher storage
capacity for familiarity discrimination than other neural networks achieve for
recall. Therefore, for a given number of familiar records, the description of the
weights of the network occupies much less space in memory than the database
containing the records itself. Furthermore, FamE can still classify a record as
familiar even if it differs in a substantial proportion of its bits from its previous
representation. FamE is also very fast.

FamE is inspired by the computations performed by the perirhinal cortex.
Work in amnesic patients and in animals has established that discrimination of
the relative familiarity or novelty of visual stimuli is dependent on the perirhi-
nal cortex [1,2,8,17]. Damage to the perirhinal cortex results in impairments in
recognition memory tasks that rely on discrimination of the relative familiarity
of objects [16]. Within the monkey’s perirhinal cortex, ∼25% of neurons respond
strongly to the sight of novel objects but respond only weakly or briefly when
these objects are seen again [8,22]. We have created a model of the perirhi-
nal cortex which is consistent with many experimental observations [6]. Since
the perirhinal network has the properties mentioned in the previous paragraph
for FamE, the perirhinal cortex alone may rapidly discriminate the familiarity of
many more stimuli than current neural network models indicate could be recalled
(recollected) by all the remaining areas of the cerebral cortex. This efficiency and
speed of detecting novelty provides an evolutionary advantage, thereby giving
a reason for the existence of a familiarity discrimination network in addition to
networks used for recollection.

FamE differs in important respects from the artificial neural networks used for
familiarity discrimination in industrial applications [19,10]. In these approaches
familiarity discrimination is regarded as detecting typical patterns of device be-
haviour, since atypical (i.e., novel) patterns may be a sign of malfunction. Hence
such models assume that familiar patterns create clusters in representation space
(and the synaptic weights of their neurons often encode prototypes of familiar
patterns, e.g., see [10]). In contrast, the model outlined here does not require any
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assumptions concerning the distribution of patterns and it discriminates whether
a particular pattern was presented previously rather than whether the pattern
is typical. The information processing of FamE is somewhat similar to that in a
novelty detector [14,15], but the novelty detector is an abstract model of a single
neuron, with correspondingly limited storage capacity. The proposed model is a
network of neurons constructed as to have a very large storage capacity.

The description of the algorithm is given in Section 2. In section 3 the storage
capacity for familiarity discrimination is investigated. Section 4 discusses imple-
mentation issues which must be considered before the application of FamE. Sec-
tion 5 shows how the algorithm performs on real data. Finally, section 6 discusses
the relation of FamE to other techniques.

2 Algorithm Description

FamE stores information about the familiar patterns in the weights of a Hopfield
network. The Hopfield network provides a simple model of associative memory
[12]. It is a fully connected recurrent neural net consisting of N neurons, whose
activations are denoted by xi. The active state of a neuron is represented by 1,
and the inactive state by -1. The patterns stored by the network are denoted by
ξµ and the number of these patterns by P . The weight of the connection between
neurons j and i is denoted by wij and computed according to Hebb rule [12]:

wij =




1
N

P∑
µ=1

ξµ
i ξµ

j if i 6= j

0 otherwise

(1)

The energy of the Hopfield network is defined by [12]:

E(x) = −1
2

N∑
i=1

xi

N∑
j=1

xjwij (2)

The value of the energy function is usually lower for stored patterns and higher
for other patterns [3]. Therefore, the value of the energy may be used for fa-
miliarity discrimination, which in this context corresponds to checking whether
a pattern is stored in the Hopfield network [5]. Normally, the Hopfield network
is used for retrieval of information by updating one-by-one the activities of the
neurons (a process called relaxation). In FamE, the neurons do not perform
any computations (i.e., there is no relaxation), but familiarity discrimination is
achieved by checking the value of the energy function after delivery of a pattern.
In other words, the discrimination is done not by the Hopfield network itself,
but by an external entity which sets up the activations of the neurons according
to a discriminated pattern and calculates the network’s energy for this pattern.

We have already showed that the average value of the energy for stored
patterns is −N/2, while for novel patterns it is 0 [5]. Therefore, by taking as a
threshold the middle value of −N/4, we can define a familiarity discrimination
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criterion, namely, if E < −N/4, then the pattern is classified as familiar, and as
novel otherwise.

