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Abstract

Deep brain stimulation (DBS) is a well-established treatment option for a variety of neurolog-

ical disorders, including Parkinson’s disease and essential tremor. The symptoms of these

disorders are known to be associated with pathological synchronous neural activity in the

basal ganglia and thalamus. It is hypothesised that DBS acts to desynchronise this activity,

leading to an overall reduction in symptoms. Electrodes with multiple independently control-

lable contacts are a recent development in DBS technology which have the potential to

target one or more pathological regions with greater precision, reducing side effects and

potentially increasing both the efficacy and efficiency of the treatment. The increased com-

plexity of these systems, however, motivates the need to understand the effects of DBS

when applied to multiple regions or neural populations within the brain. On the basis of a

theoretical model, our paper addresses the question of how to best apply DBS to multiple

neural populations to maximally desynchronise brain activity. Central to this are analytical

expressions, which we derive, that predict how the symptom severity should change when

stimulation is applied. Using these expressions, we construct a closed-loop DBS strategy

describing how stimulation should be delivered to individual contacts using the phases and

amplitudes of feedback signals. We simulate our method and compare it against two others

found in the literature: coordinated reset and phase-locked stimulation. We also investigate

the conditions for which our strategy is expected to yield the most benefit.

Author summary

In this paper we use computer models of brain tissue to derive an optimal control algo-

rithm for a recently developed new generation of deep brain stimulation (DBS) devices.

DBS is a treatment for a variety of neurological disorders including Parkinson’s disease,

essential tremor, depression and pain. There is a growing amount of evidence to suggest

that delivering stimulation according to feedback from patients, or closed-loop, has the
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potential to improve the efficacy, efficiency and side effects of the treatment. An important

recent development in DBS technology are electrodes with multiple independently con-

trollable contacts and this paper is a theoretical study into the effects of using this new

technology. On the basis of a theoretical model, we devise a closed-loop strategy and

address the question of how to best apply DBS across multiple contacts to maximally

desynchronise neural populations. We demonstrate using numerical simulation that, for

the systems we consider, our methods are more effective than two well-known alterna-

tives, namely phase-locked stimulation and coordinated reset. We also predict that the

benefits of using multiple contacts should depend strongly on the intrinsic neuronal

response. The insights from this work should lead to a better understanding of how to

implement and optimise closed-loop multi-contact DBS systems which in turn should

lead to more effective and efficient DBS treatments.

Introduction

Deep brain stimulation (DBS) is an effective treatment for advanced Parkinson’s disease (PD)

and essential tremor (ET) which involves delivering stimulation through electrodes implanted

deep into the brain. Regions thought to be implicated in the disease are targeted in the treat-

ment, which in the case of PD is typically the subthalamic nucleus (STN) and for ET the ven-

tral intermediate nucleus (VIM) of the thalamus. PD is a common movement disorder caused

by the death of dopaminergic neurons in the substantia nigra. Primarily, symptoms manifest

as slowness of movement (bradykinesia), muscle stiffness (rigidity) and tremor. ET is purport-

edly the most common movement disorder, affecting just under 1% of the world population

[1, 2] with the main symptom being involuntary shaking most commonly in the upper limbs

[3]. Despite its prevalence, the pathophysiology of ET remains elusive, although the cortex,

thalamus and cerebellum are all thought to be involved in the disease [2]. Symptoms of these

disorders are thought to be due to overly synchronous activity within neural populations. For

PD patients, higher power in the beta frequency range (13-30Hz) of the local field potential

(LFP) measured in the STN has been shown to correlate with motor impairment [4] while tha-

lamic activity in ET patients is strongly correlated with tremor measured using the wrist flexor

EMG [5]. It is thought that DBS acts to desynchronise this pathological activity leading to a

reduction in the symptom severity.

A typical DBS system consists of a lead, an implantable pulse generator (IPG) and a unit to

be operated by the patient. The DBS lead terminates with an electrode, which is typically

divided into multiple contacts. Post surgery, clinicians manually tune the various parameters

of stimulation, such as the frequency, amplitude and pulse width, in an attempt to achieve opti-

mal therapeutic benefit. Stimulation is then provided constantly, or ‘open-loop’, according to

these parameters. The choice of stimulation frequency in particular is known to be crucial for

efficacy with high frequency (HF) DBS (120-180 Hz) being found to be effective for both PD

and ET patients [6, 7].

Despite the effectiveness of conventional HF DBS in treating PD and ET, it is believed that

improvements to the efficiency and efficacy can be achieved by using more elaborate stimula-

tion patterns informed by mathematical models. In particular, the link between neural syn-

chrony and symptom severity have led to a number of theoretical studies into effective

strategies for desynchronising systems of coupled phase oscillators [8–11]. Amongst these is

coordinated reset (CR) neuromodulation, which is an open-loop DBS strategy where brief HF

pulse trains are applied through different contacts of a stimulation electrode [8, 12–14]. In
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practice, CR has been shown to yield both acute and long-lasting benefits in parkinsonian

monkeys and PD patients [12, 15].

Closed-loop stimulation and IPGs with multiple independent current sources are promis-

ing new advances in DBS technology. Closed-loop stimulation is a new development in DBS

methods which aims to deliver stimulation on the basis of feedback from a patient. There is a

growing body of evidence [4, 16–18] suggesting that closed-loop stimulation has the potential

to offer improvements in terms of efficacy, efficiency and reduction in side effects. IPGs with

multiple independent current sources are the ‘cutting-edge’ of DBS technology which, unlike

their single current source counterparts, allow for current to be delivered independently to

each contact. This gives increased control and flexibility over the shape of the electric fields

delivered through the electrodes, allowing for more precise targeting of pathological regions

and the possibility of delivering more complex potential fields over space, in addition to

allowing for the possibility of recording activity from different regions. The use of multiple

independently controllable contacts (which we will now simply refer to as multi-contact DBS),

however, naturally leads to increased complexity, as many more stimulation strategies are now

possible. This has created the need to better understand how applying DBS through multiple

contacts can affect the treatment.

For closed-loop DBS, the choice, use and accuracy of feedback signals play a crucial role in

determining the efficacy of the method. In the literature, both the LFP and tremor have been

used as feedback signals with studies showing that the effects of DBS to be dependent on both

the phase and amplitude of the oscillations at the time of stimulation [4, 17, 19, 20]. In adaptive

DBS, high frequency stimulation is applied only when the amplitude of oscillations exceeds a

certain threshold [4]. In phase-locked DBS stimulation is applied according to the instanta-

neous phase of the oscillations, which for ET patients corresponds to stimulation at roughly

the tremor frequency (typically� 5 Hz) [17]. The combined approach of adaptive and phase-

locked stimulation has also been investigated in simulation [18].

Summary of key results

In this work we propose a closed-loop DBS strategy designed for systems with multiple inde-

pendently controllable contacts to optimally suppress disease-related symptoms by decreasing

network synchrony; we refer to this strategy as adaptive coordinated desynchronisation

(ACD). Our strategy builds on ideas introduced in earlier work for single contact systems [11].

ACD is derived on the basis of a model where multiple populations of neural units collectively

give rise to a symptom related signal. The goal of ACD is to determine how DBS should be

provided through multiple contacts in order to maximally desynchronise these units. The

methods we present can be applied in different ways, either using multiple electrodes or single

electrodes with multiple contacts. We therefore use the terms ‘electrode’ and ‘contact’ synony-

mously throughout. A summary of our model is illustrated in Fig 1. Key findings of our work

are as follows:

1. We show that the effects of DBS for a multi-population Kuramoto system are dependent on

the global (or collective) phase of the system and the local phase and amplitude which are

specific to each population.

2. We show the effects of DBS can be decomposed into a sum of both global and local

quantities.

3. We predict the utility of closed-loop multi-contact DBS to be strongly dependent on the

zeroth harmonic of the phase response curve for a neural unit.
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4. We predict the utility of closed-loop multi-contact DBS to be dependent on geometric fac-

tors relating to the electrode-population system and the extent to which the populations are

synchronised.

Models

To provide a foundation for the theory of multi-contact DBS, we first review in this section

how stimulation with a single electrode acts on a single population of oscillators. Here we fol-

low our previous paper [11], which may be referred to for a more detailed derivation of the

results presented in this section. A list of frequently used notation is provided in Table 1.

