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� Bursts of beta activity have been linked to motor impairment in Parkinson’s disease.
� Termination of bursts is associated with characteristic changes in oscillation shape.
� These suggest input drive desynchronization, increased theta activity and phase slips.

a b s t r a c t

Objective: Phasic bursts of beta band synchronisation have been linked to motor impairment in
Parkinson’s disease (PD). However, little is known about what terminates bursts.
Methods: We used the Hilbert–Huang transform to investigate beta bursts in the local field potential
recorded from the subthalamic nucleus in nine patients with PD on and off levodopa.
Results: The sharpness of the beta waveform extrema fell as burst amplitude dropped. Conversely, an
index of phase slips between waveform extrema, and the power of concurrent theta activity increased
as burst amplitude fell. Theta activity was also increased on levodopa when beta bursts were attenuated.
These phenomena were associated with reduction in coupling between beta phase and high gamma
activity amplitude. We discuss how these findings may suggest that beta burst termination is associated
with relative desynchronization of the beta drive, increase in competing theta activity and increased
phase slips in the beta activity.
Conclusions: We characterise the dynamical nature of beta bursts, thereby permitting inferences about
underlying activities and, in particular, about why bursts terminate.
Significance: Understanding the dynamical nature of beta bursts may help point to interventions that can
cause their termination and potentially treat motor impairment in PD.

� 2020 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights
reserved.
1. Introduction

Untreated Parkinson’s disease (PD) is characterized by excessive
beta frequency band (13–30 Hz) synchronization in the basal gan-
glia (Hammond et al., 2007). In particular, the reduction in mean
beta power of the local field potential (LFP) in the subthalamic
nucleus (STN) with dopaminergic medication or deep brain stimu-
lation (DBS) correlates with the improvement in motor impair-
ment achieved with these interventions (Kühn et al., 2006, 2008,
2009; Ray et al., 2008; Özkurt et al., 2011; Neumann et al., 2016;
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Oswal et al., 2016). More recently, pathological LFP beta activity
has been suggested to consist of phasic bursts lasting several hun-
dred milliseconds or longer (Deffains et al., 2018), with the per-
centage of long bursts correlating with motor impairment
(Tinkhauser et al., 2017a, 2017b). Beta-amplitude triggered adap-
tive DBS curtails long duration bursts and improves motor function
(Tinkhauser et al., 2017b). Dopaminergic medication also shifts the
distribution of burst durations in favour of shorter bursts with
this correlating with the improvement in motor impairment
(Tinkhauser et al., 2017a). In addition, studies measuring the
kinematics of individual ballistic movements have demon-
strated motor slowing when beta bursts precede movement
(Torrecillos et al., 2018; Tinkhauser et al., 2019), while studies
examining repetitive movements have linked the occurrence
of beta bursts to the progressive bradykinesia over time that
characterises PD (Lofredi et al., 2019). Although these studies
are only correlative, they suggest that the incidence of beta
bursts in the LFP may be more strongly linked to bradykinesia
than mean LFP beta power (Deffains et al., 2018; Torrecillos
et al., 2018; Lofredi et al., 2019).

Evidence is therefore growing that beta bursts in the LFP, partic-
ularly longer duration beta bursts, may play a central role in
Parkinsonian motor dysfunction. Recent work in the 6-
hydroxydopamine rodent model of PD suggests that phase slips
occur in the locking between neural activities in the cortex and dif-
ferent basal ganglia sites just before bursts develop (Cagnan et al.,
2019). However, the mechanisms leading to the termination of
beta bursts in the basal ganglia are unclear, and could provide clues
as to potential therapeutic interventions. Here we seek to shed
light on these mechanisms through consideration of the dynamics
in the shape of beta bursts. This approach is motivated by recent
observations that the shape of beta oscillations in the primary
motor cortex of patients with PD carries information about the
motor state. Thus, the sharpness of cortical beta oscillations corre-
lates with rigidity (Cole et al., 2017), and is reduced during conven-
tional DBS (Cole et al., 2017) and after dopaminergic medication
(Swann et al., 2015; Jackson et al., 2019). Such sharpness of the
LFP activity is increasingly thought to be associated with the tight
synchronisation of a regular input or drive, so that the temporal
summation of synapticly driven polarisation changes gives sharp
transients (Sherman et al., 2016; Burke et al., 2015; Lozano-
Soldevilla et al., 2016; Cole et al., 2017; Cole and Voytek, 2017;
Vaz et al., 2017). In the case of the STN, the beta input is likely to
originate from the cerebral cortex, given that STN beta is coherent
with and phase lags cortical beta (Williams et al., 2002; Fogelson
et al., 2006). Here we consider the shape of waveforms in STN beta
bursts in detail. These beta bursts are approximately spindle
shaped, with an initial rising slope, followed by a descending slope
(Tinkhauser et al., 2017a). Our results provide evidence, albeit indi-
rect, to support the hypothesis that the descending slope of beta
bursts might reflect desynchronization and disorganisation of the
beta drive to the STN, and the rise of competing inputs.
2. Materials and methods

2.1. Subjects and surgery

We investigated waveform changes within beta bursts before
and after administration of levodopa in nine patients (6 males,
18 hemispheres, age 62 ± 3 years, disease duration 12.6 ± 1.4 years)
with advanced PD undergoing DBS surgery targeting the STN.
Patients were bilaterally implanted with the Medtronic 3389 DBS
lead (Medtronic Neurological Division) with four platinum-
iridium cylindrical surfaces. The subjects have been previously
reported and the clinical and operative details described within
these earlier reports (Kühn et al., 2006 reports all 9 subjects, but
only data from 17 hemispheres; Tinkhauser et al., 2017a reports
8 subjects and data from 16 hemispheres. Here we report data
from the complete 18 sides, as exclusion criteria were not applied
in the current study). All experimental protocols were approved by
the local ethics committee (at the Charité, University Medicine Ber-
lin, Campus Virchow, Berlin, Germany) and all participants gave
their written informed consent.

2.2. Experiments and recordings

DBS electrodes were externalized prior to connection to the
implantable pulse generator. LFPs were recorded 3–6 days after
lead implantation following overnight withdrawal of antiparkinso-
nian medication before and, again, after administration of levo-
dopa. LFPs were recorded from adjacent bipolar contact pairs
(C01, C12, C23), while patients sat quietly. Signals were amplified
and bandpass filtered between 1–250 Hz using an INA 128 instru-
mentation amplifier (Texas Instruments), and then transferred
through a 1401 analogue/digital converter (Cambridge Electronic
Design) onto a computer with Spike2 software (Cambridge Elec-
tronic Design). The sampling rate was 1 kHz. The Unified Parkin-
son’s Disease Rating Scale (UPDRS) was used to score motor
symptoms before and after administration of levodopa (ON
23.2 ± 4.5, OFF 45.7 ± 5.7). All data were analyzed in Matlab (ver-
sion R 2018a; MathWorks, Natick, MA).

