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Abstract
A large number of neural network models of
associative memory have been proposed in the
literature. These include the classical Hopfield
networks (HNs), sparse distributed memories
(SDMs), and more recently the modern continu-
ous Hopfield networks (MCHNs), which possess
close links with self-attention in machine learning.
In this paper, we propose a general framework for
understanding the operation of such memory net-
works as a sequence of three operations: similar-
ity, separation, and projection. We derive all these
memory models as instances of our general frame-
work with differing similarity and separation func-
tions. We extend the mathematical framework of
Krotov & Hopfield (2020) to express general as-
sociative memory models using neural network
dynamics with local computation, and derive a
general energy function that is a Lyapunov func-
tion of the dynamics. Finally, using our frame-
work, we empirically investigate the capacity of
using different similarity functions for these asso-
ciative memory models, beyond the dot product
similarity measure, and demonstrate empirically
that Euclidean or Manhattan distance similarity
metrics perform substantially better in practice on
many tasks, enabling a more robust retrieval and
higher memory capacity than existing models.

1. Introduction
Associative, or ‘semantic‘, memories are memory systems
where data points are retrieved not by an explicit address,
but by making a query to the system of approximately the
same type as the data points that it stores. The system then
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returns the closest data point to the query according to some
metric. For instance, an associative memory system, when
given an image, can be used to return other ‘similar’ images.
It is often argued that the brain similarly stores and retrieves
its own memories (Hinton & Anderson, 2014; Rolls, 2013;
Tsodyks & Sejnowski, 1995), as it is a common experience
to be able to recall a memory given a partial cue, e.g., recall-
ing a song given just a few notes (Bonetti et al., 2021). A
large literature of neuroscience and computational theories
has developed models of how such associative memory sys-
tems could be implemented in relatively biologically plau-
sible neural network architectures (Kanerva, 1988; 1992;
Hopfield, 1982; Hinton & Anderson, 2014).

Two classical and influential models are the Hopfield net-
work (HN) (Hopfield, 1982; 1984) and the sparse distributed
memory (SDM) (Kanerva, 1988; 1992; Jaeckel, 1989).
More recently, they have been generalized to the modern-
continuous Hopfield network (MCHN) (Ramsauer et al.,
2020) and the modern-continuous sparse distributed mem-
ory (MCSDM) (Bricken & Pehlevan, 2021), which have sub-
stantially improved performance, close relationships with
transformer attention, and can handle continuous inputs.

Here, we propose a unified framework that encompasses
all these models as simple instantiations of a more gen-
eral framework, which we call universal Hopfield networks
(UHNs). Mathematically, the UHN can be described as a
function UHN : RI → RO mapping a vector in an input
space of dimension I to a vector in an output space of di-
mension O, with two additional inputs of a memory matrix
M of size N × I , consisting of a set of N stored patterns,
and a projection matrix P of size O × N , consisting of a
potentially different set of stored patterns with dimension O
for heteroassociation. The dimensionality of the input and
output patterns are allowed to differ to enable heteroassocia-
tive memories to be described in the same framework. For
autoassociative memories I = O. The UHN function can
be factorized into a sequence of three operations: similarity,
separation, and projection, illustrated in Figure 1. First,
similarity matching between the query and a stored set of
memory vectors to produce a vector of similarity scores.
Second, separation to numerically magnify small differ-
ences in original similarity scores into large differences in
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Figure 1. Left: Schematic of the key equations that make up the general theory of the abstract Hopfield network, which shows the
factorization of a UHN into similarity, separation, and projection. Right: Visual representation of the factorization diagram when
performing an associative memory task on three stored memories. The corrupted data point is scored against the three memories
(similarity). The difference in scores are then exaggerated (separation), and used to retrieve a stored memory (projection).

the output scores so as to increase the relative separation
of the scores, and finally projection, which multiplies the
resulting set of output similarity scores with a projection
matrix, and constructs an output based essentially on a list
of stored data points in the memory1 weighted by the output
similarity scores, so that the network’s output is most influ-
enced by memories similar to the query vector. The main
contributions of this paper are briefly as follows.

• We define a general framework of universal Hopfield
networks, which clarifies the core computation under-
lying single-shot associative memory models.

• We demonstrate how existing models in the literature
are special cases of this general framework, which
can be expressed as an extension of the energy-based
model proposed by Krotov & Hopfield (2020).

• We demonstrate that our framework allows straightfor-
ward generalizations to define novel associative mem-
ory networks with superior capacity and robustness to
MCHNs by using different similarity functions.

It is also important to draw a distinction between feedfor-
ward and iterative associative memory models. In feedfor-
ward models, memory retrieval is performed through a fixed
computation mapping a query to its retrieved output. Ex-
amples of feedforward associative memory models include
the DAM (Krotov & Hopfield, 2016), the MCHN (Ram-
sauer et al., 2020), and the MCSDM (Bricken & Pehlevan,
2021), which effectively instantiate 2-layer MLPs and per-
form retrieval as a feedforward pass through the network.
Conversely, iterative associative memory models retrieve
memories by either iterating over neurons (Hopfield, 1982;
Demircigil et al., 2017) or else iterative over multiple for-
ward passes of the network by feeding back the output into
the network as a new input. It has been shown empirically

1For heteroassociative memory models, a separate projection
memory is used containing the outputs associated with each input.

that standard autoencoder networks (Radhakrishnan et al.,
2018; 2020; Jiang & Pehlevan, 2020) and predictive coding
networks (Salvatori et al., 2021) can store memories as fixed
points of these dynamics. In Section 3 and our experiments,
we primarily investigate feedforward associative memories,
while in Section 4 we derive a general framework and en-
ergy function that can support both feedforward and iterative
associative memory models.

The rest of this paper is organized as follows. In Section 2,
we define the mathematical framework of universal Hop-
field networks. In Section 3, we show how existing models
can be derived as special cases of our framework. In Section
4, we extend the neural model of Krotov & Hopfield (2020)
to define an energy function and associated neural dynamics
for the UHN. In Section 5, we show that our framework
enables generalization to novel similarity and separation
functions, which result in higher capacity and more robust
networks, while experiments on the separation functions em-
pirically confirm theoretical results regarding the capacities
of associative memory models.