Fig 1. A model for closed-loop multi-contact DBS. (a) A multi-contact electrode is implanted into the VIM of the thalamus. Each contact (shown as green circles)

delivers stimulation to and records from multiple coupled neural populations (shown as red circles), according to the geometry of the system. (b) We model each

population as consisting of coupled neural units, shown as blue circles. Each unit is associated with a phase θσn, which reflects where the neurons are in their firing

cycle. The units of each population respond to stimulation according to a phase response curve Z(θ). The zeroth harmonic a0 (or the vertical shift) of this function

plays an important role in determining efficacy. Each population is associated with a local amplitude ρσ and a local phase ψσ, which are due to the collective activity of

all units within the population. (c) The summed activity of multiple populations gives rise to symptoms, such as tremor in ET. The activities are summed according to

a set of weights {wσ} and the resulting signal has an amplitude ρ and phase ψ. The amplitude ρ is correlated with the severity of tremor. When DBS with ACD is used

(green region), the result is a reduction in ρ and thus the tremor severity. The effects are dependent on the positioning, measurement, and stimulation through

multiple contacts.

https://doi.org/10.1371/journal.pcbi.1009281.g001
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The Kuramoto model

Modelling the effects of DBS generally poses a challenge since the brain networks involved in

disorders such as ET (cortico-thalamic circuit) and PD (cortico-basal-ganglia circuit) are com-

plex and it is still debated from which parts of these circuits the pathological oscillations origi-

nate [21, 22]. The task can be made more tractable by considering a simple phenomenological

model which does not attempt to explicitly describe the underlying circuits, but rather focuses

on general mechanisms leading to the synchronization of neural units [11]. We use the term

‘neural unit’ (or unit) to either mean regular-spiking neurons, bursting neurons or micro-

circuits. The Kuramoto model [23, 24] describes the dynamics of these units as a system of

homogeneously coupled oscillators, whose phases evolve according to a set of underlying dif-

ferential equations. Such models are particularly attractive due to their simplicity and explicit

Table 1. List of frequently used symbols together with their description.

Parameter Description

N Number of units

S Number of populations

L Number of electrodes

θ Phase of oscillator

ψ Phase of population

ρ Synchrony of population

r Complex order parameter

k Coupling constant

f Neural signal

Z Unit phase response curve (uPRC)

a Cosine Fourier coefficient of uPRC

b Sine Fourier coefficient of uPRC

ω0 Centre of natural frequency distribution

γ Width of natural frequency distribution

w Population weight

Γ Local amplitude response

V Voltage at electrode

V̂ Voltage at population

p Electrode position

�p Neural compartment position

p̂ Population position

I Current at electrode

�I Current at neural compartment

Î Current at population

D Activity to voltage at electrode transformation matrix

~D Electrode to voltage at population transformation matrix

d Element of D

~d Element of ~D

~s Noise amplitude

η Configuration parameter

Δθmax Maximum perturbation to single oscillator

kdiag Diagonal of coupling constant matrix

sa Standard deviation of the zeroth harmonic of the uPRC

https://doi.org/10.1371/journal.pcbi.1009281.t001
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dependence on phase, which makes them convenient for describing the effects of phase-locked

stimulation [11].

We define the state of N neural units to be given by the set of oscillators {θ1(t), θ2(t), θ3(t). . .

θN(t)}, which are the phases describing where each unit is in its firing cycle. The phase syn-

chrony of this system can be measured using the order parameter r

r ¼ reic ¼
1

N

XN

n¼1

eiyn ; ð1Þ

where the phase and amplitude of the system are given by ψ and ρ, respectively. The above def-

inition ensures ρ can take values between 0 and 1. Full desynchrony implies ρ = 0 while full

synchrony is equivalent to ρ = 1. We show how synchrony can be related to the envelope

amplitude of a signal f(t) in our previous work [11]. The state of the system can be transformed

to a signal representing the neural activity using a superposition of cosine functions

f ðtÞ ¼ ReðrÞ ¼
1

N

XN

n¼1

cos½ynðtÞ�: ð2Þ

The choice of a cosine function is for mathematical convenience since it corresponds to the

real part of (1). In addition to this, the cosine function has a maximum at 0, and in classic

coupled oscillator models, phase 0 is defined as the phase when neurons produce spikes [25].

Hence post-synaptic potentials in down-stream neurons receiving an input from the modelled

population will be a smoothed function of spikes produced in phase 0, so the cosine function

captures key features of such post-synaptic potentials. Using the Euler relation and comparing

(2) with the real part of (1) shows

f ðtÞ ¼ r cosðcÞ: ð3Þ

We describe the time evolution of the state (for a single population) using the Kuramoto equa-

tions, with an additional term describing the effects of stimulation [8, 23]

dyn
dt
¼ on þ

k
N

XN

m¼1

sinðym � ynÞ þ V̂ ðtÞZðynÞ: ð4Þ

The first term of (4) is the natural frequency ωn which represents the frequency in the absence

of external inputs. The second term describes the coupling between the activity of individual

units, where k is the coupling constant which controls the strength of coupling between each

pair of oscillators and hence their tendency to synchronize. The third term describes the effect

of stimulation, where the intensity of stimulation is denoted by V̂ ðtÞ and the sensitivity to

stimulation at a particular phase is denoted by Z(θn). Using the definition of the order parame-

ter given in Eqs (1) and (4) can be transformed to give

dyn
dt
¼ on þ kr sinðc � ynÞ þ V̂ ðtÞZðynÞ: ð5Þ

In this form, it is clear that each oscillator has a tendency to move towards the population

phase ψ and that the strength of this tendency is controlled by the coupling parameter k. An

intuition for this behaviour can be obtained using an online simulation of the model [26].

Response curves

In the previous section we introduced the concept of a neural unit and described the underly-

ing equations governing their dynamics. We now consider the response of these units to
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stimulation. The unit phase response curve (uPRC), denoted by Z(θ), describes the sensitivity

to stimulation of a neural unit at a particular phase and reflects the observation that the effects

of stimulation depend on where a neuron is in its firing cycle [27]. The uPRC is the infinitesi-

mal phase response curve for a neural unit. A strictly positive uPRC, where stimulation can

only advance the phase of an oscillator, is referred to as type I. Type II uPRCs have both posi-

tive and negative values and hence stimulation can either advance or delay the phase of an

oscillator [28]. The uPRC has been found for a variety of systems, including spiking neurons

[29], bursting neurons [30] and models of micro-circuits composed of connected populations

of excitatory and inhibitory neurons [31]. When such a micro-circuit receives an input, the

phase of the oscillations it produces either advances or reduces depending on when within

the cycle the input is provided [31]. The effect of weak inputs can be captured using a simple

mathematical function Z(θ). By mapping where a neural unit is in its firing cycle onto a phase

variable θ 2 [0, 2π], the uPRC describes the change in phase of a single unit due to a stimulus.

A general uPRC can be expanded as a Fourier series

ZðyÞ ¼
a0

2
þ
X1

m¼1

am cosðmyÞ þ
X1

m¼1

bm sinðmyÞ: ð6Þ

The uPRC type is reflected in the zeroth harmonic a0, or the shift, with |a0| large and small

relative to the other coefficients being indicative of type I and type II curves, respectively. A

patient’s response to stimulation can be characterised using the (macroscopic) phase response

curve (PRC) and the amplitude response curve (ARC) which respectively describe changes in

the phase and amplitude of feedback signals, such as LFP or tremor, at the point of stimulation.

Phase oscillator models which incorporate the uPRC can be shown to reproduce the experi-

mentally-known characteristics of this response [11], namely that it should be dependent on

both the amplitude and phase of the feedback signals [4, 17, 20].

Reduced Kuramoto model

In the section ‘The Kuramoto model’ we described the dynamics of a finite system of oscilla-

tors using the Kuramoto equations given by Eq (5). In this model, stimulation is described as a

perturbation to the phase of an oscillator, with each oscillator experiencing a different effect of

stimulation depending on its phase (and determined by Z(θ)). Stimulation therefore has the

effect of changing the distribution of oscillators and hence the order parameter of the system.

