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DEEP BRAIN STIMULATION

The invention relates to the generation of signals for stimulation of a subject.
Typically, the stimulation is used to stimulate a target site in the nervous system (e.g. the
brain) of a human or animal subject.

Deep brain stimulation (DBS) is a well-established and effective treatment option
for a variety of neurological disorders, including Parkinson's disease (PD) and essential
tremor (ET). DBS involves delivering stimulation through electrodes implanted deep into
the brain and targeting regions thought to be implicated in the disease, which in the case of
PD is typically the subthalamic nucleus (STN) and for ET the ventral intermediate nucleus
(VIM). PD is a common movement disorder caused by the death of dopaminergic neurons
in the substantia nigra. Primarily, symptoms manifest as slowness of movement
(bradykinesia), muscle stiffness (rigidity) and tremor. ET is purportedly the most common
movement disorder, affecting just under 1% of the world population [1] with the main
symptom being involuntary shaking most commonly in the upper limbs. Despite its
prevalence, the pathophysiology of ET remains elusive, although the cortex, thalamus and
cerebellum are all thought to be involved in the disease [1].

Symptoms of these disorders are thought to be due to overly synchronous activity
within neural populations. For PD patients, higher power in the beta frequency range (13-
30Hz) of the local field potential (LFP) measured in the STN has been shown to correlate
with motor impairment [2] while thalamic activity in ET patients is strongly correlated
with tremor measured using the wrist flexor EMG [3]. It is thought that DBS acts to
desynchronise this pathological activity leading to a reduction in the symptom severity.

A typical DBS system consists of a lead, an implantable pulse generator (IPG) and
a unit to be operated by the patient. The DBS lead terminates with an electrode, which is
typically divided into multiple contacts. Post-surgery, clinicians manually tune the various
parameters of stimulation, such as the frequency, amplitude and pulse width, in an attempt
to achieve optimal therapeutic benefit. The choice of stimulation frequency in particular is
known to be crucial for efficacy with high frequency (HF) DBS (120-180 Hz) being found
to be effective for both PD and ET patients [4].

Despite the effectiveness of conventional HFDBS in treating PD and ET, it is
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believed that improvements to the efficiency and efficacy can be achieved by using more
elaborate stimulation patterns informed by mathematical models. Coordinated reset (CR)
neuromodulation is an open-loop DBS strategy where brief HF pulse trains are applied
through different contacts of a stimulation electrode [5]. The efficacy of CR was first
demonstrated theoretically, where precisely-timed delivery of HF pulses can be shown to
desynchronise a system of coupled oscillators [5]. In practice, CR has been shown to yield
both acute and long-lasting benefits in nonhuman primates.

Multi-contact electrodes powered by independent current sources are a recent
development in DBS technology. IPGs with multiple independent current sources are the
“cutting-edge' of DBS technology which, unlike their single current source counterparts,
allow for current to be delivered independently to each contact. This gives increased
control and flexibility over the shape of the electric fields delivered through the electrodes,
allowing for more precise targeting of pathological regions and the possibility of
delivering more complex potential fields over space, in addition to allowing for the
possibility of recording activity from different regions. The use of multiple contacts for
DBS, however, naturally leads to increased complexity, as many more stimulation
strategies are now possible. This has created the need to better understand how applying
DBS through multiple contacts can affect the treatment. In order to realise the potential of
such systems, algorithms must be developed to deal with their increased complexity, and
address the question of how to best apply DBS to multiple regions to maximally
desynchronise brain activity.

Therefore, it is an object of the invention to provide improved multi-electrode
stimulation systems.

According to an aspect of the invention, there is provided a method of generating
deep brain stimulation signals, the method comprising receiving a plurality of sensor
signals from a corresponding plurality of sensors on or in a subject, and using the received
sensor signals to generate a plurality of stimulation signals for application at a
corresponding plurality of target sites in the brain of the subject.

In conventional DBS systems, following tuning of parameters by a clinician,

stimulation is then provided constantly, or “open-loop', according to these parameters. The
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efficacy, efficiency and side-effects of the treatment can be improved by stimulating
“closed-loop', according to the symptoms of a patient. Closed-loop stimulation aims to
deliver stimulation on the basis of feedback from a patient or subject. There is a growing
body of evidence [6, 7, 2] suggesting that closed-loop stimulation has the potential to offer
improvements in terms of efficacy, efficiency and reduction in side effects. Applying such
closed-loop control to multi-electrode systems that target a plurality of target sites using a
plurality of stimulation signals has the potential to provide even greater benefit.

According to another aspect of the invention, there is provided a method of
generating stimulation signals, the method comprising receiving a plurality of sensor
signals from a corresponding plurality of sensors on or in a subject, using the received
sensor signals to generate a plurality of stimulation signals for application at a
corresponding plurality of target sites on or in the subject using a model of the response of
neurons in the subject to the stimulation signals that models neural tissue as a plurality of
coupled populations of neurons.

The greater complexity of multi-electrode systems means that there is a need to
understand how applying DBS to multiple regions (or neural populations) can affect the
efficacy and efficiency of the treatment. By modelling the response of neurons using a
plurality of coupled populations, it is possible to derive analytical expressions which
predict how symptom severity should change as a result of applying stimulation. On the
basis of these expressions, it is possible to derive an algorithm describing when the
stimulation should be delivered to individual target sites.

In some embodiments, generating the plurality of stimulation signals comprises
determining a population activity for each population of neurons and determining the
amplitude and phase of each population activity, the population activity of each population
being a measure of neural activity among neurons in that population. Depending on the
response of different classes of neurons, it can be advantageous to generate signals based
on the activity of individual populations. Determining population activities allows the
determination of the conditions for when stimulation using information from individual
contacts is likely to be advantageous.

In some embodiments, determining the population activities comprises applying
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independent component analysis to the sensor signals. Independent component analysis is
a computationally efficient way to identify the contributions to a signal from different
sources.

In some embodiments, generating the plurality of stimulation signals further
comprises determining a composite signal using a weighted combination of the population
activities, and determining the amplitude and phase of the composite signal. Using a
composite signal determined using a combination of population activities allows for
characterisation of an overall activity of neurons without having to measure a separate
signal to that used to determine the population activities.

In some embodiments, generating the plurality of stimulation signals further
comprises, for each of a plurality of time steps, choosing the plurality of stimulation
signals to maximally reduce the amplitude of the composite signal over the time step. This
provides a convenient optimisation problem to determine the signals that should be applied
to each target site to lower the overall severity of symptoms based on the combination of
population activities. In some embodiments, maximally reducing the amplitude of the
composite signal comprises, for each time step, calculating the rate of change in amplitude
of the composite signal based on the composite signal and the plurality of population
activities. Basing the calculation on both the composite signal representing overall activity
in the region and the individual population activities can be advantageous, particularly for
some types of neural tissue.

In some embodiments, the plurality of stimulation signals are chosen subject to a
constraint on the total charge density within a region of the subject, and/or a constraint on
the charge applied by each electrode. These constraints prevent the electrodes applying
too great a charge either individually or collectively that could cause undesirable side
effects.

In some embodiments, the weights in the weighted combination are such that the
amplitude of the composite signal is correlated to (preferably proportional to) a measure of
severity of a symptom of the subject. This ensures that the composite signal is
representative of symptom severity such that use of the composite signal will allow more

effective determination of the stimulation signals that should be applied to each target site.
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In some embodiments, the model models each population of neurons as a plurality
of coupled oscillators. The electrical activity of neurons typically has a periodic
behaviour, and can affect the activity of neighbouring neurons. Therefore, coupled
oscillators make a good approximation to their behaviour. Preferably, the coupled
oscillators comprise Kuramoto oscillators. The Kuramoto model is a known model for
neural activity that provides a good approximation to the behaviour of groups of neurons.

In some embodiments, the model models the response of the neurons to the
stimulation signals as being dependent on the phase of oscillations of the neurons. Some
neurons tend to respond to external stimulation uniformly regardless of where they are in
their cycle of activity, while other neurons have a response that depends on the phase of
their oscillations. Taking account of this will improve the outcome of stimulation by more
accurately determining the effect a particular stimulation will have on the target neurons.

In some embodiments, the plurality of sensor signals represent electrical activity in
the subject. Direct measurement of electrical activity is an effective way to measure neural
activity and thereby determine the parameters of the plurality of populations of neurons.

In some embodiments, the electrical activity is a local field potential produced by
neurons in a region of the brain of the subject. Measuring a local field potential, rather
than for example a potential from a single neuron or a small number of neurons, means
that larger electrodes can be used, which are easier to handle and implant.

In some embodiments, the sensors are inertial sensors, and the plurality of sensor
signals represent movement of the subject. Inertial sensors can provide more direct
measurement of symptoms that are to be treated by the stimulation, thereby giving a more
accurate picture of the effectiveness of the stimulation.

In some embodiments, the stimulation signals comprise a plurality of pulses.
Pulsed signals provide a convenient way to vary the stimulation intensity.

In some embodiments, the stimulation signals have a carrier frequency of at least
20 Hz and/or at most 250 Hz. This range of frequencies has been found to be particularly
effective in relieving symptoms using pulsed stimulation signals.

In some embodiments, the application of the stimulation signals is used for

treatment of Parkinson’s disease, epilepsy, obsessive compulsive disorder, and/or essential
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tremor. These conditions are particularly responsive to stimulation signals of the type
generated by the method.

According to another aspect of the invention, there is provided a system for
applying stimulation signals, the system comprising a processor configured to generate a
plurality of stimulation signals according to the method of any one of the preceding claims,
and an electrical circuit configured to provide the plurality of stimulation signals to a
corresponding plurality of electrodes for application at the plurality of target sites. This
system allows for the provision of stimulation signals with the benefits of the method as
described above.

