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Abstract

A set of sub-cortical nuclei called basal ganglia is critical for learning the values of actions.

The basal ganglia include two pathways, which have been associated with approach and

avoid behavior respectively and are differentially modulated by dopamine projections from

the midbrain. Inspired by the influential opponent actor learning model, we demonstrate

that, under certain circumstances, these pathways may represent learned estimates of the

positive and negative consequences (payoffs and costs) of individual actions. In the model,

the level of dopamine activity encodes the motivational state and controls to what extent

payoffs and costs enter the overall evaluation of actions. We show that a set of previously

proposed plasticity rules is suitable to extract payoffs and costs from a prediction error signal

if they occur at different moments in time. For those plasticity rules, successful learning

requires differential effects of positive and negative outcome prediction errors on the two

pathways and a weak decay of synaptic weights over trials. We also confirm through simula-

tions that the model reproduces drug-induced changes of willingness to work, as observed

in classical experiments with the D2-antagonist haloperidol.

Author summary

The basal ganglia are structures underneath the surface of the vertebrate brain, associated

with error-driven learning. Much is known about the anatomical and biological features

of the basal ganglia; scientists now try to understand the algorithms implemented by these

structures. Numerous models aspire to capture the learning functionality, but many of

them only cover some specific aspect of the algorithm. Instead of further adding to that

pool of partial models, we unify two existing ones—one which captures what the basal

ganglia learn, and one that describes the learning mechanism itself. The first model sug-

gests that the basal ganglia weigh positive against negative consequences of actions

according to the motivational state. It hints how payoff and cost might be represented, but

does not explain how those representations arise. The other model consists of biologically

plausible plasticity rules, which describe how learning takes place, but not how the brain

makes use of what is learned. We show that the two theories are compatible. Together,

they form a model of learning and decision making that integrates the motivational state

as well as the learned payoffs and costs of opportunities.
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Introduction

What guides rational behavior in a complex environment? Certainly, knowledge of the typical

payoffs and costs of acting a certain way is critical for successful action selection. Those payoffs

and costs do not only depend on the action that is carried out, but also on the environmental

state, henceforth referred to a ‘situation’. If payoffs and costs are represented separately in the

animal’s brain, they can be weighted depending on animal’s motivational (i.e. internal) state,

which can vary independently of the environmental situation. For example, consider the

action ‘harvesting fruit from a tree’ in the situation ‘close to a fruit-bearing tree’. It has a payoff

connected with the nutrients in the fruit, but also costs related to the effort, the risk of pain

and the exposure to predators associated with climbing a tree. The nutrients in the fruit are

only valuable for the animal if it is hungry, i.e. if it is in the appropriate internal state. So, when

it is hungry, the payoffs of climbing a tree which was identified as fruit-bearing should be

weighted more than the costs, to ensure that the animal searches for food. By contrast, when

the animal is not hungry at all, the payoffs should be weighed less than the costs, to make sure

that it does not climb the tree without necessity. In summary, the payoffs and costs of a specific

action (‘climbing a nearby tree’) carried out in a certain environmental situation (‘near fruit-

bearing tree’) should be weighed against each other according to the motivational state (‘hun-

ger’) to correctly asses the action’s utility.

In all vertebrates, an important role in this process of action evaluation and selection is

played by a set of subcortical structures called the basal ganglia [1]. The basal ganglia are orga-

nized into two main pathways shown schematically in green and red in Fig 1. The Go or direct

Fig 1. The organization of the basal ganglia. Circles denote neural populations in the areas indicated by labels next to

them, where D1 and D2 correspond to striatal neurons expressing D1 and D2 receptors respectively, STN stands for

the subthalamic nucleus, GPe for the external segment of globus pallidus, and Output for the output nuclei of the basal

ganglia, i.e. the internal segment of globus pallidus and the substantia nigra pars reticulata. Arrows and lines ending

with circles denote excitatory and inhibitory connections respectively.

https://doi.org/10.1371/journal.pcbi.1006285.g001
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pathway is related to the initiation of movements, while activation of the No-Go or indirect

pathway results in targeted movement inhibition [2]. These two pathways include two separate

populations of striatal neurons expressing different dopaminergic receptors [3]. The striatal

Go neurons express D1 receptors and are excited by dopamine, while the striatal No-Go neu-

rons express D2 receptors and are inhibited by dopamine [4]. Thus dopamine changes the bal-

ance between the two pathways and promotes action initiation over inhibition.

The competition between Go and No-Go pathways during action selection and the role of

dopaminergic modulation are subject of many interpretations and models, e.g. [5–7]. In par-

ticular, the Opponent Actor Learning (OpAL) hypothesis suggests that the Go and No-Go

neurons specialise in encoding the values of actions with positive or negative consequences

respectively [8]. We extend the OpAL hypothesis further by proposing that for each individual

action, the direct and indirect pathway separately encode the learned positive and negative

consequences. As the dopaminergic neurons modulate the Go and No-Go neurons in opposite

ways, dopamine controls the extent to which positive and negative consequences affect the

activity in the thalamus, through the output of the basal ganglia [8]. For example, when moti-

vation is high, the dopaminergic neurons will excite the Go neurons and inhibit the No-Go

neurons. Consequently, positive action values will influence the decision more than negative

action values. By contrast, when the motivation is low, the Go neurons tend to be excited to a

smaller degree, but the No-Go neurons will be released from inhibition, such that negative val-

ues are weighted stronger.

Much research has also focused on how the synapses of Go and No-Go neurons are modi-

fied by experience. A systematic investigation revealed that bursts of activity of dopaminergic

neurons encode outcome prediction errors, which measure the difference between outcome

(typically rewards) obtained and expected [9, 10]. Note that we use the phrases ‘outcome pre-

diction error’ and ‘reinforcement’ instead of the more common ‘reward prediction error’ and

‘reward’ respectively. This use of language emphasizes that in our theory, the feedback signal is

informative of both positive and negative events and that not only rewards but any outcome

will be compared with predictions. That perspective is well supported by experimental results;

see Discussion for a review of evidence for negative prediction errors (e.g. pauses in dopami-

nergic firing) caused by negative experiences.

Such bursts of dopaminergic activity produce distinct changes in the synaptic weights of Go

and No-Go neurons [11]. Several computational models have attempted to describe the learn-

ing process of the synapses of Go and No-Go neurons [12–15]. Among these models, the

OpAL model provided simple and analytically tractable rules describing the changes in weights

of Go and No-Go neurons as a function of outcome prediction errors [8]. However, no-one so

far examined how the basal ganglia might estimate payoff and cost if they are both associated

with the same action.

The goal of this paper is to show how the Go and No-Go neurons can learn the payoffs and

costs of individual actions through local synaptic plasticity rules. We argue that the payoffs

and costs of individual actions are not necessarily correlated (for instance, two actions might

have comparable benefits, but very different costs), and strive to construct a model that is able

to represent those independent dimensions of reinforcement for every single action. Ulti-

mately, we confront the resulting model with experimental results.

Instead of constructing a new set of learning rules from scratch, we will employ the theory

of striatal learning described in [16], which has been shown to account for diverse observa-

tions. That theory was originally developed to explain how the mean and the spread of the

reinforcement signal could be learned by the basal ganglia network. In this article, we will

prove that if the weights of Go and No-Go neurons change according to these rules, they can

eventually represent payoff and cost. In summary, we show that a set of learning rules,
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originally constructed to estimate statistical properties of the reinforcement signal, can be rein-

terpreted as rules to estimate payoffs and costs. We thus extend both the interpretation of the

striatal pathways of Collins and Frank and the striatal learning rules of Mikhael and Bogacz to

ultimately obtain a consistent theory of learning the payoffs and costs of actions.

According to the experimental and modeling work mentioned above, dopaminergic activity

encodes both information about motivational state and the outcome prediction error. How-

ever, if the dopaminergic neurons carried both signals, the striatal neurons would need a way

to decode each signal and react appropriately, i.e. change their activity according to the moti-

vation signal, and change the synaptic weights according to the prediction error. The promi-

nent suggestion that motivation might be encoded in the average or tonic dopamine level, and

outcome prediction errors in the burst or phasic activity [17] is hotly debated; it seems to be

contradicted by the observation of fast-changing dopaminergic activity that encodes motiva-

tion [18–20]. Note, though, that these apparently divergent views could potentially be recon-

ciled–see e.g. [21]. Anyhow, the motivation and teaching signals could both be provided by

other means. For example, the activity of striatal cholinergic neurons may inform what the

dopaminergic neurons encode at the moment [20]. In this paper, we assume that striatal neu-

rons can read out both motivation and teaching signals encoded by dopaminergic neurons,

and we leave the details of the mechanisms by which they can be distinguished to future work.

Results

Inspired by the OpAL model [8], we assume that synaptic weights within the Go pathway

encode positive consequences of actions, that is the positive reinforcement caused by food,

drink or other appetitive stimuli obtained through actions. More precisely, we claim that the

typical payoff of a particular action a in a particular situation s is encoded in the strength of the

connections from the cortical neurons selective for the situation to the striatal Go neurons

selective for the action. We denote these weights by G(s, a) (see Fig 1), and propose that after

learning, the weights G represent the mean payoff for an action. Mathematically, the collective

strength of the weights G corresponds to a single, non-negative number. The negative conse-

quences, on the other hand, are encoded in the synaptic connections of striatal No-Go neu-

rons. Negative consequences should be understood as the negative reinforcement induced by

aversive stimuli such as pain, effort or disgust. We denote their weights by N(s, a), and propose

that after learning, they represent the mean cost of an action. Just as with G, we mathematically

represent the collective strength of the weights N by a single, non-negative number.