Since the order parameter, given by Eq (1), is determined by both the amplitude and phase of

the system, the expectation is that stimulation will lead to a change in both these quantities,

which we refer to as the instantaneous amplitude and phase response of the system. To obtain

analytical expressions for these quantities we consider an infinite system of oscillators evolving

according to the Kuramoto Eq (5). The distribution of oscillators for this system satisfies the

ansatz of Ott and Antonsen, which states that the Fourier coefficients of the distribution can

be expressed as powers of a single function of frequency and time [32, 33]. Using this, we pre-

viously showed [11] that for a general uPRC given by Eq (6) and assuming a Lorentzian distri-

bution for the natural frequencies given by

gðoÞ ¼
1

pg

g2

ðo � o0Þ
2
þ g2

" #

; ð7Þ
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with centre ω0 and width γ, the instantaneous change in the order parameter can be written as

dr
dt
¼ ðio0 � gÞr þ

kr
2
ð1 � jrj2Þ

þ
iV̂ ðtÞ

2

(

a0r þ
X1

m¼1

am½ðr
�Þ

m� 1
þ rmþ1� þ i

X1

m¼1

bm½ðr
�Þ

m� 1
� rmþ1�

)

; ð8Þ

where i ¼
ffiffiffiffiffiffiffi
� 1
p

. This leads to expressions for the ARC and PRC due to stimulation

drstim

dt
¼
V̂ ðtÞ

2
ð1 � r2Þ

X1

m¼1

rm� 1 am sinðmcÞ � bm cosðmcÞ½ �; ð9Þ

and

dcstim

dt
¼
V̂ ðtÞ

2

(

a0 þ ð1þ r
� 2Þ
X1

m¼1

rm am cosðmcÞ þ bm sinðmcÞ½ �

)

: ð10Þ

Results

Theory of multi-contact DBS

Global and local synchrony. In the section ‘The Kuramoto model’ we defined the order

parameter r for a single population of phase oscillators with ρ as a measure of the phase syn-

chrony. We will now generalise this to the case of N oscillators grouped into S populations (of

variable size) with Nσ oscillators per population. For this system, the order parameter (1) can

be rewritten using a double summation

r ¼
1

N

XS

s¼1

XNs

n¼1

eiysn ; ð11Þ

with oscillator n of population σ being denoted by θσn. The factor of 1

N can be brought inside

the first summation and rewritten as
Ns
NsN

. Then, with

ws ¼
Ns

N
; ð12Þ

the order parameter for the system can be written as

r ¼
XS

s¼1

ws

Ns

XNs

n¼1

eiysn : ð13Þ

Using the definition of the order parameter (1), Eq (13) can be written as

r ¼
XS

s¼1

wsrs; ð14Þ

with

XS

s¼1

ws ¼ 1; ð15Þ
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and

rs ¼
1

Ns

XNs

n¼1

eiysn : ð16Þ

Eq (13) shows that the total order parameter r for the system can be written as a superposition

of the local order parameters rσ for each population. To clearly distinguish between the two,

we will now refer to the total order parameter r as the global order parameter of the system and

rσ as the local order parameter for population σ. In each case, the polar representation gives an

associated amplitude and phase. The polar representation of the local order parameter can be

written in terms of a local amplitude ρσ and local phase ψσ

rs ¼ rseics : ð17Þ

Similarly, we refer to ρ and ψ from (1) as the global amplitude and global phase. The global

amplitude (as a measure of total synchrony) is particularly significant since it is correlated to

symptom severity in the case of ET and PD. Our objective for stimulation is therefore to maxi-

mally reduce the global amplitude ρ.

In practice, the global signal may either be measured directly or constructed from LFP

recordings. For ET, it is natural to assume that the tremor itself is a manifestation of the global

signal. Hence the global signal can be obtained directly by measuring the tremor. The global

amplitude and global phase is then taken to be the amplitude and phase of the tremor, respec-

tively. This is of course an idealisation, with the alternative being to correlate pathological neu-

ral activity in the LFP with the symptom itself. The global signal would then be constructed

using LFP recordings from multiple contacts. We discuss this in more detail in the section

entitled ‘Obtaining local activities through electrode measurements’. This approach would be

more appropriate in the case of PD, where motor impairment is a set of symptoms whose

severity is correlated to LFP activity, particularly in the beta band [4].

We can also relate (14) to feedback signals we might measure by using (2) and taking the

real part. Using this, we obtain

f ðtÞ ¼
XS

s¼1

wsfsðtÞ: ð18Þ

We refer to f(t) and {fσ(t)} as the global and local signals (or population activities), respectively.

Using (3), Eq (18) can also be written in terms of the global and local amplitudes and phases

r cosðcÞ ¼
XS

s¼1

wsrs cosðcsÞ: ð19Þ

Using (13), the Kuramoto Eq (4) can also be generalised to multiple populations

dysn
dt
¼ osn þ

XS

s0¼1

ws0kss0rs0 sinðcs0 � ysnÞ þ V̂ sðtÞZsðysnÞ; ð20Þ

where V̂ sðtÞ is the now the stimulation intensity at a population σ. The coupling constant k
in Eq (4) is now a S × S matrix with elements kσσ0. The diagonal and off-diagonal elements,

denoted by kdiag and koffdiag, describe the intrapopulation and interpopulation coupling,

respectively.

Multi-population response curves. We now derive an expression describing the change

in the global amplitude due to stimulation as a function of the local (population) amplitudes
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and phases. For now it is assumed that the local quantities (to base the stimulation on) can be

measured. We will discuss how these quantities can be measured later. Using the polar form of

the order parameter (1), Eq (14) can be written as a summation involving the amplitudes and

phases of individual populations

reic ¼
XS

s¼1

wsrse
ics : ð21Þ

Taking the time derivative of (21) leads to

dr
dt
þ ir

dc
dt
¼
XS

s¼1

ws

drs
dt
þ irs

dcs

dt

� �

eiðcs � cÞ; ð22Þ

which can be written in terms of the real and imaginary components

dr
dt
þir

dc
dt
¼
XS

s¼1

ws

(
drs
dt

cosðcs � cÞ � rs
dcs

dt
sinðcs � cÞ

� �

þi rs
dcs

dt
cosðcs � cÞ þ

drs
dt

sinðcs � cÞ

� ��

:

ð23Þ

It can be seen that the time derivative of the amplitude is the real part of (23)

dr
dt
¼
XS

s¼1

ws

drs
dt

cosðcs � cÞ � rs
dcs

dt
sinðcs � cÞ

� �

: ð24Þ

The quantities dρσ/dt and dψσ/dt of Eq (24) are the changes in the amplitude and phase of a

population with respect to time. If we assume the distribution of phases within a population

satisfies the ansatz of Ott and Antonsen [32], we can substitute Eqs (9) and (10) into (24) to

obtain the amplitude response due to stimulation in terms of the Fourier coefficients of Z(θ)

drstim

dt
¼

1

2

XS

s¼1

wsV̂ sðtÞ

(
X1

m¼1

rm� 1

s
½aðsÞm sin½ðm � 1Þcs þ c� � bðsÞm cos½ðm � 1Þcs þ c��

�
X1

m¼0

rmþ1

s
½aðsÞm sin½ðmþ 1Þcs � c� � bðsÞm cos½ðmþ 1Þcs � c��

)

:

ð25Þ

Eq (25) contains an expansion over the harmonics of Z(θ). In our previous paper, we demon-

strated that, for a biologically realistic uPRC, it is reasonable to neglect higher harmonic terms

(m> 1) [11], leading to a simpler expression for the instantaneous amplitude response

drstim

dt
’

1

2

XS

s¼1

wsV̂ sðtÞ

(

½aðsÞ1 sinðcÞ � bðsÞ1 cosðcÞ� � rsa
ðsÞ

0 sinðcs � cÞ

� r2
s
½aðsÞ1 sinð2cs � cÞ � bðsÞ1 cosð2cs � cÞ�

)

:

ð26Þ

Adaptive coordinated desynchronisation (ACD) is now a strategy that uses Eq (26) to deter-

mine when stimulation should be provided. Eq (26) shows the change in the global amplitude

due to stimulation can be expressed as a sum of contributions from each population. Each

term in the summation can be further split into three terms, the first of which depends only on
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the global phase with the second and third terms depending on both the global phase and the

local quantities. We will refer to these terms as simply the global and local terms, respectively.

Eq (26) tells us how the global amplitude (i.e. the symptom severity) should change when stim-

ulation is provided at a particular global phase, local phase and local amplitude. Using this, we

can construct a closed-loop strategy for DBS by stimulating only when dρstim/dt< 0, i.e. when

stimulation is predicted to lead to a suppression in the global amplitude.

