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1UB, United Kingdom    

   Abstract 
 In case of many decisions based on sensory information, the sensory stimulus or its neural 
representation are noisy. This chapter reviews theories proposing that the brain implements 
statistically optimal strategies for decision making on the basis of noisy information. These 
strategies maximize the accuracy and speed of decisions, as well as the rate of receiving 
rewards for correct choices. The chapter first reviews computational models of cortical deci-
sion circuits that can optimally perform choices between two alternatives. Then, it describes 
a model of cortico-basal-ganglia circuit that implements the optimal strategy for choice 
between multiple alternatives. Finally, it shows how the basal ganglia may modulate decision 
processes in the cortex, allowing cortical neurons to represent the probabilities of alternative 
choices being correct. For each set of theories their predictions are compared with existing 
experimental data.  

    Key points 
        1.     Integrating sensory information over time increases the accuracy of decisions.  
    2.     Optimal decision strategies describe when to stop the integration of information, and 

they minimize the decision time for any required accuracy.  
    3.     Several models of cortical decision circuits have been proposed that implement the 

optimal strategy for choice between two alternatives.  
    4.     It has been proposed that the optimal strategy for choice between multiple alterna-

tives is implemented in the cortico-basal-ganglia circuit.  
    5.     In the proposed model, the cortico-basal-ganglia circuit computes the posterior prob-

abilities of alternatives being correct, given the sensory evidence.     

    18.1       Introduction 
 Imagine   an animal trying to decide if a shape moving behind the leaves is predator or 
prey. The sensory information the animal receives may be noisy and partial (e.g., occluded 
by the leaves) and hence need to be accumulated over time to gain sufficient accuracy, but 
the speed of such choices is also of critical importance. Due to the noisy nature of the sen-
sory information, such decisions can be considered as statistical problems. This chapter 
reviews theories assuming that during perceptual decisions the brain performs statistically 
optimal tests, thereby maximizing the speed and accuracy of choices. 

 18 
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  The   optimal decision-making theories are motivated by an assumption that evolutionary 
pressure has been promoting animals that make fast and accurate choices. Although 
optimality is not always achieved, these theories provide interpretation for existing data 
and further experimental predictions that can guide empirical research. The optimal decision-
making strategies are often precisely defined and relatively simple, thus they constrain the 
parameters of the models of neural decision circuits. 

 This   chapter is organized as follows. Section 18.2 reviews models assuming that cortical 
decision circuits implement an optimal test for choice between two alternatives. Section 
18.3 reviews the model of cortico-basal-ganglia circuit assuming that it implements opti-
mal choice between multiple alternatives; this model is closely related to that described 
in Chapter 19  . Section 18.4 shows how the basal ganglia may modulate the integration 
of sensory evidence in the cortex and allow cortical neurons represent the probabilities of 
alternative choices being correct. Section 18.5 discusses open questions. In addition, the 
Appendices contain essential derivations presented step-by-step (without skipping any cal-
culations) such that they can be understood without extensive mathematical background. 

 In   this chapter we focus on models of decision making in highly practiced task; the 
models describing task acquisition are discussed in Chapter 19  . Throughout this chapter 
we use population level models describing activities of neuronal populations rather than 
individual neurons. Although this level of modeling is unable to capture many important 
details of neural decision circuits, it helps in understanding the essence of computation 
performed by various populations during decision process.  

    18.2       Models of optimal decision making in the cortex 
 In   this section we first briefly review the responses of cortical neurons during a choice 
task; a more detailed review is available in Chapter 8. Next, the statistically optimal deci-
sion strategy and its proposed neural implementations are described. Finally, the predic-
tions of the models are compared with experimental data. 

    18.2.1       Neurobiology of decision processes in the cortex 

 The   neural bases of decision are typically studied in the motion discrimination task, in 
which a monkey is presented with a display containing moving dots  [1] . A fraction of the 
dots moves left on some trials or right on other trials, while the rest is moving randomly. 
The task of the animal is to make a saccade (i.e., an eye movement) in the direction of 
motion of the majority of dots. 

 One   of the areas critically important for this task is the medial temporal (MT) area in 
the visual cortex. The neurons in area MT respond selectively for a particular directions 
of motion, thus the MT neurons preferring left motion are more active on trials when the 
majority of dots move left, while the neurons preferring right motion are more active on 
trials when the majority of dots move right  [1] . However, their activity is also very noisy, 
as the stimulus itself is noisy. 

 Let   us now consider the decision faced by the areas receiving input from MT. Let 
us imagine a judge listening to the activity from the two populations of MT neurons, 
each preferring one of the two directions. The MT neurons produce spikes that can be 
interpreted as votes for the alternative directions. The task of the judge is to choose 
the alternative receiving more votes, that is, corresponding to the MT population with 
higher mean firing rate. Note however that the judge cannot measure the mean firing 
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 rate instantaneously, as the spikes are discrete events spread out over time. Thus the 
judge needs to observe the MT activity for a period of time and integrate the evidence or 
 “ count the votes ”  until it reaches a certain level of confidence. 

 Indeed  , such an information integration process has been observed in the lateral intra-
parietal (LIP) area and frontal eye field during the motion coherence task. Neurons in 
area LIP respond selectively before and during saccades in particular directions. It has 
been observed that the LIP neurons selective for the chosen direction gradually increase 
their firing rate during the motion discrimination task        [2, 3] , and the data indicate that 
these neurons integrate the input from corresponding MT neurons over time          [4 – 6] . Thus, 
using the judge metaphor, the LIP neurons  “ count the votes ”  and represent the total 
numbers of votes in their firing rate. The neurons representing integrated evidence have 
also been observed in other tasks in areas within the frontal lobe            [7 – 10] .  