In some embodiments, the electrical circuit comprises the plurality of electrodes.
This may be convenient as it allows the properties of the electrodes to be tailored to the
electrical circuit to more effectively deliver the stimulation signals.

In some embodiments, the plurality of electrodes are configured to be implanted
into the brain of the subject. This provides the most direct stimulation for treatment of
neurological conditions.

In some embodiments, the system further comprises a plurality of sensors
configured to be placed on or in the subject, the sensors configured to generate the
plurality of sensor signals, and transmit the sensor signals to the processor. Including the
sensors in the system allows their properties to be chosen and accounted for in the design
of the system.

In some embodiments, the sensors are configured to be implanted into the brain of
the subject, and the plurality of sensor signals represent electrical activity in the brain of
the subject. Direct measurement of electrical activity in the brain can be used to give an
accurate indication of neural activity.

In some embodiments, the plurality of sensors are the plurality of electrodes.
Combining the functionality of the electrodes and sensors means that fewer components
are needed, and the sensor signals directly reflect the electrical activity in the target sites to
which the stimulation signals are applied.

Embodiments of the invention will now be described, by way of example only,

with reference to the accompanying drawings in which corresponding reference symbols
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represent corresponding parts, and in which:

Figure 1 is a schematic diagram of a system for applying stimulation signals;

Figure 2 is a schematic of the system of Fig. 1 attached to a subject;

Figure 3 shows fits of a Kuramoto model to various features extracted from tremor
data from ET patients;

Figure 4 is a comparison of averaged phase and amplitude response curves between
experimental and fitted data from the Kuramoto model,

Figure 5 is a comparison of experimentally measured tremor data and the output of
the Kuramoto model in the time domain;

Figure 6 shows different distributions of oscillators in phase space;

Figure 7 shows the contribution of a single population to the global amplitude
response at different local amplitudes and for different neuronal phase response curves;

Figure 8 shows visualisations of the relative positioning of neuronal populations
and electrodes;

Figure 9 shows simulations of the effect of coordinated reset stimulation on
symptom severity,

Figure 10 shows simulations of the effect of the present stimulation method on
symptom severity,

Figure 11 shows the average amplitude of a simulated Kuramoto system for
different stimulation strategies;

Figure 12 shows the average energy used by different stimulation strategies;

Figure 13 shows the average amplitude of a simulated Kuramoto system for
different stimulation strategies in a system where the amplitude response depends on local
neuronal population activity;

Figure 14 shows tremor data for one of the patients from the dataset used for the
analysis discussed further below;

Figure 15 shows a flowchart of an embodiment of the method,

Figure 16 shows signals used for calibration of the method to determine response
parameters;

Figure 17 is a flowchart visualising simulations used in further testing of the



10

15

20

25

30

WO 2022/029445 PCT/GB2021/052039

method;

Figure 18 shows visualisations of the relative positioning of neural populations,
electrodes, and sensors in further testing of the method;

Figure 19 shows simulated sensor recordings due to the activities of neural
populations;

Figure 20 shows estimates of the activities of the neural populations derived from
ICA applied to the signals of Fig. 19; and

Figure 21 shows simulated symptom signals for several configurations after
applying stimulation signals.

1. Description of the invention

The present invention provides methods of generating stimulation signals, and a
system 1 for applying stimulation signals as shown in Figure 1. The stimulation method
described herein is referred to as adaptive coordinated reset (ACR) stimulation, or
alternatively as adaptive coordinated desynchronization (ACD). As discussed above,
stimulation signals are an effective treatment for neurological conditions including PD and
ET. Therefore, in some embodiments, the application of the stimulation signals is used for
treatment of Parkinson’s disease and/or essential tremor. The stimulation signals may also
be used treatment of other conditions that are known to be treatable using deep brain
stimulation, for example epilepsy or obsessive compulsive disorder.

The system 1 comprises a processor 3 configured to generate a plurality of
stimulation signals according to the method, which will be discussed in further detail
below. The system 1 further comprises an electrical circuit 5 configured to provide the
plurality of stimulation signals to a corresponding plurality of electrodes 7 for application
at the plurality of target sites. In some embodiments, the plurality of target sites are in the
brain 15 of a subject 13, and the stimulation signals comprise deep brain stimulation
signals. In such embodiments, the plurality of electrodes 7 are configured to be implanted
into the brain 15 of the subject 13, as shown in Figure 2. In other embodiments, the
stimulation signals may be applied to the peripheral nervous system, and the electrodes
implanted in a subject’s limbs, or the electrodes may be attached externally to the subject.

In practice, the stimulation can be applied either using multiple electrodes 7, or single
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electrodes with multiple contacts. Therefore the terms ‘electrode’ and ‘contact’ are
synonymous in the context of this application.

The processor 3 and electrical circuit 5 are contained in a casing 11. The casing 11
may be worn external to the body of the subject 13, or in some embodiments may be
implanted into the body of the subject 13. The electrical circuit 5 in Figure 1 comprises
the plurality of electrodes 7. This is advantageous because the properties of the electrodes
can be chosen to suit the properties of the system 1 and electrical circuit 5. However, this
is not essential, and in some embodiments the electrodes 7 may be separate from the
system 1. This may be advantageous if the subject has pre-existing electrodes already
implanted, for example if they have been using a previous or alternative system for
applying stimulation signals. Where the electrodes 7 are separate, the electrical circuit 5
may be configured to connect to the electrodes 7 via a suitable wired or wireless
connector.

As shown in the flowchart of Figure 15, the method of generating stimulation
signals comprises receiving S10 a plurality of sensor signals from a corresponding
plurality of sensors 9 on or in the subject 13. Correspondingly, the system 1 in Figure 1
comprises a plurality of sensors 9 configured to be placed on or in the subject 13. The
sensors 9 are configured to generate the plurality of sensor signals, and transmit the sensor
signals to the processor 3. In some embodiments, the sensors 9 are configured to be
implanted into the brain 15 of the subject 13, and the plurality of sensor signals represent
electrical activity in the brain of the subject 13. The electrical activity may be a local field
potential (LFP) produced by neurons in a region of the brain of the subject. Measuring a
local field potential, rather than for example a potential from a single neuron or a small
number of neurons, means that macroelectrodes can be used, which are larger and thereby
easier to handle and implant.

As shown in Figure 2, the plurality of sensors 9 of the system 1 are the plurality of
electrodes 7. This has the advantage that it is not necessary to implant another set of
components into the subject 13, and that the sensor signals produced by the sensors 9 are
indicative of the electrical activity in the same regions of the brain 15 that the stimulation

signals will be applied to. However, in other embodiments, the sensors 9 used to generate
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the sensor signals may be separate from the electrodes 7 used to apply the stimulation
signals.

Electrodes used to generate sensor signals are susceptible to recording the
stimulation pulses themselves. This manifests in recordings as an artefact, which poses a
challenge for closed-loop methods that rely on the real-time measurement of phases and
amplitudes. Therefore, in some embodiments, suppression of stimulation artefacts may be
applied to the sensor signals. This suppression may come as a by-product of using
independent component analysis on the signals (which is discussed further below), as
previously seen [23, 24]. Alternatively, by recording through two contacts adjacent to a
single stimulating contact, the properties of differential amplifiers can be used to suppress
the stimulation artefact [25].

In some embodiments, the sensors 9 are inertial sensors, and the plurality of sensor
signals are inertial signals representing movement of the subject 13. This can be
advantageous because the movement of the subject 13 can provide a signal that is a more
direct measure of symptom severity.

The method comprises using the received sensor signals to generate a plurality of
stimulation signals. This type of feedback-based control of the stimulation signals is
known as closed-loop control. Closed-loop DBS strategies are characterised by their use
of a feedback signal to determine when stimulation should be applied. The choice, use and
accuracy of this feedback signal therefore plays a crucial role in determining the efficacy
of a particular strategy. Both the local field potential (LFP), a measure of electrical
activity in a region of the brain, and tremor (derived from inertial measurements of a
subject’s movement) have previously been used as feedback signals, with studies showing
the effects of DBS to be dependent on both the phase and amplitude of the oscillations at
the time of stimulation [7, 2]. In adaptive DBS, high frequency stimulation is applied only
when the amplitude of oscillations exceeds a certain threshold [2] and in phase-locked
DBS stimulation is applied according to the instantaneous phase of the oscillations, which
for ET patients corresponds to stimulation at roughly the tremor frequency (typically ~ 5
Hz) [7]. Although closed-loop strategies for DBS have been used previously, none have

attempted to generate a plurality of stimulation signals for simultaneous application to a
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plurality of target sites. In contrast, the present method (ACR) is a method for DBS using
multiple contacts. Using a plurality of stimulation signals has the advantage of allowing
for greater control of the field applied to the brain and thereby providing more effective
treatment. Unlike known coordinated reset (CR) stimulation techniques, the ACR method
is closed-loop and uses information about the neuronal system to determine when to apply
stimulation. The numerical simulations presented below show that in many cases,
substantial improvements to the efficacy can be achieved with ACR over existing methods.

Typically, the stimulation signals comprise a plurality of pulses. These are usually
electrical pulses, but this is not essential, and in some embodiments, the pulses may be
magnetic or may be provided using optogenetic techniques, where light pulses are used to
perturb genetically modified neurons. An optogenetic approach to stimulation may be
preferable in some embodiments, as it would eliminate the electrical stimulation artefacts
mentioned above. In general terms, any form of stimulation may be used which can
perturb the firing rate of neurons.