In [6] we showed that the neural network designed to mimic neuronal ac-
tivity in the perirhinal cortex performs similar computations during familiarity
discrimination. The energy of the Hopfield network is an artificial function whose
value is calculated by a double summation (see Equation 2). The model perirhi-
nal network effectively calculates a similar function also by a double summation
implemented by two layers of neurons - the first layer performs the first summa-
tion and the second layer the second summation. For details see [6].

3 Storage Capacity

Using signal-to-noise analysis we have established that the FamE algorithm us-
ing a network of N neurons can discriminate familiarity with 99% reliability for
0.023N2 uncorrelated patterns [5]. This capacity is much greater than the stan-
dard capacity of the Hopfield network for retrieval, namely 0.145N [3]. If a higher
reliability is required, the familiarity discrimination capacity decreases slightly
but it is still of order N2, e.g., for an error probability of 10−4 the capacity is
about 0.009N2 and for an error probability of 10−6, about 0.006N2.

If the human perirhinal cortical network operates on similar principles, its
theoretical capacity may be estimated on the assumption that it contains ∼107

pyramidal neurons [13], 25% of which discriminate familiarity, each with ∼104

synapses. With a probability of error of 10−6, the perirhinal network could store
∼108 patterns, each with up to 0.25 × 107 bits. A pile of books storing these
patterns would be ∼7000 km high (equal to the Earth’s radius). The speed
of searching this database is also impressive. It would take 20 ms for light to
traverse the pile, while discriminating familiarity in the model of the perirhinal
cortex takes only ∼10 ms.

FamE demonstrates generalisation and is resistant to disruption by noise
- a pattern will still be classified as familiar even if it differs in a substantial
proportion of its bits from its previous representation. More precisely, a pattern
will be classified as familiar if the Hamming distance (number of different bits)
between the pattern and one of the stored patterns is small. Therefore, before
applying the methods one should ensure that data is represented in such a way
that similar pieces of information (from the point of view of the user) have similar
representations in Hamming space.

The above considerations concerning capacity assume that the weights of
the network are represented as real numbers. When in the Hopfield network the
weights are replaced by binary values, i.e., positive weights by 1 and negative
weights by -1, then the capacity drops from 0.145N to about 0.1N , i.e., it de-
creases by a factor of 0.69 [11]. A similar decrease is observed in the case of
FamE. For example, for a probability of error of 1%, the capacity decreases from
0.023N2 to 0.016N2. After the conversion of the weights to binary values, the
average value of the energy for stored patterns is not −N/2 anymore. Hence, the
energy discrimination threshold (below which patterns are classified as familiar)
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Fig. 1. Comparison of the simulated familiarity discrimination capacity of the network
with binary weights, with theoretical predictions

cannot be taken as −N/4. The threshold should be found empirically. First, one
should compute what the average energy value is for patterns stored in the net-
work (by delivering stored patterns one by one to the network and calculating
the energy without modifying the weights). Then, one should compute the av-
erage energy for a number of patterns which are not stored in the network: the
discrimination threshold should be taken as the mean of these two averages.

Figure 1 compares the simulated familiarity discrimination capacity of the
network with binary weights, with theoretical predictions. For each number of
inputs N , and for each number of stored patterns P , the behaviour of the network
was tested on 1000 random patterns. Among these patterns, 500 were stored
patterns and 500 were random patterns for which the absolute value of the
correlation with each stored pattern was less than 0.5. For each number of inputs
N , Pmax is taken as the maximum number of stored patterns for which the error
rate is ≤ 1%.

In the case of traditional databases, a database storing K records of length
N bits occupies NK bits of memory (e.g., on the disk). The number of bits
occupied on average by one record may be defined as the memory occupied by
the database divided by the number of records, that is, NK/K = N . In the
case of a network with N neurons and binary weights, the database occupies
N2/2 bits, because each weight is represented by one bit and the weights are
symmetrical, so only half of them need be stored. Assuming a probability of
error of 1%, the number of records for which FamE may discriminate familiarity
is 0.023N2 × 0.69. Hence, the number of bits occupied on average by one record
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is equal to (N2/2)/(0.023N2 ×0.69) = 31.51 bits (i.e., 3.94 bytes). In contrast to
traditional databases, here the space occupied by a record is constant and does
not depend on the number of bits in the record. For a probability of error of 10−4

the space occupied by a record is 80.52 bits (10.6 bytes) and for a probability of
error of 10−6 the space is 131.75 bits (16.47 bytes). These data show that FamE
is especially useful for databases containing large records. For example, for a
database with records of 1.5KB, the weights of the network allowing FamE to
discriminate familiarity with a probability of error of 10−6, would occupy only
about 1% of the space taken by the database with the records.