2. Universal Hopfield Networks (UHNs)
A single-shot associative memory can be interpreted as a
function that takes an input vector q (ideally, a corrupted
version of a data point already in memory) and outputs a
vector corresponding to the closest stored data point. Math-
ematically, our framework argues that every feedforward
associative memory in the literature admits the following
factorization, which defines an abstract and general univer-
sal Hopfield network (UHN):

z = P︸︷︷︸
Projection

· sep︸︷︷︸
Separation

(sim(M, q)︸ ︷︷ ︸
Similarity

) , (1)

where z is the O × 1 output vector of the memory system,
P is a projection matrix of dimension O × N , sep is the
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separation function, sim is the similarity function, M is an
N × I matrix of stored memories or data points, and q is
the query vector of dimension I × 1.

The intuition behind this computation is that, given an in-
put query, we first want to rank how similar this query is
to all the other stored memories. This is achieved by the
similarity function, which outputs a vector of similarity
scores between each data point held in the memory and
the query. Given these similarity scores, since we will ulti-
mately be retrieving based on a linear combination of the
patterns stored in the projection matrix, weighted by their
similarity scores, and we ultimately only want to produce
one clear output pattern without interference from the other
patterns, then we need a way to emphasize the top score
and de-emphasize the rest. This is achieved by the sepa-
ration function. It is well known that separation functions
of higher polynomial degrees lead to capacity increases of
the order of C ∝ Nn−1, where N is the number of visible
(input) neurons, and n is the order of the polynomial (Chen
et al., 1986; Horn & Usher, 1988; Baldi & Venkatesh, 1987;
Abbott & Arian, 1987; Caputo & Niemann, 2002; Krotov
& Hopfield, 2016), while exponential separation functions
(such as the softmax) lead to exponential memory capacity
(Demircigil et al., 2017; Ramsauer et al., 2020). Taking
this further, it is clear to see that simply using a max sepa-
ration function leads to a theoretically unbounded capacity
in terms of the dimension of the query vector, since then
presenting an already stored pattern as a query will always
return itself as a memory. However, the ‘attractors’ in such
a network grow increasingly small so that, in practice, the
real bound on performance is not the capacity but rather
the ability of the similarity function to distinguish between
the query and various possible stored patterns — a pattern
that is clear already with the ‘exponential’ capacity MCHN
network, which despite its theoretical exponential capacity
often performs relatively poorly at retrieval in practice with
corrupted or noisy queries. Finally, the projection matrix
takes the vector of separated similarity scores and maps it
to the correct output expected of the network.

Importantly, Equation 1 can be interpreted as a feedforward
pass through an artificial neural network with a single hid-
den layer, where the activation function of the first layer is
the separation function, and the activation function of the
output is linear or else is some post-processing function such
as binarization (as in the classical HN). Interpretations of
memory networks in this way have been independently pro-
posed by Kanerva (1988) for SDM and recently by Krotov
(2021) for the MCHN (Ramsauer et al., 2020). Furthermore,
coming from the other direction, recent work has also be-
gun to suggest that standard 2-layer multi-layer perceptrons
(MLPs) may naturally tend to function as associative mem-
ory models in practice. For instance, Geva et al. (2020)
show that the feedforward layers of the transformer appear

to serve as key-value memories (Geva et al., 2020), and it
has been suggested that these feedforward layers can be re-
placed with simply persistent memory vectors (Sukhbaatar
et al., 2019).

3. Instances of Universal Hopfield Networks
Now that we have defined our universal Hopfield network
(UHN), we shall show how the currently existing main asso-
ciative memory models can be derived as specific instances
of the UHN. The equivalences are summarized in Table 1.

3.1. Hopfield Networks

Hopfield networks (HNs) (Hopfield, 1982; 1984) consist of
a single neural network layer that stores an array of binary
memories M = [m1,m2, . . . ,mN ], where M is an N × I
matrix, and I is the dimension of each memory vector, and
N is the number of memories stored. The memory arrays
are then stored in a synaptic weight matrix W = MMT .
Memories are retrieved by fixing the input neurons to a
query pattern q, which is a binary vector of length I . While
the original HN of Hopfield (1984) iteratively minimized the
energy function over individual neurons, we here describe
the ‘feedforward’ Hopfield networks described in (Krotov
& Hopfield, 2016; Little, 1974), which retrieve memories by
performing a forward pass through the network to compute
an output z = sign(W · q), where sign is the sign function,
and z is the retrieved pattern and is also a binary vector of
length I (since the HN is autoassociative). This process can
be repeated if necessary to further minimize the energy by
feeding in the reconstructed output again to the network as
its input. This network can be interpreted as minimizing
a ‘Hopfield energy function’, which is equivalent to the
energy function of an Ising spin-glass model (Kirkpatrick &
Sherrington, 1978; Keeler, 1988). To show that the HN is
an example of a UHN, first recall that the synaptic weight
matrix in the HN is defined not as the stored pattern matrix
but as the outer product W = MMT . By substituting this
into the HN update rule, we obtain z = sign((MMT ) ·
q) = sign(MI(MT · q)), where we use I to denote the
identity function. Thus, we can understand the HN within
our framework as using a dot-product similarity function
and an identity separation function (which is the cause of the
HN’s relatively poor storage capacity). The sign function
plays no part in memory retrieval and simply binarizes the
network’s output.

3.2. Sparse Distributed Memories

Sparse distributed memories (Kanerva, 1988; 1992) (SDM)
are designed to heteroassociate long binary vectors. The
network consists of two matrices — an ‘Address’ matrix and
a ‘Pattern’ matrix. Memories are thought of as being stored
in a data-type with both an ‘Address’ and a ‘Pattern’ pointer.
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Memory Network Similarity Function Separation Function

(Classical) Hopfield Network (HN) Dot Product Identity
Sparse Distributed Memory (SDM) Hamming Distance Threshold
Dense Associative Memory (DAM) Dot Product Polynomial
Modern Continuous Hopfield Network (MCHN) Dot Product Softmax

Table 1. Associative memory models.

To retrieve a memory, a query vector is compared against
all stored addresses in the Address matrix, and the binary
Hamming distance between the query and all addresses is
computed. Then, a certain number of addresses are activated
that are below a threshold Hamming distance from the query.
The memory is retrieved by summing the pattern pointers
for all the addresses activated by the query. The ‘read’ phase
of the SDM (Kanerva, 1988) can be written mathematically
as P · thresh(d(M, q)), where d is the Hamming distance
function, and thresh is a threshold function that returns 1
if the Hamming distance is greater than some threshold, and
0 otherwise. Here, it is clear that the SDM can be naturally
understood using our framework with similarity function d
(Hamming distance) and separation function thresh, which
implements a top-k operation to cut out poor matches.