The stimulation signals are configured to deliver energy to the target sites, and the
rate of energy delivery can be varied by changing the properties of the applied signal. For
example, the amplitude, and frequency of the signal can be used to vary the rate of energy
delivery to the target sites. In some embodiments, the stimulation signals have a carrier
frequency of at least 20 Hz, preferably at least SO Hz, more preferably at least 100 Hz. In
some embodiments, the stimulation signals have a carrier frequency of at most 250 Hz,
preferably at most 200 Hz, preferably at most 150 Hz.

The generating of the plurality of stimulation signals comprises using a model of
the response of neurons in the subject 13 to the stimulation signals. Using such a model
allows for more accurate determination of symptom severity and neural activity, and
thereby the tailoring of the stimulation signals to more effectively treat the symptoms.
This is particularly advantageous when using closed-loop control to generate a plurality of
stimulation signals for simultaneous application to a plurality of target sites, where the
problem of determining optimal stimulation signals is particularly complex.

In [8], a mathematical basis for the phase and amplitude dependence of single-

contact DBS was derived. This is discussed briefly below to provide context for the model
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of the present invention. The present model extends the model discussed in [8] to provide
a more detailed model that also covers multi-electrode stimulation, and the present model
is then applied to the practical problem of generating stimulation signals to introduce
adaptive coordinated reset (ACR), a closed-loop stimulation strategy especially suited to
multi-contact systems. A key aspect of the present model is that it models neural tissue,
for example brain tissue or tissue of the peripheral nervous system, as a plurality of
coupled populations of neurons. This allows the understanding of how the effects of
multi-contact stimulation (and in particular DBS) depend on the ongoing neural activity
measured by the plurality of sensor signals through each channel from each sensor.
2, Model for Single Contact DBS
2.1 Phase Synchrony and Oscillations

This section follows the derivation in [8] and considers a model of how stimulation
with a single electrode acts on a population of neurons. A list of frequently used notation

is provided in Table 1.
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Parameter Dieseription
& Coupling oonstant
) Noise amplitude
w Mean of patursl frequencies
S Standard deviation of nadural fequencies
Z Newronsl phase response ewvve (nPRO)
e Even Fourler coefficient of aPRC
r Odd Fourier eosflicient of nPRC
é Phasse of oscillator
31 Phase of populaticm
& Svachrony of population
7 Complex order parameter
I Scaling constant for superimental daka
) Number of populsdios
L Number of electrodes
N Number of neurons
g Nunibsr of constraints
Tr Amplitinde response fr & single population
w Populativn weight
e Electrmleepopulation distsnce
P Electrodds position
P Newron position
P Population position
v* Voltage st slectrode
i Voltage af neuron
v Yoltage at population
q Charge of electrode
g Charge of nenron
8 Charge of population
I3 Activity 1o voltage al electrods transformation matrix
D Klectrode to voltage at populstion transformation matrix
d Element of 13
d Element of D

Table 1. List of frequently used symbols together with their description.

The amplitude measured in feedback signals (i.e. the sensor signals from the
plurality of sensors) can be related to the synchrony of neural populations. The
instantaneous phase W(t) and envelope amplitude P(t) of a signal F(t) can be obtained
using the analytic signal R(t)
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R(t) = Pe'™ = Fitl + iHF()], 0

where H denotes the Hilbert transform. This quantity can be related to those associated
with a state of oscillators. The state of N regular spiking neurons is defined to be given by
a set of N oscillators each with phase 8,,(t), which are the phases describing where each
neuron is in its firing cycle. The phase synchrony of this system can be measured using the

order parameter r, defined to be
r=pe¥ =-3N_ et @)
The above definition ensures the magnitude of the order parameter p can take
values between 0 and 1, representing full desynchrony and full synchrony, respectively.

We can transform the state of the system to a signal representing the neural activity using a
superposition of cosine functions
(&) = Re(r) = < ¥N_, e'fn. 3)

The choice of a cosine function is for mathematical convenience since it
corresponds to the real part of (2). In addition to this, the cosine function has a maximum
at 0, and in classic coupled oscillator models, phase O corresponds to the phase when
neurons produce spikes [9]. Hence post-synaptic potentials in down-stream neurons
receiving an input from the modelled population will be a smoothed function of spikes
produced in phase 0, so the cosine function captures key features of such post-synaptic

potentials. Using the Euler relation and comparing (3) with the real part of (2) shows

Oy

4)
A simple relationship is assumed between the neural activity f(t) and a measured
feedback signal, for example tremor and the LFP
F(t) =cf(®) )
where the measured signal is denoted by F(t). This is reasonable in the case of ET, where
thalamic activity is known to be highly correlated to tremor [3]. Inserting Eq. (5) into (1)

gives

P = of f{t) +H[F(0)]}.

()
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Inserting Eq. (3) into Eq. (6) and using the linearity of H leads to

=]
(M
Under the reasonable assumption that the time evolution of 8,, is monotonic, it can

be shown [8] that

H leon(@, )] ~ sinf#, ),

3

)

and therefore

5
Pe' = % Z{m‘afﬁri +4sinff, 1} = epe'™.
na=l ©)
hence, the instantaneous envelope amplitude and phase (the analytic signal) is relatable to
the magnitude and phase of the order parameter using
P=cp¥ =9y (10)

In summary, assuming the experimental data and neural activity are related
according to Eq. (5) and that the phases {On} increase monotonically with time, the
Hilbert transform of the experimental data can be used to relate the envelope amplitude
and instantaneous phase to the magnitude and phase of the order parameter, respectively.
2.2.  Response Curves

The neuronal phase response curve (nPRC) for a spiking neuron is the change in
spike timing due to a perturbation as a function of the inter-spike time. Hansel et al [10]
categorised nPRCs into either type I or type Il depending on whether a small excitatory
(inhibitory) input always advances (delays) a neuron to a next spike or whether it either
advances or delays a spike, depending on where the neuron is in its firing cycle,
respectively [11]. These effects of inputs can be captured using a simple mathematical
function Z(6). By mapping where a neuron is in its firing cycle onto a phase variable 6 €

[0,27], the nPRC describes the change in phase of a single neuron due to a stimulus. More
precisely, under the assumption of a weak input €U (t), the evolution of a single oscillator

can be written in terms of a natural frequency wg in addition to a response term
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(11)
A general neuronal nPRC can be expanded as a Fourier series
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(12)

The nPRC type is reflected in the zeroth harmonic a,, or the shift, with |a,| large
and small relative to the other coefficients being indicative of type I and type II curves,
respectively. Phase oscillator models which incorporate the nPRC can be shown to
reproduce the experimentally-known characteristics of a patient's response to stimulation
[8], namely that the effects should be both amplitude and phase dependent [2, 7]. This
leads to the concept of the phase response curve (PRC) and the amplitude response curve
(ARC) for feedback signals, such as LFP and tremor, which can be described by
perturbing a population of oscillators and respectively describe changes in the phase and
amplitude of the feedback signal at the point of stimulation. The instantaneous curves,
which are functions of both the phase and amplitude at which the stimulation is delivered,
are not commonly found in experimental analysis due primarily to the difficulties
associated with obtaining a function of two independent variables from noisy data. It is
more common to find the averaged response curves, which are only functions of the phase
and are averaged over the amplitude. Such curves are readily obtainable using standard
signal processing techniques and have been used to characterise a patient's response to
stimulation [12, 7, 13].

2.3.  The Kuramoto Model

Modelling the effects of DBS generally poses a challenge since the brain networks
involved in disorders such as ET (cortico-thalamic circuit) and PD (cortico-basal-ganglia
circuit) are complex and it is still debated from which parts of these circuits the
pathological oscillations originate. The task can be made more tractable by considering a
phenomenological model which does not attempt to explicitly describe the underlying

circuits, but rather focuses on general mechanisms leading to the synchronization of
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neurons. To achieve this, the model may model each population of neurons as a plurality
of coupled oscillators.

One example of this is the Kuramoto model, where the dynamics of neurons are
described using a system of homogeneously coupled oscillators, whose phases evolve
according to a set of underlying differential equations. Such models are particularly
attractive due to their simplicity and explicit dependence on phase, which makes them
convenient for describing the effects of phase-locked stimulation. In the previous section it
was shown that the oscillation data typically measured in experiment can be modelled
using an underlying system of oscillators, whose state is described by the set of N phases.
The time evolution of this state (for a single population) can be described using the
Kuramoto equations, with an additional term describing the effects of stimulation [5]

N

=1

ey ok

at

. T
Y
25

(13)

The first term of (13) is the natural frequency w, which describes the frequency in
the absence of external inputs. The second term describes the coupling between the
activity of individual neurons, where k is the coupling constant which controls the strength
of coupling between each pair of oscillators and hence their tendency to synchronize. The
third term describes the effect of stimulation, where the intensity of stimulation is denoted
by V(t). The nPRC denoted by Z(8,,), describes a neuron's sensitivity to stimulation at a
particular phase and reflects the observation that the effects of stimulation depend on
where a neuron is in its firing cycle [14]. By using the nPRC, the model models the
response of the neurons to the stimulation signals as being dependent on the phase of
oscillations of the neurons. Using the definition of the order parameter Eq. (13) can be

transformed to give

ekt

= wy, + kpsiniy — 8,0 + V() Z(8,,).
(14)

In this form, it is clear that each oscillator has a tendency to move towards the

population phase y and that the strength of this tendency is controlled by the coupling
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parameter k.
2.4.  Reduced Kuramoto Model
In the previous section, the dynamics of a finite system of oscillators was described

using the Kuramoto equations. In this model, stimulation is described as a perturbation to

5  the phase of an oscillator, with each oscillator experiencing a different effect of stimulation
depending on its phase (and determined by Z(0)). Stimulation therefore has the effect of
changing the distribution of oscillators and hence the order parameter of the system. Since
the order parameter is determined by both the amplitude and phase of the system, the
expectation is that stimulation will lead to a change in both these quantities, which is

10 referred to as the instantaneous amplitude and phase response of the system. To obtain

analytical expressions for these quantities, an infinite system of oscillators is considered
satisfying the ansatz of Ott and Antonsen [16, 17]. In [8], it was shown that for a general
nPRC given by Equation (12) and assuming the natural frequencies are Lorentzian
distributed with centre wq and width vy, the instantaneous change in the order parameter

15  can be written as

dr | b X
Frait Y+ S = )

i Erfﬁ — Pesiam—1 me+1 . % v T snam—1 -tk
+ s gl + Z G {lT ) + 7T 44 2 rn | {77 — T
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3. Reproducing Tremor in ET Patients
To demonstrate that the Kuramoto model can produce oscillations which are

compatible with tremor data from ET patients, the Kuramoto model is fitted to tremor data
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[7, 19] from ET patients deemed to have significant response curves [18]. To account for
random forces which may influence the firing of individual neurons, the Kuramoto model
can be extended to include a noise term, which is taken to be a Wiener process. The time

evolution for 8,, then becomes

df, = [, + hpsinly — 8,0 + V{8, ) ot + N0, 1) Vet as)
. . . Mo 18

where & is the noise amplitude and N(0,1) is a random number sampled from a standard
normal distribution. The parameters found through optimisation are provided in Table 2.
The parameters were found by fitting the model to tremor data taken from ET patients by

Cagnan et al [7].

