
  

 

Abstract—Motor symptoms in Parkinson's disease (PD) 

correlate with an excess in synchrony in the beta frequency 

band (13-30Hz) of local field potentials recorded from basal 

ganglia circuits. Recent results have suggested that this 

abnormal activity arises as a result of changes in specific 

dynamical features of the underlying neural signatures. In 

particular, patterns of activity in the beta band have been 

shown to be structured in bursts of longer durations and higher 

amplitudes in untreated patients with PD. Closed-loop deep 

brain stimulation (DBS) paradigms that specifically target 

these pathological bursts of activity hold promises to help trim, 

and thus normalize, their abnormal behavior in real-time. 

Here, we developed classification algorithms that predict 

pathological beta bursts based on ongoing changes in LFP 

frequency dynamics. We then compared simulations of 

prediction-based DBS profiles with existing 'adaptive DBS' 

alternatives. We show that model-driven stimulation profiles 

are more precise in restricting the delivery of stimulation to 

bursts that are considered pathological, while preserving 

physiological ones. The overall stimulation time required is also 

diminished, thus supporting longer battery life. These results 

represent a conceptual and algorithmic framework for the 

development of more precise DBS strategies that are selectively 

tailored to the electrophysiological profile of each patient. 

I. INTRODUCTION 

 For decades, deep brain stimulation (DBS) therapies have 

been employed to alleviate motor symptoms in patients 

suffering from Parkinson’s disease (PD) with impressive 

results [1,2]. The gold standard for such therapies in PD 

involves applying continuous electrical pulses at high-

frequency (130Hz) to specific structures in the basal ganglia, 

commonly the subthalamic nucleus (STN) or internal globus 

pallidus (GPi). Electrical neuromodulation of such networks 

suppresses the excessive levels of synchrony that emerge in 

local and neighboring circuits, and alleviate motor deficits 

such as rigidity, tremor or bradykinesia [3,4]. 

Clinical advances in the use of neural implants for 

electrical neuromodulation of dysfunctional circuits have 

concurrently afforded the opportunity to probe the function 

of these circuits [5,11]. Recoding of local field potentials 

(LFPs) from DBS electrodes has become a common practice 
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in multiple centers worldwide [6]. This practice has widened 

our understanding of the neural signatures and mechanisms 

underlying basal ganglia activity, both at rest and during 

movement [7], and helped uncover biomarkers that can 

capture pathological synchrony. In particular, neural 

correlates of motor symptoms in PD have been consistently 

associated with abnormal oscillatory patterns in the beta 

band (13-30Hz) of LFPs [3,4]. These findings have guided 

the development of the first-generation closed-loop DBS 

strategy (termed 'adaptive DBS', aDBS), which employs 

continuous feedback of beta amplitude to activate or 

deactivate stimulation in real-time whenever the envelope of 

beta amplitude crosses a fixed threshold [7,8]. Thus far, this 

threshold has been empirically defined, and manually 

optimized with respect to the patient’s own LFP dynamics. 

 Recent studies focused on the dynamical differences in 

beta oscillatory patterns in PD. Comparisons in patients ON 

vs. OFF dopaminergic medication, or ON vs. OFF aDBS 

have revealed significant changes in the temporal 

organization of beta oscillations [9,10], in particular with 

regards to their bursting activity patterns. Unlike 

physiological oscillations that exhibit bursts of short 

durations (<150ms), PD patients additionally exhibit bursts of 

long duration and the incidence of these positively correlates 

with motor symptoms. This suggests that neuromodulation 

strategies might selectively target such long-duration bursts, 

and spare those that do not evolve into a pathological state 

[11]. This observation motivates the development of 

predictive algorithms that can help predict and specifically 

target pathological patterns of bursting activity. 

 Here we developed a computational framework to predict 

the temporal occurrence of abnormal beta bursts. We 

developed classification algorithms to estimate the likelihood 

of upcoming LFPs to evolve into a pathological state, and we 

compared prediction-driven DBS profiles with existing aDBS 

strategies. We hypothesized that additional frequency and/or 

temporal components might convey information to help 

predict such pathological bursts. Our results show that 

model-driven DBS strategies are more specific and require 

less stimulation time overall. They also allow us to propose a 

principled approach to determining the optimal threshold for 

burst-oriented real-time DBS paradigms. 