To learn the positive and negative consequences of actions respectively, the striatal neurons

can take advantage of the fact that these consequences typically occur in different moments in

time. Let us consider a situation in which an animal performs an action that involves an effort

in order to obtain a reward: Fig 2a sketches a task in which a rat is given the opportunity to

press a lever in order to obtain a food pellet. Due to the effort, the instantaneous reinforcement

during the course of this action is negative at first, while pressing the lever. Then, it turns posi-

tive at the time the payoff is received. Fig 2b sketches the resulting changes in the synaptic

weights. The leftmost display shows the initial weights. While making an effort to perform an

action, the outcome prediction error is negative. Similarly as in previous models [8, 12], we

assume that the negative prediction error results in a strengthening of N (compare the red

arrows in the middle and the left displays in Fig 2b). This allows the weights N to encode nega-

tive consequences. Later, reception of the payoff causes a positive prediction error, which

strengthens G. This leads the weights G to encode the positive consequences. Here, we

assumed that–at baseline dopamine level–positive prediction errors trigger more plasticity in

the Go pathway than in the No-Go pathway, while negative prediction errors affect the No-Go
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pathway more than the Go pathway. In Discussion, we will review data suggesting that the

properties of D1 and D2 receptors allow this assumption. Generally, if an experience involves

both positive and negative consequences, both weights are increased during the experience

(compare the right and the left displays in Fig 2b).

To mathematically implement these ideas, we need to model the weighs of the Go pathway

G(s, a), the weighs of the No-Go pathway N(s, a), and the prediction error. The outcome pre-

diction error, which we denote by δ, quantifies the difference between the expected reinforce-

ment and the received reinforcement r after executing action a in situation s. If r is negative,

we shall speak of cost, and when r is positive, we shall speak of payoff or reward. The expected

reinforcement, on the other hand, directly corresponds to the expected payoffs and costs,

which–according to our theory–are represented by the synaptic weights G and N. We take the

expected reinforcement to be the average over the expected payoff and the expected cost. Alto-

gether, we model the outcome prediction error as

d ¼ r �
1

2
G s; að Þ � N s; að Þð Þ: ð1Þ

It should be clarified that this definition of the prediction error differs from one in the origi-

nal model [16], in that we introduced here a factor 1/2. This factor allows G and N to converge

to the exact payoffs and cost, and not to values proportional payoffs and costs, and hence

increases the clarity of the exposition. However, since value cannot be measured directly, the

overall scaling of values through this factor is not observable, but a mere convention.

Equipped with the quantities δ, G and N, we can formulate our theory of learning payoff

and cost. To present the theory, we simply describe how the collective connection strengths G
(s, a) and N(s, a) change when a prediction error δ is received after executing action a in situa-

tion s; we use ΔG(s, a) and ΔN(s, a) to denote the changes in relevant connection strengths.

Note that any update only applies if the resulting weights are still positive—if an update would

Fig 2. Qualitative description of learning payoffs and costs. (a) Operant conditioning chamber setup: a rat obtains a

food pellet by pressing a lever. (b) Diagrams of changes in the weights G and N associated with lever-pressing at each

stage of the experience presented in panel (a). In all diagrams, the black circles represent the cortical neurons selective

for the state (being in the operant box), and the green and red circles represent the Go and No-Go populations of

striatal neurons, respectively, selective for the action (pressing the lever). The thickness of the arrows linking the circles

represents the connection strength between the respective neuron populations. The blue shading in the background

indicates the strength of the immediate reinforcement, with a colour intensity proportional to the magnitude of

reinforcement.

https://doi.org/10.1371/journal.pcbi.1006285.g002
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render a weight negative, that weight is set to zero instead. In all other cases, we follow Mikhael

and Bogacz [16] in prescribing

DGðs; aÞ ¼ af�ðdÞ � lGðs; aÞ ð2Þ

DNðs; aÞ ¼ af�ð� dÞ � lNðs; aÞ; ð3Þ

where α is the learning rate, � is the slope parameter and λ the decay rate. The slope parameter

� controls the strength of the nonlinearity exhibited by the function f�, which we introduce in

Fig 3d and 3e. The nonlinearity of the function f� accounts for the fact that positive and nega-

tive prediction errors affect the weights differently. From here on, we drop the dependency of

G and N on a and s to simplify notation. The dependency is still implicitly assumed unless

stated otherwise.

There is a normative intuition for each term in the rules Eqs 2 and 3. These intuitions are

most easily gained by following through a couple of steps to reconstruct the rules from scratch.

We may start by observing that several models of learning in Go and No-Go neurons assume

the effect of the prediction error on G to be opposite to its effect on N [7, 8]. We thus propose

that ΔG and ΔN might simply be proportional to the prediction error and its negative, respec-

tively. To see whether this proposal works, we formulate it mathematically and simulate the

learning of an alternating sequence of costs −n and payoffs p. Fig 3a shows both the mathemat-

ical formulation and the simulation. There is a problem: the strengthening of N due to negative

Fig 3. The incremental construction of the learning rules. (a)–(c) The different stages in the construction of the learning

rules. All panels feature a mathematical formulation of the rules at the given stage and a simulation of these rules. The

reinforcements in those simulations, indicated by black dots, alternate between a fixed payoff of magnitude 20 and a fixed

cost of −20. The Go weights G are depicted in green, the negative No-Go weights −N are depicted in red. The parameters

used in the simulations were α = 0.300, � = 0.443 and λ = 0.093. (d)–(f) Definition, visualization and properties of the

nonlinear function f�.

https://doi.org/10.1371/journal.pcbi.1006285.g003
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prediction error, caused by the cost, is always immediately reversed by the following positive

prediction error caused by the payoff. The same is true for the changes in G. As illustrated by

the simulation, there is no net effect of learning.

To overcome this problem, we proceed by damping the impact of negative prediction errors

(which are usually caused by costs) on G, and the impact of positive prediction errors on N, by

introducing a nonlinear transformation of the prediction errors. This transformation is given

in form of a piecewise-linear function f�, defined and depicted in panels d and e of Fig 3. The

transformation leaves positive prediction errors invariant (f� (δ) is just the identity for δ> 0)

but reduces the impact of negative prediction errors by scaling them down (for δ< 0, f� (δ) is

linear with slope � < 1). Hence, f� introduces a pathway-specific imbalance between learning

from positive prediction errors and learning from negative prediction errors (which, as we

point in Discussion, is in accordance with the properties of dopaminergic receptors on these

pathways). For the construction at hand, it is also logical, since costs should not alter the esti-

mate G of the payoffs and vice versa. Such damping can be achieved by replacing the simple

proportionality to δ in the first proposal by a nonlinear dependence, mediated by the functions

depicted in Fig 3e. We update our mathematical formulation accordingly, and again simulate

the effects of the previously used reinforcement sequence—both these steps are illustrated in

Fig 3b. The simulation shows that, while producing the appropriate tendencies, these rules

cause unconstrained, ongoing strengthening of both connections. Such dynamics are neither

biologically plausible nor useful to infer the actual payoff and cost.

Finally, to stop unconstrained strengthening and stabilize the weighs, we balance growth

with decay. Adding decay terms to the mathematical formulation of the rules yields their final

form Eqs 2 and 3. The simulation in Fig 3c suggests that the construction was successful: the

final version of the rules allows the weights to converge to p and n respectively.

Mathematical analysis

After providing an intuitive understanding of the learning rules and their mathematical for-

mulation, we proceed to a more rigorous analytical treatment. We saw the potential of Mikhael

and Bogacz’ [16] rules to learn payoffs and costs. Appropriate choice of parameters is key to

unlock that potential, and we shall now investigate how that choice must be made. In particu-

lar, we will derive certain relations between parameters that must be satisfied for payoff and

cost to be learned.

Originally, the rules Eqs 2 and 3 were meant to describe learning of reinforcements statis-

tics. Mikhael and Bogacz [16] showed that after learning, particular combinations of G and N
will encode the mean ER and the mean spread EjR � ERj of the received reinforcements. For

further reference, we denote these important statistics by q ≔ ER and s ≔ EjR � qj. How are

the mean and the mean spread of received reinforcements related to payoff and cost? Consider

the reinforcement statistics of an action that reliably requires effort (corresponding to negative

reinforcement) to produce a payoff (which corresponds to positive reinforcement). Assume

that these reinforcements are clearly negative and positive respectively, such that one will not

be confused for the other even in the presence of noise. Repeat that action multiple times, and

record all received reinforcements, the costs as well as the payoffs. Finally, analyze how all

these received reinforcements are distributed. If an effort was required to earn the payoff, the

distribution of reinforcements will turn out bimodal, as schematically shown in Fig 4. It fea-

tures two peaks, one centered around the mean payoff p, and one centered around the mean

cost −n, respectively. Fig 4 also shows the mean q and the mean spread s of that distribution.

We observe that payoffs and costs are both exactly one mean spread s away from the center q
of the distribution—the payoff above, and the cost below. This implies that there is, at least in
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this representative case, a strong connection between payoffs and costs and the reinforcement

statistics:

p ¼ qþ s ð4Þ

� n ¼ q � s ð5Þ

This connection allows us to set up conditions for the result of learning: if G and N are to

represent payoff and cost, they must approach q + s and −q + s respectively. Equivalently, we

can ask for 1/2(G − N) and 1/2(G + N) to approach q and s in the course of learning.

After revealing the link between reinforcement statistics and payoff and cost, we are ready

to derive the relations necessary to learn the latter. To that end, we first determine the connec-

tion strengths G and N that result from training on stochastic reinforcements. Such uncertain

reinforcements are sampled at random from a fixed distribution. Then, we implement the

newly identified conditions, demanding for 1/2(G − N) to approximate q and 1/2(G + N) to

approximate s after training is finished. From these conditions, we will be able to derive the

desired parameter relations.