Patient || & kol wf2v | 8, 27| V g iy by
1 2T& | 815 | 4.95 0.31 | Q.06 || -G.01 | 001 | .08
) SHY L1 | 424 a8 | 022 | 012 | o0 | D2
6 AR | 187 | 388 | Qu4d | 40.1& || 007 | <002 | 0

Table 2. Parameters for the single population Kuramoto model given by Equation (18).

Figure 3 shows fits to various features extracted from the oscillation data. The first
row(a)-(c) is the power spectral density (PSD), the second row (d)-(f) is the probability
density function (PDF) for the envelope amplitude and the third row (g)-(1) is the PSD of
the envelope. Columns (a)-(g), (b)-(h) and (c)-(1) are for patients 1, 5 and 6, respectively.
Figure 4 shows a comparison between the averaged response curves for experimental data
and the fitted Kuramoto model. The phase response curve was used as a feature during the
fitting procedure. The amplitude response curve is predicted from the model. Columns (a)-
(d), (b)-(e) and (c)-(f) are for patients 1, 5 and 6, respectively. Figures 3 and 4(a)-(c) show
the Kuramoto model is able to fit well to the features taken from the experimental data.
Figures 4(d)-(f) show that the fitted model is able to reproduce the amplitude response for
patients generally well, although Figure 4(d) does show a noticeable phase shift between
the simulated and experimental curves for Patient 1.

Figure 5 shows a comparison between experimentally measured tremor data [7]

and output from the fitted Kuramoto model. Columns (a)-(d), (b)-(e) and (c)-(f) are for
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patients 1, 5 and 6, respectively. The output from the model in Figure 5 shows the
resulting simulated data to be quite compatible with that found from experiment. The
model can be seen to capture the basic properties of the experimental data, but not the
more exotic features, such as the sustained periods of lower amplitudes, which are likely

5  due to non-stationarity. Overall, our findings suggest that it is reasonable to use the
Kuramoto model as a model for tremor in ET patients. It is on this basis that we derive the
expressions for the response curves in subsequent sections.
4, Multi-contact DBS
4.1.  Multi-population Kuramoto Model

10 This section shows that modelling a symptom due to excessive synchrony of

multiple neural populations can be achieved by extending the concepts presented in
sections 2.1 and 2.3. To achieve this, the model models neural tissue as a plurality of
coupled populations of neurons. The set of oscillators representing the neurons can be
arbitrarily divided into S populations with N, oscillators for the cth population. The order

15  parameter defined by Equation (2) can then be rewritten using a double summation

y§ Ng

P TS

?‘) - N ‘ € ?

(19)

with oscillator n of population ¢ being denoted by 8,,,. The factor of % can be brought

. . . N .
inside the first summation and rewritten as ﬁ Then, with

Wo =7 (20)
20 the order parameter for the system can be written as
8 X,
il e
21)

Using the definition of the order parameter (2), Eq. (21) can be written as a

weighted superposition of the order parameters for each population



10

15

20

WO 2022/029445 PCT/GB2021/052039
21

"5'
e E WeTr,
F=I

,(22)
with

=1 (23)

The global order parameter is defined as r with amplitude p and phase y and the
local order parameter defined as 7,; for population ¢ with amplitude p, and phase y,. The
importance of the global order parameter is that its magnitude p is a measure of total
synchrony and hence should be highly correlated to the severity of a symptom, such as
tremor in the case of ET. In the case of PD, symptom severity could be measured using the
unified Parkinson's disease rating scale (UPDRS) scores [20]. Therefore, stimulation
should be defined to maximally reduce the magnitude of the global order parameter.

Eq. (22) can also be related to feedback signals measured by using (3) and taking
the real part. Under the assumption (5) relating the neural activity to the feedback signal,

the feedback signal in terms of population activities is

=1

(24)
where F(t) and f,(t) are the global signal and local signals (or population activities),
respectively. Therefore in this part of the method, generating the plurality of stimulation
signals comprises determining S14 a population activity for each population of neurons,
and determining the amplitude and phase of each population activity. The population
activity of each population is a measure of neural activity among neurons in that
population. Using (4), Equation (24) can also be written in terms of the global and local

amplitudes and phases

F=l

(25)
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The global signal Re(F (t)) = Pcos(y) may also be referred to as a composite
signal, and therefore generating the plurality of stimulation signals comprises determining
S16 a composite signal using a weighted combination of the amplitudes and phases of the
population activities, and determining the amplitude and phase of the composite signal.
The Kuramoto equations (13) can also be rewritten in terms of the population phases i,

and amplitudes p,,

i, z

£F fi . K ~ . 3 b A Y Y,

g = Won T E Wt Kt o SIN{Wr — Bom ) + Vo {8125 (Ban ),
gzl

(26)
where V(t) is now the stimulation intensity at a population . The coupling constant k in
Eq. (13) is now a SxS matrix with elements k.. The diagonal and off-diagonal elements
describe the intrapopulation and interpopulation coupling, respectively.

4.2. Multi-population Response Curves

The change in the global amplitude due to stimulation can be expressed as a
function of the local (population) amplitudes and phases. It is assumed that the local
quantities (to base the stimulation on) can be measured. How these quantities are measured
will be discussed in further detail later.

Using the polar form of the order parameter (2), Equation (22) can be written as a

summation involving the amplitudes and phases of individual populations.

=l (27)
Taking the time derivative of (27) leads to

i 7] ."BQ.':_! o ] . ‘ Ji " .
P ot =Y uy | s gt | i),
ot df |t Tt ‘

me=l (28)

which can be written in terms of the real and imaginary components as
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The real part is the time derivative of the amplitude of the global order parameter

dp dpe dife )

= We | —— enslly, — 0 — po siniiy — 4

dt L; it : ‘ dr R !
P2—1

(30)

Ip" are the changes in the amplitude and phase of a

The quantltles d and —

5  population with respect to time. The distribution of phases within a population is assumed
to satisfy the ansatz of Ott and Antonsen [16], and thereby the amplitude response due to
stimulation in terms of the Fourier coefficients of Z(6) is

' 5 e
m = ! Z 1 iggﬁ{ Z o l am sinf{m — 11, + 4] — by cos|im — 1k, + ‘?:Pf.‘-]]

¥ ¥
e F=1I =l

- S T 1 am sin[{rz + 110y — o] — byeos|{m + Ul — -?iﬂ l

L & . £ sJJ‘.‘-
PR =¥

G
10 where, for simplicity, it is assumed that Z(6) is the same for all populations. Equation (31)
contains an expansion over the harmonics of Z(6). In [8] it was demonstrated that, for a
biologically realistic nPRC, it is reasonable to neglect higher harmonic terms (m > 1),

leading to a simpler expression for the instantaneous amplitude response

if‘ ekl r > ¥ :
ﬂ;f Zo ; 1y Vy { ay sinfy) — by oos{e)] — peag sinlyh, — )
et

I s Fem s : N T Y
— gy loysin{ e — B — by cos{2de — EHIJ}

15 (32)
Equation (32) shows the global reduction in amplitude can be expressed as a sum
of contributions from each population, with each term dependent on 3 variables: the global

phase 1, the local phase 1, and the local amplitude p,. It also suggests that stimulating on
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the basis of local quantities may not always be advantageous. It can be seen that the terms
of Equation (32) can be divided into two categories: ones which depends on both global
and local quantities and ones which depends only on global quantities. The terms
depending on both the global and local phases are also dependent on the local amplitudes.
In cases where the local amplitude is small, i.e. p, < 1, the term involving p2Z can be
neglected, leading to a simplified expression

&3

dogim L= .. ... o . e N
- e A V(e [ay st — by cos{d)] — pragsin{in, — ) .
F=1 *

(33)

Here, it can be seen that the amplitude response depends only on the global phase if
the zeroth harmonic of the nPRC ay 1s negligible, which is the case for type Il nPRCs. It
can also be seen that the dependency of the amplitude response on the local quantities of
population ¢ becomes less at increasingly lower local amplitudes p,,. In addition to this,
the dependence on sin(y, — ) implies that stimulating on the basis of local quantities
would only have an effect if the phases of individual populations differ sufficiently from
the mean phase. One situation in which such phase difference may be particularly high are
for clustered configurations of oscillators. Examples of different configurations of
oscillators are shown in Figure 6, colour coded according to population. Figure 6 shows
(a) unimodal distribution, and (b) multimodal (clustered) distribution. Configurations
were obtained by simulating the multi-population Kuramoto equations (26).