4 Implementation

Section 2 describes how the FamE algorithm works. However, before using it for
practical applications, some implementation issues need to be considered.

Every Hopfield network has limited capacity for familiarity discrimination.
The size of the network required by a particular application (i.e., the number
of neurons) is determined by the number of bits in the records. The capacity of
the network is determined by its size and required probability of error. Hence,
the network capacity may differ from the capacity required by the application
(e.g., the number of records in the database). If the capacity required is smaller,
then one can use a network with sparse connections - we have showed that if
connections are removed from the network, the storage capacity decreases in
proportion to the number of connections removed [6]. If the capacity required is
larger than can be achieved using a single network, then one can use a number of
Hopfield networks and discriminate familiarity by checking the energy of every
network one-by-one.

There are two types of errors the FamE algorithm may make: to classify a
novel pattern as familiar (false-recognition) and to classify a familiar pattern as
novel (non-recognition). Although, as we showed in [5] false-recognition errors
cannot be avoided, non-recognition errors can be eliminated. There are two meth-
ods of eliminating or reducing non-recognition errors. First, in the case where
many networks are used (to accommodate a database larger than the capacity
of a single network), the patterns written to the first network and not recognised
by it may be included in the set of patterns being written to the second network,
and so on. Second, the number of non-recognition errors may also be reduced
by using a different algorithm to modify weights. Instead of presenting all the
patterns to the network and modifying the weights only once for each pattern
according to Equation 1, one can present patterns in a number of epochs (i.e.,
show each pattern once and modify the weights, then show the patterns again
and so on). One should start with all the weights initialised to zero and for each
pattern modify the weights by an amount δ depending on how confident the
network is of the novelty of the pattern:

∆wij =
1
N

δxixj , where δ =




N/2 + E(x)
N/2

for E(x) > −N/2

0 otherwise
(3)
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The coefficient δ is large for patterns having high energy (and thus classified as
novel). Hence for such patterns the magnitude of weight modification is high.
On the other hand, δ is small for patterns having low energy, so for these pat-
terns the weights are not changed significantly. Equation 3 is a generalisation of
Equation 1, since when δ = 1, they are equivalent. We have showed in [7] that
this algorithm always finds values of weights resulting in the correct classifica-
tion of stored patterns as familiar if such values exist. In practice this means
that in many cases it eliminates non-recognition errors completely. In [7] we also
proposed a biological mechanism which may implement a similar mechanism in
the perirhinal cortex.

The results presented in section 3 concerned the case where patterns are not
correlated. The condition of uncorrelation is likely to be satisfied by the patterns
of neuronal activity for which the network of the perirhinal cortex discriminates
familiarity because, as suggested in [4], the activity of sensory neurons encodes
independent features.

The storage capacity of the Hopfield network decreases when the stored pat-
terns are correlated [11]. A similar decrease is also observed in the case of FamE.
For many real-world applications, the binary representations fo records are cor-
related. For example when the records contain text in ASCII code, then the
most significant bit of each byte is equal to zero because in ASCII code because
letters have code values less than 128 in ASCII. As demonstrated in section 5,
the correlation in data decreases the capacity dramatically, hence normally some
form of pre-processing will be required before FamE is used. In the remainder
of this section a few such pre-processing techniques are suggested, but usually,
specialised pre-processing will need to be developed for each application.

When the records in a particular application contain text, the simplest
method for removing correlation is to code the text into smaller numbers of
bits, or remove the most significant bit from each byte. We will refer to this
method as 7-bit coding. Another simple technique consists of using a code in
which each alphanumerical symbol is assigned a random 8-bit code instead of its
standard ASCII code. We will refer to this method as random coding. Since this
code is generated randomly, it possesses much less structure than ASCII and
the text records coded by random coding are less correlated than those coded
in ASCII. However, these two simple operations can only go so far in reducing
correlation.

The method most commonly used for removing correlation is Principal Com-
ponent Analysis (PCA) [20]. Although PCA is normally used for data having
continuous values, it may also be used for binary-valued data. The number of
inputs to PCA may be set as the number of bits. The number of outputs should
be smaller since PCA also removes redundancy. PCA transforms the records to
vectors of real values and those real-valued vectors can be simply converted to
binary records by replacing positive values by 1 and negative values by -1.