Working through these steps is simpler after changing variables from G and N to Q≔ 1/2

(G − N) and S≔ 1/2(G + N) right away. We saw that the new variables Q and S have a clear

computational interpretation: if learning goes as planned, Q and S track the mean q and the

mean spread s of the experienced reinforcement. To determine how Q and S change due to

prediction errors δ, we simply add and subtract the update rules Eqs 2 and 3. Certain conve-

nient properties of the nonlinear functions f� help to further simplify the resulting equations:

Fig 3f shows that subtracting and adding functions depicted in Fig 3e give functions propor-

tional to identity and absolute value, respectively. Explicitly, f�(x) − f�(−x) = (1 + �)x and f�(x) +

f�(−x) = (1 − �) |x|. Exploiting these properties, we obtain

DQ ¼ aQd � lQ ð6Þ

DS ¼ aSjdj � lS: ð7Þ

Here, for brevity of notation, we introduced the effective learning rates αQ = α(1 + �)/2 and

αS = α(1 − �)/2. Note that the changes of Q and S are proportional either to the prediction

error itself or to its absolute value, in contrast to the changes of G and N.

Fig 4. The relation of reinforcement statistics to payoff and cost. The graph shows a representative reinforcement

distribution over the magnitude r of all received reinforcements. The parts of the distribution that indicate negative

reinforcements (costs) are colored red, while the parts that indicate positive reinforcements (payoffs) are colored

green. The mean q and the mean spread s are indicated above the distribution, the mean cost −n and the mean payoff p
are indicated below the distribution.

https://doi.org/10.1371/journal.pcbi.1006285.g004
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Now, let us determine the strengths of the weights G and N, or equivalently of the variables

Q and S, after many encounters with an action. When learning the reinforcements of a previ-

ously unknown action, Q and S typically change a lot during the first trials. These changes then

get smaller and smaller as more experience is integrated—the learning curve plateaus. After

enough trials, Q and S stop changing systematically, and start to merely fluctuate about some

constant values, which we denote by Q� and S� and refer to as equilibrium points. In mathe-

matical terms, directed learning stops when we may expect Q and S to remain unchanged by

another trial, i.e. when EðDQÞ ¼ EðDSÞ ¼ 0. If that stage is reached, the equilibrium points

can be inferred by computing the mean value of the fluctuating variables: Q� ¼ EQ and

S� ¼ ES. With these identities and the learning rules Eqs 6 and 7, we can determine the equi-

librium points Q� and S�:

0 ¼ EDQ ¼ E ½aQðR � QÞ � lQ� ¼ aQðq � Q�Þ � lQ� ð8Þ

0 ¼ EDS ¼ E ½aSjR � Qj � lS� ¼ aSE jR � Qj � lS�: ð9Þ

To solve these equations, we shall make the additional assumption that the fluctuations of

Q about Q� are small. This assumption is justified whenever α is sufficiently small, and allows

us to approximate E jR � Qj � E jR � Q�j. Collecting all those intermediate results, we may

solve Eqs 8 and 9 for the equilibrium points. The solutions read

Q� ¼ cQ q ð10Þ

S� � cS EjR � cQqj; ð11Þ

with cQ = αQ/(αQ + λ) and cS = αS/λ. Those are the approximate values of Q and S after

learning.

Next, we need to implement the conditions we inferred from Fig 4. Thanks to our choice of

variables, this simply amounts to requiring that Q converge to the mean reinforcement q, and

S to the mean spread s, i.e. requiring Q� = q and S� = s. Inserting the approximate values from

Eqs 10 and 11 produced by the learning rules, we obtain

cQ q ¼ q ð12Þ

cS EjR � cQqj ¼ s ð13Þ

These equations are central to this publication. Their left-hand side represents the result of

learning according to Mikhael and Bogacz’ [16] rules. Their right-hand side specifies what

needs to be learned if G and N really represented payoffs and costs, as Collins and Frank

hypothesized [8]. Equating the left-hand and the right-hand side amounts to merging both

theories. It allows us to determine how the parameters would be related if both theories were

exactly true: for Eqs 12 and 13 to hold, α, λ and � must take values such that cQ = 1 and cS = 1.

This result evokes several questions: Is it at all possible to satisfy the derived conditions?

What do the conditions mean with respect to the parameters α, λ and �? And finally, is there a

practical way to determine sets of parameters α, λ and � which—at least approximately—satisfy

the conditions? We discuss each of these questions in the following paragraphs.

Firstly, is it possible to satisfy cQ = 1 and cS = 1 exactly? Examining the definition cQ = αQ/

(αQ + λ) quickly reveals that letting cQ! 1 would amount to letting λ! 0. To see why this is

the case, consider that cQ! 1 amounts to λ/αQ! 0. However, αQ is an effective learning rate,

and so must take values smaller then one. Thus, we really need to let λ! 0. Now, we derived

above that after learning, S will fluctuate about its equilibrium point S� � cS EjR � cQqj with cS
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= αS/λ. In order to keep the equilibrium point S� finite as λ! 0, we would therefore be forced

to have αS! 0 also. This, though, would pose a real problem: αS is the effective learning rate

for S—having it vanish would imply stopping learning in S all together. We must conclude

that strict satisfaction of the constraints cQ = 1 and cS = 1 is not compatible with non-vanishing

learning rates that lead to a finite equilibrium. Specifically, cQ = 1 can only ever hold approxi-

mately if the spread s is to be learned in finite time. Nevertheless, no such problem arises when

cS is set to 1 exactly.

Now, what do the constraints cQ� 1 and cS = 1 mean in terms of the parameters α, λ and �?

In the previous paragraph, we saw that cQ� 1 is equivalent to λ/αQ� 0. Since both λ (a decay

constant) and αQ (an effective learning rate) are inherently positive, we may rewrite this as

λ/αQ� 1. Inserting the definition αQ = α(1 + �)/2 immediately yields

2l� að1þ �Þ ð14Þ

The other condition, cS = 1, is easily translated analogously. We need only use the defini-

tions cS = αS/λ and αS = α(1 − �)/2 to obtain

2l ¼ að1 � �Þ: ð15Þ

Eqs 14 and 15 constitute the exact relations between the parameters α, λ and � that need to

hold for payoffs and costs to be estimated accurately. They cannot be further simplified, but

we may use them to gain some more insight into the required magnitudes of the individual

parameters: by substituting 2λ according to Eq 15 on the right-hand side of Eq 14, one obtains

a condition of the form 1 − �� 1 + �. Now, given that the intended range for � is [0, 1], one

quickly reaches the conclusion that �� 1. Reinserting this into Eq 14 yields λ� α. In conclu-

sion, we found that it is necessary (though not sufficient) for accurate learning of payoffs and

costs to maintain a small, but non vanishing nonlinearity � in the transmission of the predic-

tion error signal, as well as a non vanishing decay rate λ, which is much smaller than the learn-

ing rate α.

Finally, how can such parameters α, λ and � practically be determined? To implement the

conditions cQ� 1 and cS = 1, one can for instance express λ and � in terms of α, cQ and cS. It is

tedious, but without conceptual difficulty to invert the definitions of cQ and cS in order to yield

� = (1 − cS(1/cQ − 1))/(1 + cS(1/cQ − 1)) and λ = α(1 − �)/(2cS). Then, one chooses α freely at

one’s convenience, and cQ and cS close (or, in case of cS, equal) to one. Importantly, cQ must

be chosen smaller then one to result in a positive λ. From these choices, one finally obtains

� and λ to work with the chosen α. Our simulations suggest that even values such as cQ = 0.7

and cS = 0.9, in combination with a learning rate of, say α = 0.3, are close enough to one to

allow reasonably accurate estimations of payoff and cost. This can be seen in Fig 3: the

simulations shown in there used those exact settings, which equivalently means that � = 0.443

and λ = 0.093.

In summary, we used a statistical argument–the connection between payoffs and costs and

the reinforcement statistics–to determine conditions under which payoffs and costs can be

learned with the update rules Eqs 2 and 3.

Deterministic reinforcement sequences

In the preceding section, we derived relations that are necessary for successful learning of pay-

off and cost. If rewards are awarded stochastically, those relations are also sufficient for suc-

cessful learning. But what happens to the weighs G and N if the received reinforcements follow

a strong pattern? Assume, for instance, that an action reliably yields a fixed cost −n followed
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by a fixed payoff p. Under which additional conditions do G and N then still reflect the magni-

tudes of payoff and cost after learning?

To answer that question, we must again determine the connection strengths that result

from experiencing the action time and again. Now, we do not have to rely on a probabilistic

treatment—when the pattern of the reinforcements is fully known, it is possible to determine

the evolution of G and N exactly. As in the previous section, we will concentrate on the result

of learning rather than on its dynamics. Here, this amounts to determine the fixed points of

the learning rules. These fixed points are simply those values of G and N (or equivalently of the

alternative variables Q and S we defined above) that are invariant under the updates caused by

the action. We denote the fixed points by G� and N�, or Q� and S�. During learning, the vari-

ables converge to their respective fixed points and cease to change notably once they arrive in

their vicinity.