    18.2.2       Optimal stopping criterion for two alternatives 

 The   analysis still leaves an open question: When should the integration process be stopped 
and action executed? This subsection first considers this question intuitively, then it 
presents an optimal stopping criterion formally, and describes in what sense it is optimal. 

  Stopping   criteria . The simplest possible criterion is to stop the integration whenever the 
integrated evidence, or the total number of votes, for one of the alternatives reaches a thresh-
old. This strategy is known as the race model  [11] . Another possibility is to stop the integra-
tion when the  difference  between the integrated evidence in favor of the winning and losing 
alternatives exceeds a threshold. This strategy is referred to as the diffusion model          [12 – 14] . 

 The   diffusion model is usually formulated in a different but equivalent way: It includes 
a single integrator which accumulates the difference between the sensory evidence sup-
porting the two alternatives. A choice is made in favor of the first alternative if the inte-
grator exceeds a positive threshold, or in favor of the second alternative if the integrator 
decreases below a negative threshold. 

 As   will be demonstrated formally here, the diffusion model provides an optimal stop-
ping criterion. The advantage of diffusion over race models can also be seen intuitively, 
as the diffusion model allows the decision process to be modulated by the amount of 
conflict between evidence supporting alternatives on a given trial: Note that decisions 
will take longer when the evidence for the two alternatives is similar, and importantly, 
that decisions will be faster when there is little evidence for the losing alternative. By 
contrast, in the race model the decision time does not depend on the level of evidence for 
the losing alternative  [15] . 

  Statistical   formulation . Let us now formalize the decision problem. For simplicity, let 
us assume that time can be divided into discrete steps. Let  x i  ( t ) denote the sensory evi-
dence supporting alternative  i  at time  t , which in the motion discrimination task cor-
responds to the firing rate of the MT neurons selective for alternative  i  at time  t . Let  y i   
denote the evidence for alternative  i  integrated until time  t : 

 
y xi i

t

�
�τ 1
∑ ( ).τ   (18.1) 

     

 Gold   and Shadlen        [16, 17]  formulated the decision as a statistical problem in the fol-
lowing way: They assumed that  x i  ( t ) come from a normal distribution with mean   μ  i   and 
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 standard deviation   σ  . They defined hypotheses H  i   stating that the sensory evidence sup-
porting alternative  i  has higher mean: 

 H : , ; H : , ,1 1 2 2 1 2μ μ μ μ μ μ μ μ� � � �� � � �   (18.2)     

  where   μ    �        �        μ    �  . The optimal procedure for distinguishing between these hypotheses is 
provided by the sequential probability ratio test (SPRT)  [18] , which is equivalent to the 
diffusion model  [12] , as will be shown. According to SPRT, at each moment of time  t , 
one computes the ratio of the likelihoods of the sensory evidence given the hypotheses:   
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  where  x (1.. t ) denotes a set of all sensory evidence observed so far [i.e.,  x  1 (1),  x  2 (1), 
 … ,  x  1 ( t ),  x  2 ( t )]. If  R  exceeds a threshold  Z  1  or decreases below a lower threshold  Z  2 , 
the decision process is stopped and the choice is made (H 1  if  R       �       Z  1  or H 2  if  R       �       Z  2 ). 
Otherwise the decision process continues and another sample of sensory information is 
observed. Thus note that SPRT observes sensory evidence only for as long as it is neces-
sary to distinguish between the hypotheses.   

 The   relationship between SPRT and the diffusion model is described in Appendix 18A. 
Its first part shows that  R  in the SPRT changes in a similar way as the single integrator 
in the diffusion model (which accumulates the difference between the sensory evidence 
supporting the two alternatives). Namely, if at a given moment of time  t , the sensory 
evidence supports the first alternative more than the second [i.e.,  x  1 ( t )      �       x  2 ( t )] then  R  
increases; and otherwise  R  decreases. The second part of Appendix 18A shows that log        R  
is exactly proportional to the difference between the integrated evidence: 

 log R g y y� �( ),1 2   (18.4)     

  where  g  is a constant. Thus according to SPRT, the decision process will be stopped when 
the difference ( y  1       �       y  2 ) exceeds a positive threshold (equal to log        Z  1 / g ) or decreases below 
a negative threshold (equal to log        Z  2 / g ). Hence the SPRT (with hypotheses of Eq.  18.2 ) is 
equivalent to the diffusion model.   

  Optimality   . The SPRT is optimal in the following sense: it minimizes the average deci-
sion time for any required accuracy  [19] . Let us illustrate this property by comparing the 
race and the diffusion models. In both models, speed and accuracy are controlled by the 
height of decision threshold, and there exists a speed-accuracy tradeoff. But if we choose 
the thresholds in both models giving the same accuracy for a given sensory input, then 
the diffusion model will on average be faster than the race model. 

 One   can ask if this optimality property could bring benefits to animals. If we con-
sider a scenario in which an animal receives rewards for correct choices, then making fast 
choices allows an animal to receive more rewards per unit of time. In particular, Gold 
and Shadlen  [17]  considered a task in which the animal receives a reward for correct 
choices, there is no penalty for errors, and there is a fixed delay  D  between the response 
and the onset of the next choice trial. In this task the reward rate is equal to the ratio of 
accuracy  AC  and the average duration of the trial  [17] : 

 
RR

AC
RT D

�
�

,   (18.5)
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   where  RT  denotes the average reaction time. The reward rate depends on decision thresh-
old. But Appendix 18B shows that the diffusion model with appropriately chosen thresh-
old gives higher or equal reward rate than any other decision strategy. Furthermore, the 
diffusion model maximizes reward rate not only for the task described above, but also 
for a wide range of other tasks  [20] .    