II. METHODS 

LFPs were recorded in two patients (age S1=67, S2=63; 

disease duration in years: S1=16, S2=5; UPDRS OFF/ON: 

S1=46.5/25.5, S2=14.5/11) undergoing STN DBS surgery. 

DBS electrodes (type 3389 Medtronic, USA) were 

temporarily externalized prior to the connection of the 

implantable pulse generator. LFPs were recorded using a bi-  
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Figure 1.  (A) Comparison of power spectrum profiles of LFPs recorded as 

bipolar signals from consecutive pairs of electrodes from a DBS lead for 

patient S1, either 'ON' dopaminergic medication (gray traces) or 'OFF' 
(black). The beta band is derived as +/-3 Hz around the peak distinguishing 

both conditions (cyan). (B) Definition of beta bursts: The envelope of the 

beta signal is thresholded at the 75% percentile amplitude. Only bursts of 
durations exceeding 200ms are defined as pathological. (C) 

Parameterisation: For each sample (every 50ms), frequency components are 

calculated over a window of 300ms. The feature vector is composed of 
spectral values over moving subwindows (175ms, 75% overlap). PCA is 

applied to reduce the dimensionality (99.5% of the variance).  

polar contact setup and sampled at 1000Hz (Fig. 1A). 

Signals were amplified and filtered at 1–250Hz using a 

custom-made, high-impedance amplifier (with a front-end 

stage INA128 instrumentation amplifier, Texas Instruments) 

and recorded through a 1401 analogue/digital converter 

(Cambridge Electronic Design) on a computer using Spike2. 

Data from these patients were reported previously [14]. 

A. Data preparation 

 Pathological bursts of oscillatory activity in the beta band 

were defined by thresholding (th1 =75th percentile amplitude) 

the envelope of the Hilbert Transform of the beta signal 

(determined as the band-pass filtered signal in the band 

covering +/3 Hz around the maximum difference in the 

power spectrum between ON and OFF medication for each 

electrode [9]: ~13Hz for S1, and ~17Hz for S2) (Fig. 1A-B).  

 electrode 

pair 

Long (‘Pathological’) Short 

# bursts 

per sec 

Mean  

duration (ms) 

#  bursts 

per sec 

Mean  

dur (ms) 

S1 

B01 
B12 

B23 

0.37 
0.38 

0.26 

722.8 +/- 54.4 
775.6 +/- 68.6 

1106 +/- 179 

0.45 
0.34 

0.25 

107.3 +/- 4.8 
102.6 +/- 5.9 

109.0 +/- 6.3 

S2 

B01 
B12

B23 

0.86 
0.84 

0.77 

403.3+/-20.0 
397.9+/-24.8 

356.3+/-15.8 

1.34 
1.32 

1.62 

81.8+/-2.9 
88.0+/-2.9 

90.0+/-2.6 

 

Only bursts of durations longer than 200ms were preserved. 

Shorter ones were discarded under the assumption that they 

correspond to natural physiological signatures of neural 

processing. Consecutive bursts with inter-burst intervals 

shorter than 20ms (~ half a period) were merged together. 

For each burst retained, its 'onset' was defined as the time 

from crossing the median to crossing th1. Table 1 reports the 

statistics of pathological bursts vs. short bursts for each 

contact pair.  

 We then parameterized the raw LFPs (subsampled every 

50ms) into key features able to capture dynamical changes in 

the signal. For each sample, we chose a window of 300ms 

preceding it, and extracted frequency and temporal features. 

To account for dynamical changes, we split the 300ms 

window into four consecutive sub-windows of 175ms each 

with 75% overlap, and we concatenated the corresponding 

power spectra (from 1Hz to 100Hz) so as to generate a 

feature vector ζ of 400 dimensions (Fig. 1C). 