Figure 7 shows the predicted contribution of a single population to the amplitude
response at different local amplitudes p, according to Eq. (32). Each panel corresponds to
a single ET patient from the study of Cagnan et al [7], where the Fourier coefficients of the
nPRC were determined using a fitting procedure. Panels (a) (b) and (c) are for patients 1, 5
and 6, respectively. For each plot, the vertical axis is the global phase (i) and the
horizontal axis is the local (or population) phase (y,). The corresponding nPRC Z(0) is
also shown, with zero indicated by a red dashed line. Blue regions indicate areas where
stimulation is predicted to suppress amplitude. For a given local amplitude, a single term is
plotted from the summation over populations in Equation (32). This provides the

contribution of a single population to the amplitude response as a function of the local and
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global phases.

Regions in blue are areas of amplitude suppression while orange regions predict
amplification. In both cases, these regions can be seen to occur in bands. Graphically, the
dependence of the amplitude response on the global and local phases can be inferred from
the direction of the banding. A purely horizontal band implies the amplitude response is
independent of the local phase. An example of this can be seen at low amplitudes in Figure
7(a). Other plots show diagonal banding, which implies the amplitude response is
dependent on both the global and local phases. This behaviour can be understood by
considering the 3 terms of (32). At low amplitudes, the first term dominates, which is only
dependent of the global phase. As the local amplitude increases, the second and third terms
depending on local quantities become increasingly more important. For the cases where
|ag| 1s small, the effect is less apparent. The left panel of Figure 7 (a) shows that
stimulation can either increase or reduce the phase (i.e. an nPRC of type II), implying a
relatively small |aq|. Hence, for this patient, the second and third terms are negligible,
except at higher amplitudes. Figures 7 (b) and (c) shows that stimulation has the effect of
only increasing the phase, which is indicative of Z(0) with larger |ay|. For these systems
the amplitude response can be seen to depend more strongly on the local phase for all
amplitudes.

4.3. Obtaining Population Activities Through Electrode Measurements

The local phases {{,} and amplitudes {p,} can be recovered using LFP
measurements through different contacts. This requires incorporating information about
the geometry of the electrode placement into the equations for the response curve in
addition to assigning a physical interpretation to the population activity. The aim is not to
construct a detailed electrophysiological model of neuronal activity, but rather to present a
general form for the voltage measured at an electrode contact.

The expressions are formulated in terms of electric charge, but the same form also
permits the use of currents. The mathematical form of the equations is unchanged whether
they are formulated in terms of charge (q) or current (/). In addition to this, the
expressions include summations over neurons, but an equally valid expression can be

made by summing over elements of space, as is the case in multi-compartmental models
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[21]. The quantities in the model are voltages v;(t) measured at electrode ! due to the
activity of population ¢ producing charges Q,(t) and voltages V,(t) at population ¢ due to
stimulation which delivers charge g; (t) to electrode I. The voltage V,(t) can also be
thought of as the ‘stimulation intensity’ experienced at population o.

First, consider a system of L electrodes and N neurons with positions in space
denoted by p’ and p, respectively. Primed symbols denote quantities associated with
electrodes, lower case symbols represent neuronal quantities, and upper case symbols
represent population quantities.

Voltages measured at an electrode arise due to the geometry of the electrode-
neuron system and the intrinsic electrical activity of each neuron. The voltage measured at

an electrode is expressed in terms of a summation over charges due to the neurons g, (t)

f;“? = Z dipxi‘ pni‘{n “L
f=1
(34)
where d(p’;, p,) are coefficients which reflect the medium and geometry of the electrode-
neuron system. For example, in the case of a coulombic system, the coefficients would be

d(p,prn) = (3%)

|p P
where K, is the Coulomb constant. As above, the neurons can be arbitrarily divided into S
populations, with each neuron referenced by both a population and position index ¢ and n,

respectively.

‘E ﬁ sziipp Prorr %n i\}*
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(30)
The position of a neuron is redefined as p,,, = P, + Apgp, 1.€. in terms of a vector to a

region (or population) plus a shift. Then
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If the region at P, is assumed to be small, then
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Apon = 0 (38)
The potential at the electrode can then be written in terms of population activity

(39
where

N

alt) = Z (£}
5 et (40)
The time dependent charge of a population Q,(t) can be related to the neural

activity by assuming a form for g, (t), specifically that

F

Gonlt) = N c08{yn i

o (41)
Using (40) and (20) gives
N
(.0t} = A oosid )
TS _\¢“tr L{ RN
10 (40)

Using (3) and (4) then gives an expression for the time dependent charge of a
population in terms of the population phase and amplitude
€25 18) = oy e vOs{R0 1.
(43)

Using (39) the potential at the electrodes can therefore be written in matrix form

{ ke ‘;( '{ Tl: --\ SOk
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where for simplicity, d;, = cw,d(p’;, Ps). Equation (44) can be expressed in a more



10

15

20

25

30

WO 2022/029445 PCT/GB2021/052039
28

compact form with D denoting the matrix of coefficients (of dimensions LxS), f as the
vector of neural activities and v’ as the vector of electrode measurements.
Df =v (45)

Equation (45) relates the voltages at the electrodes v’ to the neural activities f. In
general, using Equation (32) in a closed-loop DBS strategy depends on being able to
accurately measure the population quantities {p,} and {Y}. Equation (44) shows that
what we actually measure at the electrodes is a linear superposition of population
activities.

Figure 8 shows visualisations of 4 electrode 4 population systems, where each
population occupies a small spatial region. Each system was generated by randomly
choosing the coordinates of the 4 populations so that they lie within a box of length
Lpox = 10. Each electrode is then placed d ., distance from a population. Panel (a)
shows a configuration where each electrode is placed very close to a population (d,,0rm =
0.5). This represents systems consisting of small separated regions of activity, with each
electrode positioned close to each region. In this case, D is approximately diagonal, and
the population quantities could be accurately recovered (although p, would be scaled).
Panel (b) shows a different system (d,,,n = 2) where both the electrodes and populations
are more "dispersed'. In this scenario, electrodes may record activity from multiple
populations.

In some embodiments, determining the population activities comprises applying
S12 independent component analysis (ICA) to the sensor signals. ICA is used to resolve
the S population quantities from L electrode measurements. Methods such as independent
component analysis (ICA) are well-suited to solving the general problem of recovering a
vector of ‘source signals’ f(t) (in this case the population activities) given a vector of
recordings V'(t), as expressed in Equation (44), although the method cannot recover the
scaling.

Variations of the ICA problem exist depending on whether S <L (the
overdetermined case), S > L (the underdetermined case) and S = L (the determined case).
The determined case is perhaps the most common and more easily solved, since the mixing

matrix D is invertible. The inverse matrix elements {g,; } can then be used to easily
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transform the electrode measurements into estimates of the population activities {f, }. The
estimated symptom signal f(t) can be calculated using a set of estimated weights {iW,}
(which would need to be found using optimisation) and the estimated population activities
{f,}, which are found by applying the inverse matrix elements {g } to thevector of

electrode recordings v’. The estimated symptom signal can be written as

S
OB IAG (45

However, the value of S is not known a priori, and therefore it may not be known
initially which ICA method would be best suited. If S =L is assumed, then ICA will always
resolve exactly L components. With this assumption, increasing the number of electrodes
in a system has a definite purpose: it increases the potential to resolve the internal state.
Assuming a larger number of populations also increases the validity of the small region
approximation presented in Equation (38) and thus the accuracy of ACR.

It may also be possible to obtain good approximations to the state by using L. < S
electrodes, since in some cases the weights w, may be small for some populations and can
hence be neglected. This together with the statistical nature of ICA, errors due to applying
various signal processing techniques and noise within measurement would inevitably lead
to some uncertainty when determining the population quantities. In addition to this, the
amplitude response (32) is also dependent on the harmonics of Z(0), which also need to be
determined.

Since in theory the matrix D should not evolve with time, ICA can be applied
offline to recover D, and then used to obtain the local signals. In practice, after
determining the local signals, Equation (25) can be used to construct the global signal (or
composite signal). In this process, the weights {w, } should be chosen to give a global
signal with an amplitude that is highly correlated to the symptom severity. Thereby, the
weights in the weighted combination are such that the composite signal is correlated to a
measure of severity of the symptom of the subject, preferably proportional to the measure
of severity.

4.4. Optimal Stimulation Strategy
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The equations for the amplitude response (31), (32) and (33) depend on the
stimulation intensity V; at a population o. It is implied, therefore, that the ‘population’
exists at some region in space and that V; should take into account the geometry of the
electrode placement, how electric fields behave within brain tissue and the charges on a
particular electrode. These ideas can be incorporated into an expression for the amplitude
response.