3.3. Dense Associative Memories and Modern
Continuous Hopfield Networks

In recent years, the capabilities of both of these classical
memory models have been substantially improved, and a
number of new Hopfield architectures have been developed
based on the dense associative memory (DAM) initially
proposed by Krotov & Hopfield (2016) and extended by
Demircigil et al. (2017). Specifically, Krotov & Hopfield
(2016) argued for generalizing the standard Hopfield energy
function (E = qTWq + qT b) (where b is an I × 1 bias
vector to convert between binary and bipolar representa-
tions) to an arbitrary function of q and W : E = F (W · q)
and showed that as F becomes a polynomial of increas-
ing order, the memory storage capacity of the network in-
creases as C ∝ In−1, where I is the number of visible
neurons, and n is the order of the polynomial. Demircigil
et al. (2017) extended this argument to exponential energy
functions of the form E = σ(W · q), where σ(x) is the
softmax function, and showed that the resulting networks
have exponential storage capacity. Then, Ramsauer et al.
(2020) generalized these networks to continuous (instead
of binary) inputs to derive the modern continuous Hopfield
network (MCHN). The MCHN uses the energy function
E = qT q+ logsumexp(Wq), which can be minimized with
the convex-concave procedure (Yuille & Rangarajan, 2003),
giving the update rule z = WTσ(Wq), which enables ex-
ponential capacity, memory retrieval in a single step, and is
extremely similar to the feedforward pass of a self-attention
unit z = V σ(KQ) with ‘Query Matrix’ Q, ‘Key Matrix’

K, and ‘Value Matrix’ V , where we can associate Q = q,
K = W , and V = W (Bahdanau et al., 2014; Vaswani et al.,
2017; Devlin et al., 2018; Brown et al., 2020; Radford et al.,
2019). Lastly, Krotov & Hopfield (2020) presented a unified
set of neural dynamics that can reproduce the original HN,
the polynomial interaction functions of (Krotov & Hopfield,
2016), and the exponential Hopfield network of (Demircigil
et al., 2017; Ramsauer et al., 2020), using only local com-
putations, and which Tang & Kopp (2021) have shown also
to be related to the spherical normalization dynamics in the
recent MLP-mixer (Tolstikhin et al., 2021).

3.4. Continuous Sparse Distributed Memories

Recent work has also uncovered a close link between
SDMs and transformer attention (Bricken & Pehlevan,
2021). Recall that the SDM read rule can be expressed
as P · thresh(d(A, q)), where thresh is a threshold func-
tion, A is an M × N matrix of addresses, P is a K × O
matrix mapping each stored data point to its associated pat-
tern, and d is the Hamming distance between each of the
stored addresses in A and the query pattern q. Bricken &
Pehlevan (2021) first generalized SDM from binary vectors
to the ‘continuous SDM‘, where P , A, and q contain real
values instead of bits. Then, they replaced the Hamming
distance (which only applies to binary vectors) with the dot
product, using the argument that the Hamming distance is
the dot product (mod 2) of binary vectors, and thus that the
dot product is the natural generalization of the Hamming
distance to continuous variables. Finally, they noted that the
decay of the number of addresses that are not cutoff by the
threshold function decreases approximately exponentially
as the Hamming distance threshold decreases. The mathe-
matical reason for this is that the distribution of addresses
within a given Hamming distance of a query is a binomial
distribution, which can be well approximated with a Gaus-
sian at large N , and the tails of a Gaussian distribution
decay exponentially. This approximately exponential decay
in the number of addresses passing the threshold allows
us to heuristically replace the threshold function with an
exponential function, resulting in the following approximate
update rule for the ‘continuous SDM‘ model z = Pσ(Aq),
which is closely related to the self-attention update rule and
is identical to the rule for the MCHN.
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3.5. Auto- and Heteroassociative Memories

Our framework also provides a simple explanation of the
difference between autoassociative memories (which map
a corrupted version of a memory to itself) and heteroasso-
ciative memories (which map some input memory to some
other memory type, potentially allowing for memory chains
and sequence retrieval): namely, that autoassociative mem-
ories set the projection matrix P equal to the memory ma-
trix M , i.e., one recalls the memories used for similarity
matching, while heteroassociative memory networks set the
projection matrix equal to the associated heteroassociated
memory. It is thus clear to see why the HN and MCHN net-
works are autoassociative, and how to convert them to het-
eroassociative memory networks. Namely, for the MCHN,
set the update rule to z = Pσ(M.q), and for the HN set the
weight matrix W = PMT . Demonstrations of these novel
heteroassociative HNs and MCHNs are given in Appendix
B. Interestingly, the heteroassociative MCHN update rule
is equivalent to the self-attention update rule found in trans-
former networks (Vaswani et al., 2017), and thus suggests
that the fundamental operation performed by transformer
networks is heteroassociation of inputs (the queries) and
memories (the keys) with other memories (the values).

4. Neural Dynamics
In this section, extending the work of Krotov & Hopfield
(2020), we present an abstract energy function for the UHN
and set of neural dynamics that minimize it, which can be
specialized to reproduce any of the associative memory mod-
els in the literature. By framing associative memory models
in terms of an energy function, we can describe the opera-
tion of both iterative and feedforward associative memory
models, as well as mathematically investigate the properties
of the fixed points that they use as memories. We define
a general neural implementation and energy function for
our abstract associative memory model that uses only local
interactions. In this model, there are two types of ‘neurons’:
‘value neurons’ v and ‘memory neurons’ h. We can think of
the ‘value neurons’ v being initialized to the query pattern q
such that vt=0 = q, and then updated to produce the output
pattern z. This is because the UHN effectively implements a
two-layer artificial neural network where the value neurons
are the input layer and the memory neurons are the hidden
layer. The memory and value neurons are interconnected
by the memory matrix M . The neural activities v and h are
also passed through two activation functions g and f such
that f = f(h) and g = g(v). The network has the following
recurrent neural dynamics:

τv
dvi
dt

= −∂E

∂vi
=

∑
j

∂sim(Mi,j , vi)

∂vi
fi − vig

′(vi) (2)

τh
dhi

dt
= − ∂E

∂hi
= f ′(hi)