First, we focus on determining the fixed point of Q. Note that each encounter with the

action yields two updates of Q: one due to the cost and one due to the payoff. Mathematically,

we can formulate this as

Qafter action ¼ Qbefore action þ ðDQÞcost þ ðDQÞpayoff : ð16Þ

To find Q�, demand that these successive updates have no net effect on Q: If Qafter action

equals Qbefore action, then Qbefore action can rightfully be called fixed point. If this is so, the two

updates must have canceled each other:

ðDQÞcost þ ðDQÞpayoff ¼ 0 ð17Þ

This condition, in combination with the update rules Eqs 2 and 3, allows to determine Q�

in terms of p, n and the parameters α, � and λ. First, we use the update rule Eq 6 for Q to write

(ΔQ)cost as

ðDQÞcost ¼ aQðrcost � Qbefore actionÞ � lQbefore action

¼ aQð� n � Qbefore actionÞ � lQbefore action:

Then, one uses the rule again to write (ΔQ)payoff as

ðDQÞpayoff ¼ aQðrpayoff � Qafter costÞ � lQafter cost

¼ aQðp � Qafter costÞ � lQafter cost

¼ aQðp � ðQbefore action þ ðDQÞcostÞÞ � lðQbefore action þ ðDQÞcostÞ:

Finally, one substitutes (ΔQ)cost from above into this expression, and then inserts (ΔQ)cost

and (ΔQ)payoff into Eq 17. Solving the equation for Qbefore action, which in case of Eq 17 is identi-

cal to Q�, yields

Q� ¼
1

2 � aQ � l
n aQ þ l � 1
� �

þ p
� �

; ð18Þ

where αQ = α(1 + �)/2. Now, recall that the definition of Q in terms of G and N is Q = 1/2(G −
N), and that true payoffs and costs of in this model are p and n. If G and N represented the true

payoffs and costs after learning, it must be true that G� � p and N� � n, and thereby

1

2 � aQ � l
n aQ þ l � 1
� �

þ p
� �

�
1

2
p � nð Þ: ð19Þ
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Just as Eqs 12 and 13, this equation is an interface between the results of Mikhael and

Bogacz’ [16] update rules on the left-hand side and the requirement that Go and No-Go

weights encode payoffs and costs on the right-hand side. For both sides to agree, we must have

aQ þ l � 0: ð20Þ

This is a novel condition for learning the correct magnitudes of payoffs and costs from a

deterministic reinforcement pattern. The definition of αQ and the previously derived condi-

tions in Eqs 14 and 15 may be used to transform this novel condition into the simpler form α
� 1.

Next, we repeat the same analysis for S. Since we search for additional conditions on the

parameters, we are free to use the original conditions in Eqs 14 and 15 to simplify our calcula-

tions. The only complication we encounter is the appearance of Q in the update rules of S,

which we resolve by substituting Q with Q�, acknowledging that the fixed points of S and Q
depend on each other. We arrive at

S� �
1

2
pþ nð Þ: ð21Þ

Again, using the definition S = 1/2(G + N) allows comparing the result of learning with

the strengths required to represent payoffs and costs. We immediately find that G� � p and

N� � n already hold. Thus, Eq 20 is the only additional condition for successful learning of

payoff and cost from reinforcements that follow a strong pattern.

From the results presented in this section, we conclude that the learning rules Eqs 2 and 3

facilitate learning of the magnitudes of fixed payoffs and costs that occur reliably one after the

other. However, we also saw that this is only true if Eq 20 holds in addition to the conditions

that we derived in the previous section.

Summary of analytic results

The analysis above revealed the conditions under which the striatal plasticity rules Eqs 2 and 3

could learn the magnitudes of the payoffs and costs of actions. We identified the conditions in

two different paradigms: first, we investigated learning from purely stochastic reinforcements

sampled from a fixed distribution. Then, we considered a deterministic pattern of reinforce-

ments. We obtained two key results:

• Consider a reinforcement distribution—obtained from multiple encounters with an

action—that is shaped by payoffs and cost, as the one shown in Fig 4. If trained on reinforce-

ments sampled from that distribution, the plasticity rules Eqs 2 and 3 will enable learning of

the mean payoffs and costs if

2l� að1þ �Þ ð22Þ

2l ¼ að1 � �Þ ð23Þ

hold. These conditions imply–but do not follow from–a non-vanishing but small nonlinear-

ity in the transmission of the prediction error, and a non-vanishing but small decay of the

connection weights. Here, a small decay is characterized by a decay rate λ which is small

compared to the learning rate α.

• If trained on a pattern of reinforcements that alternates between payoffs of magnitude p and

costs of magnitude n, the plasticity rules Eqs 2 and 3 will capture those exact payoffs and
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costs if, in addition to Eqs 22 and 23,

a� 1 ð24Þ

holds. In words, unbiased learning of payoffs and costs in deterministic scenarios explicitly

requires a small learning rate α.

Simulations of learning

The previous sections revealed what to expect from training the learning rules Eqs 2 and 3 on

certain types of reinforcement. Specifically, we investigated the connection strengths G and N
after many experiences of either totally predictable or totally random reinforcements. In this

section, we aim to confirm and extend those results using numerical simulations rather than

analytic methods.

Fig 5 shows the results of simulating the gradual change of connection weights in four dif-

ferent tasks. In all those simulations, G and N change according to the learning rules Eqs 2 and

3. The parameters we used roughly fulfill the conditions Eqs 12 and 13 for learning of the cor-

rect magnitudes of payoffs and costs, but are also chosen to facilitate quick convergence. The

values presented in Fig 5a mirror that compromise.

The simulation in Fig 5a is based on a repeating an action that reliably results in a cost −n,

followed by a payoff p. An analytic treatment of that case can be found in the previous sections.

Both weights constantly oscillate due to the alternation of payoff and costs. This oscillating

behavior is superimposed with learning curves that take the weights from their initial values

towards the magnitudes of the payoffs and costs respectively. After 30 trials, G and N represent

good approximations of p and n. Fig 5b is similar to Fig 5a, with a slight variation: Just as in

Fig 5a, payoffs and costs alternate reliably. But while the cost is again held constant at −n, this

time the payoff P is sampled from a fixed distribution (a normal distribution with mean p and

non-vanishing variance) in each trial. Thus, the task includes both stochastic and deterministic

components: each repetition of an action results in a fixed cost, which is followed by an uncer-

tain reinforcement. The depicted simulations show that under such conditions, N eventually

represents the cost n, while G converges towards the mean payoff p ¼ EP.

Finally, Fig 5c and 5d contain simulations of repeated actions with reinforcements drawn

completely at random from fixed distributions. In Fig 5c, the obtained reinforcements are val-

ued either p or −n, with probabilities 1/2 each. In Fig 5d, reinforcements are sampled from a

normal distribution with mean μr = 1/2(p − n) and standard deviation of

sr ¼ 1=2
ffiffiffiffiffiffiffiffi
p=2

p
ðpþ nÞ. We simulate the experience resulting from such actions by sampling

reinforcements from a fixed distribution on each trial. The stochastic nature of this procedure

causes the evolution of the weights G and N to be different each time the simulation is run. To

overcome that effect and segregate random fluctuations from reproducible effects, we collect

and average a large number of runs. Each row in Fig 5b–5d contains both a single run of the

simulation and an average of 500 successive runs. In the above sections, we proved that in

purely stochastic tasks, the weights would approximate key statistics of the reinforcement dis-

tribution after convergence. Those statistics are indeed approximated in the simulations, con-

firming the results of the analytic treatment above.

Simulations of the effect of D2 blocking

In the previous sections, we focused on the change of the synaptic weights associated with a

single action during the accumulation of experience. In this section, we redirect our attention.

Instead of considering one action during learning, we now consider multiple actions after
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Fig 5. Simulations of learning. In all graphs, the collective strength G of the Go weights is depicted in green, while the

negative collective strength −N of the No-Go weights is depicted in red. The received reinforcements are indicated by

solid black dots in the panels on the left, and by transparent black dots in the panels on the right. Each simulation

shows how G and N change due to the reception of 30 prediction errors. Panel (a) contains a simulation based on

predictable, alternating reinforcements. It also contains the parameter values used for the simulations. Panels (b) to (d)

show both single and averaged simulations of stochastic reinforcements: On the left, we show a single sequence of

learning, with reinforcements sampled from different distributions. On the right, we show averages over many such

sequences of learning. There, the mean weights are depicted as green and red lines, while the shaded green and red

areas around these lines of G and N in the right column indicate one standard deviation. The bars to the right of the

averaged learning curves indicate the mean and mean spreads of the respective reinforcement distributions.

https://doi.org/10.1371/journal.pcbi.1006285.g005
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learning, and ask: can effects of dopamine depletion on choice behavior be explained in terms

of payoffs versus costs?

In a classic experiment illustrated in Fig 6a, rats were given a choice between pressing a

lever in order to obtain a nutritious pellet and freely available lab chow [22]. Normal animals

were willing to work for pellets, but after blocking D2 receptors with the drug haloperidol they

Fig 6. Effects of D2 blocking on the willingness to exert effort. (a) Schematic illustration of the experimental setup.

(b) Action selection in control state. Green and red circles on the left denote striatal Go and No-Go neurons associated

with pressing the lever, while the green and red circles on the right denote the neurons associated with approaching the

free food. The strengths of the synaptic connections, which result from simulated learning, are indicated by the

thickness of the arrows, and the labels. The parameters used for the simulations were obtained through a fit of the

model to the experimental data. The blue circle represents a population of dopaminergic neurons, and its shading

indicates the level of activity. (c) Action selection in the dopamine-depleted state. The notation is the same as in panel

(b), with the thick red circles indicating enhanced activity in the No-Go population, which results from blocked

dopaminergic inhibition (symbolised by the smaller inhibitory projections of the dopamine neurons).

https://doi.org/10.1371/journal.pcbi.1006285.g006
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were not any more willing to make an effort and preferred a less valuable but free option. Col-

lins and Frank [8] provided a mechanical explanation for this surprising effect. The theory

proposed in this paper accounts for it in a conceptually similar but slightly simpler way. Here,

we explain our modeling of the experiment and then describe the simulations—the differences

to the account of OpAL model are pointed out in Discussion.