2.3. Contact localisation

To visualize the distribution of the DBS lead contacts in the STN
we used the Lead-DBS Matlab toolbox (version 2.1.6) (Horn et al.,
2019). Preoperative MRI and postoperative CT scans were co-
registered using Advanced Normalization Tools (ANTs, Avants
et al., 2008; http://stnava.github.io/ANTs/) and normalised into
the ICBM 2009b NLIN asymmetric MNI space using the symmetric
diffeomorphic image registration approach implemented in ANTs
(Avants et al., 2008). Electrode trajectories were then automatically
detected and manually refined to define exact lead contacts
location.

Given that LFPs were registered from adjacent bipolar contact
pairs (C01, C12, C23), the x, y and z coordinates were derived for
the center point of the upper, middle and lower bipolar contact
pairs. All contact pairs, both from the left and right STN, were pro-
jected on to the right STN of the DISTAL Atlas (Ewert et al., 2018)
using a nonlinear flip function (Lead-DBS Matlab toolbox). We then
determined whether the contact pairs were localized inside or out-
side the STN (Fig. 1)

2.4. Determination of bursts

The raw signals were notch filtered at 50 Hz and its harmonics,
and high-pass filtered at 1 Hz. Beta bursts were determined using
methods that have been previously outlined (Tinkhauser et al.,
2017a). LFP signals were first decomposed using Wavelet transfor-
mation (fieldtrip-function ft_freqanalysis, Morlet Wavelet,
width = 10, gwidth = 5) into frequencies ranging from 1 to 40 Hz
with a resolution of 1 Hz (Oostenveld et al., 2011). The 40 Hz
cut-off was only used here and did not affect the empirical mode
decomposition. The frequency of the maximum amplitude bin in
the beta frequency range (1-Hz bins between 13 and 30 Hz from
the three bipolar contacts) was selected in the OFF medication
state for each electrode and the corresponding time evolved wave-
let amplitude (bandwidth = 5 Hz) was smoothed (0.2 s) and DC cor-
rected (non-overlapping 20 s moving average) to eliminate
potential baseline shifts in amplitude. Time points at which the
time evolved wavelet amplitude exceeded a fixed amplitude

http://stnava.github.io/ANTs/


Fig. 1. Spatial representation of electrodes and recording sites. (A) Localisation of deep brain stimulation (DBS) leads in Montreal Neurological Institute (MNI) space
(posterior view). Subthalamic nucleus (STN; yellow), red nucleus (red), globus pallidus interna (green) and globus pallidus externa (blue). Backdrop is the 100 lm
postmortemmagnetic resonance image (MRI) warped to MNI space and released in Lead DBS (Edlow et al., 2019). (B) Spatial distribution of all the bipolar contact pairs of all 9
subjects relative to the midcommissural point (mm) in the MNI space. The STN is depicted as mesh and data are illustrated in all 3 planes. The blue dots indicate the contact
pairs localised inside of the STN and the orange dots indicate contacts pairs localised outside the STN. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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threshold were determined as samples within beta bursts. The
threshold was defined as the average of the 75th percentile ampli-
tude distributions in the ON and OFF conditions. As we were par-
ticularly interested in the evolution of activities during beta
bursts, we selected for further analysis bursts with a minimum
duration of 400 ms. This also served to limit contributions from
noise-induced spontaneous fluctuations in signal amplitude. The
selected beta bursts were split at the point of their peak amplitude
into an initial 200 ms duration segment with a rising slope (ending
at the point of the beta burst’s peak amplitude) and a later 200 ms
duration segment with a descending slope (beginning at the point
of the beta burst’s peak amplitude).
2.5. Empirical mode decomposition

The focus of our investigation was the shape of the waveforms
comprising beta bursts in the STN. To this end, we used the Hil-
bert–Huang transform (HHT), which is the result of empirical
mode decomposition (EMD) and Hilbert spectral analysis (Huang
et al., 1998). The HHT uses the EMD method to decompose a signal
into elementary signals referred to as intrinsic mode functions
(IMFs), and applies Hilbert spectral analysis to obtain instanta-
neous frequency data for these components (Fig. 2A). These IMFs
are virtually free from harmonic artifacts, an important character-
istic when evaluating phase-amplitude coupling (Wu and Huang,
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Fig. 2. Intrinsic mode functions (IMFs) and dependency of Degree of Non-linearity (DoN) on signal noise levels. (A) The beta peaking-IMF (b IMF, red line) retains the
nonlinear elements of the test beta waveform (black line) and hence the amplitude of the test waveform better than a standard Butterworth IIR filter (order = 6, blue line). The
low-frequency peaking-IMF (LF IMF, green line) captured components with peak frequency around 4 Hz. The power spectral densities of the different components were
estimated using Welch’s power spectral density. (B) DoN of nonlinear waveforms with different degrees of polynomial for phases (inverse nonlinear level). The synthetic
signals also have a component of Gaussian white noise with the standard deviation relative to the oscillatory component (noise level). Four lines include beta peaking-IMFs
with (red track) or without (blue track) averaging by autocorrelation, Butterworth IIR filter in the beta band (order = 6, band = 18–22 Hz, green track), and DoN of the original
signal without Gaussian white noise as control (black interrupted track). Autocorrelation serves to reduce the effects of increasing noise levels. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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2004; Shi et al., 2018; Yeh et al., 2016). The intra-wave frequency
modulation (FM) can be used to define the degree of nonlinearity
(DoN) of each IMF decomposed through the EMD method (Wang
et al., 2012; Huang et al., 2014), and to extract wave shape func-
tions (Wu, 2013; Hou and Shi, 2016). As the DoN defines the devi-
ation of instantaneous frequency cycle-by-cycle it is not affected
by any changes in frequency between cycles, as, for example,
may occur as an oscillation becomes less well tuned. The DoN
has been used to assess the sparsity, or otherwise, of instantaneous
frequencies as a nonlinear property in irregular oscillations
(Veltcheva and Soares, 2016; Tsai et al., 2016).