[∑
j

sim(Mi,j , vi)− hi

]
,

where τv and τh are time-constants of the dynamics. These
dynamics can be derived from the energy function:

E(M,v, h) =
[∑

i
(vi − Ii)gi −Lv

]
+[∑

i
fihi −Lh

]
−

∑
i

∑
j
fisim(Mi,j , vi) , (3)

where we define the ‘Lagrangian’ functions Lv and Lh such
that their derivatives are equal to the activation functions
g = ∂Lv

∂v and f = ∂Lh

∂h . The energy function is defined such
that it only includes second-order interactions between the
value and memory neurons in the third term, while the first
two terms in square brackets only involve single sets of neu-
rons. In Appendix A, we show that the energy function is a
Lyapunov function of the dynamics, i.e., it always decreases
over time, as long as the Hessian of the activation func-
tions f and g are positive definite. To obtain the dynamics
equations (2) and (3), we first define function f to be the sep-
aration function f(h) = sep(h) such that Lh =

∫
dhsep(h)

and denote f ′(h) = ∂f(h)
∂h as the derivative of f . We also

set Lv = 1
2

∑
i v

2
i , which implies gi = Lv

∂vi
= vi. A further

simplication of the energy and dynamics occurs if we as-
sume that τh is small, and thus the dynamics of the hidden
neurons are fast compared to the value neurons such that
we can safely assume that these dynamics have converged.
This allows us to write h∗ =

∑
j sim(Mi,j , vi), since when

setting dhi

dt = 0, we can cancel the f ′(hi) terms as long
as f ′(h) ̸= 0, which is true for all separation functions we
consider in this paper except the max function, which is
therefore heuristic. This gives us the simpler and intuitive
energy function:

E =
∑

i
v2i −

1

2

∑
i
v2i +

∑
i
fi
∑

j
sim(Mi,jvi)

− Lh −
∑

i

∑
j
fisim(Mi,j , vi)

=
∑

i

1

2
v2i −

∫
sep(

∑
j

sim(Mi,j , vi)) , (4)

where the integral is over the input to the separation function.
It is now straightforward to derive the HN and MCHN. To
do so, we set sim(M,v) = Mv and sep(x) = x for the HN,
and sep(x) = ex∑

ex for the MCHN. Following Krotov &
Hopfield (2020), for the MCHN, we can derive a single step
of the dynamics by taking the gradient of the energy:

E =
∑

i

1

2
v2i − log

∑
j
e(sim(Mi,j ,vi)) (5)

τv
dvi
dt

= −∂E

∂vi
= −vi +

e
∑

j sim(Mi,j ,vi)∑
i e

∑
j sim(Mi,j ,vi)

∂sim(Mi,jvi)

∂vi
.

If we then perform an Euler discretization of these dynamics
and set ∆t = τv = 1, then we obtain the following update
step:

vt+1
i = Mσ(Mvti) , (6)
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where σ(x) = ex∑
ex is the softmax function by using the

fact that the MCHN uses the dot product similarity function
sim(M,v) = Mv. It was proven in (Ramsauer et al., 2020)
that this update converges to a local minimum in a single
step. This thus derives the MCHN update

v∗ = Mσ(Mq), (7)

since vt=0 = q as the visible neurons are initialized to the
input query and equilibrium occurs after a single step. Sim-
ilarly, to derive the HN, we set the separation function to
the identity (sep(x) = x) and similarity function to the dot
product and using the fact that

∫
d(Mv)sep(sim(Mv)) =∫

d(Mv)Mv = 1
2 (Mv)2, thus resulting in the energy func-

tion and equilibrium update rule:

E =
∑

i

1

2
v2i −

1

2

∑
i

∑
j
viMi,jM

T
i,jvi

τv
dvi
dt

= −∂E

∂vi
= −vi +

∑
i

∑
j
Mi,jM

T
i,jvi , (8)

where, again, if we perform the Euler discretization, we
obtain the following update step:

vt+1 = MMT vt, (9)

which, with a final normalizing sign function to binarize
the output reconstruction, is identical to the HN update rule.
We thus see that using this abstract energy function, we
can derive a Lyapunov energy function and associated local
neural dynamics for any associative memory model that
fits within our framework. Moreover, our framework also
describes iterative associative memory models if these infer-
ence dynamics are integrated over multiple steps instead of
converging in a single step.

5. Experiments
Our general framework allows us to define an abstract as-
sociative memory model with arbitrary similarity and sep-
aration functions, as well as a set of neural dynamics and
associated energy function for that model. A natural ques-
tion is whether we can use this abstract framework to derive
more performant associative memory models by using dif-
ferent similarity and separation functions. In this section,
we empirically test a wide range of potential separation and
similarity functions on associative memory retrieval tasks.
We find similarity functions such as the Manhattan (or abso-
lute or l1 norm) distance metric perform substantially better
than the dot product distance used in the MCHN across
a datasets and is more robust to input distortion. We de-
fine novel associative memory models with state-of-the-art
performance, which can scale beyond that considered pre-
viously in the literature, especially on the Tiny ImageNet
dataset. In Appendix E, we discuss the detailed numerical
normalizations and other implementation details that are
necessary to achieve a good performance in practice.

5.1. Capacity under Different Similarity Functions

We investigate the capacity of the associative memory mod-
els to increasing numbers of stored memories on a suite of
potential similarity functions. The similarity and separation
functions tested are defined in Appendix D. We tested the re-
trieval capacity on three image datasets: MNIST, CIFAR10,
and Tiny ImageNet. All images were normalized such that
all pixel values lay between 0 and 1. Before presenting the
images to the network as queries, they were flattened into
a single vector. When masking the images, the masked out
pixels were set to 0. When adding Gaussian noise to the
images, we clipped the pixel values after noise was added
to maintain all values between 0 and 1.

From Figure 2, we see that the similarity function has a large
effect on the memory capacity of the associative memory
models. Empirically, we see very robustly that the highest
performing and highest capacity similarity function is the
Manhattan distance sim(M, q) = abs(M − q), where the
subtraction is taken over rows of the memory matrix. More-
over, the superiority of the Manhattan distance as a similarity
function appears to grow with the complexity of the dataset.
It is roughly equivalent to the Euclidean and dot product
on MNIST, slightly better on CIFAR10 and substantially
better on Tiny ImageNet. The Euclidean distance also per-
forms very well across image datasets. Other potential mea-
sures such as the KL divergence, Jensen-Shannon distance,
and reverse KL perform substantially worse than simple
Euclidean, dot-product, and Manhattan distance measures.
The dot product metric used in the MHCN also performs
very well, although it must be carefully normalized (see Ap-
pendix E). Interestingly, we see stable levels of performance
for increasing capacity for a given similarity function across
a wide range of memory capacities.