To model the experiment, we need to specify how the striatal weights G and N and the

motivation signal transmitted by dopamine affect the output of the basal ganglia system, and

how that output then affects choice. We refer to the output of the basal ganglia as the thalamic

activity, denoted by T. T depends on the cortico-striatal weights G and N, and dopaminergic

motivation signal denoted by D. Even though this relationship might admittedly be complex,

we restrict ourselves to just capture the signs of the dependencies by using a linear approxima-

tion:

T ¼ DG � ð1 � DÞN ð25Þ

In the above equation, the first term DG corresponds to the input from the striatal Go neu-

rons. This term is positive because the projection from striatal Go neurons to the thalamus

involves double inhibitory connections (see Fig 1) resulting in an overall excitatory effect. The

activity of the Go neurons depends on synaptic weights G. We assume that their gain is modu-

lated by the dopaminergic input D, extrapolated from the observation of an increased slope of

the firing-input relationship in the presence of dopamine in pyramidal neurons expressing D1

receptors [23]. These data are replotted in Fig 7a. The second term −(1 − D)N corresponds to

the input from the striatal No-Go neurons. It has a negative sign because the projection form

the No-Go neurons to the thalamus includes three inhibitory connections. The activity of the

striatal No-Go neurons depends on their synaptic weights N, and we assume that their gain is

reduced by dopamine, so the synaptic input is scaled by (1 − D). This assumption is based on

data showing that agonists reduce the slope of the firing-input relationship of striatal No-Go

Fig 7. fI-curves of D1- and D2-expressing neurons at different levels of receptor activation. (a) fI-curves of a

D1-expressing pyramidal neuron, replotted from [23]. The blue points are recorded from a neuron at a higher level of

D1 receptor activation (e.g. with dopamine present), the black points are recorded at a lower level of receptor

activation (e.g. without dopamine). Smooth curves have been obtained from the data through LOESS regression to

serve as visual guides (black and blue lines). (b) fI-curves of a D2-expressing neuron, replotted from [24]. The blue

points are recorded from a neuron at a higher level of D2 receptor activation (e.g. in the presence of the D2 agonist

quinpirole), the black points are recorded from a neuron in the control group at a lower level of D2 activation (e.g. in

the absence of the agonist). As in panel (a), LOESS curves (black and blue lines) have been added as visual guides.

https://doi.org/10.1371/journal.pcbi.1006285.g007
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neurons [24], which are replotted in Fig 7b. Those assumptions about the impact of dopamine

on the activity of striatal neurons are backed up by detailed modeling studies [25, 26], which

predict precisely that dopamine enhances activity in the Go- and inhibits activity in the No-Go

pathway. In Eq 25, we further assume that D 2 [0, 1] and that the value of D = 0.5 corresponds

to a baseline level of dopamine for which both striatal populations equally affect the thalamic

activity.

Although arising from a slightly different induction, the action value defined by Eq 25 is

directly proportional to the action value proposed by Collins and Frank, which is defined by

Eq 4 of their publication [8]: Q/ βGG − βNN. One easily verifies the direct proportionality of

the two expressions by rewriting

D ¼ 1=2ð1þ ðbG � bNÞ=ðbG þ bNÞÞ:

How does thalamic activity affect choice? Again, we use a very simple dependency to cap-

ture the key aspects of that relationship: In our model of the experiment, we calculate the tha-

lamic activity for each option. Then, we add some random noise independently to each

option. Finally, all options with negative noisy thalamic activity are discarded, and the option

with the highest noisy thalamic activity is chosen. If the noisy thalamic activity is negative for

all available options, no choice will be made; the model defaults to staying inactive.

Often in similar situations, the softmax rule is the preferred choice procedure. According to

that rule, one should first transform the set of different action values (or thalamic activities in

this case) into a probability distribution over the available actions, by use of the softmax func-

tion. Then, one should sample an action from that distribution, and declare it the choice of

that trial. Collins and Frank’s OpAL model [8] exemplifies the use of the softmax rule.

We deliberately decided against this conventional approach and in favor of the above-

described procedure to accommodate a certain feature of the data presented in [22]: The

group with D2 antagonist differed from the control group not only in their willingness to work

for food but also in their overall food consumption. The rats with D2 antagonist consumed

less food in total (see Fig 8c). We can hope to capture this effect with our model, since it allows

for the possibility to make no choice at all, and thus consume neither of the food items. A soft-

max decision rule, on the other hand, forces a choice on each trial, and must therefore always

lead to the same number of consumed food items.

Finally, how does the drug haloperidol affect the thalamic activity, and hence choice? Halo-

peridol is a D2 antagonist; it blocks the D2 receptors on the medial spiny neurons of the No-

Go pathway. This blocking reduces the (inhibiting) impact of dopamine on the activity N of

that pathway. To account for this in our model, we introduce another factor κN 2 [0, 1] into

our expression for the thalamic activity:

T ¼ DG � ðð1 � kNDÞN: ð26Þ

The parameter κN controls the how much dopamine affects the activity of the No-Go path-

way N, and is hence suitable to model D2-blocking: κN = 1 recovers the normal thalamic activ-

ity given in Eq 25, while κN = 0 (total blocking) fully removes the impact of dopamine on the

indirect pathway, leading to completely uninhibited activity N. In the control group of the

experiment, κN is set to 1 (no medication is administered, no blocking happens). In the group

that received the medication, κN is a free parameter that must be fitted to the data. The best fit

featured κN = 0.7507, corresponding to blocking of D2 receptors with an efficiency of roughly

25%.

Fig 6b illustrates how the model can account for the behaviour when the dopamine level

has a normal baseline value. In the figure, the strength of the cortico-striatal connections is
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denoted by the labels and the thickness of arrows. Pressing the lever gives a high payoff, so the

weights of Go neurons selective for this action are strong, but it also has a substantial cost, so

the No-Go weights are also present. On the other hand, the free food is not particularly nutri-

tious so the Go weights are weak, and there is no cost, so the No-Go weight is negligible.

When no medication is administered, the positive and negative consequences are weighted

equally, so the thalamic neurons selective for pressing the lever have overall slightly higher

activity, which ultimately leads to a higher likelihood for this action to be chosen over the free

option. By contrast, Fig 6c shows that when the D2 receptors are blocked, costs are weighted

more than payoffs, and the thalamic activity associated with pressing the lever decreases.

Approaching free food has only negligible cost; therefore, the activity of thalamic neurons

selective for this option is now higher, and this action is overall more likely to be chosen.

A quantitative fit of our model to Salamone et al.’s experimental results [22] is illustrated in

Fig 8. The panels on the left side in Fig 8 summarize experimental data: the top-left display cor-

responds to a condition in which both high-valued pellets and the low-valued lab chow were

freely available. In this case, the animals preferred pellets irrespective of the dopamine level.

The bottom-left panel corresponds to the condition in which the animal had to press a lever in

order to obtain a pellet, and as mentioned before, after injections of a D2 antagonist they

started to prefer the lab chow.

In our model of the experiment, we run through a sequence of trials mimicking those illus-

trated in Fig 6: on each trial, the model makes a choice between two actions—pressing a lever

or approaching lab chow—or remains inactive. Before the main experiments, the animals were

trained to press a lever to obtain rewards and were exposed to the lab chow [22]. To parallel

this in simulations, the model was first trained such that it experienced each action a number

Fig 8. Frequency of choosing pellets (dark blue) and lab chow (light blue) in control and D2-blocked states. The

top displays (a) and (b) correspond to a condition with free pellets, while the bottom displays (c) and (d) correspond to

a condition where pressing a lever was required to obtain a pellet. The left displays (a) and (c) re-plot experimental

data. The values in (a) were taken from Figure 1 in the paper by Salamone et al. [22]: pellet consumption was 15.5g and

15.7g in control and D2-blocked state, while chow consumption was 0.2g and 0.8g respectively. The values in (c) were

taken from Figure 4 in [22]: pellet consumption was 7.2g and 2.1g in control and D2-blocked state, while chow

consumption was 3.9g and 7g respectively. The right displays (b) and (d) show the results of simulations. The

parameters used to simulate learning were α = 0.1, � = 0.6327 and λ = 0.0204.

https://doi.org/10.1371/journal.pcbi.1006285.g008
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of times, received corresponding payoffs and costs, and updated its weights according to Eqs 2

and 3. The weights resulting from that learning are reported in Fig 6b and 6c. Then, the model

was tested with and without blocking, e.g. with κN a variable and κN fixed to one. As described

in Materials and Methods, the parameters of the model were optimized to match experimen-

tally observed behavior. As shown in the right displays in Fig 8, the model was able to repro-

duce the observed pattern of behavior. This illustrates the model’s ability to capture both

learning about payoffs and costs associated with individual actions and the effects of the dopa-

mine level on choices.

Robustness

Above, we dedicated a whole section to derive conditions for the parameters of the learning

rules Eqs 2 and 3 to guarantee correct (i.e. unbiased) estimation of payoffs and costs. We also

pointed out that these conditions cannot be satisfied exactly even in theory; in fact, our own

simulations throughout this paper yield parameter settings that significantly violate the condi-

tions. The proposed biological implementation of the rules, certainly imperfect and subject to

unpredictable influences, is yet less likely to feature parameters close to the constraint surface.

How robust is the presented learning algorithm under parameter detuning? How much varia-

tion around the conditions can the rules take without breaking? Here, we first describe the

effect of parameter detuning on the values to which Go and No-Go weights converge. Then,

we argue that the algorithm will still produce useful results even under substantial detuning of

the parameters.