Removing correlation is one element of pre-processing, but one should also
ensure that similar pieces of information (from the point of view of the user) have
similar binary representations in Hamming space. This pre-processing is specific
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Table 1. Meaning of Bits in Phonetic Coding

vowels consonants
lips pos. tongue pos. voicing pos. of articulation manner of articulation
spread front, back, unvoiced bilabial, alvedar plosive fricative

middle middle labiodental, palatal, fricative
alvedar velar,

grottal

for each application, but here we show an example for record de-duplication -
an application on which we are currently testing FamE. This work is in collab-
oration with Optima, a company that produces database management software
for storing customer data for marketing purposes. These databases may contain
several millions of records and the records are quite long. The databases also
often contain duplicates of records, e.g., the same person can be included several
times with a misspelled name or an address in a different format. The duplicates
should be removed because sending marketing information to the same person
twice increases the costs and is not good for the company image. Currently,
during de-duplication, a special key for each record is generated and each key
is compared with all the others. So de-duplication of a database containing K
records requires K2/2 comparisons, which is inefficient, especially considering
the size of the databases. Hence, de-duplication is an appropriate application for
FamE.

Since duplicates are often the result of misspelling, pre-processing should
ensure that letters with similar pronunciation have similar representation. In
different languages particular letters are pronounced in different ways. Further-
more, in many languages, pairs of letters represent only one sound (e.g., ’th’ in
English). For simplicity, we assume one sound per letter and Latin pronunciation.

We code each letter into one byte, where each bit represents a certain property
of pronunciation. We refer to this coding as phonetic coding. The sounds of speech
may be classified based on the way in which the air stream is modified by the
vocal tract. The two basic groups of sounds are vowels and consonants. In our
phonetic coding, we use the first 3 bits to encode vowels and the last 5 bits to
encode consonants (i.e., for each vowel, the last 5 bits are set to 0, and for each
consonant, the first 3 bits are set to 0).

The first bit of a vowel’s code represents lips position during articulation
(i.e., spread or round), and the second and third bits represent tongue position
(i.e., front, middle or back). The first bit of a consonant’s code (i.e., fourth bit
of the phonetic code) represents voicing (i.e., voiced or unvoiced), the second
and third bits represent the position of articulation (i.e., bilabial, labiodental,
alvedar, palatal, velar or grottal), and the fourth and fifth bits represent the
manner of articulation (i.e., plosive, fricative, nasal, lateral or aproximal) [18].
The detailed meaning of each bit is shown in Table 1.
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Table 2. Comparison of Errors Made by FamE on Text with Different Pre-processing
Methods

Number of patterns per network 447 175 106
Theoretical prediction of error 1% 10−4 10−6

Error without pre-processing 67.44% 62.16% 54.89%
Error with 7-bit coding 67.25% 51.74% 41.85%
Error with random coding 26.19% 9.49% 1.86%
Error with PCA 7.2% 0.37% 0.03%
Error with random coding and PCA 1.16% 0.05% 0.03%

In phonetic coding, the codes of letters with similar pronunciation, such as
’t’ and ’d’, and ’m’ and ’n’, differ only in one bit, while the codes of letters
with different pronunciations are very different. Other methods of pre-processing
suitable to text are detailed in [9].

5 Simulation Results

Section 3 compares the storage capacity obtained in simulation with theoretical
predictions for random, uncorrelated data. However, as we mentioned in the
previous section in most applications the representation of records are correlated.
This section shows how FamE performs for correlated data. We describe tests
carried on two sets of data, one containing text and one made up of customer
records.

We tested FamE on records containing text by taking a large amount of text,
dividing it into parts of equal length, and building a database with records con-
taining these parts of the text. As the text we chose part of The Holy Bible,
Luke’s Gospel, chapters 1-10. The text occupied 65390 bytes. Different methods
of pre-processing were tested and the size of the records was chosen in such a way
that each record after pre-processing occupied 21 bytes. Hence, the size of the
network was 21x8 = 168 neurons. The number of networks used to accommodate
the whole database depended on the choice of probability of error. The algorithm
was tested for each network storing 447, 175 and 106 patterns - these numbers
were selected because they yield theoretical predictions of error of 1%, 10−4 and
10−6, respectively. To eliminate non-recognition errors, the weights were modi-
fied according to Equation 3 in two epochs, and any record still not recognised
was written to the next network (see section 4). After writing information about
the records to the network, the weights of the neurons were converted to binary
values. Then, the performance of the algorithm was tested by checking the fa-
miliarity of all records written to the network and an equal number of records
from the database which had not been written to the network. The errors were
averaged over all the networks used to accommodate the database. The errors
obtained for different methods of pre-processing are shown in Table 2.
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Table 3. Comparison of Errors Made by FamE on Customer Database with Different
Pre-processing Methods