The similarity functions are so important, because they
are the fundamental method by which the abstract asso-
ciative memory model can perform ranking and matching
of the query to memory vectors. An ideal similarity func-
tion would preserve a high similarity across semantically
non-meaningful transformations of the query vectors (i.e.,
insensitive to random noise, perturbations, and masking of
parts of the image), while returning a low similarity for
transformed queries originating from other memory vec-
tors. An interesting idea is that, while thus far we have
used simple similarity functions such as the dot product
and the Euclidean distance, it is possible to define smarter
distance metrics native to certain data types, which should
be expected to give an improved performance. Moreover, it
may be possible to directly learn useful similarity functions
by defining the similarity function itself as a neural network
trained on a contrastive loss function to minimize differ-
ences between variants of the same memory and maximize
differences between variants of different ones.
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Figure 2. Capacity of the associative memory networks with different similarity functions, as measured by increasing the number of stored
images. The capacity is measured as the fraction of correct retrievals. To test retrieval, the top-half of the image was masked with all zeros
(this is equivalent to a fraction masked of 0.5 in Figure 4) and was then presented as the query vector for the network. A retrieval was
determined to be correct if the summed squared difference between all pixels in the retrieved image and the true reconstruction was less
than a threshold T , which was set at 50. The queries were presented as the stored images corrupted with independent Gaussian noise with
a variance of 0.5. Mean retrievals over 10 runs with different sets of memories images. Error bars are computed as the standard deviations
of the correct retrievals of the 10 runs. A softmax separation function was used with a β parameter of 100.

Figure 3. The retrieval capacity of the network on retrieving half-masked images using the dot-product similarity function. Plotted are the
means and standard deviations of 10 runs. A query was classed as correctly retrieved if the sum of squared pixel differences was less than
a threshold of 50.

5.2. Capacity under Different Separation Functions

In Figure 3, we considered the effect of the separation func-
tion on retrieval capacity by measuring the retrieval perfor-
mance using a fixed similarity function (dot product) for
different separation functions (defined in Appendix D). The
empirical effect of the separation function on capacity ap-
pear to align closely with known theoretical results (Demir-
cigil et al., 2017; Keeler, 1988; Abu-Mostafa & Jacques,
1985; Ma, 1999; Wu et al., 2012). Namely, that the expo-
nential and max functions have substantially higher capacity
than that of other separation functions and that low-order
polynomial or lesser separation functions suffer a very rapid
decline in retrieval performance as capacity increases. High-
order polynomials perform very well, as predicted by the
mathematical capacity results in (Krotov & Hopfield, 2016;
Demircigil et al., 2017). Here, the softmax performs rela-
tively poorly compared to the 10th order polynomial due to
the β parameter in the softmax being set to 1, which was

done for a fair comparison to other methods. However, as
β → ∞, the softmax function tends to the max, so the rela-
tive performance of the softmax can be increased by simply
increasing β. The importance of the separation functions,
and especially using ‘high-powered’ separation functions
such as softmax, max, and a 10th order polynomial increases
with the complexity of the data. This is due to the greater
level of interference caused by more complex and larger
images, which requires a more powerful separation function
to numerically push apart the similarity scores.

5.3. Retrieval under Different Similarity Functions

We also tested (Figure 4) the effect of the similarity function
on the retrieval capacity of the network for different levels
of noise or masking of the query vector, a proxy for the
robustness of the memory network. We tested the retrieval
capacity on two types of query perturbation: Gaussian noise
and masking. In the first case, independent zero-mean Gaus-
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sian noise with a specific noise variance σ was added ele-
mentwise to the query image. As the image pixel values
were restricted to lie in the range [0, 1], a σ of 1 results in a
huge distortion of the original image. With masking, the top
k fraction of pixels were set to 0. A fraction of 0.9 results
in only the bottom 10% of the image being visible in the
query vector. Example visualizations different noise levels
and masking fractions are given in Appendix C.

We observe in Figure 4 that the used similarity functions
have strong effects on the robustness of the retrieval under
different kinds of perturbations. For independent Gaussian
noise, it largely appears that the dot product similarity mea-
sures allow for relatively robust reconstructions even up to
very high levels of noise, which would make the queries un-
interpretable to humans (see Appendix C). The Manhattan
distance similarity metric, however, performs better under
masking of the image, definitely for relatively small frac-
tions masked, although for Tiny ImageNet, the dot-product
similarity function appears to be more robust to extremely
high masking fractions. Overall, it appears that the similar-
ity function plays a large role in the degree of robustness of
the memory to corrupted queries, but that the same few simi-
larity functions, such as dot product and Manhattan distance,
consistently perform well across a range of circumstances.

6. Discussion
In this paper, we have proposed a simple and intuitive gen-
eral framework that unifies existing single-shot associative
memory models in the literature. Moreover, we have shown
that this scheme comes equipped with a set of local neural
dynamics and that leads immediately to useful generaliza-
tions in terms of varying the similarity function, which led
to the discovery of the superior performance of Manhattan
distance, which outperforms the state-of-the-art MCHN at
various retrieval tasks with complex images. Finally, our
general framework lets us see the natural and clear relation-
ship between auto- and heteroassociative memory models,
which amounts entirely to the selection of the projection
matrix P , a fact that has often been unclear in the literature.

Our framework gives a clear insight into the two key steps
and bottlenecks of current associative memory models. The
major bottleneck is the similarity function, which is fun-
damental to the retrieval capacity and performance of the
model, and it is the similarity metric that, assuming a suf-
ficiently powerful separation function, is the main determi-
nant of retrieval performance, especially of noisy or cor-
rupted queries. Here, we only considered single-layer net-
works, which apply the similarity function directly to raw
image data. However, performance may be increased by
first feeding the raw queries through a set of preprocessing
steps or, alternatively, an encoder network trained to pro-
duce a useful latent representation of the input, and then
performing associative memory on the latent representations.