We are interested in the coding of payoffs and costs after learning, and should therefore

investigate the equilibrium values G� and N� of G and N. Those equilibrium values may be

obtained via combination of the equilibrium values of Q� and S� given in Eqs 8 and 11:

G� ¼ Q� þ S� � cQqþ csEjR � cqqj � cQqþ css ð27Þ

� N� ¼ Q� � S� � cQq � csEjR � cqqj � cQq � css: ð28Þ

Here, we assumed that the average spread around cQ q is approximately equal to the average

spread around q, which is a good approximation if the spread of a distribution is comparable

to the mean. Next, we can use the relation of payoffs p and costs n to the statistics q and s of the

reinforcement distribution they generate. These relations are given in Eqs 4 and 5; inverting

and inserting those yields

G� �
1

2
cQ þ cS
� �

p �
1

2
cQ � cS
� �

n ð29Þ

N� � �
1

2
cQ � cS
� �

pþ
1

2
cQ þ cS
� �

n: ð30Þ

We observe that as long as cQ = cS, the Go and No-Go weights converge to the vicinity of

values proportional to the payoffs and costs. Thus, as long as cQ = cS, the payoffs and costs are

encoded separately in the two pathways.

Expressed in terms of the elementary parameters α, λ and �, and solved for �, this condition

becomes

� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2l=aÞ
2
þ 1

q

� 2l=a: ð31Þ
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A second solution of the condition exists; however, it yields � < 0, which is biologically

implausible. Hence, we ignore that second solution and focus our attention on Eq 31: if λ/α is

very small (i.e. if decay is weak relative to learning), then � approaches one, rendering the

learning rules approximately linear. If, on the other hand, λ/α is very large (i.e. decay is very

strong compared to learning), then � approaches zero, rendering the learning rules maximally

non-linear. This relationship between � and λ is not surprising; in fact, we have seen in Fig 2

that decay is necessary to balance the unconstrained strengthening of the weighs that results

from introducing the nonlinearity (compare Fig 2b and Fig 2c). Eq 31 makes this manifest: the

stronger the nonlinearity (i.e. the closer � gets to zero), the stronger the decay relative to learn-

ing–and vice versa.

Now, after investigating the effect of detuning on G� and N�, let us explore the effect of

detuning on the thalamic activity T, which is the relevant output of our model as far as action

selection is concerned. Substituting the above equations into the definition of thalamic activity

in Eq 25 we obtain:

T ¼ p
1

2
cQ �

1

2
cS þ DcS

� �

� n
1

2
cQ þ

1

2
cS � DcS

� �

ð32Þ

When cQ = cS 6¼ 1, the thalamic activity becomes scaled by a constant cS, but as this scaling con-

stant is the same for all actions, the network can still select actions on the basis of payoffs and

costs modulated by motivation signal D, in the same way as described in the previous subsec-

tion. Importantly, the effect of dopamine–to emphasize the payoff when increased, and

emphasize the cost when decreased–is present as long as cS> 0 even if cQ 6¼ cS. These signature

effects of the proposed mechanism are thus robust even under significant detuning. However,

the disadvantage of setting parameters such that cQ 6¼ cS is that the dopaminergic motivation

signal D would have a relatively smaller effect on changing the weighting between payoffs and

costs; for example the payoffs or costs could no longer be ignored by setting D to its extreme

values of 0 or 1. From this analysis, we may conclude that while action selection is quite robust

under violation of the derived conditions, dopaminergic regulation works most effectively if

the conditions are met approximately.

An actor-critic variation

So far, we assumed that the outcome prediction is computed by the same striatal neurons that

encode the payoffs and costs of actions. Only one network was involved: that which is respon-

sible for the choice of action. We refer to such a network as ‘actor’ in the remainder of this

exposition. In this section, we look at how the theory described above generalizes to the actor-

critic framework [27]. That framework assumes that the outcome prediction is not computed

by the actor, but by a separate group of striatal patch neurons called the ‘critic’. More formally,

the purpose of that critic is to learn the value V of the current state.

One way to generalize our theory in this direction is to keep the actor network unaltered,

while supplementing it with a similar critic network that learns by the very similar rules Eqs 2

and 3:

DGcriticðsÞ ¼ af�ðdÞ � lGcriticðsÞ ð33Þ

DNcriticðsÞ ¼ af�ð� dÞ � lNcriticðsÞ ð34Þ

The crucial difference between the actor and the critic is that the critic network is not selec-

tive for the action, but only for the situation (note that Gcritic(s) and Ncritic(s) depend on s, but

not on a, as opposed to Gactor (s, a) and Nactor (s, a)). It thus learns the value of a situation
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irrespective of the actions chosen. Importantly, the critic is in charge of supplying the outcome

predictions. Those predictions are compared to the actual outcomes to produce the outcome

prediction errors δ from which both networks learn.

We take the state value to be encoded in the difference of Gcritic(s) and Ncritic(s): Vcritic(s) =

1/2(Gcritic(s) − Ncritic(s)). The change of the state value on each trial can be obtained by sub-

tracting Eqs 33 and 34:

DVcritic sð Þ ¼ a
ð1þ εÞ

2
d � lVcritic sð Þ ð35Þ

The prediction error δ—which teaches the actor as well—is the difference between the

obtained reinforcement r and the reinforcement prediction by the critic:

d ¼ r � VcriticðsÞ ð36Þ

What would be learned with that architecture? If the same action is selected on each trial,

the actor will learn in exactly the same way as the critic. Then, the prediction error in the

actor-critic model is the same as in the actor-only model described above, and the weights of

the actor in the actor-critic model converge to exactly the same values as for the actor-only

model. However, this reasoning does not seem to apply if more than one action is available:

empirically, animals then select the actions that maximize their rewards in their own percep-

tion. In the process of learning, they will likely sample all available actions.

If such behavior generates input for an actor-critic model, the critic will integrate the expe-

rience of all those trials, and will thus represent a mixture of the expected reinforcements asso-

ciated with the available actions. This generally interferes with correct learning of the payoffs

and costs of the different actions. However, there is a caveat: one of the available actions will

eventually prove most useful; as soon as the animal has determined that best action, it will

select it in the majority of cases. That, in turn, forces the critic into mainly representing the

expected reinforcement of this best action. As a final consequence, also payoff and cost of that

best action are inferred correctly.

We confirmed this empirically for the model specified above: in Fig 9, we present simula-

tions of a task in which the subject must choose between two actions. Both actions reliably

yield a constant cost followed by a constant payoff each time they are selected. One of the

actions is unambiguously superior to the other: its payoff is larger and its cost is lower.

Both an actor-only model and an actor-critic model interacted with that task. On each

trial, an action was selected by sampling from a softmax distribution over all available actions:

the probability of choosing action a in situation s was proportional to exp (βQ(s, a)), where

Q(s, a) = 1/2(G(s, a) − N(s, a)) was the action value, and β was the softmax temperature. Fig 9

shows the temporal evolution of the involved synaptic weights over the course of learning.

Fig 9a and 9b depict the actor-only evolution of the weights G and N that encode the payoffs

and costs of actions 1 and 2, respectively. For both actions, payoffs and costs are learned cor-

rectly. Learning is notably slower for action 1. This is easily explained: action 1 is the worse of

the two options and thus chosen much less frequent. In contrast, the actor-critic driven evolu-

tion of the same weights presented in Fig 9d and 9e leads to a correct estimate of the payoff

and cost only for the superior action 1. Learning is impaired for the inferior action 2, as antici-

pated in the qualitative discussion above. The state value, presented in Fig 9c, provides further

confidence in the validity of that discussion: Instead of encoding a mixture of the values of all

available actions, it converges to the value of the superior action, indicated by the higher of the

two dashed lines.
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What have we learned in this section? We set out to analyze an actor-critic formulation of

our model, where the feedback signal that teaches the actor is computed by a different network

called the critic. We found that our formulation (which is by no means the only possible one)

enables the actor to learn accurate estimates of the payoffs and costs of the most advantageous

action from the critic’s feedback. The payoffs and costs of the other actions were not estimated

as accurately, which was due to a sampling bias towards more rewarding options. This does

not necessarily compromise behavior–after all, one may trust the model to provide accurate

information on the actions that are most frequently picked, and thus to be helpful in the

majority of cases. However, we believe that a more sophisticated actor-critic variant of our

model could conceivably provide good estimates of the payoffs and costs of all actions. The

development of this improved actor-critic variant is left to future work; here we merely dem-

onstrate that our model is not meant to compete with actor-critic models, but rather to com-

plement them.

Discussion

This article describes how the positive and negative consequences of actions can be separately

learned on the basis of a single teaching signal encoding outcome prediction error. In this sec-

tion, we relate the theory with data and other models, state experimental predictions, and high-

light the directions in which the theory needs to be developed further.

Fig 9. Actor-only in comparison with actor-critic learning. The columns labeled with ‘action value 1’ (panels a and

d) and ‘action value 2’ (panels b and d) show the simulated evolution of the collective synaptic weights G and N of the

actor network over 30 successive trials. The first row (panels a and b) shows the evolution of the actor network in an

actor-only architecture, while the second row (panels d and e) provides the evolution of the actor in an actor-critic

architecture. The weights G are drawn as solid green lines, the negative weights-N are drawn as solid red lines. The

reinforcements obtained by choosing the respective actions are indicated by black dots. For the actor-critic simulations

(second row), we additionally provide the evolution of the state value in panel c. There, the state value Vcritic is

represented by a solid purple line. The expected reinforcements of both actions are indicated by dashed horizontal

lines. The parameter settings used in these simulations were α = 0.4, � = 0.519, λ = 0.1013 and β = 0.9. The same set of

parameters was used for both the actor-only and the actor-critic model.

https://doi.org/10.1371/journal.pcbi.1006285.g009
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Relationship to experimental data

The model described in this paper was shown in simulations to avoid actions that require

effort when the motivational signal was reduced. The unwillingness to make an effort for

reward in dopamine-depleted state has also been observed in other paradigms: During a choice

in a T-maze, dopamine-depleted animals were less likely to go to an arm with more pellets

behind the barrier, but rather chose the arm with easily accessible but fewer pellets [28]. Par-

kinson’s patients were not willing to exert as much physical effort by squeezing a handle in

order to obtain reward as healthy controls, especially if they were off medications [29]. These

effects can be explained in an analogous way [8] by assuming that in the dopamine-depleted

state the effort of crossing the barrier or squeezing a handle is weighted more, resulting in

lower activity of thalamic neurons selective for this option. Both in OpAL and the model pro-

posed here, reducing the dopamine level reduces the tendency to choose actions involving

costs, and thus changes preferences.