    18.2.3       Neural implementations 

 As   mentioned in the previous subsection, the optimal decision strategy is to make a 
choice when the difference between the evidence supporting the two alternatives exceeds 
a threshold. However, the neurophysiological data suggest that an animal makes a choice 
when the activity of integrator neurons selective for a given alternative exceeds a fixed 
threshold        [3, 21] . One way to reconcile these two observations is to assume that the fir-
ing rate of these neurons represents the difference in evidence supporting the two alterna-
tives. Several models have been proposed that exhibit this property, and they are briefly 
reviewed in this subsection. 

 Let   us refer to the population of cortical integrator neurons selective for a particular 
alternative as an integrator. In the model shown in  Fig. 18.1A   , the integrators directly 
accumulate the difference between the activities of sensory neurons via feed-forward 
inhibitory connections        [2, 22] . 

 Thus   this model is equivalent to the diffusion model. An alternative model shown in 
 Fig. 18.1B  assumes that integrators mutually inhibit each other  [23] . An analysis of the 
dynamics of this model reveals that, for certain parameter values, the activity of integra-
tors is approximately proportional to the difference between the integrated evidence, thus 
it also approximates the diffusion model  [20] . 

 In   the models shown in  Fig. 18.1A and 18.1B , the sensory neurons send both exci-
tatory and inhibitory connections. But in the brain the cortico-cortical connections are 
only excitatory, thus  Fig. 18.1C and 18.1D  shows more realistic versions of the models 
in  Fig. 18.1A and 18.1B  in which the inhibition is provided by a population of inhibitory 
inter-neurons (the model in  Fig. 18.1D  has been proposed in  [24] ). It is easy to set the 
parameters of the model shown in  Fig. 18.1C  so it also integrates the difference between 
sensory evidence (in particular, the weights of connections between sensory and integra-
tor populations need to be twice as large as the other weights). Similarly Wong and Wang 
 [25]  have shown that the model in  Fig. 18.1D  can also for certain parameters integrate 
the difference between sensory evidence. 

 In   summary, there are several architectures of cortical decision networks, shown in 
 Fig. 18.1 , that can approximate the optimal decision making for two alternatives. Matlab 
codes allowing simulation and comparison of performance of the models described in 
this chapter are available  http://www.cs.bris.ac.uk/home/rafal/optimal/codes.html   

    18.2.4       Comparison with experimental data 

 The   diffusion model has been shown to fit the reaction time (RT) distributions from a 
wide range of choice tasks          [26 – 28] . Furthermore, the diffusion model has been shown 
to describe the patterns of RTs and the growth of information in neurons involved in the 
decision process better than the race model          [29 – 31] . 

 The   diffusion model has been also used to explain the effect of stimulation of MT and 
LIP neurons during the motion discrimination task. Ditterich et al.  [4]  showed that stim-
ulation of MT neurons selective for a particular alternative produced two effects: reduced 

www.cs.bris.ac.uk/home/rafal/optimal/codes.html
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 RTs on trials when this alternative was chosen, and increased RTs when the other alter-
native was chosen. The second effect suggests that the decision is made on the basis of the 
difference between integrated evidence, and thus supports the diffusion model over the 
race model. Hanks et al.  [32]  compared these effects of MT stimulation with the effects 
of LIP stimulation. By estimating parameters of the diffusion model, they established 
that the effect of MT stimulation on RTs is best explained by change in sensory evidence, 
while the effect of LIP stimulation is best explained by change in the integrated evidence. 
This analysis supports the model in which the activity of LIP neurons represent the dif-
ference between integrated information from MT neurons. 

 The   models shown in  Fig. 18.1  can also fit the time-courses of neural activity in LIP 
neurons during the choice process. In particular, due to the inhibitory connections, the 
models can describe the decrease in firing rate of LIP neurons representing the losing 
alternative          [22, 24, 33] . However, the current neurophysiological data do not allow us to 
distinguish which type of inhibition (feed-forward or mutual) is present in the integrator 
networks. We will come back to this question in Section 18.5.1.   

Integra. 

Sensory 

Integra. 

Sensory 

(A) (B)

(C) (D)

 Figure 18.1          Connections between neuronal populations in cortical models of decision making 
(A) Shadlen and Newsome model, (B) Usher and McClelland model, (C) feed-forward pooled inhibi-
tion model, (D) Wang model. Open circles denote neuronal populations. Arrows denote excitatory 
connections; lines ended with circles denote inhibitory connections. Thus the open circles with self-
excitatory connections denote the integrator populations. Black and gray pathways correspond to 
neuronal populations selective for the two alternative choices. Sensory  –  sensory cortex encoding 
relevant aspects of stimuli; Integra.  –  cortical region integrating sensory evidence.    
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    18.3         Model of decision making in the cortico-basal-ganglia 
circuit 

 This   section reviews a theory  [34]  suggesting that the cortico-basal-ganglia circuit imple-
ments a generalization of SPRT to choice between multiple alternatives, the Multihypothesis 
SPRT (MSPRT)  [35] . This section follows the same organization as Section 18.2. 