This naturally leads to a hierarchical scheme for associative
memories models, which will be explored in future work.
This scheme also has close associations with the field of
metric learning (Kulis et al., 2013; Yang, 2007), where we
consider the similarity function as defining a metric on the
underlying data geometry and then the associative memory
simply performs nearest-neighbour matching with this met-
ric. Using predefined similarity functions corresponds to
directly defining a metric on the space, however, using a
deep neural network to map into a latent space and then
performing a similarity scoring on that latent space is equiv-
alent to a learnable metric which is implicitly parametrized
by the deep neural network encoder (Kaya & Bilge, 2019).

A conceptual benefit of our framework is that it makes clear
that single-shot associative memory models are simply two-
layer MLPs with an unusual activation function (i.e., the
separation function), which works best as a softmax or max
function, and where the weight matrices directly encode ex-
plicit memory vectors instead of being learnt with backprop-
agation. This leads immediately to the question of whether
standard MLPs in machine learning can be interpreted as as-
sociative memories instead of hierarchical feature extractors.
A crucial requirement for the MLP to function as an asso-
ciative memory appears to be a high degree of sparsity of
intermediate representations (ideally one-hot output) so that
an exact memory can be reconstructed instead of a linear
combination of multiple memories. With a dense represen-
tation at the intermediate layers, no exact memory can be
reconstructed, and the network will instead function as a
feature detector. This continuum between associative mem-
ories and standard MLPs, which depends on the sparsity of
the intermediate representations, has resonances in neuro-
science, where neural representations are typically highly
sparse, as well as to helps contextualize results showing that
associative memory capabilities naturally exist in standard
machine learning architectures (Radhakrishnan et al., 2018).

In terms of the separation function, it is clear that for exact
retrieval, the max function is simply the best option, as it re-
moves any interference between different stored memories.
The improvement of the separation function is the funda-
mental cause behind the vast gulf of theoretical capacity
and practical performance between the classical HN and the
MCHN. It is straightforward to show that with the max sep-
aration function, as long as queries are simply uncorrupted
copies of the memory images, and that the similarity func-
tion of a memory and query has its minimum at the memory
(i.e., sim(x, x) < sim(x, y) for any y), then the max separa-
tion function will achieve a theoretically infinite capacity for
any fixed size of input query (although, of course, requiring
an infinite dimensional memory matrix M ). However, this
theoretical capacity is irrelevant in practice where, for cor-
rupted queries, it is the propensity of the similarity function
to detect the right match between query and memory that is
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Figure 4. Top Row: Retrieval capability against increasing levels of i.i.d added to the query images for different similarity functions.
Bottom Row: Retrieval capability against increasing fractions of zero-masking of the query image. The networks used a memory of 100
images with the softmax separation function. Error bars are across 10 separate runs with different sets of memories stored. Datasets used
left to right: MNIST, CIFAR, and Tiny ImageNet.

the main determinant of retrieval quality.

Our framework also makes a straightforward prediction
that the retrieval capacity of hetero- and autoassociative
memories are identical for powerful separation functions.
This is because the key ‘work’ performed by the memory
model is in the first two stages of computing the similarity
scores and then separating them, while whether the result
is a hetero- or autoassociative memory depends entirely on
the projection matrix used to project the resulting separated
similarity scores. As such, if the separation scores are nearly
a one-hot vector at the correct memory index, the correct
image will be ‘retrieved’ by the projection matrix regardless
of whether it is a hetero- or autoassociated memory. We
verify this prediction by studying the retrieval capacities of
hetero- vs. autoassociative MCHNs and HNs in Appendix B.

Finally, while the capabilities and performance of these asso-
ciative memory models may seem remote to state-of-the-art
machine learning, recent work has begun to link the MHCN
with self-attention in transformers (Ramsauer et al., 2020),
which has also more recently been linked to SDM (Bricken
& Pehlevan, 2021). These close links between associative
memory models and transformer attention may therefore
indicate that improvements in understanding and increas-
ing the effective capacity of such models may also lead to
improvements in transformer performance for large-scale
machine learning tasks. Perhaps the most interesting avenue

lies in testing different similarity functions in transformer
models, which, up to now, have almost entirely utilized the
dot-product similarity function. This paper, however, has
suggested that other similarity functions such as Euclidean
and Manhattan distance are also highly competitive with
the dot-product similarity and may lead to comparable or
superior results when used in transformer self-attention. Pre-
liminary results (Appendix F) suggest that the Manhattan
and Euclidean distance similarity functions are competitive
with dot product attention in small-scale transformer net-
works, despite transformer architectures being optimized for
the dot product, and suggest that investigating transformer
performance more thoroughly with different similarity func-
tions may be an important avenue for future work.
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Appendix A: Proof of Energy Function Being a Lyapunov Function of the Dynamics
In this appendix, we demonstrate that the energy function is a Lyapunov function of the dynamics. This means that by
running the dynamics forward in time, the value of energy function is guaranteed to decrease. To do so, we simply compute
the time derivative of the energy function and show that it must be negative:
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which is clearly always negative as long as the Hessians of the activation functions are positive definite. In the usual case of
elementwise activation functions, this requires that the functions be monotonically increasing. Note that in this derivation,
we have assumed that the input currents are constant dI

dt = 0, the fact that the derivative of the Langrangians can be defined
by the chain rule as dL⊑

dt = ∂Lv

∂v
dv
dt , and the definition of the dynamics of the visible and hidden neurons.
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Appendix B: Heteroassociative Hopfield Networks
In this appendix, we follow up on the discussion in Section 1.1 and demonstrate that both the MCHN and the HN can be
straightforwardly extended to perform heteroassociative memory retrieval with no impact on performance compared to
autoassociativity. This is done simply by replacing the memory matrix in the projection step by a different memory matrix
which represents the other memories that must be heteroassociated with the main memories. If we define the memory matrix
as M and the heteroassociative projection matrix as P , this results in the following update rule for the MCHN:

z∗ = Pσ(M · q) (11)

and the following update rule for the HN:

z∗ = sign(T̃ · q) , (12)

where the heteroassociative memory matrix T̃ can be written as PMT . The reason for the negligible performance difference
between auto- and heteroassociation is that all the ‘difficult’ computation that can lead to mis-reconstructions occurs during
the computation of the similarity scores and the application of the separation function. Once the set of similarity scores is
computed, these scores simply select the linear combination of rows of the projection matrix that is to be reconstructed.
Whether this projection matrix is the same as the memory matrix M , or some other autoassociation matrix P is immaterial.