Let us now consider how the weight changes in our model relate to known data on synaptic

plasticity in the striatum. Fig 10b illustrates the weight changes when an animal performs an

action involving a cost n in order to obtain a payoff p (Fig 10a), e.g. pressing a lever in order to

obtain a pellet. The direction of changes in G and N depending on the sign of δ are consistent

with the changes of synaptic weights of Go and No-Go neurons observed at different dopa-

mine concentrations. Fig 10c shows experimentally observed changes in synaptic strengths

when the level of dopamine is low (displays with white background) and in the presence of

agonists (blue background) [11]. Note that the directions of change match those in the corre-

sponding displays above, in Fig 10b.

These directions of changes in striatal weights are also consistent with other models of the

basal ganglia [8, 12], but the unique prediction of the rules described in this paper is that the

increase in dopaminergic teaching signal should mainly affect changes in G, while the decrease

in dopamine should primarily affect N. Thus, the dopamine receptors on the Go and No-Go

neurons should be most sensitive to increases and decreases in dopamine level respectively.

This matches the properties of these receptors. The D2 receptors on No-Go neurons have a

higher affinity and therefore are sensitive to low levels of dopamine compared to D1 receptors

on Go neurons [31]. This property is illustrated in Fig 10d where the green and red curves

show the probabilities of D1 and D2 receptors being occupied as a function of dopamine con-

centration. The blue dashed lines indicate the levels of dopamine in the striatum predicted to

result from the spontaneous firing of dopaminergic neurons [32]. At these levels, most D1

receptors are deactivated. Thus the D1 receptor activation will change when the dopamine

goes up, but not when it goes down, as indicated by the black arrows. This is consistent with

the stronger impact of positive prediction errors on the weight changes of the Go neurons

implemented in Eq 2. By contrast, the D2 receptors are activated at baseline dopamine levels,

so their activation is affected by the decreases in dopamine level but little by increases, in agree-

ment with a stronger impact of positive prediction errors on the No-Go neurons implemented

in Eq 3.

Our model further requires decay of relevant weights whenever prediction errors are

absent. In terms of neural implementation, this translates into mild LTD resulting from co-

activation of the pre- and post-synaptic cells at baseline dopamine levels. Recently, this effect

has been observed at cortico-striatal synapses in vivo [33]: in anesthetized rats, presynaptic

activity followed by postsynaptic activity caused LTD in the absence of induced dopaminergic

response.

In summary, the plasticity rules allowing learning positive and negative consequences are

consistent with the observed plasticity and the receptor properties.
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Recently, there has been a debate concerning the fundamental concept of basal ganglia func-

tion, i.e. the relationship between the Go and No-Go neurons: on one hand they have the oppo-

site effects on a tendency to make movements [2], but on the other hand they are co-activated

during action selection [34]. The presented theory is consistent with both observations: It

Fig 10. Relationship of learning rules to synaptic plasticity and receptor properties. (a) Instantaneous reinforcement r when

an action with effort n is selected to obtain payoff p. (b) Cortico-striatal weights before the action, after performing the action,

and after obtaining the payoff. Red and green circles correspond to striatal Go and No-Go neurons, and the thickness of the lines

indicates the strength of synaptic connections. The intensity of the blue background indicates the dopaminergic teaching signal

at different moments of time. (c) The average excitatory post-synaptic potential (EPSP) in striatal neurons produced by cortical

stimulation as a function of time in the experiment reported in [11]. The vertical black lines indicate the time when synaptic

plasticity was induced by successive stimulation of cortical and striatal neurons. The amplitude of EPSPs is normalized to the

baseline before the stimulation indicated by horizontal dashed lines. The green and red dots indicate the EPSPs of Go and No-Go

neurons respectively. Displays with white background show the data from experiments with rat models of Parkinson’s disease,

while the displays with blue background show the data from experiments in the presence of corresponding dopamine receptor

agonists. The four displays re-plot the data from Figures 3E, 3B, 3F and 1H in [11]. (d) Changes in dopamine receptor

occupancy. The green and red curves show the probabilities of D1 and D2 receptor occupancies in a biophysical model [30]. The

two dashed blue lines in each panel indicate the levels of dopamine in dorsal (60 nM) and ventral (85 nM) striatum estimated on

the basis of spontaneous firing of dopaminergic neurons using the biophysical model [32]. Displays with white and blue

backgrounds illustrate changes in receptor occupancy when the level of dopamine is reduced or increased respectively.

https://doi.org/10.1371/journal.pcbi.1006285.g010
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assumes that Go and No-Go neurons have opposite effects on movement initiation. But during

action selection, the basal ganglia need to calculate the utility which combines information

encoded by both populations, so may require their co-activation.

The proposed model assumes that while an animal makes an effort, the outcome prediction

error should be negative, thus the dopamine level should decrease. However, at the time of

lever pressing the system needs to be energized to perform a movement, so one could expect

an increased level of dopamine. Furthermore, voltammetry studies measuring dopamine con-

centration in the striatum did not observe a decrease in dopamine level during lever pressing

[35]. Nevertheless a recent study recording activity of single dopaminergic neurons that pro-

vided a better temporal resolution reported that dopaminergic neurons increased the activity

before movement, and then decreased it below baseline during movement [32]. The increase

before movement may be related with energizing system for movement, while the decrease

during movement may be related with representing effort.

In addition to effort, other negative experiences lead to phasic decreases in dopaminergic

activity as well: the unexpected experience of pain [36], aversive stimuli such as air puffs [37]

and, for humans, monetary losses (literal costs) [38] all coincide with decreased activity of

dopamine neurons. This supports the general idea that the No-Go pathway encode costs of all

kinds.

Experimental predictions

A direct test of the proposed model could involve the recording of the activity of Go and No-

Go neurons (e.g. with photometry) during a task in which an animal learns the payoffs and

costs associated with an action. Assuming that G and N are reflected in the activity of the Go

and No-Go neurons while the animal evaluates an action (i.e. just before its selection), one

could analyze the changes in the activity of Go and No-Go neurons across trials. One could

compare if they follow the pattern predicted by the rules given in this paper, or rather by other

rules proposed to describe learning in striatal neurons [7, 8, 14].

Just as the OpAL model [8], the theory proposes that the positive and negative conse-

quences are separately encoded by the Go and No-Go neurons which are differentially modu-

lated by dopamine. The theory predicts that agonists specific to just one of the striatal

populations change the effect of consequences encoded by this population without changing

the impact of the other population. For instance, a D1 antagonist would suppress the reception

of dopamine in the direct pathway. There, dopamine increases activity. Hence, the D1 antago-

nist would diminish the impact of the direct pathway, and therefore of learned positive conse-

quences, on choices. However, it would not change the impact of the indirect pathway, i.e. the

impact of learned negative consequences. This prediction could be tested in an experiment

involving choices between options with both payoff and cost. Consider, for instance, the deci-

sion between a neutral option (p = 1, n = 1) and a high-payoff option (p = 2, n = 1). Since a D1

antagonist decreases the impact of payoffs on decisions, it should decrease the preference for

the high-payoff option. On the other hand, the avoidance of a high-cost option (p = 1, n = 2)

over the neutral option should not be affected by the D1 antagonist, since it does not affect the

impact of costs on decisions.

It could also be worthwhile to investigate whether changing the influence of positive and

negative consequences on choice can not only be achieved by pharmacological manipulations,

but also by changing a behavioral context such as hunger, or reward rate which has been

shown to affect the average dopamine level [19].

The theory assumes that the synaptic plasticity rules include a decay term proportional to

the value of the synaptic weights themselves. Decay terms are also present in other models of
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learning in basal ganglia [15, 39, 40]. This class of models predicts that the synaptic weights of

striatal neurons which are already high increase less during potentiation than the smaller

weights (an opposite prediction is made by the OpAL model [8], where the weights scale the

prediction error in the update rule). This prediction could be tested by observing the Excit-

atory Post-Synaptic Currents (EPSCs) evoked at individual spines. The class of model includ-

ing decay predicts that the spines with smaller evoked EPSCs before inducing plasticity should

be more likely to potentiate.

Relationship to other theories

The proposed model builds on the seminal work of Collins and Frank [8], who proposed that

the Go and No-Go neurons learn the tendency to execute and inhibit movements, and how

the level of dopamine changes the influence of the Go and No-Go pathways on choice. The

key new feature of the present model is the ability to learn both payoffs and costs associated

with a single action. We demonstrated above that when the model repeatedly selects an action

resulting first in a cost and then in the payoff, G and N—under certain conditions that we spec-

ified—converge to the magnitudes of that payoff and cost. This is not so in the original OpAL

model, as we shall show in a brief analysis.

Collins and Frank [8] demonstrated that when the environment is stationary and predic-

tion error δ converges to zero, then the weights G and N in the OpAL model converge to

bounded values. However, we will show that Go and No-Go weights converge to zero when an

action that results first in a cost and then in the payoff is repeatedly selected.