Equations (31), (32) and (33) all involve summations over populations, with each
term being the product of a weight w,, a stimulation intensity V,; and some intrinsic

response, denoted by I';. For example, in the case of Equation (31) I'; would be
Fo=Y = Hamsinim — Ue + 4] — B eos[{m — i + 3]

oG
— E pr oy, sinl{m -+ Dide — 9] — B cos[{m + Lide — 4],
EEC R (46)

Using this, a more compact expression for the amplitude response can be written
using linear algebra notation, with I' equal to the vector of responses and V equal to the

vector of voltages at a population

dPstim _ 1 7
desiim = 1 (1Tyy (47)

where the weights w, are now considered as part of the response . The amplitude response
involves a ‘stimulation intensity’ V(t) - an abstract quantity which, intuitively, should not
only depend on the charge characteristics at the electrode, but also the geometry of the
electrode placement and the properties of the brain tissue. Taken altogether, the
stimulation intensity is better interpreted as the voltage at a population, which can be
expressed as a weighted superposition of charges at the electrodes

Dq' =V (48)

As before, the elements of matrix D (of dimensions SxL) are coefficients which
reflect the medium and geometry of the electrode-neuron system. It is worth noting here
that Equations (45) and (48) can also be used to model systems where the stimulating and
recording electrodes are different, since D is allowed to be different from D”. Inserting

(48) into (47) leads to an expression for the amplitude response in terms of the charges at
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the electrodes, i.e. the control variables.
Apstim _ 1 /NT T,
= = ~(D'T) q (49)

NPT . e
The quantity (DTF) is defined for each time step so that the optimisation becomes
. , .. dpe . .
a problem of choosing g’ so as to minimise %. Therefore, generating the plurality of

stimulation signals comprises, for each of a plurality of time steps, choosing S18 the
plurality of stimulation signals to maximally reduce the amplitude of the composite signal.
Maximally reducing the amplitude of the composite signal can be achieved by minimising

the rate of change in the amplitude of the composite signal. Ideally, the rate of change in

dpstim

the amplitude of the composite signal (i.e. —

) should be negative, with as large a

magnitude as possible, such that the amplitude of the composite signal (and thereby the
global order parameter representing synchrony of the neural oscillations) decreases over
time. Minimising the rate of change in amplitude of the composite signal in this context
means minimising at each time step, based on the instantaneous values of the relevant
quantities. The rate of change in amplitude of the composite signal is calculated based on
the composite signal and the plurality of population activities, as seen in the equations
above.

Often, concern for tissue damage due to stimulation imposes a limit on how much
charge can be delivered to a single or group of contact(s). To account for this and ensure
feasibility, two constraints may be imposed. In some embodiments, the plurality of
stimulation signals are chosen subject to a constraint on the charge applied by each
electrode. This first constraint ensures the charge for a particular contact does not exceed
some maximum value

< <q ..
(50)
A simple optimal solution (per time step) for Equations (49) and (50) can be found

by setting the charge for the [th contact to q’y,ax 1f the [th component of (5 TF)T is

negative, i.e.:
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oL = {q’max, (D'T), <0 (50a)
)=
0, otherwise

In some embodiments, the plurality of stimulation signals are chosen subject to a
constraint on the total charge density within a region of the subject, for example within a
region of the brain in which the electrodes 7 are implanted or a region of the peripheral
nervous system. This second constraint ensures the charge density within a region does

5  not become dangerously high

Here, for J groups of contacts, the constraint matrix A has dimension J xL and can
be used to constrain the collective charges of the group. The J-dimensional vector q’ax
specifies the maximum charge for a particular group of contacts. Equations (49), (50) and

10 (51) are in the standard form for a linear program and are solvable in polynomial time.
We can write an analogous set of equations using estimated state variables (9, ¥,

V) in terms of a set of ‘response parameters’ {C;,}. Letting

= 3
xi{t) = | Gy sin{} + Cpg cos{g} + E Clipaqoypo sinfiie —f) + g Criz 4 540180 co8(dy — U\!} )

F=1 o=1

(51a)

the estimated response can be written as
dﬁstim _ z (Slb)
at l QX

The estimated response as represented by Eq. (51a) and (51b) together has an analogous

15  functional form to the expression for the actual response given in Eq. (33) above. The
additional term in cos(t/ja - 1/3) allows for a constant phase shift between the estimated

and actual response. The ACR strategy can then be expressed compactly as

o= {mar 2<0 (510)
! 0, otherwise

analogously to Eq. (50a) above.

20 One method for determining the response parameters involves delivering bursts of
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stimulation through each electrode indexed by /. The amplitude of the signal at the
electrode is recorded at the beginning and end of each burst before calculating the change

in amplitude Ap;; for the jMburst. This change due to stimulation can be expressed

~ o dﬁstim,l) (Sld)
Ap Ij = z < dt tztjn At

n=1

approximately as

During stimulation, the phases and amplitudes are recorded and the sinusoidal
quantities from Equation (51a) are accumulated over time using (51d) leading to least
squares equations for each electrode over J bursts which can be solved to obtain the

response parameters for each of the electrodes

ECS RIS S & B fusz\ A f Gle
& HSHON Lo\ A
- - | i App

Crs = | Api

\& 2 rorenis/ \Cragseny/  \Abu/
EI1 T 2841 ~ :

where the elements {x;, } are the sinusoidal variables from Equation (51a) accumulated
over time of each burst according to (51d).

This fitting methodology is illustrated in Fig. 16. As discussed, ACR is calibrated
using bursts of stimulation through each electrode to obtain the response parameters {C;}.
Fig. 16(a) shows how bursts of stimulation may be delivered in addition to the symptom
signal. Fig. 16(b) shows that the amplitude is recorded at the beginning and end of the
burst. At each stimulation point, the phases and amplitudes are recorded, which are later
used to calculate the matrix elements {x;, } used to obtain the response coefficients
according to Equation (51e).

Once the stimulation signals have been generated, they may be output for
application to the subject. Application of the stimulation signals may be used for treatment
of a variety of neurological conditions, including Parkinson’s disease, epilepsy, obsessive
compulsive disorder, and/or essential tremor For example, in the system 1 of Figure 1, the

processor 3 may output the stimulation signals to the electrical circuit 5 so that they can be
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provided to the electrodes 7.
5. Numerical Simulations

The instantaneous response describes how the amplitude of a system should change
as a function of its state variables, but did not take into account the dynamics of the
system, such as the coupling which acts to resynchronise the oscillators and the effects of a
finite number of oscillators - the latter leading to a breakdown in the underlying
assumptions which lead to Equation (32). To better assess the real world performance of a
particular stimulation strategy the time-averaged response is used, which requires
simulating a system using equations (4), (27) and (26). Numerical simulations are used
below to demonstrate that a coupled oscillator model is a plausible neural mechanism for
generating tremor found in ET patients. On the basis of this, the activity of multiple neural
populations is modelled using a set of oscillators and related to the pathological
oscillations associated with symptom severity in ET and PD.
5.1. Simulated systems

A system is defined in terms of its electrode-population configuration, dynamics
and intrinsic response to stimulation Z(6). To construct a particular system, the coordinates
of S populations are randomly chosen such that they lie within a box of length L,,, = 10.
Each population is assigned an electrode, which is placed d o, distance from the
population. For a sufficiently large Ly, dpnorm can be used to characterise the system - a
small d,,,,n» means the effects of stimulation are localised to a particular population and
increasing d -, increasingly delocalises the effects of stimulation. For simplicity, a
system consisting of S =4 populations and L=4 electrodes is considered. The analytical
expressions for the response curves are for an infinite system, so N, should be large. For
each population, the number of oscillators is chosen as N, = 200 to satisfy this and to
remain computationally feasible. A coulombic system is also assumed, where each
electrode is able to simultaneously record and stimulate. In this case, the elements of D are

given by
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The elements of matrix D are denoted d,,;, which can be related to D using the
transpose

5 '5:‘3‘56

Sy
(53)

The dynamics of a system are determined by the parameters of the multipopulation
Kuramoto model with an additional noise term
g
B = |wam + Z Wt Kt ot SR — B ) + VoD Zaffon) | 6 + N0, 1/,
o |
(54)

To simplify the testing, the basic parameters of (54) are fixed to those found from
fitting to Patient 5. As previously mentioned, the natural frequencies {w,, } are sampled
from a normal distribution. It is worth mentioning that this represents a greater test for the
robustness of the expression for the amplitude response (32), which assumes a Lorentzian
distribution for {wgy, }.

The S xS coupling constant matrix can be simplified by focussing only on the
diagonal and off-diagonal components, which are denoted kg;q4 and kofrgiqg respectively.
The value of kyrrgiag = 6, 50 that kg;q4 can be used to control the level of clustering for a
particular configuration of oscillators - increasing k ;44 leading to increasingly multi-
modal distributions of oscillators. The nPRC Z(6) was also chosen according to parameters
fitted to Patient 5, but the zeroth harmonic a, is allowed to vary.

5.2. Running the simulation

To test each strategy a system is created according to the set of parameters
{dnorm> Kaiag> @0}, then a stimulation strategy is chosen from CR, phase-locked (PL), and
the present novel method, ACR. The model is then used to describe how the neural
population activity (and hence the symptom severity) is likely to change when DBS is
applied through multiple contacts.

The implementation of PL stimulation illustrated here uses Equation (33), but

neglects all the local terms, which is equivalent to setting p, =0. The time-shifted variant
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of CR neuromodulation [5, 22] is used in our testing. For a given electrode, stimulation is
delivered in bursts of HF pulse trains. The stimulation pattern is time-shifted across each

electrode indexed by [ by

b
o}

(55)

where o is the mean of the natural frequencies (= 4.2 Hz). The number of bursts per
second, the burst frequency f},,s¢, Was chosen to be equal to w/2w and the HF pulse train
frequency firqin Was chosen to be 130Hz. The width of each burst 5,5+ Was chosen to be
0.1 seconds. Tass et al originally tested CR on a homogeneously coupled system with
Seo = 0[5]. The present implementation was tested and reproduces these results by
constructing a simple homogeneously coupled system according to the parameters of
Patient 5 given in Table 2, but with & = 0, s,, = 0 and the parameters of Z(0) scaled by
a factor of 10. The simulation parameters were chosen according to Table 3.

The desynchronising effects of CR neuromodulation on this system are shown in
Figure 9. Figure 9 shows the output from numerical simulations showing the effects of
Coordinated Reset (CR). Stimulation was turned on at t = 20 seconds. The top panel of
(a) shows the model output for a system simulated according to Equations (54) and (24).
The bottom panel of (a) shows the stimulation delivered as a function of time, taken to be
the average of the charges across the contacts. The bottom panel of (b) shows the
stimulation across each contact, with the corresponding model output provided in the top
panel. The results in Figure 9 reproduce the results of Tass et al [5].