We implemented the fast EMD for computational efficiency
(Wang et al., 2014). The Matlab code used is available
(https://data.mrc.ox.ac.uk/mrcbndu/data-sets/search). The raw
signals were notch filtered at 50 Hz and its harmonics, and high-
pass filtered at 1 Hz. Fig. 3 summarises the steps in the EMD algo-

rithm for a given signal x
*
. (1) Generating local mean curve: the

algorithm begins with identifying all the local maxima and min-

ima. The upper envelope eu
*

is generated by connecting all the local
maxima using a cubic spline curve. Likewise, all the local minima

are connected to create the lower envelope el
*
. Then the mean m

*

of these two envelopes is computed. (2) Sifting process: the first

component hð1Þ
*

is obtained by subtracting mð1Þ
*

from x. The sifting

process is repeated on hð1Þ
*

while hð1Þ
*

still possesses multiple
extrema between zero crossings. After recursively applying this
step on hð1Þ
*

, the sifting process stops once the shortest period com-

ponent of the signal (here we take the first IMF c1
*

as an example) is
obtained. The sifting process stops when the sum of the difference
(SD) is zero; however, to avoid local wiggles in IMFs due to over-
sifting, the maximum sifting number is 10 (Wu and Huang,
2004). Then c1ðtÞ is separated from the data to obtain the residue
r1ðtÞ. The extracted IMFs would have the same numbers of zero-
crossings or differ by one at most, and have almost symmetrical
envelopes defined by local maxima and minima respectively
(Huang et al., 1998). (3) Generating all IMFs: If the residue r1ðtÞ still
contains information about larger scales, it is treated as a new
input and the sifting process is repeated again. This process is

repeated on all IMFs cj
*

(jth IMFs) with the subsequent residues.
The whole procedure is terminated once the residue rðtÞ is a con-
stant or monotonic slope, or a function with only one extremum.

We found 10 IMFs in our analysis of LFPs; the first two IMFs
with the highest peak frequencies were summed as a high gamma
peaking-IMF (peak frequency > 60 Hz), the 3rd and the 4th IMFs
with their peak frequencies within the beta band were summed
as a beta peaking-IMF, the 5th IMF had a peak frequency in the
high alpha band (12 Hz), and the 6th and the 7th IMFs had peak
frequencies in the theta band and were summed as a theta
peaking-IMF. Finally, the 8th to the 10th IMFs had peak frequencies
below 2 Hz and were not analysed further. The retained IMFs with
peaks at different frequencies may be interpreted as broad fre-
quency spectra due to the dyadic filter bank, in which within-

https://data.mrc.ox.ac.uk/mrcbndu/data-sets/search


Fig. 3. Empirical mode decomposition (EMD) algorithm. Terms are described in the
methods.
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cycle sharpening and other within-cycle waveform distortions, and
inter-cycle non-stationarities, contribute to the artificial harmonics
and broad frequency spectral components in the Fourier decompo-
sition, respectively. Fig. 4 demonstrates that the beta IMF, in partic-
ular, serves to capture beta bursts, which were therefore missing
when this IMF was subtracted from the raw signal.
2.6. Oscillation sharpness

In this study we estimate several measures from the beta IMF
during bursts; extremata sharpness in the oscillations, phase slips
and degree of non-linearity (Supplementary Fig. 3). To obtain a
measure of oscillation sharpness, the beta IMF was first extracted
using ensemble EMD (level of added noise = 0.1, ensemble num-
ber = 100) with the influences from the added noise less than a
fraction of 1% of the standard deviation (Wu and Huang, 2009).
Next, we implemented the concept of the order-statistic filter,
which is used in imaging denoising to identify peaks and troughs
(Cheng and Venetsanopoulos, 1992). Briefly, this consists of
weighting IMFs with a sliding Tukey window and setting the max-
ima as output (Lin et al., 2019). The procedure for estimating the
sharpness of beta oscillations was introduced by Cole et al.
(2017). This was applied to the beta peaking-IMF. The sharpness
of each extrema is defined as the average of the two absolute volt-
age differences between the extrema and the 5 ms either side of
the peak or trough. Note that here we considered the sharpness
of extrema (peaks and troughs) independently of their polarity,
as the latter is determined by the orientation of the contact pair
used to record the LFP with respect to the generator. Accordingly,
sign may flip between recordings in an unconstrained way, so here
we averaged the sharpness of trough and peaks.

In order to ratify our measure of sharpness we created a family
of normal probability densities in which the standard deviation of
the distribution (sigma) ranged from 0.2 to 1 in steps of 0.1
(Fig. 5A). Lower sigma values and sharper waveforms corre-
sponded to higher oscillation sharpness (Fig. 5B).

2.7. Non-sinusoidal features

An important feature of brain waves is the time evolving instan-
taneous frequency (IF). IFs were derived from dyadic IMFs
(Flandrin et al., 2004). The IF is defined as the time derivative of
the Hilbert phase function hðtÞ (Huang et al., 2009), and provides
insight into intra-wave frequency modulations including phase
slips. Huang has used intra-wave frequency modulation to esti-
mate the degree of nonlinearity (DoN) in nonlinear oscillations as
follows (Huang et al., 2014).

DoNi ¼ stdh IFð Þi � IFzð Þi
IFzð Þi

i

where IF is the instantaneous frequency and IFz is the zero-crossing
frequency. This measure has previously been used to characterize
neurophysiological and other signals (Tsai et al, 2016; Veltcheva
and Soares, 2016).

Both the sharpness around the extrema of the beta peaking-
IMFs and the intra-wave instantaneous frequency variations of
the gaps between these extrema (DoNgap) contribute to the nonlin-
earity. In this work, the DoN, DoNgap and sharpness of beta
peaking-IMFs in the 1st and the 2nd halves of beta bursts were
estimated. The two beta burst halves were separated by the peak
of each burst. The DoN is affected by the signal-to-noise ratio so
by contrasting values from the two halves of each approximately
amplitude symmetrical spindle-shaped beta burst we partially
controlled for this. In addition, we performed autocorrelation
within each half before estimating the DoN and DoNgap. Fig. 2B pro-
vides evidence through simulations that autocorrelation is able to
limit the effects of relative increases in noise. In Fig. 2B we
designed a series of simulated nonlinear oscillatory signals with
different degrees of nonlinearity. To generate nonlinear wave-
forms, we designed time-varying phase as