 To account for highly correlated frequency dimensions, 

we reduced the dimensionality of our input space using PCA 

and kept features explaining up to 99.5% of the variance 

(i.e., S1:30 Dimensions, S2: 55 Dimensions). 

B. Class definition and decoder training 

We employed the previous definition of beta bursts to define 

2 classes, either C1 corresponding to samples of pathological 

beta bursts including their ‘onset’, or C0 for the rest (Fig. 2).  

 

Figure 2.  (A) Classification methodology. Feature vector comprising 

frequency changes preceding each time sample and binarized classes (burst 

vs. no burst) are employed to train and test an LDA classifier. Accuracy is 
validated using 10-fold cross-validation (B) ROC curves for each pair of 

bilateral electrodes for subject S1 (C). Example traces of true class 

definition for one contact pair and prediction probabilities for each class. 
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Figure 3.  Contribution of each frequency band to the principal LDA 

dimension separating the two classes C1 and C0 for S1 B01 (steps of 5Hz). 

In order to predict the occurrence of bursts of abnormal 

bursting activity, we trained classification algorithms 

(regularized Linear Discriminant Analysis, LDA) for each 

contact pair, and we tested their performance when decoding 

the state of each sample using 10-fold cross-validation (Ntrain 

~ 4000 samples) (Fig. 2A).  

C. Measures of performance & comparison to aDBS 

 To evaluate the accuracy and relevance of prediction-

driven DBS profiles, we compared their selectivity with 

respect to existing aDBS strategies. We simulated the 

activations Ak that would be generated according to aDBS 

algorithms as implemented in [7] (i.e. by thresholding the 

envelope of the beta signal with respect to its median value, 

including a ramping up/down time of 250ms added onto the 

ON/OFF logic) (Fig. 3A). We then evaluated the error e 

with respect to an 'ideal' stimulation pattern Ik that only 

targets pathological beta bursts i.e. C1. The calculation of 

the error measure is given as: 𝑒 =  ∑ (𝐼𝑘 −  𝐴𝑘)2𝑁
𝑘 = 1  where 

Ik and Ak  [0 1]. Additionally, we quantified the percentage 

of pathological bursts and of short bursts being targeted by 

DBS, along with the total stimulation time. Finally, we used 

our error estimates to determine the threshold for aDBS that 

optimally and most selectively targeted long duration beta 

bursts (Fig. 4D). 
 

Figure 4.  Comparison of aDBS and prediction-based DBS profiles for S1. 

(A) Simulation of aDBS traces for an illustrative LFP trace. (B) Percentage 
of short bursts, "pseudo"-bursts (segments of signal above the median, but 

never reaching the upper threshold), and overall stimulation time required 

for each method for contact B01. (C) Profiles for the ideal, aDBS and 
predictive-based DBS, and cumulative errors. (D) Optimisation of aDBS 

algorithms for different thresholds and related statistics (same as panel B).  

III. RESULTS 

A. Predictive accuracy  

ROC curves for each pair of bipolar electrodes high-

lighted accurate classification between the two classes, with 

AUC ranging from 83% to 90% for S1 (Fig. 2B-C), and 71% 

to 77% for S2. Note that C0 (non-bursting class) included not 

only periods of low oscillatory activity in the LFP, but also 

short bursts, and segments of the signal that exceeded the 

median of the envelope but did not reach the upper threshold 

th1. These would ordinarily trigger very brief stimulation 

during threshold-crossing aDBS. 

B.  Contribution of each frequency band 

 In order to get further insight into the contribution of each 

frequency component for distinguishing pathological bursts 

from other events, we analyzed the factor loadings of each 

frequency band (in steps of 5Hz) along the principal LDA 

dimension. Unsurprisingly, the biggest contribution arose 

from frequencies around the beta band (Fig 3). Never-

theless, albeit comparatively small, additional frequencies all 

along the power spectrum provided additional information, 

dynamically changing for the different sub-windows 

considered. 