    18.3.1       Neurobiology of decision processes in the basal ganglia 

 The   basal ganglia are a set of nuclei connected with one another, cortex and subcortical 
regions. Redgrave et al.  [36]  have proposed that the basal ganglia act as a central switch 
resolving competition between cortical regions vying for behavioral expression. In the 
default state the output nuclei of the basal ganglia send tonic inhibition to the thalamus 
and brain stem, and thus block execution of any actions        [37, 38] . To execute a move-
ment, the firing rates of the corresponding neurons in the output nuclei need to decrease 
       [37, 38] , thus releasing the corresponding motor plan from inhibition. 

 Another   property of basal ganglia organization relevant to the model is that within 
each nucleus different neurons are selective for different body parts        [39, 40] . On the basis 
of this observation it has been proposed that basal ganglia are organized into channels 
corresponding to individual body parts that traverse all nuclei  [41] . Two sample channels 
are shown in two colors in  Fig. 18.2   . 

 Furthermore  , the connectivity between nuclei is usually within channels  [41] ; for exam-
ple, neurons in the motor cortex selective for the right hand project to the neurons in 
striatum selective for the right hand, etc. The only exception is the subthalamic nucleus 
(STN) where neurons project more diffusely across channels        [43, 44]  ( Fig. 18.2 ). 

    Figure 18.2  shows a subset of basal ganglia connectivity required for optimal decision 
making  [34] . The figure does not show  “ the indirect pathway ”  between the striatum and 
the output nuclei via the globus pallidus (GP). It has been suggested that this pathway is 
involved in learning from punishments  [45]  (see Chapter 19)   and will not be discussed in 
this chapter for simplicity, but it can be included in the model and it continues to imple-
ment MSPRT        [34] .  

    18.3.2       Optimal stopping criterion for multiple alternatives 

 Let   us first describe MSPRT intuitively (a more formal description will follow). As men-
tioned in Section 18.2.2, to optimize performance, the choice criterion should take into 
account the amount of conflict in the evidence. Consequently, in the MSPRT, a choice is 
made when the integrated evidence for one of the alternatives exceeds a certain level, but 
this level is not fixed; rather it is increased when the evidence is more conflicting: 

 y Threshold Conflict,i � �   (18.6)     

  where  Threshold  is a fixed value. Subtracting  Conflict  from both sides, the criterion for 
making a choice can be written as:   

 y   Conflict Threshold.i � �   (18.7)      
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  In   order to implement the MSPRT,  Conflict  needs to take a particular form: 

 

Conflict yj
j

N

�
�

log exp ,
1
∑   (18.8)     

  where  N  is the number of alternative choices (we use the italicized word  Conflict  to refer 
to a term defined in Eq.  18.8 , and the non-italicized word  “ conflict ”  to refer to a general 
situation where sensory evidence supports more than one alternative). Equation  18.8  is 

Conflict

STN

GPOut

Striatum

Integra.

Sensory

 Figure 18.2          A subset of the cortico-basal-ganglia circuit required to implement MSPRT. Connectivity 
between areas based on Gurney et al.  [42] . Pairs of circles correspond to brain areas: Sensory  –  sensory 
cortex encoding relevant aspects of stimuli (e.g., MT in motion discrimination task), Integra.  –  cortical 
region integrating sensory evidence (e.g., LIP in tasks with saccadic response), STN  –  subthalamic 
nucleus, GP  –  globus pallidus (or its homolog GPe in primates), Out  –  output nuclei: substantia 
nigra pars reticulate and entopeduncular nucleus (or its homolog GPi in primates). Arrows denote 
excitatory connections; lines ended with circles denote inhibitory connections. Black and gray pathways 
correspond to two sample channels.    
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 said to express conflict because it involves summation of evidence across alternatives, but 
it also includes particular nonlinearities, and to understand where they come from, we 
need to describe MSPRT more formally.   

 MSPRT   is a statistical test between  N  hypotheses. We can generalize the hypotheses 
described in Eq.  18.2 , so that the hypothesis H  i   states that the sensory evidence support-
ing alternative  i  has the highest mean: 

 
H : , .i i j iμ μ μ μ� �� �

≠   (18.9)      

 In   the MSPRT, at each time  t , and for each alternative  i , one computes the probability 
of alternative  i  being correct given all sensory evidence observed so far; let us denote this 
probability by  P i  : 

 P P x ti i� ( ( .. )).H | 1   (18.10)      

 If   for any alternative  P i   exceeds a fixed threshold, the choice is made in favor of the 
corresponding alternative; otherwise the sampling continues. Appendix 18C shows that 
the logarithm of  P i   is equal to: 

 

log log exp P y yi i j
j

N

� �
�

.
1
∑   (18.11)      

 Equation    18.11  includes two terms: the integrated evidence  y i   and  Conflict  defined in 
Eq.  18.8 . Thus MSPRT is equivalent to making a choice when the difference between  y i   
and  Conflict  exceeds a threshold. 

 MSPRT   has similar optimality property as SPRT; namely, it minimizes the decision 
time for any required accuracy (which has been shown analytically for accuracies close 
to 100%  [47] , and simulations demonstrate that MSPRT achieves shorter decision times 
than simpler models also for lower accuracies  [48] ). Thus, given the discussion in Section 
18.2.2 and Appendix 18B, MSPRT also maximizes the reward rate.  