The maximum charge for an electrode q’,,x 1S chosen so that, for a given system,
the maximum perturbation to a single oscillator is df,,;x = 0.2mrad. For the testing,
ACR is not constrained using Equation (51), which leads to trivial optimal solutions to the

linear program (49) and (50), where the charge for the Ith contact is set to ¢’ . 1f the Ith
component of (ETF)T is negative. ACR was tested at 3 maximum stimulation frequencies:
5 Hz, 50 Hz and 130 Hz. It should be noted that because ACR is applied according to a

feedback signal (i.e. the sensor signals from the sensors), the stimulation frequency can

vary, but the maximum frequency introduces an upper limit on the allowed frequencies.
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The maximum stimulation frequency for PL was fixed at 130 Hz. Equation (54)
was then integrated using Euler's method with a time step of t = 0.04 seconds and
simulated for T =2 seconds. The PL and ACR strategies were applied according to phases
and amplitudes obtained directly from the simulation.

During a simulation, a stimulation pulse is calculated as the average of the charges
q’(t) across the L electrodes. Two quantities are calculated after each simulation: the time-
averaged value of p, p and the total of all stimulation pulses E delivered. The former is
indicative of the efficacy of the strategy while the latter is related to the total energy
consumption of a strategy, which can be used to gauge efficiency. For each set of
parameters, the simulations are repeated over 24 trials, with a new electrode-population
configuration being generated according to d ., for each trial. The parameters d,;orm
and K444 were chosen within the range dyorm € [0.1,6] and kg;q4 € [5,150]. Example
output from these simulations, showing the effects of applying ACR, is provided in Figure
10. Figure 10 shows the output from numerical simulations showing the effects of
Adaptive Coordinated Reset (ACR). Stimulation was turned on at t = 20 seconds. The top
panel of (a) shows the model output for a system simulated according to Equations (54)
and (24). The bottom panel of (a) shows the stimulation delivered as a function of time,
taken to be the average of the charges across the contacts. The bottom panel of (b) shows
the stimulation across each contact, with the corresponding model output provided in the
top panel.

When compared to Figure 9, it is clear that the stimulation pattern from ACR is
significantly different from that produced by CR, with the latter pattern being simply time-
shifted across electrodes. The stimulation pattern from ACR allows for the possibility that
multiple electrodes may be stimulated simultaneously. A summary of the parameters used

in these simulations is provided in Tables 3 and 4.
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Farsmeter | Valne | Description
PAYS 0.04 | Imtecration tine step
F 2 Simlation time
Tpe 10 Box lenpth
L 4 Number of elentrodes
s 4 Number of populations
Na 24N} Murnber of cevillators per population
B offiding & Qif-dliagrmal of conpling constant matrix
0 e H.2x | Maxinm angle moved psr stimulation palss
Yipinds 24 Nunmtber of trialks
Jomax 130 Maxirnuwm frequency for PL stimmlation
i — 4.2 CH burst frequetiey
Fhowins 130 CH HF train frequeney
Lharst 1 CR burst tims
G f 2w 4.2 hean oscillator fraquency
8. 27 07 Standard deviation of csaillator frequency

Table 3. Summary of fixed parameters used in the simulations.

Parameter | Min | Max | Ngua | Description

T I— 01 | 8 i Distance from pepulation to electrode
Fdisg 5 150 | & Dhagonal of coupling constant medrix
g {1 1.7 |4 Zeroth harmonie of Z(#)

Table 4. Summary of variable parameters used in the simulations. Each parameter was
chosen in the range [Min,Max] using a uniform grid of spacing (Max-Min)/Ngrid.
5.3. Results

The results demonstrate a strategy for providing DBS through multiple contacts in
order to maximally desynchronise neural activity, and thereby reduce symptom severity.
Numerical simulation and parameters fitted to ET patients are used to compare this method
to other known methods, namely phase-locked stimulation and coordinated reset. The
numerical simulations demonstrate that the present method has the potential to be both
more effective and efficient than existing methods.

ACR was tested at maximum frequencies of 130 Hz, 50 Hz and 5 Hz. The
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maximum frequency of PL was fixed at 130Hz. The rise in p shown between k4;,4 =50
and k444 =70 is indicative of a bifurcation, which is typical in Kuramoto systems [16].
Significant improvements with ACR over PL and CR are observed in simulations when
stimulation is delivered at higher frequencies and when a, is non-negligible. The utility of
ACR over other methods is also shown to be greatest when kg, is larger, which
corresponds to larger local amplitudes p, and increased clustering.

The efficacy of CR can also be seen to improve with systems with larger a,.
Figure 11 shows plots for the average amplitude p of a simulated Kuramoto system (i.e. p
averaged over all trials and all values of d;,,, for a particular value of kg;,4 and zeroth
harmonic a;) for different stimulation strategies. The stimulation strategies used were no
stimulation (no stim), Adaptive Coordinated Reset (ACR), phase-locked (PL) and
Coordinated Reset (CR). The maximum stimulation frequency used for ACR and PL is
also given in the legend. Dashed lines are for the ACR method. Each sub-plot shows a set
of simulations performed with a particular zeroth harmonic of the nPRC a,.

With ay = 0, CR and no stimulation are shown to be equally effective. The results
shown in Figure 11 are in contrast with those shown in Figure 9, indicating that the
efficacy of CR 1is sensitive to the parameters & and s,, in addition to the scaling of Z(0).
For systems where a, =~ 0, PL and ACR are found to be equally as effective, as
predicted. The efficacy of ACR at 130Hz is greater than at other frequencies, but with
more energy usage than PL and similar energy usage to CR, as shown in Figure 12. Figure
12 shows the average energy used by the different stimulation strategies on a simulated
Kuramoto system with a coupling constant kg;,4, namely no stimulation (no stim),
Adaptive Coordinated Reset (ACR), phase-locked (PL) and Coordinated Reset (CR). The
maximum stimulation frequency used for ACR and PL is given in the legend. Dashed lines
are for the ACR method. Each sub plot shows a set of simulations performed with a
particular zeroth harmonic of the nPRC a,. ACR at 50Hz is found to have good efficacy
for ay > 0 but with significantly less energy usage than PL and CR. ACR with low
frequency stimulation at 5 Hz (or approximately the tremor frequency) is predicted to have

little to no effect on all the systems tested.



10

15

20

25

WO 2022/029445 PCT/GB2021/052039
40

As previously mentioned, the utility of ACR is expected to be greatest for those
systems described by type I nPRCs, as the amplitude response curve then depends
explicitly on non-negligible terms involving population quantities. Equation (32) shows
that when a, = 0, the terms involving population quantities depend on second harmonics
21, These terms carry a factor of p2 and hence are likely to be negligible, except when
po 18 reasonably large. To investigate these effects, systems with ay = 0 are simulated,
and a larger stimulation intensity q’',.x used. By comparing ACR to PL, the impact of
these second harmonic terms can be ascertained.

A comparison of the efficacy of ACR with PL and CR, is shown in Figure 13 for
different stimulation amplitudes q’;,.x and with ag = 0. Increasing stimulation amplitude
can be seen to improve the efficacy of all the strategies tested, but is most noticeable for
ACR and PL. Higher stimulation amplitudes also seem to be particularly beneficial for
those systems with larger k4;44. ACR can be seen to perform better than CR in all cases.
Figure 13 shows the average amplitude of a simulated Kuramoto system with a coupling
constant kg;,4 for different stimulation strategies: no stimulation (no stim), Adaptive
Coordinated Reset (ACR), phase-locked (PL) and Coordinated Reset (CR). During these
simulations, the zeroth harmonic a, of the nPRC Z(6) was fixed to zero. Increasing
df_max leading to larger stimulation amplitudes q’,,x shows the effect of the second
harmonic term in the amplitude response given by Equation (32). Figure 13 shows the
ACR method to be consistently more effective than PL at higher kg4, although the
difference is marginal. This is indicative of the aforementioned effects of second harmonic
terms in (32). Taken altogether, the efficacy of ACR is predicted to be similar to PL
stimulation for those systems where a, ~ 0.

The mathematical description of ACR predicts that the effectiveness of multi-
contact stimulation is largely dependent on the form of the nPRC and in particular on the
zeroth harmonic ag,, which is related to whether the nPRC is type [ or type II. The
dependency of the amplitude response on the local quantities of population o becomes less
at increasingly lower local amplitudes p,, but the effects of stimulation are, in general,

explicitly dependent on the state of the neuronal system and providing stimulation without
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knowledge of this state is likely to be suboptimal. For type II systems, where |a,| is small,
stimulation on the basis of local quantities is unlikely to be beneficial. Therefore,
depending on the form of the phase response curve obtained using the composite signal, it
can be determined whether or not it is worthwhile using the multi-channel LFP data in
addition to the composite signal in a closed-loop DBS strategy.

The ACR method assumes an underlying system of phase oscillators, which can be
divided into small populations with the distribution of oscillators in each population
satisfying the ansatz of Ott and Antonsen [16]. Equation (44) links the state to measurable
quantities from the electrode and is of the form modelled by ICA. The ability to resolve
the state and parameters of the system does not factor directly into the results presented in
Section 5 since both the state and the parameters were taken directly from the simulation.
Therefore, the results herein can be taken as an upper bound on performance.

SA.  Further numerical testing

Further testing of ACR was performed according to the aforementioned methods,
across a variety of test systems. The simulations can be summarised as follows:

(1) Simulate an infinite multipopulation Kuramoto system to obtain simulated
electrode measurements {V;}.