Number of patterns per network 228 89 54
Theoretical prediction of error 1% 10−4 10−6

Error without pre-processing 52.09% 45.39% 41.96%
Error with random coding 47.46% 30.49% 20.77%
Error with phonetic coding 66.82% 54.59% 47.46%
Error with PCA 11.08% 0.51% 0.05%
Error with random coding and PCA 0.74% 0.0% 0.0%
Error with phonetic coding and PCA 5.63% 0.19% 0.03%

When FamE is applied to text without any pre-processing, it performs even
worse than chance. When one observes the results for particular networks, one
can see, that for the first network the error is about 50% (i.e., it performs at
random) and for the following networks the error increases. This increase comes
from the fact that records not recognised by one network are in the set for the
next network. The non-recognised records are the ones which are particularly
difficult for FamE, so they increase the error of the following networks.

When 7-bit coding is used (before pre-processing the records had a length of
24 bytes), the error is still very large. When random coding is used, the error
decreases slightly but is still unacceptably large.

The error is strongly reduced by using PCA pre-processing. Before pre-
processing the records had a length of 35 bytes. They were divided into 7 chunks
of 5 bytes, and PCA was applied to each chunk separately to reduce the size
of the PCA network. Each chunk was reduced to 3 bytes so the records were
reduced to 3x7 = 21 bytes. When PCA was applied to text coded in ASCII, the
error decreased to reasonable values (row ’Error with PCA’ in Table 2). It is still
far from the theoretical prediction because the correlation in ASCII code is very
large. Although the outputs from PCA are always uncorrelated [20], the patterns
delivered to the familiarity discrimination network after PCA pre-processing do
not have to be, since they are created by converting real-valued PCA outputs
to binary patterns. When one first applies random coding, and then PCA, the
actual error approaches the predicted one (last row of Table 2).

The performance of FamE was also tested on the records from a customer
database provided by Optima. For simplicity, only three fields, namely first name,
last name and city, were selected. Different pre-processing methods were tested
and the size of the records was chosen in such a way that each record occupied
15 bytes following pre-processing. Hence, the size of the network was 15x8 =
120 neurons. The algorithm was tested for each network storing 228, 89 and
54 patterns - corresponding to theoretical predictions of error of 1%, 10−4 and
10−6, respectively. Non-recognition errors were avoided using the same method
as in the previous experiment. The errors obtained for different pre-processing
methods are shown in Table 3
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Table 4. Energy Function for Records with Similar Pronunciations for Different Types
of Coding

Energy Value
First Name Last Name City Phonetic Random

Vincent Hopfield Bristol -600 -656
Fynsind Habfield Bryztol -424 -4
James Bond London -156 24
Anakin Skywalker Deathstar -36 -40

The second, third and fourth rows of Table 3 show errors obtained with
different types of coding without PCA. In these experiments, each recorded
consisted of 15 bytes, where each group of 5 bytes encoded the first five letters
of the first name, last name and city, respectively. Table 3 shows the error is
very large without PCA.

The last three rows of Table 3 show the errors when PCA pre-processing was
used. Before applying PCA, each record consisted of 21 bytes, where 7 bytes
were used for each field of the record. The size of each record was reduced to
15 bytes using a single PCA network. The error obtained for random coding is
lower than the one obtained with phonetic coding, because phonetic coding gives
more correlated records. When one looks for an exact match, phonetic coding
is the most appropriate, but in the case of de-duplication we want records with
similar pronunciations to be classified as familiar as well.

We performed another experiment to check how random and phonetic codings
work for records with similar pronunciations. We added another record to the
Optima database: “Vincent Hopfieldi, Bristol”. From each record, the first seven
letters of the first name, last name and city were encoded using random coding
and phonetic coding. The size of each record was then reduced from 21 to 10
bytes using PCA. The database consisted of 54 records and was written to a
single Hopfield network of 100 neurons. Then, the energy of the network was
checked for the stored record “Vincent Hopfiled”, a misspelled version “Fynsind
Habfield” and two other records not stored in the database. The values of the
energy function are given in Table 4. none of the names in Table 4 were in the
original Optima database.