Figure 5. Examples of heteroassociative memory retrieval for both the MCHN and the HN. The networks were queried with one half
of either a CIFAR10 image for the MCHN or a binarized MNIST digit for the HN. The autoassociated memory was the other half of
the original memory image. On the left, the MCHN achieves perfect heteroassociation, even of challenging CIFAR10 images, due to
its superior capacity to the HN. On the right, the HN achieves substantially correct heteroassociations but occasionally misreconstructs
an image.

An additional direct consequence of our theoretical framework is that there should be effectively no difference in hetero- vs.
autoassociative memory retrieval performance for any feedforward memory model, since all the ‘work’ is already done
in computing the similarity and separation functions, while the difference between auto- and heteroassociative memories
occurs only at the projection matrix. We verify this prediction here by comparing the retrieval capacity of auto- and
heteroassociative MCHNs and HNs as the memory size increases and find them to be statistically identical.
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Figure 6. Comparison of auto- vs. heteroassociative MCHN and HNs on retrieval task. For both, given a corrupted image, the heteroas-
sociative task was to retrieve only the bottom half. The MCHN was queried with CIFAR10 images corrupted with Gaussian noise of
variance 0.5. The HN was tested on binarized MNIST images where the query was the top half of the image. Error bars are the standard
deviations of the retrieval capacity over 10 runs. The performance of the HN is extremely poor due to interference between memories
caused by its identity separation function. In both cases, the differences between auto- and heteroassociative capacity are negligible
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Appendix C: Reconstructions under Varying Levels of Image Perturbation
In this appendix, we include example reconstructions under varying levels of query degradation as an example of the two
kinds of query degradation examined in the main text. These are addition of random Gaussian noise with varying variance,
and masking (with zeros) of a given fraction of the query image. We present sample reconstructions of an associative
memory network (with Manhattan distance similarity and softmax separation functions) under both different levels of noise
variances and fractions of the image masked out. The values shown here are the same as in the capacity robustness plots
(Fig. 2), so that an intuitive picture of the difficulty of the network’s tasks can be gauged.

Figure 7. Examples of reconstruction of an associative memory network using the Manhattan distance similarity function and the softmax
separation function. The network achieves a perfect performance up to a noise variance of about 0.5, which visually is an extremely
distorted version of the original image. For high variances, the reconstructions are incorrect, however, a feature of the MCHN is that the
attractors span the space such that any input pattern, even a meaningless one, will eventually be classed as a given pattern.
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Figure 8. Examples of reconstruction of an associative memory network using the Manhattan distance similarity function and softmax
separation function. The network achieves a perfect performance up to a fraction masked of 0.5, while reconstructions afterwards are
incorrect. Interestingly, visually to a human this task is much easier than the Gaussian noise distortion, but the network finds denoising the
Gaussian noise significantly easier. This may be due to the design of the similarity functions for which the noisy images are ‘closer’ in
space to the memory than images with half or more of the image as zeros, which of course generates large errors for all the zero pixels.
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Appendix D: Suite of Similarity and Separation Functions
The list of similarity functions tested is presented in Table 2 below.

Table 2. Similarity Functions

Similarity Function Definition

Euclidean Distance sim(M, q) =
∑

(M − q)2

Manhattan Distance sim(M, q) =
∑

abs(M − q)
Dot Product sim(M, q) = M.q
KL Divergence sim(M, q) =

∑
q ln M

q

Reverse KL Divergence sim(M, q) =
∑

M ln M
q

Jensen-Shannon Divergence sim(M, q) = 1
2KL[M ||q] + 1

2KL[q||M ]

Similarly, the list of separation functions tested is given in the Table 3 below.

Table 3. Separation Functions

Separation Function Definition

Identity sep(x) = x
Square sep(x) = x2

N-th Order Polynomial sep(x, n) = xn

Log sep(x) = lnx

Softmax sep(x, β) = e−β∗x∑
e−β∗x

Max sep(x) = max(x)
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Appendix E: Numerical and Simulation Notes
Two key issues for making a fair comparison between similarity functions is the numerical effects of scaling and the
direction of similarity. Firstly, implemented naively, the similarity metrics often have different characteristic scales, i.e., one
measure might naturally return values that are much larger or smaller than another. This would then change the effect of the
separation function and thus the reconstruction accuracy. For instance, a method that returned high similarity values would
often be easier to separate than one which returned small ones. To address this problem, we normalized the similarity scores
of each similarity function so that they would sum to 1. A second problem is the direction of similarity, namely, whether the
similarity function returned high or low values for similar inputs. Similarity measures such as the dot product give large dot
products for similar inputs, while distance measures such as the Euclidean distance give small distances for similar inputs.
To address this, for distance metrics, we instead returned the normalized reciprocal of the distances, so that large inverse
distances correspond to a high similarity. Thus, all similarity functions returned their scores in a standardized normalized
format whereby larger scores represented larger degrees of similarity, and the sum of all scores was normalized to one. The
outputs of the separation function are also normalized such that their sum is 1.

To compute the number of correct retrievals, given a memory matrix and a query vector, we first implemented the
reconstruction through the main equation z = MT sep(sim(M, q)), where sim is defined to output scores in the normalized
format. The input vector q is derived by simply flattening the input image. The memory matrix M consists of a series of
flattened vectors for the stored images M = [m1,m2, . . . ], where m1 is the flattened vector of a memory image. Once the
reconstruction z was computed, we compared it to the original image and computed a reconstruction score based on the
sum of the squares of the elementwise differences between the reconstruction and the true image L =

∑
i(zi − z∗i )

2. If the
sum of squares was less than a threshold (here, we used 50), then the image was classed as being correctly retrieved and
otherwise not. The threshold value was chosen empirically to allow reconstructions that are almost indistinguishable by eye
from the true input, while ruling out incorrect and poor reconstructions.