    18.3.3       Neural implementation 

 Bogacz   and Gurney  [34]  proposed that the circuit of  Fig. 18.2  computes the expression 
 y i        �       Conflict  (required for MSPRT). In their model,  y i   are computed in cortical integra-
tors accumulating input from sensory neurons ( Fig. 18.2 ), and the  Conflict  is computed 
by STN and GP (we will describe how it can be computed later). The output nuclei 
receive inhibition from cortical integrators via the striatum and excitation from STN, 
thus they compute in the model: 

 OUT y Conflict y Conflicti i i� � � � � �( ).   (18.12)      

 Thus   the output nuclei in the model represent the negative of the expression that is 
compared against a threshold in MSPRT (cf. Eq.  18.7 ). Therefore, in the model the 
choice is made when the activity of any output channel  OUT i   decreases below the thresh-
old, in agreement with selection by disinhibition reviewed in Section 18.3.1. 

 Frank    [49]  has also proposed that the conflict is computed in STN (see Chapter 19)  . 
STN has a suitable anatomical location to modulate choice process according to the 
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 conflict, as it can effectively inhibit all motor programs by its diffuse projections to out-
put nuclei  [50] . Studies of patients who receive deep brain stimulation to STN support 
the idea that STN computes conflict. They suggest that disrupting computations in STN 
makes patients unable to prevent premature responding in high conflict choices        [51, 52]  
(see Chapter 19   for details). 

 Bogacz   and Gurney  [34]  showed that input sent by STN to the output nuclei can be 
proportional to the particular form of  Conflict  defined in Eq.  18.8 , if the neurons in STN 
and GP had the following relationships between their input and the firing rate: 

 STN input� exp ( ),   (18.13)      

 GP input input� � log( ).   (18.14)      

 Let   us analyze how each term in Eq.  18.8  can be computed. For ease of reading let us 
restate Eq.  18.8 : 

 

Conflict yj
j

N

�
�

log exp .
1
∑   (18.8)      

 Starting   from the right end of Eq.  18.8 , the integrated evidence  y i   is provided to the 
STN in the model by a direct connection from cortical integrators ( Fig. 18.2 ). The expo-
nentiation is performed by the STN neurons (cf. Eq.  18.13 ). The summation across chan-
nels is achieved due to the diffuse projections from the STN. In the model, each channel 
in the output nuclei receives input from all channels in the STN; hence, the input to the 
output neurons is proportional to the sum of activity in STN channels. The only non-
intuitive element of the computation of Eq.  18.8  is the logarithm — it is achieved by the 
interactions between STN and GP, as shown in Appendix 18D.  

    18.3.4       Comparison with experimental data 

 The   input-output relationships of Eqs  18.13  and  18.14  form predictions of the model. 
The first prediction says that the firing rate of STN neurons should be proportional to 
the exponent of their input.  Figure 18.3    shows the firing rate as a function of injected 
current for seven STN neurons, for which this relationship has been studied precisely 
       [53, 54] . Solid lines show fits of the exponential function to firing rates below 135       Hz, 
suggesting that up to approximately 135       Hz the STN neurons have an input-output rela-
tionship that is very close to exponential. 

 For   the entire range in  Fig. 18.3 , the input-output relationship seems to be sigmoidal, 
often used in neural network models, and one could ask how unique the exponential 
relationship discussed here is, as every sigmoidal curve has a segment with an exponen-
tial increase. However, note that typical neurons have much lower maximum firing rate, 
so even if they had an exponential segment, it would apply to a much smaller range of 
firing rates. By contrast, the STN neurons have exponential input-output relationship 
for up to  � 135       Hz, and this is approximately the operating range of these neurons in 
humans during choice tasks  [55] . 

 The   model also predicts that GP neurons should have approximately linear input-
output relationship (because the linear term in Eq.  18.14  dominates for higher  input ). 
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 Neurophysiological studies suggest that there are three distinct subpopulations of neu-
rons in GP, and the one which contributes most to the population firing rate has indeed 
the linear input-output relationship        [56, 57] . 

 The   model is also consistent with behavioral data from choice tasks. First, for two 
alternatives the model produces the same behavior as the diffusion model, because then 
MSPRT reduces to SPRT, thus the model fits all behavioral data that the diffusion model 
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 Figure 18.3          Firing rates  f  of STN neurons as a function of input current  I . Panels A – D re-plot data 
on the firing rate of STN neurons presented in Hallworth et al.  [53]  in Figures 4b, 4f, 12d, and 13d, 
respectively (control condition). Panels E – G re-plot the data from STN presented in Wilson et al. 
 [54]  in Figures 1c, 2c, and 2f, respectively (control condition). Lines show best fit of the function 
 f       �       a  exp( b I ) to the points with firing rates below 135       Hz.    
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 can describe (see Section 18.2.4). Second, the model reproduces the Hick’s law, stating 
that the decision time is proportional to the logarithm of the number of alternatives  [34] . 
Third, Norris  [58]  has shown that MSPRT describes patterns of RTs during word recog-
nition (which can be interpreted as a perceptual decision with the number of alternatives 
equal to the number of words known by participants).   

    18.4       Basal ganglia and cortical integration 
 This   section discusses the relationship between the models presented in the two previous 
sections, and how the basal ganglia may modulate cortical integration allowing cortical 
integrators to represent probabilities of corresponding alternatives being correct. 

    18.4.1       Inhibition between cortical integrators 

 In   the model shown in  Fig. 18.2 , a cortical integrator accumulates sensory evidence only 
for the corresponding alternative. This simple model is inconsistent with the observa-
tion that integrators representing the losing alternative decrease their firing rate during a 
choice process  [2] ; to account for this observation the inhibitory connections need to be 
introduced, as shown in  Fig. 18.1 . 