Ph tð Þ ¼ 2p t
t0

� �n

where n controls the nonlinear level, and t0 is the period length. We
constructed synthetic signals with these time-varying phases but
with constant amplitude. All oscillatory cycles by default had the
same frequency (20 Hz). To test the effects of noise, we added a ran-
dom white-noise component with its standard deviation (SD) as a
fraction of that of the raw signal. Fractions varied from 0.1 to 0.5
in steps of 0.1. For each synthetic signal, the sampling frequency
was 600 Hz and data length was 10 s. From Fig. 2B it is clear that
the dynamic range of the EMD-based DoN is progressively limited
by increasing noise levels. However, autocorrelation of the IMF
prior to estimation of the DoN reduces the effects of noise and
affords a more robust estimate of DoN despite increasing noise
levels.
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Fig. 4. Beta bursts were identified from the time evolving wavelet amplitudes in the beta band (13–30 Hz). Two sets of time evolving wavelet amplitudes were estimated
from (A) the raw signal and (B) from the same raw signal after subtracting the beta-peaking intrinsic mode function (IMF). The beta-peaking IMF is shown to capture beta
bursts, which are missing from the signal in (B). The horizontal dotted line is the 75% percentile threshold derived from the time evolving wavelet amplitude of the raw signal.
Threshold crossings had to be sustained for at least 100 ms to be considered as significant. The peaks of events satisfying these criteria are marked by red dots. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Finally, we estimated the sharpness at the autocorrelated peaks
and troughs, the DoN of a 200 ms period of the rising and descend-
ing slopes of the beta burst and the DoNgap that was similar to the
former but excluded the periods of the signal that were used to
estimate the sharpness. In the case of the high gamma peaking-
IMF, we also contrasted the amplitude in 5 ms periods centred
on the extrema with that estimated as for the same period as the
DoNgap.

In order to ratify our DoN measure we simulated a series of
oscillatory signals with different levels of phase slips, where n con-
trolled the latter. The higher the averaged phase slips the higher
was the DoN (Fig. 5C and D).

2.8. Phase-amplitude coupling

To calculate the phase-amplitude coupling (PAC) between the
beta peaking-IMF and gamma peaking-IMF, we first obtained the
beta phase and gamma amplitude from the analytic form using Hil-
bert transform (Pittman-Polletta et al., 2014; Yeh and Shi, 2018).
Next, we divided each phase cycle into 20 bins, and then assigned
the gamma amplitude at each time point to a corresponding beta
phase bin. By averaging the amplitudes in each bin, we derived
the beta phase to gamma amplitude distribution. Then, the modu-
lation index (MI) was used to quantify the coupling between beta
phase and gamma amplitude (Tort et al., 2010). Briefly, we inver-
sely normalise the Shannon entropy of the beta phase to gamma
amplitude distribution by the maximum possible entropy, yielding
a quantity between zero and one.

2.9. Statistical analysis

Results are reported as mean ± standard error and two-tailed p
value < 0.05 considered statistically significant (a = 0.05 for all
hypothesis testing). Repeated measures ANOVAs were performed
as described in the results and pairwise t-tests used for post-hoc
comparisons. Hemispheres were treated as independent vari-
ables, as in the previous reports describing these patients. All sta-
tistical analyses were conducted using JMP software (SAS, NC,
USA).
3. Results

3.1. Characteristics of Beta-peaking IMFs during beta bursts

Beta bursts with a duration greater than 400 ms were identified
in the time-evolved wavelet amplitude of the STN LFP, as previ-
ously (Tinkhauser et al, 2017a, 2017b). These were split at the
point of the beta burst’s peak amplitude into an initial 200 ms
duration segment with a rising slope and a later 200 ms duration
segment with a descending slope. The average number of bursts
analysed per subject were 230.97 ± 9.11 and 222.14 ± 8.57 before
and after administration of levodopa, respectively. On average beta
amplitude rose by 1.27 ± 0.05 a.u./s in the rising segment of beta
bursts and fell by 1.19 ± 0.05 a.u./s in the decreasing segment of
beta bursts.

The IMFs peaking in the theta (5–8 Hz), alpha (8–13 Hz), beta
(13–30 Hz) and high gamma bands (60–250 Hz) were extracted
in nine patients (18 hemispheres) with PD (Supplementary
Fig. 1) and their spectral power estimated (Fig. 6). We began by
testing whether the power of the IMF peaking in the beta band
was modulated by the segment of the burst, levodopa treatment
or electrode contact pair. The ANOVA summarised in Table 1A
demonstrates that there was a significant effect of levodopa (F(1,
159.3) = 11.49, p = 0.0009) and a trend towards an effect of contact
pair (F(2,158.4) = 2.84, p = 0.0616) whereby beta peaking-IMF



Fig. 5. Simulations showing how sharpness and Degree of Non-linearity (DoN) vary with known waveform distortions. (A) Normal probability densities with standard
deviation of the distribution (sigma) ranging from 0.2 to 1 in steps of 0.1 were designed. (B) Lower sigma values correspond to higher sharpness. (C) A series of simulated
oscillatory signals with different phase slips were designed, where n controls the level of phase slips (see equation in sub-section ‘‘Non-sinusoidal features”). n = 1 gives a
linear phase change over time whereas n = 0.5 is the least linear phase plotted. (D) Higher averaged phase slips are associated with higher DoN estimates.
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power at contact pair 12 tended to be greater than at 01. Post-hoc
tests indicated that the power of beta bursts averaged across all
contact pairs was greater off compared to on levodopa (DF = 17,
t = -1.78, p = 0.0466). However, there was no difference in the beta
power between the two segments of the bursts, consistent with an
approximately symmetrical spindle shape.

We then examined whether the DoN of the beta peaking-IMF
was modulated by burst segment, levodopa treatment or electrode
contact pair. The ANOVA summarised in Table 1B demonstrates
that the only significant effect was that of burst segment (F
(1,160.1) = 7.96, p = 0.0054). The effect size for the factor burst seg-
ment, in the form of partial eta squared, was 0.09, indicating that
almost 10% of the total variance in the DoN could be attributed
to the factor burst segment. A post-hoc test indicated that the
DoN was greater in the later, descending segment of the beta burst,
suggesting that the shape of the beta waveforms was, overall, less
sinusoidal in the descending segment (DF = 17, t = 2.73, p = 0.0141;
Supplementary Fig. 2A).
Next we explored the distribution of nonlinearities in the struc-
ture of beta bursts in greater detail, beginning by deriving an esti-
mate of the sharpness of the extrema of the oscillations in the beta
peaking-IMF. As noted earlier, this sharpness feature is thought to
be associated with tight synchronisation in the inputs carrying the
beta oscillation. The ANOVA summarised in Table 1C examines
whether sharpness was modulated by burst segment, levodopa
treatment or electrode contact pair. Both burst segment and con-
tact influenced sharpness (F(1,156.9) = 4.62, p = 0.0332 and F
(2,156.6) = 8.21, p = 0.0010, respectively), although these factors
did not interact. The partial eta squared for the factor burst seg-
ment was 0.06, indicating that 6% of the total variance in sharpness
could be attributed to the factor burst segment. Post-hoc tests indi-
cated that sharpness was greater in the first, rising segment of the
beta burst than in the second, descending segment (DF = 17, t = -
2.36, p = 0.0304; Supplementary Fig. 2B), and was greater at elec-
trode contacts 23 and 12 than at contact 01, regardless of the seg-
ment of the beta burst, or drug state (DF = 17, t = 3.38, p = 0.0036