The OpAL model is based on the actor-critic framework; hence, the prediction error is

defined as in Eq 36. The weights of the critic are modified simply as ΔV = αδ. The weights of

the actor are modified according to the following equations [8]:

DG ¼ aGd ð37Þ

DN ¼ � aNd ð38Þ

Fig 11 shows how the weights change in a simulation of the OpAL model. The weights of

the critic approach a value close to the average of payoff and cost. Let us consider what hap-

pens in the model once the critic weight stops changing between trials (i.e. from *10th trial

onward in Fig 11). The weight of the critic still changes within a trial, i.e. decreases when cost

is incurred and increases after a payoff. This happens because the prediction error oscillates

around 0, i.e. it is equal to δ = −d while incurring a cost and δ = d while receiving a payoff,

where d is a constant. If so, let us consider how a Go weight changes within a trial. According

to Eq 37 the weight changes as follows:

Gafter cost ¼ Gbefore action � aGbefore actiond ð39Þ

Gafter payoff ¼ Gafter cost þ aGafter costd ð40Þ

Substituting Eq 39 into Eq 40 we obtain:

Gafter payoff ¼ Gbefore action � aGbefore actiond þ aðGbefore action � aGbefore actiondÞd

¼ Gbefore action � a
2Gbefore actiond2

ð41Þ

We see that within a trial a Go weight decays proportionally to is value, resulting in an

exponential decay across trials seen in Fig 11. Analogous calculations show that the No-Go
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weight decays in the same way. We conclude that the OpAL model is unable to estimate posi-

tive and negative consequences for actions which result in both payoffs and costs. It is worth

noting that the decay of actor weights to zero demonstrated above is specific to the version of

basal ganglia model proposed by Collins and Frank [8], but would not be present in another

version of the model [39] where the learning rules include a special term preventing the

weights from approaching zero. On the other hand, nothing in the above calculation depended

on G, N and V updating at the same learning rate α–the derivation can be carried out in exactly

the same way assuming αV 6¼ αN 6¼ αG. Hence, we may summarise that even such generalised

OpAL models must fail to learn payoffs and costs of actions, irrespective of the specific param-

eter values unless further terms are added to the learning rules. Our analysis suggests that

learning payoffs and costs can be enabled by different effective learning rates after positive

versus negative feedback for Go and No-Go synapses, which in our model is achieved by set-

ting � < 1.

To interpret this result, note that we do not claim that the OpAL model is not capable of

optimizing the policy. It is set up as a policy improving algorithm, and might even reflect the

payoffs and costs of actions in the weights G and N in certain situations. However, as we have

shown there is also situations in which OpAL is not able to encode the payoffs and costs. In

contrast, we showed above the model presented in this paper does encode payoffs and costs in

any situation, given a suitable set of parameters and enough time to learn.

The model described in this paper has been shown to account for the effects of dopamine

depletion on the willingness to make effort, which have also been simulated with the OpAL

model. To simulate the effects of dopamine depletion on the choice between an arm of a T-

maze with more pellets behind a barrier and an arm with fewer pellets, [8] trained a model on

three separate actions: eating in the left arm, eating in the right arm, and crossing a barrier. In

this way, it was ensured that each action had just payoff or just cost, and the model could learn

them. Subsequently, during choice, the model was deciding between a combination of two

Fig 11. Changes in the weight G of the Go neurons, N of the No-Go neurons and V of the critic in the OpAL

model over the course of simulations. (a) The purple line represents the evolving critic weight. The experienced

reinforcements are indicated by black dots. (b) The actor weights, represented by a green and a red line respectively,

were initialized to G = N = 1. Again, the black dots indicate the received reinforcements. The simulation was run with

learning rate α = 0.3.

https://doi.org/10.1371/journal.pcbi.1006285.g011
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actions (e.g. crossing a barrier and eating in the left arm) and the other action. By contrast, the

model proposed in this paper was choosing just between the two options available to an animal

in an analogous task (Fig 6), because it was able to learn both payoffs and costs associated with

each option. This is a useful ability, as most real-world actions have both payoffs and costs.

In the original paper introducing the plasticity rules [16], it was proposed that the rules

allow the Go and No-Go neurons to encode reinforcement variability because when an action

results in variable reinforcements, both G and N increase during learning. It was further pro-

posed that the tonic level of dopamine controls the tendency to make risky choices, as observed

in experiments [41], because it leads to emphasizing potential gains, and under-weighting

potential losses. However, here it is proposed that the striatal learning rules primarily sub-

serve a function more fundamental for survival, i.e. learning payoffs and costs of actions. From

this perspective, the influence of dopamine level on the tendency to make risky choices arises

as a by-product of a system primarily optimized to weight payoffs and costs according to the

current motivational state.

Directions for the future work

There are multiple directions in which the presented theory could be extended. For example,

the theory has to be integrated with the models of action selection in the basal ganglia to

describe how the circuit selects the action with the best trade-off of payoffs and costs. Further-

more, the theory may be extended to describe the dependence of the dopaminergic teaching

signal on the motivational state. Learning experiments in which an animal may be deprived of

physiologically required substances suggest that both terms in the outcome prediction error

encoded by dopamine (i.e. the reinforcement and the expected outcome) are scaled by motiva-

tion [42]. It would be interesting to incorporate such scaling in our model, where the direct

pathway, as well as the indirect pathway, contribute to the outcome estimate, which is then

compared to the experienced reinforcement to compute the prediction error. If dopaminergic

modulation is taken into account also at this stage, the dopaminergic motivation signal should

affect the outcome estimate, and hence influence learning.

A limitation to our current model is the rudimentary form of the basal ganglia output,

given in Eq 25. It is known that the effect of dopamine on the activity in the two pathways is

not linear (as assumed in this paper), but exhibits saturation effects. The fact that the reception

of dopamine is nonlinear plays a crucial role in the learning part of our model (the piecewise

linear functions f� introduce exactly that nonlinearity), and could also be implemented at the

decision-making stage, if the activity of Go and No-Go neurons (combined in Eq 25)

depended nonlinearly on the dopamine level. In such more elaborate formulation, the fine-

tuning of the baseline dopamine level then becomes critical. Including nonlinear effects of

dopamine on activity during choice would allow studying interactions between learning and

decision making, which would both be affected by the position of the baseline and the strength

of the nonlinearity.

It is intriguing to ask whether the evaluation of actions combining separately encoded posi-

tive and negative consequences is also performed by areas beyond the basal ganglia. Indeed,

positive and negative associations are encoded by different populations of neurons in the

amygdala [43]. Moreover, an imaging study [44] suggests that costs and payoffs are predicted

by the amygdala and the ventral striatum respectively, and ultimately compared in the prefron-

tal cortex. Furthermore, different cortical regions preferentially project to Go or No-Go neu-

rons [45], raising the possibility that the positive and negative consequences are also encoded

separately in the cortex. Therefore, it seems promising to investigate if similar plasticity rules

could also describe learning beyond the basal ganglia.
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Materials and methods

During simulations of an experiment by Salamone et al. [22], the model received payoff

pchow = 1 for approaching the lab chow, and payoff ppellet for choosing a pellet. The model

was simulated in two conditions differing in the cost of choosing a pellet which was equal to

npellet = 0 in the free-pellet condition, and to npellet = nlever in a condition requiring lever press-

ing to obtain a pellet. There was no cost of choosing lab chow (nchow = 0) in either condition.

For each condition, the model was simulated in two operational modes: in the control state,

the coupling κN of dopamine to the D2-expressing neurons was fixed at κN = 1 during choice

(making manifest the assumed fully functioning dopaminergic modulation in the control

group). Conversely, in the state corresponding to the presence of the D2-antagonist haloperi-

dol, κN was treated as a variable valued in [0, 1], now allowing for impaired dopaminergic reg-

ulation. The level of dopamine D was kept fixed at D = 0.5 throughout, assuming largely an

unaltered baseline level for both groups.

For each condition and state, the behavior of Nrats was simulated. Each simulation consisted

of 180 training and 180 testing trials (as each animal in the experiment of [22] was tested for

30 minutes, so 180 trials correspond to an assumption that a single trial took 10s). At the start

of each simulation, the weights were initialized to Gpellet = Npellet = Gchow = Nchow = 0.1. During

each training trial, the model experienced choosing a pellet as well as approaching the lab

chow. In detail, it received the cost npellet, modified the weights Gpellet and Npellet, then received

the payoff ppellet and modified the weight again, and analogously for the lab chow. During each

testing trial, the thalamic activity for each option was calculated from Eq 25), and Gaussian

noise with standard deviation σ was added. An option with the highest thalamic activity was

selected, and if this activity was positive, the action was executed, resulting in the correspond-

ing cost and payoff and weight modification. If thalamic activity for both options was negative,

no action was executed and no weights were updated.

The values of model parameters: ppellet, nlever, κN, σ were optimized to match the choices

made by the animals. In particular, for each set of parameters, the model was simulated

Nrats = 100 times, and the average number of choices csimi;j;k of option i in dopamine state j and

experimental condition k was computed. The mismatch with corresponding consumption in

experiment cexpi;j;k was quantified by a normalized summed squared error:

Cost ¼
X2

k¼1

X2

j¼1

X2

i¼1

csimi;j;k
Zsim
k
�

cexpi;j;k

Zexp
k

!2 

ð42Þ

In the above equation Zdataset
k is a normalization term equal to the total number of choices or

consumption in a particular condition:

Zdataset
k ¼

X2

j¼1

X2

i¼1

cdataseti;j;k ð43Þ

The values of parameters minimizing the cost function were sought using the Simplex opti-

mization algorithm implemented in Matlab, and the following values were found: ppellet =

15.511751, nlever = 14.510517, κN = 0.7507 and σ = 1.066246. Subsequently, the model with

these optimized parameters was simulated with Nrats = 6, which was the number of animals

tested by [22]. The resulting mean number of choices across animals are shown in Fig 8.
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