(2) Use ICA to estimate {f,} from{V,;} and obtain the inverse matrix elements
{gor}-

(3) Construct an estimated symptom signal f(t) according to (45a) by choosing the
weights {i,} to best correlate f(t) with the symptom.

(4) Obtain the response parameters {C,, } using the linear least squares model.

(5) Using the inverse matrix elements {g,; } and phase/amplitude tracking, apply
ACR according to Equation (51c).

A schematic illustration of closed-loop DBS with ACR is shown in Fig. 17. The
Kuramoto model produces simulated electrode recordings which are passed through an
interface (grey box). The interface consists of inverse matrix elements found through ICA
and a phase/amplitude tracking algorithm. The inverse matrix elements transform the
electrode recordings into estimations for the population activities. The estimated

population activities are then passed to the phase/amplitude tracking algorithm to estimate
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the state. The estimated state is then used in the ACR equations to determine whether
stimulation should be delivered. The ACR equations here use parameters estimated from
the data.

Fig. 18 shows visualisations of the 3 systems considered in the further testing. Each
system consists of 4 neural populations, 4 electrodes, and 4 sensors. In this testing, the
electrodes and sensors are separate, and so are referred to as stimulating electrodes and
recording electrodes respectively. The geometry of the system is characterised by a
‘configuration parameter' d,,,,. As discussed above in relation to Fig. 8, for larger
values of d,,,-m, the populations are more dispersed relative to the electrodes. In the
scenario of Fig. 18, stimulation from electrodes may affect multiple populations.

Simulated electrode recordings due to the activities of each population are shown
in Fig. 19. Each plot shows individual channel measurements of duration Tica = 2000
seconds for each of the 4 recording electrodes which serve as inputs for ACR. ICA is
applied to this data to produce estimates of the population activities shown in Fig. 20. The
theoretical data has been overlaid for comparison and shows good agreement with the
output from ICA. The symptom signal was calculated according to (24) with {w,} = 0.25.

The estimated symptom signal was calculated according to (45a) by using the
estimated activities {f, } and optimising the estimated weights {W,} to produce a signal
which closely matches the symptom signal. The total simulation time used in the
parameter estimation was Tprir =3840 seconds.

Fig. 21 shows the symptom signals for a variety of systems after applying ACR
using estimated states and parameters. Testing was performed over a variety of systems
according to the neural response a, and system geometry d,,,-,. Each plot shows the
symptom signal (Osc) and the stimulation triggers (Stim). The stimulation in each case
was turned on at t=15 seconds. In each case, applying ACD can be seen to significantly
desynchronise the systems considered.

6. Experimental data

Cagnan et al [7] studied phase-locked DBS delivered according to the tremor in ET

patients. Data was collected from 6 ET patients and 3 dystonic tremor patients. All

patients gave their informed consent to take part in the study, which was approved by the
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local ethics committee in accordance with the Declaration of Helsinki. The data from this
study can be obtained through an online repository [19].

Duchet et al [18] defined a criterion for assessing significance in the averaged
ARCs and PRCs from the study of Cagnan et al. In their study, a patient is considered to
have a significant response if both the ARC and PRC are found to be significant either
according to an ANOVA test or cosine model F-test. Using this, they deemed 3 out of the
6 ET patients to have a significant response curve. The analysis herein is restricted to
these 3 patients, who are referred to as patients 1, 5 and 6, as in the original study. The
tremor data was filtered using a non-causal Butterworth filter of order 2 with cut-off
frequencies at +2Hz around the tremor frequency. Stimulation was delivered over a set of
trials (typically 9), with each trial consisting of 12 blocks of 5 second phase-locked
stimulation at a randomly chosen phase from a set of 12. Each block of phase-locked
stimulation was also separated by a 1 second interblock of no stimulation. The envelope
amplitude and instantaneous phase were calculated using the Hilbert transform.

As an example, the data for Patient 1 is shown in Figure 14. Tremor oscillations are
shown in the top panels. The bottom panels showsthe stimulation triggers. (a) shows the
entirety of the dataset consisting of stimulation provided over 9 trials. (b) shows a single
trial which consists of 5 seconds of phase-locked stimulation over 12 phases.

From this, the characteristics identified as desirable for the model to reproduce are:
the frequency spectrum of the data, the bursts of oscillations and the sustained periods of
low envelope amplitude. In addition, the model preferably reproduces a given patient's
response to stimulation, as characterised by the averaged PRC.
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CLAIMS

1. A method of generating deep brain stimulation signals, the method comprising:
receiving a plurality of sensor signals from a corresponding plurality of sensors on
or in a subject; and
using the received sensor signals to generate a plurality of stimulation signals for

application at a corresponding plurality of target sites in the brain of the subject.

2. The method of claim 1, wherein the generating of the plurality of stimulation
signals comprises using a model of the response of neurons in the subject to the
stimulation signals that models neural tissue as a plurality of coupled populations of

neurons.

3. A method of generating stimulation signals, the method comprising:

receiving a plurality of sensor signals from a corresponding plurality of sensors on
or in a subject; and

using the received sensor signals to generate a plurality of stimulation signals for
application at a corresponding plurality of target sites on or in the subject using a model of
the response of neurons in the subject to the stimulation signals that models neural tissue

as a plurality of coupled populations of neurons.

4. The method of claim 2 or 3, wherein generating the plurality of stimulation signals
comprises determining a population activity for each population of neurons and
determining the amplitude and phase of each population activity, the population activity of

each population being a measure of neural activity among neurons in that population.

5. The method of claim 4, wherein determining the population activities comprises

applying independent component analysis to the sensor signals.

6. The method of claim 4 or 5, wherein generating the plurality of stimulation signals
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further comprises determining a composite signal using a weighted combination of the

population activities, and determining the amplitude and phase of the composite signal.

7. The method of claim 6, wherein generating the plurality of stimulation signals
further comprises, for each of a plurality of time steps, choosing the plurality of
stimulation signals to maximally reduce the amplitude of the composite signal over the

time step.

8. The method of claim 7, wherein maximally reducing the amplitude of the
composite signal comprises, for each time step, calculating the rate of change in amplitude
of the composite signal using the composite signal and the plurality of population

activities.

9. The method of claim 7 or 8, wherein the plurality of stimulation signals are chosen

subject to a constraint on the total charge density within a region of the subject.

10. The method of any of claims 7 to 9, wherein the plurality of stimulation signals are

chosen subject to a constraint on the charge applied by each electrode.
1. The method of any of claims 6 to 10, wherein the weights in the weighted
combination are such that the amplitude of the composite signal is correlated to a measure

of severity of a symptom of the subject.

12. The method of claim 11, wherein the amplitude of the composite signal is

proportional to the measure of severity.

13. The method of any of claims 2 to 12, wherein the model models each population of

neurons as a plurality of coupled oscillators.

14. The method of claim 13, wherein the plurality of coupled oscillators are a plurality
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of coupled Kuramoto oscillators.

15. The method of claim 13 or 14, wherein the model models the response of the
neurons to the stimulation signals as being dependent on the phase of oscillations of the

neurons.

16. The method of any preceding claim, wherein the plurality of sensor signals

represent electrical activity in the subject.

17. The method of claim 16, wherein the electrical activity is a local field potential

produced by neurons in a region of the brain of the subject.

18. The method of any of claims 1 to 15, wherein the sensors are inertial sensors, and

the plurality of sensor signals represent movement of the subject.

19. The method of any preceding claim, wherein the stimulation signals are deep brain

stimulation signals, and the target sites are in the brain of the subject.

20.  The method of any preceding claim, wherein the stimulation signals comprise a

plurality of pulses.

21 The method of any preceding claim, wherein the stimulation signals have a carrier

frequency of at least 20 Hz and/or at most 250 Hz.

22, The method of any preceding claim, wherein the application of the stimulation
signals is used for treatment of Parkinson’s disease, epilepsy, obsessive compulsive

disorder, and/or essential tremor.

23. The method of any preceding claim, further comprising applying the plurality of

stimulation signals at the corresponding plurality of target sites.
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24. A system for applying stimulation signals, the system comprising:

a processor configured to generate a plurality of stimulation signals according to
the method of any one of the preceding claims; and

an electrical circuit configured to provide the plurality of stimulation signals to a

corresponding plurality of electrodes for application at the plurality of target sites.

25.  The system of claim 24, wherein the electrical circuit comprises the plurality of
electrodes.
26. The system of claim 24 or 25, wherein the plurality of electrodes are configured to

be implanted into the brain of the subject.

27. The system of any one of claims 24 to 26, further comprising a plurality of sensors
configured to be placed on or in the subject, the sensors configured to generate the

plurality of sensor signals, and transmit the sensor signals to the processor.

28. The system of claim 27, wherein the sensors are configured to be implanted into
the brain of the subject, and the plurality of sensor signals represent electrical activity in

the brain of the subject.

29.  The system of claim 27 or 28, wherein the plurality of sensors are the plurality of
electrodes.
30. The system of claim 27 , wherein the sensors are inertial sensors, and the plurality

of sensor signals are inertial signals representing movement of the subject.

31. A computer program comprising instructions which, when the program is executed

by a computer, cause the computer to carry out the method of any of claims 1 to 23.
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human or animal body, due to the steps of application of the stimulation
signals to the target regions. In the context of the description said
application is meant as therapy of certain neurological conditions. Thus,
the objected claims are covered by the provisions of Article 17(2)(a)(i)
PCT and Rule 39.1 (iv) PCT, i.e. the International Search Authority
cannot be required to perform the search on the subject-matter of these
claims. Moreover, according to Article 34(4)(a)(i) PCT and Rule 67.1 (iv)
PCT, no examination is required to be carried out either.
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