Fig. 6. Intrinsic mode function (IMF) spectra. (A) Theta peaking-IMF power. Power is greater in the descending segment than in the rising segment and higher on levodopa.
See Table 2A for statistical evaluation of power differences. (B) Alpha peaking-IMF power. There is a clear increase in power on levodopa (see Table 2A). (C) Beta peaking-IMF
power. Power tends to be greater off levodopa (see Table 1A). (D) Gamma peaking-IMF power. No clear differences in gamma peaking-IMF power were seen between burst
segments (see Table 2A). Mean shown in bold and ± standard error in shading.
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between contact 12 and 01; DF = 17, t = 2.25, p = 0.0377 between
contact 23 and 01, paired t-tests). To explore localisation still fur-
ther, we plotted the contact pair with the greatest sharpness index
versus the contact pair in the same electrode with the greatest beta
band power (Fig. 7). This revealed that the contact pair with the
greatest sharpness tended to be more dorsal than that with the
highest beta power.

The fact that the DoN was greater in the second, descending
segment of the beta burst, and yet sharpness, which itself is a non-
linear feature, was more marked in the initial, rising segment of the
beta burst, suggested that there might be a higher DoN in between
the extrema of the beta burst in the later, descending segment. The
ANOVA in Table 1D considered whether the DoN between extrema
(DoNgap) was modulated by burst segment, levodopa treatment or
electrode contact pair. Only burst segment was a significant factor
(F(1,159.6) = 10.36, p = 0.0016; Supplementary Fig. 2C) and the
partial eta squared was 0.13, indicating that 13% of the total vari-
ance in DoNgap could be attributed to the factor burst segment.
Post-hoc testing confirmed that DoNgap was greater in the later,
descending segment than the initial, rising segment of the beta
burst (DF = 17, t = 2.91, p = 0.0097). Thus, although the rising seg-
ment of the beta bursts had sharper extrema, the descending seg-
ment departed more from sinusoidal form between extrema,
consistent with the higher overall DoN in the descending segment.

Next we explored whether there was a progression in the
DoNgap within the rising or descending segment of the beta bursts.
Specifically, we hypothesized that the DoNgap might be greatest
towards the end of the descending segment, as the afferent beta
drive becomes more and more disorganized. To this end, we esti-
mated the DoNgap over 100 ms periods, giving data for two sub-
segments each for the rising and descending segments of the beta
bursts. An ANOVA of DoNgap with factor sub-segment revealed a
significant effect (F(3,337.8) = 2.73, p = 0.0440). A planned simple
contrast with the last sub-segment as reference demonstrated that
there was a significant increase in DoNgap in the (last) second sub-
segment of the descending section of the beta burst (DF = 17,
t = 2.39, p = 0.0290 compared to the second sub-segment of the ris-
ing section; Fig. 8A).

The DoN evaluates intra-wave frequency modulation rather
than the effects of inter-wave frequency modulation. However, it
is susceptible to changes in frequency. We therefore checked
whether the above findings with respect to the rising DoNgap

towards the end of beta bursts might be confounded by a change
in frequency. Neither the beta peaking-IMF averaged zero-
crossing frequency (Table 1E), nor the variation in this beta
peaking-IMF zero-crossing frequency (Table 1F) varied with burst
segment, levodopa treatment or electrode contact pair.

Finally, we also explored whether there was a progression in
sharpness within the rising or descending segment of the beta
bursts. Specifically, we hypothesized that sharpness might fall off
towards the end of the descending segment, as the afferent beta
drive becomes less synchronised. To this end, we estimated the
sharpness over 100 ms periods, giving data for two sub-segments
each for the rising and descending segments of the beta bursts.
An ANOVA of sharpness with factor sub-segment revealed a signif-
icant effect (F(3,310.3) = 3.05, p = 0.0288). A planned simple con-
trast with the last sub-segment as reference demonstrated that
there was a significant decrease in sharpness in the (last) second



Table 1
Beta peaking-intrinsic mode function (IMF) characteristics during beta bursts.
Analysis of variance (ANOVA) results for (A) beta peaking-IMF power, (B) beta
peaking-IMF Degree of Non-linearity (DoN), (C) beta peaking-IMF sharpness, (D) beta
peaking-IMF Degree of Non-linearity in the gaps between extrema (DoNgap), (E) beta
peaking-IMF averaged zero-crossing frequency, and (F) variation of beta peaking-IMF
zero-crossing frequency from the 200 ms rising and falling segments bordering the
peak of each phasic burst. Factors include burst segments (two levels; rising and
descending segments of phasic bursts), levodopa (two levels; OFF and ON medica-
tion), and contact pairs (three levels; C01, C12 and C23). Significant p values and
those showing a trend are emboldened.

A: beta IMF power

Factor DF F-value P-value

Segments (1,158.8) 1.06 0.3052
Levodopa (1,159.3) 11.49 0.0009
Contacts (2,158.4) 2.84 0.0616
Segments*Levodopa (1,158.7) 0.23 0.6290
Segments*Contacts (2,158.5) 0.35 0.7031
Levodopa*Contacts (2,158.6) 0.53 0.5909

B: beta DoN

Factor DF F-value P-value

Segments (1,160.1) 7.96 0.0054
Levodopa (1,161.2) 1.42 0.2360
Contacts (2,159.4) 0.92 0.4003
Segments*Levodopa (1,160.0) 0.03 0.8542
Segments*Contacts (2,159.7) 0.17 0.8424
Levodopa*Contacts (2,159.9) 0.44 0.6464

C: beta IMF Sharpness

Factor DF F-value P-value

Segments (1,156.9) 4.62 0.0332
Levodopa (1,157.4) 0.08 0.7722
Contacts (2,156.6) 8.21 0.0010
Segments*Levodopa (1,156.9) 0.49 0.4844
Segments*Contacts (2,156.7) 0.01 0.9895
Levodopa*Contacts (2,156.8) 1.01 0.3684

D: beta IMF DoNgap

Factor DF F-value P-value

Segments (1,159.6) 10.36 0.0016
Levodopa (1,160.6) 3.28 0.0722
Contacts (2,159.0) 0.34 0.7113
Segments*Levodopa (1,159.6) 0.09 0.7644
Segments*Contacts (2,159.3) 0.15 0.8614
Levodopa*Contacts (2,159.5) 0.81 0.4483

E: beta IMF averaged zero-crossing frequency

Factor DF F-value P-value

Segments (1,155.4) 1.58 0.2109
Levodopa (1,156.5) 1.12 0.2925
Contacts (2,154.6) 2.94 0.0560
Segments*Levodopa (1,155.5) 0.01 0.9039
Segments*Contacts (2,154.8) 0.84 0.4355
Levodopa*Contacts (2,155.3) 0.83 0.4401
F: variation of beta IMF zero-crossing frequency