 Nevertheless  , if the simple cortical integration in the model of the cortico-basal-ganglia 
circuit is replaced by any of the models in  Fig. 18.1 , the circuit still implements MSPRT 
 [34] , as we shall now explain. Note that in the biologically more realistic models of 
 Fig. 18.1C and 18.1D , both integrators receive the same inhibition from a pool of inhibi-
tory neurons. The basal ganglia model has a surprising property that if the same inhibition, 
 inh , is applied to all integrators, the activity of output nuclei does not change. Intuitively, 
this property is desirable for the basal ganglia network because, as we discussed in Section 
18.2.2, the optimal choice criterion should be based on differences between integrated evi-
dence for the alternatives, so increasing or decreasing the activity of all integrators should 
not affect the optimal choice criterion. This property is shown formally in Appendix 18E.  

    18.4.2       Representing probabilities in integrators’ firing rate 

 Recently a modified version of the cortico-basal-ganglia model has been proposed    [46]  
which only differs from the one described in Section 18.8 in that, the integration is per-
formed via cortico-basal-ganglia-thalamic loops as shown in  Fig. 18.4   . In this modified 
model the circuit of STN and GP (represented by a small circle in  Fig. 18.4 ) provides 
the indirect inhibition to the integrators which is the same for all integrators. Due to the 
property described in the previous paragraph, the activity of output nuclei in the model 
of  Fig. 18.4  is exactly the same as in the model of  Fig. 18.2 , thus the former also imple-
ments MSPRT  [46] . 

 Let   us now investigate the properties of the cortical integrators predicted by the model 
of  Fig. 18.4 . Let us recall that in the model the activities of output nuclei are equal to 
(from Eqs  18.8 ,  18.11 , and  18.12 ): 

 OUT Pi i� �log   (18.15)     

  (recall that  P i   denotes the probability of alternative  i  being correct given the sensory evi-
dence). The integrators in  Fig. 18.4  receive input from the sensory neurons and effective 
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 inhibition from the output nuclei. If there is no sensory evidence coming, the activity of 
the integrators corresponding to alternative  i  is proportional to log        P i   (from Eq.  18.15 ). 
Thus in this model the cortical integrators represent log        P i   in their firing rate, they update 
log        P i   according to new sensory evidence, and the basal ganglia continuously renormal-
izes the cortical activity such that  P i   sum up to 1.    

    18.4.3       Incorporating prior probabilities 

 Let   us now investigate how one can incorporate into the model of  Fig. 18.4  the prior 
probabilities, that is, expectations about correct alternative prior to stimulus onset (e.g., 
that may arise in perceptual choice task when one stimulus is presented on a greater frac-
tion of trials than others). Before the sensory evidence is provided,  P i   are equal to the 
prior probabilities. Hence, given the discussion in the previous paragraph to utilize the 

Integra.

Sensory

Thalam.

Out

BG

 Figure 18.4          Connectivity in the model of integration in cortico-basal-ganglia thalamic loops. 
Notation as in        Figs. 18.1 and 18.2 . The dotted rectangle indicates the basal ganglia which are mod-
eled in exactly the same way as in  Fig. 18.2 , but here for simplicity not all nuclei are shown: small 
circle represents STN and GP, and cortical integrators send effective inhibition to the output nuclei 
via the striatum not shown for simplicity.    
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 prior information in the decision process, the initial values of the integrators (just before 
stimulus onset) should be equal to the logarithm of the prior probabilities.  

    18.4.4       Comparison with experimental data 

 The   theory reviewed in this section predicts that the activity of integrator neurons should 
be proportional to log        P i  . Two studies        [59, 60]  have shown directly that activity of LIP 
neurons is modulated by  P i   prior to and during the decision process respectively. But 
their published results do not allow us to distinguish if the LIP neurons represent log        P i   or 
some other function of  P i  . Nevertheless, there are two less direct studies supporting the 
hypothesis that the activity of cortical integrators prior to stimulus onset is proportional 
to the logarithms of the prior probabilities. 

 First  , Carpenter and Williams  [61]  have also proposed that the starting point of inte-
gration is proportional to the logarithm of the prior probability, on the basis of careful 
analysis of RTs. In their experiment, participants were required to make an eye movement 
to a dot appearing on the screen. Carpenter and Williams  [61]  observed that the median 
RT to a dot appearing in a particular location was proportional to: 

 median RT log∼ � Prior,   (18.16)     

  where  Prior  was computed as the fraction of trials within a block in which the dot 
appears in this location. Now notice that if there were no noise in sensory evidence, then 
RT would always be constant and proportional to the distance between the starting point 
(firing rate of integrators at stimulus onset) and the threshold (firing rate at the moment 
of decision). If the noise is present, RT differs between trials, but the median RT is equal 
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 Figure 18.5          Firing rates  f  of superior colliculus neurons before stimulus onset as a function of the 
number of alternatives  N . The circles correspond to the experimental data taken from Figure 4 of 
Basso and Wurtz  [62]  averaged across two time periods (the position of each dot was computed 
from the heights of bars in the original figure as [black bar      �      2      �      gray bar]/3, because the gray bars 
were showing the average firing rate on two times longer intervals than the black bars). The solid 
line shows the best fitting logarithmic function  f       �       a  log        N        �        b .    
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 to the distance between the starting point and the threshold (this relation is exact in a 
particular model used by Carpenter and Williams  [61]  and approximate in other models):   

 median RT  ∼ Threshold starting point�   (18.17)      

 Putting   Eqs  18.16  and  18.17  together implies that the starting point is proportional to 
log        Prior . 