E.1. Dot-Product Similarity

A key weakness of the dot-product similarity metric is that it is not invariant to the norm of the vectors. This means that the
similarity computed depends heavily on the vector norms often more so than the similarities. Mathematically, this results in
the fact that it is not the case that xTx ≥ xT z, where z is any other vector. What this means is that two completely different
inputs can have a higher dot product similarity than the input dotted with itself. This does not happen with other similarity
metrics such as the Euclidean distance where the minimum distance of 0 is achieved when the query vector and a memory
vector are identical. This occurs because the z vector may have a larger norm than the x vector. This problem in practice
leads to catastrophically poor performance of the dot-product similarity metric, especially on dense color images like the
CIFAR and Tiny ImageNet datasets, where the un-normalized dot product simply tends to simply measure the degree of
high pixel values in an image. To alleviate this issue, results in the paper are instead reported using a normalized dot-product
similarity function defined as

dot(X, z) = norm(norm(X) · norm(z)) , (13)

where norm(x) = x∑
x simply normalizes the entries in the vector to sum to 1, and where the norm on the memory matrix

X is taken for each row (i.e., stored vector) independently. The dot product of the two normalized vectors is then normalized
again for numerical reasons, since otherwise the similarity scores computed were often extremely small leading to numerical
issues and poor performance with the separation function.

A similar normalization was also performed for the similarity functions that involved a KL divergence, which possesses
a probabilistic interpretation, and thus all the input vectors were normalized, so as to sum to one, and thus preserve an
interpretation in terms of probability distributions.



Universal Hopfield Networks: A General Framework for Single-Shot Associative Memory Models

Appendix F: Transformer Experiments
To test whether the insights gained from this framework might apply to large-scale machine learning in the form of improving
transformer attention, we implemented transformer layers using various similarity functions. Mathematically, we modified
the transformer update rule to

z = V σ(β · sim(K,Q)), (14)

where V , K, and Q are the Value, Key, and Query matrices of transformer attention, β is the softmax temperature, σ is the
softmax function, and sim is the similarity function. All other aspects of the transformer architecture remained the same.

We utilized an encoder-decoder transformer architecture with 2 residual blocks. Each residual block included a modified
attention layer, an MLP layer, and batch normalization. The transformers were trained on the Wikitext dataset using the
ADAM optimizer. The MLP layer had a hidden dimension of 200, and the embedding dimension was also 200. Two
attention heads were used. A batch size of 20 was used.

Figure 9. Achieved perplexity on the WikiText dataset using transformer models with varying similarity functions across a range of
learning rates. All successful similarity functions achieved similar results although the absolute value and Euclidean distance similarity
functions appeared more sensitive to choices of the β hyperparameter.

Although small-scale, from the preliminary results, it appears that the similarity function used actually makes relatively little
difference for the final learning performance of the transformer. This may suggest that despite recent works interpreting
attention through the lens of heteroassociative memories (Ramsauer et al., 2020; Bricken & Pehlevan, 2021), transformers
are not particularly functioning as associative memories in that the learnt K and Q matrices do not directly correspond to
learnt ‘memories’ but rather that the success of the transformer architecture is simply due to the mathematical structure of
the update rule — for instance, the multiplicative interactions, which have also been shown to be crucial in non-transformer
contexts, such as in the MLP-mixer architecture (Tolstikhin et al., 2021; Jayakumar et al., 2020). Supporting evidence for
this comes from the fact that the post-softmax attention outputs are typically dense and the softmax temperature is often
relatively high, meaning that the system is not reconstructing exact memories as the MCHN does. Sparsifying self-attention
outputs (for instance, with a large inverse temperature or with an explicit max or top-k function (Gupta et al., 2021) replacing
the softmax), however, will have the effect of making the self-attention function much more similar to an associative memory
that retrieves specific memories given a cue.

Additionally, it could simply be that given that the K, Q, and V matrices are all learnable, that backpropagation can simply
route around the different similarity functions, and specialize representations for a given similarity function. If this is the
case, then it may indicate that substantial computational savings may be obtained by devising similarity functions that are
less expensive than the dot product currently used. Much work in this area is already underway and many computationally
cheaper simplifications of the transformer have been proposed (Kitaev et al., 2020; Wang et al., 2020; Tay et al., 2020).
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Appendix G: Effect of Error Threshold
For the simulations in this paper, the error threshold was set somewhat arbitrarily as the sum of squared pixel values
between the reconstruction and the original image, needing to be less than 50 for the reconstruction to be classified correctly.
Although heuristic, this threshold roughly corresponds to retrieving the correct image and tolerating some fuzziness in
reconstruction, but not too much. As an example of reconstructions with different squared differences, see Figure 10.

Figure 10. Examples of reconstructed images by a Manhatten distance associative memory model according to various threshold values.
Note that the correct retrieval is typically achieved with significantly higher threshold values, but the relatively low threshold enforces
exact as opposed to blurry reconstructions.

To validate that the exact value of the threshold had relatively little affect on our results, we demonstrate the retrieval
accuracy on CIFAR10 of the three similarity functions over a range of potential thresholds, noting that the curve is relatively
flat at the threshold of 50 chosen and that all similarity functions are affected approximately equally by the change in the
threshold — unsurprisingly, with more images being correctly retrieved with a larger threshold value.
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Figure 11. Percentage of correct retrieval against error threshold. Note that the threshold chosen lies at the flat part of the graph, although
unsurprisingly, correct retrievals increase rapidly with large thresholds.
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A. Appendix H: Additional Image Perturbations
To test whether the same effects of similarity function are maintained on a wider set of image perturbations, in this appendix,
we additionally present an analysis of two further perturbations — random masking, where randomly chosen pixels on the
image are masked out (set to zero) with a certain probability, and inpainting, where the edges of the image are masked out,
and the edges must be reconstructed from the center. Examples of both perturbations for differing levels of pixel masking
are presented in Figures 12 and 13, respectively.

Figure 12. Example queries and reconstructions for the random masking perturbation.

Figure 13. Example queries and reconstructions for the image inpainting perturbation.

We performed equivalent capacity tests of the three main similarity functions proposed (Manhattan and Euclidean distance
and dot-product similarity) and plotted the results below,
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Figure 14. Capacity of networks by similarity function on the two additional perturbations, inpainting and random masking. Error bars are
standard deviations across 10 runs.

We see that inpainting followed the standard pattern of superiority of the Manhattan distance metric. However, random
masking showed a significantly more robust performance at high capacity for the dot product similarity. This highlights how
the optimal similarity function is highly situational depending significantly on the likely set of perturbations that need to be
corrected.

B. Code Availability
Code to reproduce all the experiments and figures reported in this paper is freely available at: https://github.
com/BerenMillidge/Theory Associative Memory.

https://github.com/BerenMillidge/Theory_Associative_Memory
https://github.com/BerenMillidge/Theory_Associative_Memory