Factor DF F-value P-value

Segments (1,159.2) 1.06 0.3041
Levodopa (1,161.2) 2.19 0.1404
Contacts (2,157.9) 0.17 0.8447
Segments*Levodopa (1,159.4) 1.67 0.1981
Segments*Contacts (2,158.4) 0.63 0.5321
Levodopa*Contacts (2,158.9) 1.60 0.2042

Hemispheric sides as random factor.
Variable is box-cox transformed.
Post-hoc analysis: C12 > C01.
Post-hoc analysis: C23 & C12 > C01.
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Fig. 7. Distribution of beta peaking-intrinsic mode function (IMF) power and
sharpness across the three bipolar contacts of each electrode (OFF levodopa). Points
indicate 18 electrodes/hemispheres. Sharpness tends to be more superior than peak
beta in the same hemisphere.
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sub-segment of the descending section of the beta burst (DF = 17,
t = -3.40, p = 0.0034 compared to the second sub-segment of the
rising section; DF = 17, t = -2.68, p = 0.0157 compared to the first
sub-segment of the descending section; Fig. 8B).
3.2. IMFs in other frequency bands during beta bursts

We also investigated if IMFs outside of the beta range were dis-
proportionately represented in one or other segment of the beta
bursts. The ANOVA of IMF power with factors frequency (3 levels;
high gamma peaking-IMF, alpha peaking-IMF and theta peaking-
IMF), levodopa state and burst segment is shown in Table 2A.
The high gamma peaking-IMF included the high frequency oscilla-
tory activity reported in the STN of patients off-medication (López-
Azcárate et al., 2010; Özkurt et al., 2011; van Wijk et al., 2016).
Both burst segment (F(2,181.5) = 3.68, p = 0.0272) and levodopa
state (F(2,181.5) = 12.30, p < 0.0001) showed significant interaction
with frequencies. Post-hoc testing showed that alpha power was
higher on levodopa than off levodopa (DF = 17, t = 2.00,
p = 0.0308). Post-hoc testing also showed that theta peaking-IMF
power was greater in the later, descending segment of beta bursts
then in the initial rising segment (DF = 17, t = 2.55, p = 0.0207) and
that theta power was higher on levodopa than off levodopa
(DF = 17, t = 2.59, p = 0.0190). Post-hoc testing also showed that
high gamma peaking-IMF power was higher off levodopa than on
levodopa (DF = 17, t = -2.71, p = 0.0149).
3.3. Phase-amplitude coupling

Finally, we investigated whether the amplitude of the high
gamma peaking-IMF in the STN might be increased around
extrema in the beta peaking-IMF. An ANOVA of high gamma
peaking-IMF power with factors extrema (two levels; beta extrema
and between beta extrema), levodopa state and burst segment
showed that the factor extrema was significant (F(1,113.9) = 38.1
4, p < 0.0001; Table 2B). This provides evidence of an interaction
between distinct oscillatory processes (the beta peaking-IMF and
high gamma peaking-IMF), independently of changes in the shape
of the beta peaking-IMF waveform.

We also explored whether there was a change in the difference
between high gamma peaking-IMF power in extrema and non-
extrema over the course of beta bursts. Specifically, we hypothe-
sized that this difference might fall off towards the end of the
descending segment of bursts, as the afferent beta drive becomes



Fig. 8. Finer structure of beta bursts. (A) Degree of Non-linearity in the gaps between extrema (DoNgap) was estimated over 100 ms periods, giving data for two sub-segments
each for the rising and descending segments of the beta bursts. The analysis of variance (ANOVA) of DoNgap revealed a significant effect of sub-segment. A planned simple
contrast with the last sub-segment as reference demonstrated that there was a large increase in DoNgap in the (last) second sub-segment of the descending section of the beta
burst (DF = 17, t = 2.39, p = 0.0290 compared to the second sub-segment of the rising section). (B) Beta sharpness was estimated over 100 ms periods, giving data for two sub-
segments each for the rising and descending segments of the beta bursts. The ANOVA of beta sharpness revealed a significant effect of sub-segment. A planned simple contrast
with the last sub-segment as reference demonstrated that there was a large decrease in sharpness in the (last) second sub-segment of the descending section of the beta burst
(DF = 17, t = -3.40, p = 0.0034 compared to the second sub-segment of the rising section; DF = 17, t = -2.68, p = 0.0157 compared to the first sub-segment of the descending
section). (C) The high gamma peaking- intrinsic mode function (IMF) difference inside and outside of extrema of the beta peaking-IMF was estimated over 100 ms periods,
giving data for two sub-segments each for the rising and descending segments of the beta bursts. The ANOVA of high gamma peaking-IMF power difference revealed a
significant effect of sub-segment. A planned simple contrast with the last sub-segment as reference demonstrated that there was a sharp fall-off in high gamma peaking-IMF
difference inside and outside of extrema in the (last) second sub-segment of the descending section of the beta burst (DF = 17, t = -2.18, p = 0.0436 compared to the second
sub-segment of the rising section). Mean ± standard errors are shown. Q1 and 2 refer to the first and last 100 ms periods of the rising segment of bursts and Q3 and 4 to the
first and last 100 ms periods of the descending segment of bursts.

Table 2
Intrinsic mode function (IMF) characteristics of frequency bands other than beta
during beta bursts. (A) Analysis of variance (ANOVA) of IMF power with factors burst
segments (two levels; 1st and 2nd half of the burst), levodopa (two levels; OFF and
ON medication), and frequency (three levels; high gamma peaking-IMF, alpha
peaking-IMF and theta peaking-IMF). (B) ANOVA of high gamma peaking-IMF power
with factors extrema (two levels; extrema or between extrema) and burst segment.
Significant p values and those showing a trend are emboldened.