Eqs (25) and (26) both involve summations over populations, with each term being the

product of a weight wσ, a stimulation intensity V̂ s and a local amplitude response, which we

shall denote here by Γσ. The local amplitude response Γσ is the contribution of a single popula-

tion to the global amplitude response. Using Eq (26), Γσ is given by

Gs ¼ ½a
ðsÞ

1 sinðcÞ � bðsÞ1 cosðcÞ� � rsa
ðsÞ

0 sinðcs � cÞ

� r2
s
½aðsÞ1 sinð2cs � cÞ � bðsÞ1 cosð2cs � cÞ�:

ð27Þ

Plots for Γσ together with the corresponding uPRC for Z(θ) = a0/2 − sin(θ), with a0 = 0, 2

and 4 are shown in Fig 2A, 2B and 2C, respectively. Regions in blue are areas of amplitude

suppression while orange regions predict amplification. In both cases, these regions can be

Fig 2. The local amplitude response Γσ for different ρσ and Z(θ). The panels (a), (b) and (c) are for Z(θ) = a0/2 − sin(θ), with a0 = 0, 2 and 4, respectively. For each

plot, the vertical axis is the global phase (ψ) and the horizontal axis is the local (or population) phase (ψσ). The corresponding uPRC Z(θ) is also shown, with zero

indicated by a red dashed line. Blue regions indicate areas where stimulation is predicted to suppress amplitude.

https://doi.org/10.1371/journal.pcbi.1009281.g002
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seen to occur in bands. Graphically, the dependence of Γσ on the global and local phases can

be inferred from the direction of the banding. A purely horizontal band implies the response

is independent of the local phase. An example of this can be seen at low amplitudes in Fig

2A. Other plots show diagonal banding, which implies the response is dependent on both

the global and local phases. This behaviour can be understood by considering the 3 terms of

(27). At low amplitudes, the first term dominates, which is only dependent on the global

phase. As the local amplitude increases, the second and third terms depending on local

quantities become increasingly more important. For the cases where |a0| is small, the effect

is less apparent. The left panel of Fig 2A shows that stimulation can either increase or reduce

the phase (i.e. an uPRC of type II), implying a relatively small |a0|. For this case, the second

term can be neglected, leading to a dominance of the first term at low amplitudes where

only a small dependence on the local phase can be seen. Fig 2B and 2C shows that stimula-

tion has the effect of only increasing the phase, which is indicative of Z(θ) with larger |a0|.

For these systems the response can be seen to depend more strongly on the local phase for

all amplitudes.

Modelling stimulation. The goal of modelling closed-loop DBS due to spatially separated

electrodes requires us to consider how electric fields behave within the brain, both due to stim-

ulation and the LFP arising from neural activity. We will consider each of these separately,

with the latter being presented in the section entitled ‘Obtaining local activities through elec-

trode measurements’.

Detailed computational models of DBS typically consist of two components: the first is a

volume conductor model of the electrodes and the second is a multi-compartmental model of

neural populations [34, 35]. When the electrode geometry is considered explicitly, the resulting

potential due to stimulation can be found by solving Laplace’s equation using finite element

methods [34]. Alternatively, a point source approximation for the electrode may be used, lead-

ing to a simple analytical expression for the extracellular potential due to current at the elec-

trode [35]. The effects of stimulation are then calculated using a multi-compartmental neuron,

where the dendrites and axons are treated explicitly and then discretised into multiple seg-

ments. In this subsection, our aim is to connect these ideas with Eq (25) for the amplitude

response. We use the following quantities in this analysis: positions p, voltages V and currents

I. Each quantity is accented depending on whether it is associated with an electrode or popula-

tion, which carry no accent and a hat (ˆ), respectively. A full description of our notation can be

found in Table 1.

Firstly, and in contrast to the more detailed models, the response of an individual neural

unit is not calculated using the multi-compartmental approach in our model, but instead given

a simple analytical form using the uPRC Z(θ). Then, we expect that for a system of electrodes

and neural populations, V̂ s should depend on the stimulation provided by all the electrodes in

the system in addition to the geometry of the electrode placement and properties of the brain

tissue. These ideas can be incorporated into our model by simply interpreting the ‘stimulation

intensity’ V̂ s as the extracellular potential (or voltage) at a population due to stimulation. Since

Eq (25) describes the response of neural populations, one assumption here is that this potential

does not vary within each population, i.e. each unit of population σ experiences the same

intensity of stimulation. This assumption becomes more valid for ‘small populations’, which

can be effectively treated as point sources. We expect the small population assumption to be

more valid for systems described by larger S. This can be explained by considering a simpler

system consisting of hNσi units per population and S populations. The total number of units is

then N = hNσiS. For fixed N, increasing the number of populations must lead to a reduction in

the number of units per population. Since we expect each unit to occupy a volume in space,
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this therefore leads to smaller populations. Therefore, the small population assumption should

be more valid for systems described by larger S.

For a system of L electrodes and S populations, we now express the vector of population

voltages V̂ (with elements V̂ s) in terms of currents at the electrode I

~DI ¼ V̂: ð28Þ

Both populations and electrodes are now treated as a point sources, with the latter found to be

reasonable for modelling stimulation [36]. The currents I would be equivalent to the user-con-

trollable stimulation intensities. The elements of matrix ~D (of dimensions S × L) are coeffi-

cients ~dsl which reflect the medium and geometry of the electrode-neuron system. For

example, if we assume the brain tissue to be a homogeneous isotropic medium (one where the

conductivity is independent of both position and direction), the coefficients would be

~dsl ¼
ke

jpl � p̂sj
; ð29Þ

where κe is a constant. The positions in space of the electrodes and populations are given by pl

and p̂s, respectively. In summary, the quantities we consider in our model for stimulation are

voltages V̂ sðtÞ at population σ due to stimulation which delivers current Il(t) to electrode l. In

the section entitled ‘Obtaining local activities through electrode measurements’ we will also

consider a model for measurement, where we use voltages Vl(t) measured at electrode l due to

the activity of population σ producing currents ÎsðtÞ.
Optimal stimulation strategy. We now seek an expression for how much current to

deliver across each electrode on the basis of feedback signals. A more compact expression for

the amplitude response (26) can be written using linear algebra notation, with Γ equal to the

vector of local amplitude responses (27) and V̂ equal to the vector of voltages at a population

drstim

dt
¼

1

2
ðΓ>V̂Þ; ð30Þ

where the weights wσ have now been absorbed into Fourier coefficients of Γ for simplicity.

Inserting (28) into (30) leads to an expression for the amplitude response in terms of the cur-

rents at the electrodes, i.e. the control variables

drstim

dt
¼

1

2
ð ~D>ΓÞ>I: ð31Þ

Often, concern for tissue damage due to stimulation imposes a limit on how much current can

be delivered to a single contact. To account for this, we can also impose a constraint on the

current for each contact such that it does not exceed some maximum value Imax

0 � I � Imax: ð32Þ

For each time step, our objective is to deliver stimulation which maximally suppresses the

global amplitude, i.e. to choose I, within the constraints (32), so as to make dρstim/dt as nega-

tive as possible. A simple optimal solution for achieving this can be obtained by setting the cur-

rent for the lth contact to Imax if the lth component of ð ~D>ΓÞ> is negative

Il ¼

(
Imax if ð ~D>ΓÞ>l < 0

0 otherwise
: ð33Þ
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It is worth noting that the strategy proposed here is a ‘greedy’ one, where optimality can be

locally guaranteed (i.e. per time step), but not overall.

The utility of ACD for ET. A number of experimental studies on ET patients have dem-

onstrated the benefit of stimulating according to the phase of the tremor, which we will refer

to here as phase-locked (PL) stimulation [17, 19]. Eq (26) predicts this benefit but also predicts

this strategy would be suboptimal in general, since the complete amplitude response for a

multi-population Kuramoto system requires more knowledge of the patient’s state, involving

the local amplitudes and phases. However, under certain conditions, the local terms of Eq (26)

may become negligible and hence the predicted amplitude response may approximate to a

function of only the global phase. In this scenario, we expect the efficacy difference between

ACD and PL stimulation to be negligible. We refer to this efficacy difference here as the utility.

To analyse the utility of ACD over PL stimulation we therefore have to understand the signifi-

cance of the local terms relative to the global terms in (26). It is clear that this significance is

dependent both on the parameters of the system and the time dependent state.