Table 4 shows that for both types of coding, the energy is low for the stored
record “Vincent Hopfield, Bristol”, and is much closer to zero for records which
have not been stored, namely “James Bond, London” and “Anakin Skywalker,
Deathstar”. However, the energy for the record “Fynsind Habfield, Bryztol” is
low for phonetic coding and close to zero for random coding. That is because the
representations of “Fynsind Habfield, Bryztol” and “Vincent Hopfield, Bristol”
are very similar for phonetic coding, and completely different for random coding.
Hence, the phonetic coding is more appropriate when one requires records with
similar pronunciation to be classified as familiar.
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After analysing the binary representations of “Fynsind Habfield, Bryztol”
and “Vincent Hopfield, Bristol” created by phonetic coding and PCA, one can
observe that the first bits are mostly the same, while the later bits are different.
This is due to the fact that the first principal components are directions in
which the data have the highest variance, so the first outputs from PCA carry
the most information about the record [20]. The later outputs carry much less
information and hence a small change in the record may change their values very
much. This property is undesirable, because even very similar records may have
many different bits in their representations. Furthermore, when the first outputs
of PCA are transformed to binary values, much information is lost by conversion
from real to binary numbers. These properties show that PCA, although very
simple to implement, is not an ideal method of pre-processing for this application
and it would be interesting to investigate other methods of feature extraction.

6 Discussion and Conclusion

It is interesting to compare FamE with other algorithms which may potentially
be used for familiarity discrimination, e.g., hashing. Hashing is used in databases,
where records are often divided into a large number B of buckets. A hashing func-
tion takes a record’s key and produces an integer between 0 and B-1, determining
in which bucket the record should be stored.

Let us consider the following algorithm for familiarity discrimination. Instead
of storing records let us just store the values of the hashing function for these
records. To check whether a record is stored in the database, we simply compute
the value of the hashing function and check whether this value is stored in the
database.

The above algorithm seems to be very naive and vulnerable to errors. How-
ever, with a good hashing function, whose outputs have a large enough number
of bits, the probability of error is very small. For example, if the database has 106

records and the value of the hashing function is encoded on 5 bytes, the probabil-
ity of error is less than 10−6. Thus, great “compression” of information may be
achieved, as in FamE. In addition, it is possible (but with very low probability)
that a new record maps to the same value of the hashing function as one of the
stored records. Hence, it would be classified as a stored record and the algorithm
would make false-recognition errors. It is interesting that non-recognition errors
will never be made by this hashing-based algorithm, analogously to the fact that
non-recognition errors may be eliminated from FamE.

Familiarity discrimination using the hashing function is very vulnerable to
noise, however. If two patterns differ even in a single bit, their values under a
hashing function may be very different. On the other hand, FamE is very robust
to noise, since it classifies a pattern as familiar even if it differs from the stored
one in several bits.

The FamE algorithm is suitable for hardware implementation. Firstly, all the
internal summations in Equation 2 may be done in parallel for each i. Hence,
calculating energy could be done in just two processing steps. Secondly, FamE
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is very robust to damage - loss of connections between neurons or even of whole
neurons causes only a decrease in capacity proportional to the damage [5].

If such fast implementation were available, FamE could be used for search-
ing massive databases, when one does not require an exact match. Currently,
searching databases for near-exact matches is slow because normal searching
techniques such as indexing or hashing are not applicable. Large databases could
be divided into parts and records from each part encoded in the weights of the
Hopfield network thus creating a kind of “neural index”. In order to find a record
one can check the energy in each network and in this way identify whether a
similar record is stored in the database and in which part. One may then search
only the identified part using other techniques. The property of FamE that non-
recognition errors can be eliminated guarantees that if the record exists in the
database it will always be found. The false-recognition errors do not affect this
application because, even if the algorithm falsely indicates that the record is
stored in one part of the database, the further search of this part will show that
it is not stored.

This paper discusses the Familiarity discrimination based on Energy (FamE)
algorithm, inspired by the presumed computations of the perirhinal cortex. The
algorithm allows fast and accurate familiarity discrimination with high storage
capacity. The initial experiments demonstrate that FamE may be applied to
real-world problems. Many new applications for FamE are likely to emerge in
the future, especially due to the increasing sizes of Internet databases.
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