A: theta/alpha/gamma IMF power

Factor DF F-value P-value

Segments (1,181.8) 6.72 0.0103
Levodopa (1,181.8) 11.48 0.0009
Frequencies (2,181.3) 601.66 0.0000
Segments*Levodopa (1,181.6) 0.31 0.5770
Segments*Frequencies (2,181.5) 3.68 0.0272
Levodopa*Frequencies (2,181.5) 12.30 0.0000

B: gamma IMF power distribution

Factor DF F-value P-value

Extrema (1,113.9) 38.14 0.0000
Segments (1,113.3) 0.31 0.5793
Levodopa (1,114.0) 36.05 0.0000
Extrema*Segments (1,113.3) 0.05 0.8269
Extrema*Levodopa (1,114.0) 0.66 0.4166
Segments*Levodopa (1,113.3) 0.28 0.5963

Hemispheric sides as random factor
Variable is box-cox transformed
Post-hoc analysis:
1) Theta-IMF shows higher power in the descending segment.
2) Alpha-IMF and gamma-IMF show no differences in segments.
3) Theta-IMF and alpha-IMF show higher power in the ON medication.
4) Gamma-IMF shows higher power in the OFF medication.
Post-hoc analysis:
1) Extrema > between extrema
2) OFF > ON medication
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more and more disorganized, theta power increases and entrain-
ment of multi-unit activity by the beta afferent drive fails. To this
end, we estimated the high gamma peaking-IMF difference inside
and outside of extrema of the beta peaking-IMF over 100 ms peri-
ods, giving data for two sub-segments each for the rising and
descending segments of the beta bursts. An ANOVA with factor
sub-segment showed a significant effect (F(3,338.0) = 3.04,
p = 0.0293). A planned simple contrast with the last sub-segment
as reference demonstrated that there was a sharp fall-off in the dif-
ference in high gamma peaking-IMF inside and outside of the
extrema of the beta peaking-IMF in the (last) second sub-
segment of the descending section of the beta burst (DF = 17,
t = -2.18, p = 0.0436 compared to the second sub-segment of the
rising section; Fig. 8C). This suggests a failure of phase-amplitude
coupling between the beta and high gamma activities towards
the end of beta bursts.

4. Discussion

We have demonstrated a systematic pattern of evolution of
nonlinear features during beta bursts recorded from the STN in
PD patients. Overall, there was no difference in the power of beta
peaking-IMFs between the rising and descending segments of the
beta bursts, consistent with a roughly symmetrical spindle-form.
However, the nature of the beta peaking-IMFs differed between
the two segments of beta bursts. The rising segment was character-
ized by sharper beta oscillations at their extrema, whilst the
descending segment was characterized by increased nonlinearities
between the extrema and an increase in theta band activity. Beta
bursts were of elevated amplitude off medication, whereas the
theta power during beta bursts increased on medication.

4.1. Methodological considerations

We used the Hilbert–Huang transform to decompose the LFP
signal into elementary IMF signals (Huang et al., 1998; Lopes-
Dos-Santos et al., 2018; van Ede et al., 2018). Computation of the
EMD, unlike convolution filters such as Fourier and Wavelet
decompositions, captures intra-waveform changes in IMFs without
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dispersing their waveform characteristics into higher-frequency
decompositions (Wu et al., 2007; Yang et al., 2018; Yeh et al.,
2016). This feature of IMFs enables decompositions that are virtu-
ally free from harmonic artifacts, an important characteristic when
evaluating PAC (Lopes-Dos-Santos et al., 2018; Shi et al., 2018; Yeh
et al., 2016; Nguyen et al., 2019; Pittman-Polletta et al., 2014; Aru
et al., 2015). The broadband nature of IMFs which follows the dya-
dic filter bank also ensures that higher-frequency IMFs include
information about amplitude modulation indicative of PAC
(Flandrin et al., 2004; Pittman-Polletta et al., 2014).

Irregular waveform changes in IMFs give broadband spectral
components when using linear decomposition. These IMF spectra
need not therefore be restricted to traditional frequency bands.
However, here we made the assumption that IMFs peaking in the
beta band captured the behavior of the beta bursts. This assump-
tion was reasonable given our simulation in which the time evolv-
ing wavelet beta amplitude of the STN LFP lost its beta bursts when
the beta-peaking IMF was subtracted. IMFs also retain characteris-
tics due to intra-wave variations and this enables the computation
of sharpness (Cole et al., 2017) and of the DoN (Huang et al., 2014).
Sharpness highlights sharp changes around waveform extrema and
the DoN measures how instantaneous frequency deviates away
from the zero-crossing frequency and therefore considers phase
slips over all intra-wave time points. The estimation of instanta-
neous frequency is made through the derivative of the Hilbert
phase with respect to time, and such estimations can be noisy
due to the derivation step (Huang et al., 2009). The effects of noise
on the DoN were tested in simulations, and autocorrelation intro-
duced to minimize its consequences (Fig. 2B).

4.2. Significance of sharper extrema in the rising segment of beta
bursts

It is interesting to speculate on what can be inferred from the
sharpness of oscillation extremata, especially in the context of
recent interest in PAC. Inferences are necessarily indirect and
based on the extent to which the LFP can be relied upon to reflect
the pattern of underlying synchronization, and the hypotheses
generated should be tested in the future with direct recordings of
activity across neurons in the STN.