Eq (26) contains two local terms involving powers of ρσ. Since ρσ� 1, we expect that the

term involving r2
s

will generally be small relative to the other terms. We may then neglect the

local term involving r2
s
, leading to

drstim

dt
’

1

2

XS

s¼1

wsV̂ sðtÞ ½a
ðsÞ

1 sinðcÞ � bðsÞ1 cosðcÞ� � rsa
ðsÞ

0 sinðcs � cÞ
n o

: ð34Þ

We therefore expect the utility of ACD to be almost entirely dependent on the local term of

(34), namely

drlocal

dt
¼

1

2

XS

s¼1

wsV̂ sðtÞrsa
ðsÞ

0 sinðcs � cÞ: ð35Þ

Hence, we expect the utility of ACD to increase as (35) becomes more significant relative to

the other terms in (34). This is likely to occur when the zeroth harmonic of the uPRC jaðsÞ0 j is

large, implying a type I uPRC. We would expect lower utility for systems where aðsÞ0 is negligi-

ble, i.e. for type II uPRCs. In addition to this, the dependence on sin(ψσ − ψ) implies that stim-

ulating on the basis of local quantities would only have an effect if the phases of individual

populations differ sufficiently from the mean phase. One situation in which such phase differ-

ence may be particularly high are for clustered configurations of oscillators. Examples of differ-

ent configurations of oscillators are shown in Fig 3.

We now investigate which spatial configurations of electrodes and populations should

make the effects of stimulation depend only on the global phase. Central to this investigation is

an identity which can be obtained by multiplying both sides of Eq (21) by e−iψ and taking the

imaginary part, leading to

Im r ¼
XS

s¼1

wsrs sinðcs � cÞ ¼ 0: ð36Þ

The similarity between this expression and Eq (35) allows us to use (36) to understand the con-

ditions for (35) to be small/negligible. Eq (35) allows for the uPRC type to differ between popu-

lations, since the zeroth harmonic is also indexed by σ. If we consider the less general case of

homogeneous uPRC type, i.e. aðsÞ0 ¼ a0 for all σ, then a0 can be removed from the summation,
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leading to

drlocal

dt
¼
a0

2

XS

s¼1

wsV̂ sðtÞrs sinðcs � cÞ: ð37Þ

For such systems, we can see that if the stimulation intensity at a population is identical across

populations, i.e. V̂ sðtÞ ¼ V̂ ðtÞ, then

drlocal

dt
¼
V̂ ðtÞa0

2

XS

s¼1

wsrs sinðcs � cÞ; ð38Þ

which equals zero due to (36). Eq (28) relates the current at a particular contact to the stimula-

tion intensity at a population V̂ sðtÞ through a matrix which reflects the geometric and electri-

cal properties of the electrode-neuron system. Using (28) for V̂ sðtÞ and (37) we can obtain an

expression in terms of the current at a contact

drlocal

dt
¼
a0

2

XL

l¼1

XS

s¼1

~dslIlðtÞwsrs sinðcs � cÞ: ð39Þ

Eq (39) indicates that, for homogeneous uPRC types, the utility of ACD is dependent on the

geometric and electrical properties of the electrode-neuron system. If we consider the case

where, for a given electrode, ~dsl does not vary across populations, then this leads to

drlocal

dt
¼
a0

2

XL

l¼1

~dlIlðtÞ

" #
XS

s¼1

wsrs sinðcs � cÞ; ð40Þ

which also equals zero due to (36). For a system where the matrix elements are given by (29),

Fig 3. Different configurations of oscillators color coded according to population. Panels (a) and (b) are for a unimodal distribution and multimodal (clustered)

distribution, respectively. Configurations were obtained by simulating the multi-population Kuramoto Eq (20).

https://doi.org/10.1371/journal.pcbi.1009281.g003
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this condition would be equivalent to one where, for each electrode, the distances between all

the populations and the electrode are equal.

In this section we have investigated the utility of ACD with respect to PL stimulation for

ET. In summary, we expect the utility to depend on a combination of geometric, uPRC and

state related factors. Firstly, we would expect only a small utility for homogeneous isotropic

systems where for each electrode the distances between all the populations and the electrode

are equal. Secondly, we expect the utility to strongly depend on the uPRC type. For heteroge-

neous type I systems, we expect the most utility. For type II systems, we expect marginal utility

originating from the local term depending on r2
s
. Finally, we expect greater utility when ACD

is applied to more clustered states of oscillators.

Numerical simulations

Simulated systems. We now test the ACD method and compare its efficacy with CR and

PL stimulation. To perform this testing, we simulate the multi population Kuramoto model

and use (19) to produce oscillations that are similar to those found in tremor from ET patients.

These equations depend on a number of parameters, which together define a particular system

in terms of its dynamics, electrode-population configuration and intrinsic response to stimula-

tion Z(θ). In this subsection, we will describe how systems are generated for our testing.

The dynamics of the system are determined by the parameters of the multi population Kur-

amoto model, with additional stimulation and noise terms

dysn ¼ osn þ
XS

s0¼1

ws0kss0rs0 sinðcs0 � ysnÞ þ V̂ sðtÞZsðysnÞ

" #

dt þ ~sdW; ð41Þ

where ~s is a constant reflecting the amplitude of noise and W is a Wiener process. For simplicity,

we consider a system of S = 3 populations throughout with ZsðyÞ ¼ aðsÞ0 =2 � sinðyÞ. In this form,

the uPRC type is determined by a single parameter aðsÞ0 . It is worth emphasising that the results

we later present would be the same for any uPRC of the form ZsðyÞ ¼ aðsÞ0 =2 � sinðyþ �Þ,
where ϕ is some arbitrary phase shift. The analytical expressions for the response curves are for an

infinite system, so we require that Nσ is large. For each population, we choose the number of oscil-

lators Nσ = 600 to satisfy this and to remain computationally feasible.

In order for (41) to produce tremor frequency oscillations, we need to choose an appro-

priate distribution for the set of natural frequencies {ωσn}. We obtain this by fitting to tremor

data from the study of Cagnan et al [17]. In this study, phase-locked DBS was delivered

according to tremor in ET patients. This tremor was measured using an accelerometer

attached to the patient’s hand. Data was collected from 6 ET patients and 3 dystonic tremor

patients. All patients gave their informed consent to take part in the study, which was

approved by the local ethics committee in accordance with the Declaration of Helsinki. The

data from this study can be obtained through an online repository [37]. The tremor data was

filtered using a non-causal Butterworth filter of order 2 with cut-off frequencies at ±2 Hz

around the tremor frequency. Stimulation was delivered over a set of trials (typically 9), with

each trial consisting of 12 blocks of 5 second phase-locked stimulation at a randomly chosen

phase from a set of 12. Each block of phase-locked stimulation was also separated by a 1 sec-

ond interblock of no stimulation [11]. We assume a Lorentzian form (7) for the distribution

of {ωσn} and find the parameters ω0 and γ by fitting to the power spectrum of a single block

from Patient 5 of this study. The coefficient of determination for this was found to be R2 =

0.95, indicating an excellent fit to the data. Using this Lorentzian for the distribution {ωσn},

the multi population Kuramoto model can generate tremor-like output with varying
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characteristics according to the choice of kdiag and ~s. Fig 4 shows that, for each value of the

noise parameter ~s we consider in our testing, we can find a value of kdiag which reproduces

the power spectrum of Patient 5. The R2 for these fits were found to be 0.90 and 0.89 for

~s ¼ 0:1o0 and ~s ¼ 0:2o0, respectively. Our goal is to test our methods on a variety of sys-

tems so we subsequently test across a range of kdiag.

The response of the system to stimulation (31) also depends on the parameters ~D, which

depend on the geometry of the electrode placement. We assume a homogeneous isotropic sys-

tem throughout our testing, where the elements of ~D are given according to the population

and electrode positions

~dsl ¼
1

jpl � p̂sj
; ð42Þ

where we have omitted the constant κe for simplicity. Generating relevant configurations also

requires an appropriate choice of L, which we choose according to a sensible estimate (L = 3)

of how many contacts can be implanted in the VIM with present generation DBS leads [38–

40]. To generate a particular electrode-population configuration, we first approximate the

shape of the VIM to be a sphere of unit radius. We then place the coordinates of each electrode

to lie on a line across the diameter of this sphere, thus simulating a collinear configuration of

contacts commonly found on DBS leads. This VIM-electrode geometry is kept fixed through-

out our testing. We place the coordinates of each population according to a ‘configuration

parameter’ η, which we define in the following way. For each electrode indexed by l, we first

define ηl as the smallest distance between the electrode and a population divided by the average

Fig 4. Power spectra of output from the multi population Kuramoto model for different values of ~s. The parameters of the model (41) were chosen to reproduce

tremor data from the study of Cagnan et al [17]. In each case, the value of kdiag was chosen to give the best fit to the power spectrum of a single block from Patient 5’s

data.

https://doi.org/10.1371/journal.pcbi.1009281.g004
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distance between electrode l and a population

Zl ¼
min
s
½jpl � p̂sj�

1

S

PS
s¼1
jpl � p̂sj

: ð43Þ

The parameter ηl takes values between 0 and 1 and describes how localised the effects of stimu-

lation are from a single electrode. To obtain the configuration parameter for the system, we

average over electrodes

Z ¼
1

L

XL

l¼1

Zl: ð44Þ

A small ηmeans the effects of stimulation are localised to a particular population, as shown in

Fig 5A. When η approaches one, the smallest distance between an electrode and a population

becomes equal to the average, meaning the effects of stimulation become delocalised. This is

shown in Fig 5B and 5C.