 Second  , Basso and Wurtz  [62]  recorded neural activity in the superior colliculus (a sub-
cortical structure receiving input from cortical integrators) in a task in which the number 
of alternative choices  N  differed between blocks. Note that in this task  Prior       �      1/ N , and 
thus log        Prior       �       � log        N .  Figure 18.5    shows that the firing rate before stimulus onset in 
their task was approximately proportional to  � log        N , and hence to log        Prior .   

    18.5       Discussion 
 In   this chapter we reviewed theories proposing that cortical networks and cortico-
basal-ganglia circuit implement optimal statistical tests for decision making on the basis 
of noisy information. The predictions of these theories have been shown to be consistent 
with both behavioral and neurophysiological data. We have also reviewed a theory sug-
gesting that the basal ganglia modulate cortical integrators allowing them to represent 
probabilities of corresponding alternatives being correct. In this section we discuss open 
questions. 

    18.5.1       Open questions 

 Let   us discuss four open questions relating to the theories reviewed in this chapter. 

    1.     Is the integration of sensory evidence supported by feedback loops within the cor-
tex ( Fig. 18.1 ) or by the cortico-basal-ganglia-thalamic loops ( Fig. 18.4 )? These pos-
sibilities could be distinguished by deactivation of striatal neurons (in the relevant 
channels) during a decision task. Then, if information is integrated via the cortico-
basal-ganglia-thalamic loops, the gradual increasing firing rates of cortical integra-
tors should no longer be observed.  

    2.     What type of inhibition is present between cortical integrators? In this chapter we 
reviewed three possible pathways by which cortical integrators can compete and 
inhibit one another, shown in        Figs. 18.1C, 18.1D, and 18.4 . It should be possible to 
distinguish between these models on the basis of future neurophysiological studies. 
For example, in tasks in which the amount of evidence for the two alternatives can 
be varied independently, the feed-forward inhibition model predicts that the activity 
of the integrators should only depend on the difference between sensory evidence, 
while the mutual-inhibition model predicts that it should also depend on the total 
input to the integrators  [15] .  

    3.     What else is represented by the cortical integrators? The theories reviewed in this 
chapter propose that the integrators encode integrated evidence or the probability of 
the corresponding alternative being correct. However, it is known that the firing rate 
of the cortical integrators is also modulated by other factors, for example, motor 
preparation or general desirability of alternatives  [63] . It would be interesting to 
investigate how these other factors can further optimize decision making.  
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    4.      What is the relationship between decision making and reinforcement learning in the 
basal ganglia? The basal ganglia are also strongly involved in reinforcement learn-
ing (see Chapter 19)  . It would be interesting to integrate reinforcement learning and 
decision-making theories  [46] . Furthermore, it could be interesting to model the role 
of dopamine during decision process, and how it modulates information processing 
in the basal ganglia during choice.      

       18A       Appendix A: Diffusion model implements SPRT 
 This   appendix describes the relationship between SPRT and the diffusion model. 
First note that if we assume that  x i  ( t ) are sampled independently, then the likelihood 
of the sequence of samples is equal to the product of the likelihoods of individual 
samples: 
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τ
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  where  x (  τ  ) denotes a pair:  x  1 (  τ  ),  x  2 (  τ  ). Substituting Eq.  18A.1  into Eq.  18.3  and taking 
the logarithm, we obtain:   
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 We   will now illustrate how log        R  changes during the choice process. First note 
that according to Eq.  18A.2 , at each time step  t , a term is added to log        R  which only 
depends on  x ( t ). This term will be positive if  x  1 ( t )      �       x  2 ( t ), because then  x ( t ) will be 
more likely given hypothesis H 1  (stating that   μ   1       �        μ   2 ) than given hypothesis H 2 , thus 
 P ( x ( t ) 	 H 1 )      �       P ( x ( t ) 	 H 2 ). Hence in each time step, log        R  increases if  x  1 ( t )      �       x  2 ( t ), and 
analogously decreases if  x  1 ( t )      �       x  2 ( t ). 

 Let   us now derive the likelihood ratio given in Eq.  18.3  for the hypotheses of Eq.  18.2 . 
Let us start with the numerator of Eq.  18.3 . Hypothesis H 1  states that  x  1 ( t ) come from 
a normal distribution with mean   μ    �  , while  x  2 ( t ) come from a normal distribution with 
mean   μ    �   (see Eq.  18.2 ). Thus denoting the probability density of normal distribution 
with mean   μ   and standard deviation   σ   by  f  μ    ,  σ          Eq.  18A.1  becomes: 
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 Using   the equation for the normal probability density function, we obtain: 
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  Performing   analogous calculation for the denominator of Eq.  18.3  we obtain very sim-
ilar expression as in Eq.  18A.4  but with swapped   μ    �   and   μ    �  . Hence, when we write the 
ratio of the numerator and the denominator, many terms will cancel. First, the constants 
in front of the exponents will cancel and we obtain: 
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 Second  , if we expand the squares inside the exponents, and split the exponents using 
exp( a       �       b )      �      exp( a )exp( b ), most of the terms will cancel, and we obtain: 
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 Now   if we join the terms including  x  1 (  τ  ) using exp( a )/exp( b )      �      exp( a       �       b ), and do the 
same for the terms including  x  2 (  τ  ) we obtain: 
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 If   we put the product inside the exponent, it becomes a summation, and using Eq.  18.1  
we obtain: 
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 In   summary, there were many cancellations during the derivation, and comparing Eqs 
 18.3  and  18A.8  reveals that the only term which remains from  P ( x (1.. t ) 	 H  i  ) is the expo-
nent of the evidence integrated in favor of alternative  i , and the exponentiation comes 
from the exponent in the normal probability density function. Taking the logarithm of 
Eq.  18A.8  gives Eq.  18.4 .  