Sharpness of oscillatory LFP activity is thought to be associated
with tight synchronisation in rhythmic inputs, albeit at the cortical
level and on theoretical rather than empirical grounds (Sherman
et al., 2016; Burke et al., 2015; Lozano-Soldevilla et al., 2016;
Cole et al., 2017; Cole and Voytek, 2017; Vaz et al., 2017). Tight
synchronisation may or may not be suprathreshold and sufficient
to cause local spiking, which may, in turn, be evident as high fre-
quency oscillations (Özkurt et al. 2011). The potential for sharp-
ened oscillations to drive output is exemplified by cortical
myoclonus, where rhythmic cortical waves with sharp troughs
can drive highly synchronized alpha motor neuron discharges
(Thompson et al., 1994; Brown and Marsden, 1996). In the case
of the beta activity recorded in the STN, this input is also believed
to be driven mainly from the cerebral cortex (Williams et al., 2002;
Fogelson et al., 2006), with the oscillations perhaps being amplified
by recurrent activity between the STN and globus pallidus externa
(Leblois et al., 2006; Holgado et al., 2010; Marreiros et al., 2013).
The inference from the present results is therefore that the rising
segment of STN beta bursts is associated with a more tightly syn-
chronized beta drive than the descending segment. The results also
suggest a tendency for beta oscillations with sharper extrema to be
maximal more dorsally in the STN than overall beta power. This
distribution concurs with that in a previous report of the distribu-
tion of phase-amplitude coupling (PAC) in the STN (van Wijk et al.,
2017), given that PAC may, in part, reflect sharpness (Cole et al.,
2017; Cole and Voytek, 2017; Vaz et al., 2017; Yeh et al., 2016).
The relationship between extrema sharpness and PAC deserves
further comment. PAC estimated using convolution filters like the
fast Fourier Transform can reflect waveform distortion, the real
amplitude modulation of one signal by the phase of another, or
both. PAC has been reported between the beta phase and the
amplitude of the high-frequency oscillation (HFO, ~ 200 Hz) in
the STN, linked to symptom severity and demonstrated to be atten-
uated by movement and dopaminergic replacement therapy
(López-Azcárate et al., 2010; van Wijk et al., 2016). Evidence sug-
gests that the PAC in the STN at the upper range of the high gamma
activity defined here reflects the locking of (possibly bursting) unit
activity to input beta-oscillations (Meidahl et al. 2019). However,
whether waveform distortion contributes to beta-high gamma
PAC in the STN has yet to be established. This may, in part, be
because the polarity of the sharpened extrema is not fixed in bipo-
lar recordings of LFPs, as this depends on the orientation of the
contact pair with respect to the generator. We allowed for this
by averaging sharpness estimates across the peaks and troughs
of beta oscillations, and confirmed increased sharpness during
the rising segment of beta bursts. This in-of-itself could explain
beta-high gamma PAC in the STN, at least over the lower frequen-
cies in our high gamma band (60–250 Hz). However, we also found
that high gamma peaking-IMFs were increased in amplitude at the
peaks and troughs of the beta oscillations, indicative of the genuine
amplitude modulation of one process by the phase of another. The
fact that nonlinear features were estimated by EMDmeans that the
high gamma peaking-IMFs were most unlikely to be due to filter-
ing artifacts, such as harmonics, related to waveform sharpness
and caused by the convolution filters usually used in PAC analysis
(Pittman-Polletta et al., 2014; Shi et al., 2018; Yeh et al., 2016; Yeh
and Shi, 2018). Our data therefore suggest that beta-high gamma
PAC within the STN reflects both distortion of the beta oscillation
and interactions between the beta and high gamma oscillations.
As our low pass filter was at 250 Hz our signal extended to the
middle of the range of high frequency oscillations recorded in the
off medication state (López-Azcárate et al., 2010; Özkurt et al.
2011; vanWijk et al., 2017). These oscillations are thought to relate
to multi-unit activity in the STN of PD patients off levodopa
(Sanders, 2016; Meidahl et al., 2019), so that the component of
PAC involving these high frequencies may index entrainment of
STN output to bursts of cortical drive to STN (Meidahl et al.,
2019). Nevertheless, we did not capture the whole range of high
frequency activity thought to reflect aspects of multi-unit activity,
and which extends to even higher frequencies on levodopa (Özkurt
et al. 2011). As such our 250 Hz low-pass filter may have led us to
under-estimate the contribution from amplitude modulation of
multi-unit activity.

4.3. Significance of the increased DoN, decreased sharpness and
increased theta activity in the descending segment of beta bursts

The elevated DoN in the later, descending segment of beta
bursts is evidence that, overall, beta oscillations were less sinu-
soidal than in the ascending segment, despite the greater sharp-
ness in the latter. The inference is that other frequency
components contaminate the beta oscillation and are not limited
to the extrema in the descending segment of bursts. We confirmed
this by estimating the DoNgap which was higher in the later,
descending segment of the beta burst. This change in the relative
purity of the beta oscillation in the later part of the burst may stem
from an increase in phase slips which give changes in instanta-
neous frequency. Thus the beta drive becomes progressively more
disorganized during the descending slope of the beta burst, and
this change may be linked to the loss of extrema sharpness of
the beta peaking-IMF in the latter half of the descending phase of
the beta burst. The latter might suggest a progressive loss of tight
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synchronization within the beta afferent drive to STN, predisposing
the descending segment to phase slips in the face of spontaneous
stochastic events (Hurtado et al., 2005) and competing oscillations.
With respect to the latter, the theta band contamination in the
descending segment of the beta burst may reflect a relatively time
delayed input to the STN, that possibly competes with the beta
drive and progressively helps degrade entrainment to the original
beta oscillation. Its origin is unknown, but it is interesting that
theta activity in the STN LFP was elevated by treatment with levo-
dopa in our study (see also Rodriguez-Oroz et al., 2011), and the
same treatment shortens beta burst duration (Tinkhauser et al.,
2017a). Finally, we suggest that the drop in the relative locking
of high gamma peaking-IMF activity to the extrema of the beta
peaking-IMF in the latter half of the descending segment of the
beta burst could be taken as evidence for the failing entrainment
of multi-unit activity (and hence STN output) by the beta afferent
drive.
4.4. Possible confounds and conclusions

We assessed the dynamics in the waveform within beta bursts
with a minimum duration of 400 ms in patients with PD. As such it
remains to be proven if our observations apply, or not, to briefer
beta bursts whether recorded in patients or healthy humans and
other animals (Leventhal et al., 2012; Feingold et al., 2015; Shin
et al., 2017; Little et al., 2019). In addition, as we recorded LFPs a
few days after electrode implantation, temporary stun effects
may have influenced our findings through the suppression of
beta-band phenomema (Chen et al, 2006). The dependency of non-
linear measures on signal-to-noise ratios also impacts on our
results. However, our main contrast was between the rising and
descending segments of beta bursts that tend to be spindle-
shaped and approximately matched in beta power. In addition,
we performed autocorrelation within each burst segment before
estimating the DoN and DoNgap, to limit the noise sensitivity of
these measures. Importantly, our inferences principally relate to
changes in synchronization during the evolution of bursts, and it
should be stressed that more definitive conclusions would require
the simultaneous recording of two or more neurons during bursts
in the LFP. Finally, our patient sample was relatively small and,
moreover, we treated recordings from different hemispheres as
independent variables. In particular, we recorded too few patients
to examine any association between our findings and particular
phenotypic patterns.

With the above caveats in mind, we were able to show an evo-
lution in the organization of subthalamic beta bursts as they
passed through rising and decreasing segments. The change in
nonlinear features was compatible with progressive entrainment
of local neurons by a tightly synchronised extrinsic beta drive dur-
ing the rising amplitude segment, followed by the loss of such
entrainment in the face of weakening of the tight synchronization
in the afferent drive, multiple phase slips and the rise of a compet-
ing theta drive in the falling amplitude segment of the beta burst.
Levodopa was found to increase this theta drive, which may help
explain why beta bursts tend to be shorter in duration in the
levodopa-treated state.
5. Conclusions

Phasic bursts of beta band synchronisation are linked to motor
impairment in Parkinson’s disease. We provide evidence that sug-
gests progressive entrainment of local neurons by a tightly syn-
chronised afferent beta drive during the rising amplitude
segment of bursts, followed by the loss of such entrainment in
the face of weakening synchronization in the afferent beta drive,
multiple phase slips and the rise of a theta drive in the falling
amplitude segment of beta bursts. Levodopa increases the theta
drive. These insights help explain how beta bursts pattern subtha-
lamic outflow and why they terminate. Moreover, they motivate a
search for the source of theta activity that increases as bursts fail,
least this can be further manipulated for therapeutic purposes.
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