C. Stimulation selectivity 

Motivated by the previous results, we simulated the DBS 

profiles that would result from such predictions. We defined 

a pair of threshold values [thp1 thp2] defining the triggering 

times of DBS (whenever the probability of C1 exceeded thp1 

or feel under thp2). These values were optimized offline and 

converged to a value of 0.5, for which the cumulative error 

with respect to Ik was e = 610 for S1 (e = 807 for S2) (Fig. 

4C). In contrast for the same LFP signal, aDBS patterns 

(triggered exclusively based on the median of the envelope) 

led to significantly bigger errors (e = 717 for S1, e = 1118 

for S2). In particular, additional errors resulted predominantly 

from stimulating short bursts (assumed to be non-

pathological), and periods of beta activity just above the 

median. As a result, aDBS required markedly longer sti-

mulation time overall (Fig. 4B). 
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D.  Optimizing 'aDBS'  

 We finally aimed to obtain comprehensive comparisons 

with an optimized version of aDBS, in which the threshold 

value that triggers stimulation (its only degree of freedom) 

would be tuned for the specific dynamical characteristics of 

each LFP. For each set of electrodes, we systematically 

mapped the error e for all threshold values in the range [0.5 - 

0.95], and we selected the one minimizing that measure (~0.7 

for S1 and ~0.8 for S2) (Fig. 4D). We then compared the 

resulting patterns with prediction-based counterparts. In this 

framework, both algorithms performed very similarly 

according to all measures analyzed, suggesting a highly 

predominant contribution of beta oscillations in the 

definition and prediction of pathological bursts.  

IV. CONCLUSION 

Deep Brain Stimulation is a well-established neuro-

modulation technique to alleviate motor symptoms in PD. To 

date, DBS has only been applied continuously, in part due to 

a lack of mechanistic understanding of the underlying 

pathological neural processes and to technical requirements. 

Albeit highly efficacious, continuous stimulation is 

inherently expensive in terms of battery life. It is also 

suboptimal to address ongoing patient-specific neural 

requirements, and often limited by stimulation-induced side 

effects. Recent clinical experiments show that non-

continuous 'aDBS' strategies, which adapt in real-time based 

on feedback of beta amplitude, are at least as successful in 

alleviating motor symptoms, but require considerably less 

stimulation time. Non-continuous approaches also hold 

promises to help minimize undesired side effects that result 

from DBS [12,13].  

Here, we aimed to refine closed-loop strategies by 

developing classification-based algorithms that capture and 

selectively target pathological dynamics. We showed that 

model-driven algorithms that trigger DBS based on ongoing 

predictions of such abnormal beta bursts are more selective, 

and in turn require less stimulation time than threshold-

crossing driven aDBS. From an implementation standpoint, 

the developed approach is simple, requires few samples for 

training classification models, and may be iteratively updated 

throughout an experiment to account for time-varying 

changes in neural dynamics.  

A.  Future perspectives  

 A main conceptual limitation of the presented 

methodology is the underlying assumption that pathological 

beta bursts correspond to those exhibiting lengths above a 

given duration (assumed 200ms [9-10]). While strong 

correlations were reported in such studies between the 

duration of beta bursts and motor symptoms in PD, a causal 

link is still missing. In this regard, the presented 

methodology may provide a technical framework to validate 

the link between beta burst duration, targeted DBS and 

motor control. Moreover it can be updated in the future with 

new knowledge of beta signal dynamics in PD 

 Additionally, our methodology is built around the 

hypothesis that multiple frequencies in the power spectrum 

(and their temporal dynamics) may provide meaningful 

information in helping predict the occurrence of pathological 

bursts. Our results emphasize that despite the addition of 

multiple frequency bands, it is still beta oscillations which 

provide the main source of separation between classes. 

Further analysis with smaller time-scales might help 

pinpoint frequency changes throughout bursts, and time-

specific contributions not accounted for in our broad 

analyses. However, perhaps the most immediate impact of 

the proposed framework is the provision of a simple and 

principled way in which to optimize the threshold used in 

real-time aDBS that takes in to account the LFP dynamics 

within each patient. 
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