    18B       Appendix B: Diffusion model maximizes reward rate 
 This   appendix shows that the diffusion model with optimally chosen threshold achieves 
higher or equal reward rate than any other model of decision making. As mentioned in 
Section 18.2.2, decision-making models exhibit a speed-accuracy tradeoff (controlled by 
the decision threshold). For a given task, let us denote the average RT of the diffusion 
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 model for a given accuracy by  RT d  ( AC ), and the RT of another model by  RT a  ( AC ). The 
optimality of SPRT implies that for any accuracy level  AC : 

 RT AC RT ACd a( ) 
 ( ).   (18B.1)      

 Similarly  , let us denote the reward rates of the diffusion and the other model for a 
given level of accuracy by  RR d  ( AC ) and  RR a  ( AC ) respectively. Let us denote the accuracy 
level that maximizes the reward rate of the diffusion model by  AC d  , so from this defini-
tion for any accuracy level  AC : 

 RR AC RR ACd a d( ) 
 ( ).   (18B.2)      

 Similarly  , let us denote the accuracy maximizing the reward rate of the other model 
by  AC a  . We can now derive the following relationship between the maximum possible 
reward rates achieved by the two models: 
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 In   the above derivation, the first inequality comes from Inequality Eq.  18B.1 , and the 
second inequality from Inequality Eq.  18B.2 . Thus Inequality Eq.  18B.3  implies that the 
highest reward rate possible for the diffusion model,  RR d  ( AC d  ), is higher or equal than 
the highest possible reward rate in any other model,  RR a  ( AC a  ).  

    18C       Appendix C: MSPRT 
 This   appendix shows that the logarithm of the probability  P i   defined in Eq.  18.10  is 
expressed by Eq.  18.11 . We can compute  P i   from the Bayes theorem: 
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 As   usual in statistical testing, we assume that one of the hypotheses H  i   is correct, 
thus the probability of sensory evidence  P ( x (1.. t )) is equal to the average probabil-
ity of sensory evidence given the hypotheses (weighted by the prior probabilities of the 
hypotheses): 
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 Let   us for simplicity assume that we do not have any prior knowledge favoring any of 
the alternatives, so the prior probabilities are equal (Section 18.4.3 shows how the prior 
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 probabilities can be incorporated). Then the prior probabilities in Eq.  18C.2  cancel and 
it becomes: 
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 Now  , recall that in Appendix 18A we have already evaluated a very similar ratio for a 
similar set of hypotheses. Following calculations like those in Appendix 18A, analogous 
cancellations happen, and Eq.  18C.3  becomes (cf. Eq.  18A.8 ): 
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  where  g  is a constant defined in Eq.  18A.7 . As we observed in Appendix 18A, the expo-
nentiation of integrated evidence comes from the exponents present in the normal prob-
ability density function. If we take the logarithm of Eq.  18C.4 , then the division becomes 
a subtraction:   
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 Equation    18C.5  involves two terms: In the first term the logarithm cancels the expo-
nentiation so it becomes the integrated evidence (scaled by constant  g ), while the second 
is the  Conflict  in evidence (scaled by  g ). For simplicity, we ignore the constant  g , because 
its precise value has been shown to be of little importance for performance  [34] , and then 
Eq.  18C.5  becomes Eq.  18.11 .  

    18D       Appendix D: STN and GP can compute the optimal conflict 
 In   this appendix, we show that if STN and GP have input-output relationship given by 
Eqs  18.13  and  18.14 , then the sum of the activities of STN channels is equal to  Conflict . 
Let us denote the activities of channel  i  in STN and GP by  STN i   and  GP i   respectively. 
The STN receives input from cortical integrators and inhibition from GP, hence 

 STN y GPi i i� �exp( ).   (18D.1)      

 Let   us denote the sum of activity of all STN channels by  Σ : 
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 In   the model of  Fig. 18.2 , GP receives input from all STN channels, hence 

 GPi � �∑ ∑log .   (18D.3)      
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  Substituting   Eq.  18D.3  into Eq.  18D.1  gives 

 STN yi i� � �exp( log ).∑ ∑   (18D.4)      

 Using   the property of exponentiation  e a    �    b        �       e a e b   we obtain: 

 STN yi i� �exp( )exp( ) .∑ ∑   (18D.5)      

 Summing   over  i  and using Eq.  18D.2  we obtain: 
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 Taking   the logarithm of Eq.  18D.6  we get: 
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 log          Σ  cancels on both sides in Eq.  18D.7 , and moving  Σ  on the left side we see that the 
sum of activities of all STN channels is equal to  Conflict : 
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    18E       Appendix E: Basal ganglia model is unaffected by 
inhibition of integrators 
 This   appendix shows that if the same inhibition is applied to all cortical integrators 
projecting to the basal ganglia, the activity of the output nuclei in the model does not 
change. To see this property, we subtract  inh  from  y i   in the first line of Eq.  18E.1  (cf. 
Eqs  18.8  and  18.12 ) and observe that  inh  cancels out (last equality in Eq.  18E.1 ) and the 
activity of the output nuclei does not change. 
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