Due to (28), the stimulation intensity V̂ s is dependent on both the geometry of the system

and the electrode current Il. This can lead to large values for V̂ s if, for example, the separation

between populations and electrodes becomes small. To avoid this, we can define the stimula-

tion intensity in terms of the maximum perturbation to a single oscillator Δθmax. Using Eq

(41), the change in θσn due to stimulation over a time step in simulation Δt can be expressed as

Dysn ¼ V̂ sðtÞZsðysnÞDt: ð45Þ

Inserting (28) into (45) leads to

Dysn ¼
XL

l¼1

~dslIlðtÞ

" #

ZsðysnÞDt: ð46Þ

Fig 5. Visualisations of 3 electrode 3 population systems for different values of the configuration parameter η. The 3 electrodes lie on a straight line across a

sphere of unit diameter. Panel (a) shows a configuration for η = 0.1, where each population is placed very close to an electrode. Panels (b) and (c) show systems for η =

0.4 and η = 0.8, respectively, where the populations are more dispersed relative to the electrodes. In this scenario, stimulation from electrodes may affect multiple

populations.

https://doi.org/10.1371/journal.pcbi.1009281.g005
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If we assume a system where the uPRC are the same across populations and normalised to 1,

then Δθmax can be expressed in terms of the maximum current at an electrode

Imax ¼
Dymax

max
s

XL

l¼1

~dsl

" #

Dt

:
ð47Þ

The S × S coupling constant matrix can be simplified by focussing only on the diagonal and

off-diagonal components, which we denote by kdiag and koffdiag, respectively. We fix koffdiag = 0,

so that kdiag can be used to control the level of clustering for a particular configuration of oscil-

lators, with increasing kdiag leading to increasingly multi-modal distributions of oscillators.

Running the simulation. Our aim is to compare the efficacies of CR, PL and ACD for a vari-

ety of test systems. We define a system according to a set of parameters f~s; kdiag; Z; a0;Dymaxg,

which can be used to change both the dynamics of the system and its response to stimulation.

The high dimensionality of this space prevents a full exploration so we instead investigate the

efficacy of each method as a function of a single parameter, leaving the remaining parameters

fixed. In our testing we define the efficacy of a particular DBS strategy to be its desynchronising

effect on a system of coupled oscillators. We measure this by averaging ρ for a period of time

after stimulation is applied and then averaging this over ntrials trials to obtain �r. For each trial,

we randomly generate a system with a given value of η and then integrate (41) using Euler’s

method with a time step of Δt = 0.0025 for a total of 15 seconds. After 5 seconds, we turn on

the stimulation and then after 10 seconds we begin averaging ρ for the remaining 5 seconds. A

summary of the parameters common to all our simulations, unless stated otherwise, are pro-

vided in Table 2. The error bars in subsequent plots are the standard errors when averaged

over ntrials trials.

We use the time-shifted variant of CR neuromodulation [8, 41] in our testing where stimu-

lation is delivered in bursts of HF pulse trains. The stimulation pattern is time-shifted across

Table 2. Summary of parameters common to all simulations, unless stated otherwise.

Parameter Value Description

Δt 0.0025 Integration time step

T 15 Simulation time

tstart 5 Stimulation start time

tavg 10 Start time for averaging ρ
L 3 Number of electrodes

S 3 Number of populations

Nσ 600 Number of oscillators per population

koffdiag 0 Off-diagonal of coupling constant matrix

a1 0 First even Fourier coefficient

b1 -1 First odd Fourier coefficient

ntrials 80 Number of trials

fmax 130 Maximum frequency for PL stimulation

fburst 3.92 CR burst frequency

ftrain 130 CR HF train frequency

tburst 0.1 CR burst time

ω0/2π 3.92 Centre of natural frequency distribution

γ/2π 0.15 Width of natural frequency distribution

https://doi.org/10.1371/journal.pcbi.1009281.t002
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each electrode indexed by l by

tl ¼
2p

�oL
ðl � 1Þ; ð48Þ

where �o is the mean of the natural frequencies, which we take to be ω0. The number of bursts

per second, the burst frequency fburst, was chosen to be equal to �o=2p and the HF pulse train

frequency ftrain was chosen to be 130 Hz. The width of each burst tburst was chosen to be 0.1

seconds. We implement PL stimulation by neglecting the local terms of Eq (26), leading to

drPL

dt
¼

1

2

XS

s¼1

wsV̂ sðtÞ ½a
ðsÞ

1 sinðcÞ � bðsÞ1 cosðcÞ�
n o

: ð49Þ

Stimulation is then provided when
drPL

dt < 0, with the resulting strategy depending only on the

global phase ψ.

Example output showing the desynchronising effects of ACD and CR are shown in Fig 6

for a system with parameters (Z ¼ 0:1; kdiag ¼ 55; ~s ¼ 0:1o0; a0 ¼ 1Þ. Here, the system is sim-

ulated for a longer period of T = 40 seconds and stimulation is turned on at T = 15 seconds.

Fig 6A and 6B shows output from ACD while Fig 6C and 6D shows output from CR. To dem-

onstrate the effect of CR we used a higher stimulation intensity of Δθmax = 0.01π compared to

Δθmax = 0.001π for ACD. Comparing the outputs from ACD and CR, it is clear that the stimu-

lation pattern from ACD is significantly different from that produced by CR, with the latter

pattern being simply time-shifted across electrodes. The stimulation pattern from ACD allows

for the possibility that multiple electrodes may be stimulated simultaneously. Fig 6 also shows

that ACD achieves a similar desynchronising effect to CR whilst using a much lower stimula-

tion intensity.

Efficacy and efficiency vs stimulation intensity. Figs 7 and 8 show the efficacy and effi-

ciency of each stimulation strategy as a function of the stimulation intensity Δθmax, respec-

tively. The uPRC was assumed to be homogeneous across populations, i.e. Zσ(θ) = a0/2 −
sin(θ). Each sub plot shows a set of simulations performed with a particular zeroth harmonic

of the uPRC a0. We fixed η = 0.1, ~s ¼ 0:1o0 and kdiag = 55 in all cases and then performed our

investigations using 3 values of a0 (a0 = 0, a0 = 2 and a0 = 4).

Fig 7A shows results for a0 = 0, corresponding to a type II uPRC. For PL and ACD, a regime

exists where the efficacy of each strategy is seen to increase with increasing Δθmax. The utility

of ACD is found to be marginally higher than PL, with the exception being at low intensities

(approximately Δθmax� 0.0005π), where both efficacies are approximately equal. The efficacy

of CR is shown to increase across the range of Δθmax tested, leading to a reduced utility of

ACD over this method with increasing Δθmax. Increasing a0 leads to a reduced efficacy for CR,

which is clearly shown in Fig 7B and 7C. The increased utility of ACD with increasing a0, as

predicted in the section ‘The utility of ACD for ET’, can also be seen, although this utility is

also seen to diminish with increasing Δθmax.

The total amount of stimulation delivered by each strategy (the sum of all stimulation

pulses) can be likened to the ‘total energy’ used by a strategy. We denote this quantity by �E. It

is expected that for open loop methods, such as CR, �E should increase linearly with Δθmax.

However, for closed-loop methods, where the stimulation pattern is dependent on the signal

itself, a more complex relationship is likely to exist. Plots for �E as a function of Δθmax are

shown in Fig 8. A linear relationship for �EðDymaxÞ is found for the case of CR (as expected). In

this case of PL stimulation, �EðDymaxÞ is shown to be approximately linear across Δθmax. For

ACD, a linear regime is observed for small Δθmax, where �EðDymaxÞ for ACD and PL stimulation

are approximately equal. For a0 = 0 and a0 = 2, �EðDymaxÞ then begins to plateau. In these cases,
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�EðDymaxÞ for ACD is predicted to be lower than both PL and CR for larger Δθmax. We find a

qualitatively different relationship for a0 = 4, where �EðDymaxÞ for ACD is found to be approxi-

mately linear across the range. For this case, �EðDymaxÞ for ACD is predicted to be higher than

both PL and CR at larger Δθmax.

Fig 6. Output from numerical simulations showing the effects of adaptive coordinated desynchronisation (ACD) and coordinated reset (CR). The top panels (a)-

(b) show the model output for ACD and the bottom panels (c)-(d) show the model output for CR. The left column shows model output together with the stimulation

(averaged across contacts) as a function of time. The right column shows model output and stimulation for each contact for the respective shaded segment of the left

column. The shaded portion of the stimulation for the left column is simply the average across contacts of the stimulation shown in the right column.

https://doi.org/10.1371/journal.pcbi.1009281.g006
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In subsequent testing we ensure that, for a given trial, the amount of stimulation delivered

by a particular strategy is approximately equal. To achieve this, we restrict our testing to small

Δθmax, where �EðDymaxÞ is approximately equal for both ACD and PL. Smaller Δθmax is also

more relevant from a practical standpoint, since lower stimulation intensities are better for

power consumption and reducing the side effects of DBS. We also apply a correction to Δθmax

Fig 7. The average amplitude of simulated data �r as a function of the stimulation intensity Δθmax. The strategies tested were: no stimulation (no stim), adaptive

coordinated desynchronisation (ACD), phase-locked (PL) and coordinated reset (CR). The average amplitude is a measurement of efficacy, where lower amplitudes

indicate higher efficacy. The maximum stimulation frequencies used for ACD and PL are also given in the legend. Each sub plot shows a set of simulations performed

with a particular zeroth harmonic of the uPRC a0.

https://doi.org/10.1371/journal.pcbi.1009281.g007

Fig 8. The total energy used by different stimulation strategies, when applied to a simulated system, as a function of the stimulation intensity Δθmax. The

strategies tested were: adaptive coordinated desynchronisation (ACD), phase-locked (PL) and coordinated reset (CR). The maximum stimulation frequencies used for

ACD and PL are also given in the legend. Each sub plot shows a set of simulations performed with a particular zeroth harmonic of the uPRC a0.

https://doi.org/10.1371/journal.pcbi.1009281.g008
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for CR, using the relationships found in Fig 8. This amounts to using a Δθmax for CR of’ 1.3

times that of ACD.

Efficacy vs coupling. Fig 9 shows the efficacy of various stimulation strategies as a func-

tion of kdiag. The uPRC was assumed to be homogeneous across populations, i.e. Zσ(θ) = a0/2

− sin(θ). Each sub plot shows a set of simulations performed with a particular zeroth harmonic

of the uPRC a0 and value of noise ~s. We fixed η = 0.1 and Δθmax = 0.001π in all cases. We per-

formed our investigations using 2 values of ~s (~s ¼ 0:1o0 and ~s ¼ 0:2o0) and 3 values of a0

(a0 = 0, a0 = 2 and a0 = 4). ACD was tested at maximum frequencies of 130 Hz and 50 Hz.

Significant improvements with ACD at 130 Hz over PL and CR can be observed when a0 =

2 and a0 = 4 (i.e. type I uPRCs) for both noise parameters tested. The utility of ACD over other

methods is also shown to be greatest when kdiag is larger, which corresponds to larger local

amplitudes ρσ and increased clustering. The increased utility of ACD with increasing a0 and

clustering agree with our predictions in the section ‘The utility of ACD for ET’. For systems

where a0 = 0, ACD is found to be marginally more effective than PL, as predicted. ACD at 50

Fig 9. The average amplitude of simulated data �r as a function of the coupling constant kdiag. The strategies tested were: no stimulation (no stim), adaptive

coordinated desynchronisation (ACD), phase-locked (PL) and coordinated reset (CR). The average amplitude is a measurement of efficacy, where lower amplitudes

indicate higher efficacy. The maximum stimulation frequencies used for ACD and PL are also given in the legend. Solid lines are for the ACD method. Each sub plot

shows a set of simulations performed with a particular zeroth harmonic of the uPRC a0 and value of noise ~s.

https://doi.org/10.1371/journal.pcbi.1009281.g009
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Hz is generally found to have similar efficacy to PL at 130 Hz but with stimulation delivered at

half the frequency, translating to considerably less energy consumption.

Efficacy vs configuration parameter. We now investigate the efficacy of each stimula-

tion strategy for different values of the configuration parameter η. In the section ‘The utility

of ACD for ET’ we predicted that the efficacy of ACD should depend explicitly on the geom-

etry of the electrode-population configuration and that the utility of ACD relative to PL stim-

ulation should diminish as η increases. We also predicted that this effect could be mitigated

if the uPRCs for the system of populations were heterogeneous in type, i.e. by using a form

ZsðyÞ ¼ aðsÞ0 =2 � sinðyÞ.
To test these predictions, we investigated the efficacy of each stimulation strategy as a func-

tion of η by simulating (41) with kdiag = 55, ~s ¼ 0 and Δθmax = 0.0014π. To investigate the

effects of heterogeneous aðsÞ0 we generate each system of 3 populations with aðsÞ0 sampled from

a normal distribution with mean 2 and standard deviation sa. We performed our investigations

at 3 values of sa (sa = 0, sa = 0.5 and sa = 1), corresponding to the homogeneous case and then

increasing heterogeneity, respectively. For each η, we randomly generate a set of 480 systems,

calculate the efficacy of each strategy and then average across all systems. The results from

these simulations are shown in Fig 10, with each sub plot showing a set of simulations per-

formed with a particular sa. Fig 10 shows that the utility of ACD relative to PL stimulation

reduces with increasing η, but that this effect is reduced as the level of heterogeneity in the

uPRC type increases. This is in agreement with our predictions from the section ‘The utility of

ACD for ET’.

Obtaining local activities through electrode measurements

We have shown that in order to optimally desynchronise a system of Kuramoto oscillators,

stimulation should be provided on the basis of the state, which includes the global phase ψ
and local quantities {ψσ} and {ρσ}, reflecting the population level activity. In the case of ET, we

Fig 10. The average amplitude of simulated data �r as a function of the configuration parameter η. The strategies tested were: no stimulation (no stim), adaptive

coordinated desynchronisation (ACD), phase-locked (PL) and coordinated reset (CR). The average amplitude is a measurement of efficacy, where lower amplitudes

indicate higher efficacy. The maximum stimulation frequencies used for ACD and PL are also given in the legend. Each sub plot shows a set of simulations performed

with a particular value for the standard deviation of the zeroth harmonic of the uPRC sa.

https://doi.org/10.1371/journal.pcbi.1009281.g010
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expect the global phase to be measurable through the tremor but we have not yet described

how the local quantities should be determined. In this section, we will describe how this might

be achieved using LFP measurements through different contacts. Our goal here is not to con-

struct a detailed electrophysiological model of neural activity but instead to outline the various

assumptions required to resolve the local state. As before, we will use the following quantities

in this analysis: positions p, voltages V and currents I. We now distinguish quantities associ-

ated with neural unit compartments using a dash (´).

The extracellular LFP due to neural activity arises from transmembrane currents in the

vicinity of the electrode [42]. Modelling the LFP can be achieved using a multi-compartmental

representation of each neuron, where the axons and dendrites are treated explicitly and discre-

tised into multiple segments (or compartments). Each compartment is then effectively treated

as a point current source in space [34, 35, 42]. Using this, we now consider a multi-population

system where the nth neural unit of population σ is discretised into Mσn compartments, with

each compartment indexed by m and at a position denoted by �psnm. A general expression for

the voltage at a point electrode can then be written in terms of the current at a compartment

Íσnm(t)

VlðtÞ ¼
XS

s¼1

XNs

n¼1

XMsn

m¼1

dðpl; �psnmÞ�IsnmðtÞ; ð50Þ

where dðpl; �psnmÞ are coefficients which reflect the medium and geometry of the system. We

now let �psnm ¼ p̂s þ D�psnm, i.e. we now define a vector to a compartment in terms of a vector

to a region (or population) plus a shift. As before, we assume ‘small populations’, i.e. the region

D�psnm is small relative to p̂s, then we can write

VlðtÞ ¼
XS

s¼1

dðpl; p̂sÞÎsðtÞ; ð51Þ

where the double summation over neurons and compartments is the population activity

ÎsðtÞ ¼
XNs

n¼1

XMsn

m¼1

�IsnmðtÞ: ð52Þ

Since we are dealing with oscillations, we can give a general form to ÎsðtÞ in terms of the local

phases and amplitudes

ÎsðtÞ ¼ crs cosðcsÞ; ð53Þ

where c is a constant. The potential at the electrodes (51) can then be written in matrix form

d11 d12 d13 . . . d1S

..

. . .
.

..

. . .
.
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. . .
.
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; ð54Þ

where for simplicity we have denoted dls ¼ cdðpl; p̂sÞ. Eq (54) can be expressed in a more

compact form with D denoting the matrix of coefficients (of dimensions L × S), f as the vector
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of neural activities and V as the vector of electrode measurements.

Df ¼ V: ð55Þ

Eq (55) relates the voltages at the electrodes V to the neural activities f. Eq (54) shows that

what we actually measure at the electrodes is a linear superposition of population activities.

We may also include a ‘stimulation artefact’, which arises due to the electrodes recording the

stimulation pulses themselves. We do not consider this here for simplicity, but discuss it briefly

in the section ‘Limitations and future work’. For the cases where D is approximately diagonal,

the population quantities could be accurately recovered (although ρσ would be scaled). Such

cases would represent systems consisting of small separated regions of activity, with each elec-

trode positioned close to each region (see Fig 5A).

Methods such as independent component analysis (ICA) [43] are well-suited to solving the

general problem of recovering a vector of ‘source signals’ f(t) (in this case the population activ-

ities) given a vector of recordings V(t), as expressed in Eq (54), although the method cannot

recover the scaling. In theory the matrix D, which depends on the medium and geometry of

the system, should not evolve with time. We therefore envisage ICA being applied offline to

recover D and then used to obtain the local signals. The goal of ICA here is to resolve the S
population quantities from L electrode measurements. The determined case (S = L) is perhaps

the most common and more easily solved since the mixing matrix D can be inverted. If we

assume the case of S = L, then ICA will always resolve exactly L components. With this

assumption, increasing the number of electrodes in a system has a definite purpose: it increases

our potential to resolve the internal state. Assuming a larger number of populations also

increases the validity of the small region approximation and thus the accuracy of ACD. It may

also be possible to obtain good approximations to the state by using L< S electrodes, since in

some cases the weights wσ may be small for some populations and can hence be neglected.

Once the vector of local signals have been resolved using ICA, the global signal can then be

constructed using Eq (18). This would involve choosing a set of weights {wσ} such that the

resulting global amplitude is correlated to the symptom severity.

Discussion

We have presented a new method of closed-loop DBS designed for systems which use multiple

independently powered contacts. Unique to our work is the formulation of a stimulation strat-

egy for multiple spatially separated populations of coupled oscillators. We use these systems to

model synchronous activity, which manifests in LFP recordings and is linked to the severity of

a number of neurological disorders. Using numerical simulation, we have shown our methods

can effectively desynchronise these systems with greater efficacy than both CR and PL stimula-

tion. Most importantly perhaps is that our work sheds light on the importance of the state for

DBS strategies. Previous experimental studies have demonstrated the effectiveness of phasic

stimulation [17, 19, 20]. Our theories can explain these findings, but also suggest that this

approach would be suboptimal in general and that greater knowledge of the state, in particular

the local phases and amplitudes, is required to improve efficacy.

The mathematical description of ACD also predicts the utility of closed-loop multi-contact

DBS to be largely dependent on the form of the uPRC and in particular on the zeroth har-

monic a0, which is related to whether it is type I or type II. ACD is expected to have the greatest

utility (relative to PL stimulation) for type I systems, where |a0| is large relative to other har-

monics. Systems with type I uPRCs are described by a significant number of neuron models

and generally fall into the category of Class I excitable [44]. For type II systems, where |a0| is

small relative to other harmonics, stimulation on the basis of local quantities is unlikely to be
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beneficial. We also show that the dependency of the amplitude response on the local quantities

of population σ becomes less at increasingly lower local amplitudes ρσ but that the effects of

stimulation are, in general, explicitly dependent on the state of the system.

Limitations and future work

The simulations we present provide only a broad understanding of the potential efficacy and

efficiency of ACD and there is scope for future work. The formulation of ACD relies on a

number of assumptions, one of which concerns the oscillator distribution of each population

satisfying the ansatz of Ott and Antonsen [32]. This ansatz is known to correctly describe the

mean-field behaviour for an infinite Kuramoto system but may not necessarily be a good

description for systems with different dynamics. The presence of noise in our simulations is a

deviation from the systems described by the ansatz. Our results therefore provide a useful

demonstration of ACD’s efficacy when applied to a more realistic system. It is currently

unclear if this efficacy would be maintained for systems with more complex coupling func-

tions. The presence of higher harmonics in the uPRC may also affect the efficacy of our meth-

ods. It is known that the presence of higher harmonics in Z(θ) can lead to clustering of

oscillators, which causes a breakdown in the Ott-Antonsen ansatz [45]. In addition to this, we

assume a Lorentzian distribution for the natural frequencies– how would the efficacy of the

method change if we simulated systems with different distributions? Investigating ACD using

a more diverse range of systems, particularly those where these assumptions have been relaxed,

would be a good way to test the robustness of the method.

Underlying the method of CR is the assumption of a single population of homogeneously

coupled oscillators with identical frequencies [8]. This represents a specific case of the more

general system we consider in our testing given by Eq (41). By changing the fixed parameters

{koffdiag, ω0, γ}, we can bring our test system into closer alignment with the assumptions of CR,

which may lead to greater efficacy for the method. However, this is unlikely to address the

dependence of CR on relatively high stimulation intensities to achieve efficacy, which is per-

haps its main limitation and is in contrast to ACD. In addition to this, a single population of

oscillators with identical frequencies and increased interpopulation coupling koffdiag is unlikely

to produce oscillation data that is reflective of either tremor or LFP recordings. Increasing

koffdiag would also require larger and possibly unrealistic stimulation intensities to achieve a

desynchronising effect.

We also make a number of assumptions when modelling the electrostatics of the system,

most notable of which is that of ‘small populations’. Localising populations of activity in this

way allows us to use some elementary results from electrostatics and connect them with what

we already know about the way neural populations respond to DBS. However, we recognise

that this assumption might be severe for some systems. We assume small populations when

deriving both Eq (31) for the ACD closed-loop strategy and (55) for relating local activities

to recordings via ICA. As previously mentioned, the assumption becomes more valid as S
becomes larger, but in practice, resolving the local quantities for these larger systems would

then require more contacts. At present, clinically available systems feature at most 8 electrode

contacts, but future systems could feature as many as 40 [46]. In addition to this, the assump-

tion of a point source electrode may be adequate for describing stimulation [36], but could be

problematic when modelling LFP recordings, where the geometry of the electrode may play a

more important role. Another limitation of our model is that it only describes the instanta-
neous effects of stimulation, rather than those over a finite time period. Using this assumption

leads to an important simplification for the response (25), which becomes independent of the

parameters describing the dynamics. Real stimulation pulses, however, have a finite duration
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and more complex shapes. Accounting for these in our model would require an integration of

the dynamical equations in addition to those for the response, which would inevitably result in

greater complexity. Taken altogether, it is unclear at this stage how these assumptions would

affect the efficacy of ACD and further simulation work would be required to shed light on this.

Electrodes which record the population activity are also susceptible to recording the stimu-

lation pulses themselves. This manifests in recordings as an artefact, which poses a challenge

for closed-loop methods that rely on the real-time measurement of phases and amplitudes.

Addressing the effects of stimulation artefacts is beyond the scope of this work, but we expect

that significant suppression of the stimulation artefact would be required for ACD to be effec-

tive. This suppression may come as a byproduct of using ICA, which has been found by others

[47, 48]. Alternatively, by recording through two contacts adjacent to a single stimulating con-

tact, the properties of differential amplifiers can be used to suppress the stimulation artefact

[49]. It’s also worth mentioning that we have only considered perturbations to neural popula-

tions using electrodes, but in principle, our theories should also be valid for other types of per-

turbation, such as optogenetic, where light pulses are used to perturb genetically modified

neurons [50]. This approach would eliminate the stimulation artefact and could potentially

improve the real-world performance of ACD.

Overall, this study represents an important and necessary first step towards implementing

our ideas into practice. Beyond this, and on the theoretical side, further steps should include

bringing our methods of testing into closer alignment with an experimental paradigm, ulti-

mately treating the system as a ‘virtual patient’, with the only inputs available to ACD being

simulated electrode measurements V(t). A simulated artefact from stimulation may also be

included. The various parameters of (26) would then be estimated from these and the state var-

iables obtained using ICA and (54). Introducing uncertainty into the parameters and state will

almost certainly affect the efficacy of ACD but understanding the extent of this effect will help

us better gauge the potential real world performance and feasibility of the method.
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