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(57) Abstract: An emulation apparatus emulates an electrophysiological signal derived from a target area of a human or animal nervous
system under the influence of a stimulation signal applied to the human or animal body. A prior signal generator generates a prior signal
representing an electrophysiological signal in the absence of stimulation. A test signal representing a stimulation signal is received and
used by a modelling unit to derive a modulation signal representing the degree of modulation of the electrophysiological signal, in
accordance with a model of the temporal evolution of the modulation of the electrophysiological signal caused by the stimulation signal.
A modulation unit modulates the prior signal in accordance with the modulation signal to output an emulation signal representing an
electrophysiological signal derived under the influence of the stimulation signal. The emulation apparatus has wide use in neuroscience
research, bioengineering and clinical applications.
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Emulation of Electrophysiological Signals Derived By Stimulation Of A Body

The present invention relates to electrophysiological signals derived from a target
area of the nervous system of a human or animal body under the influence of stimulation
signals applied to the human or animal body.

Electrophysiological signals derived from a target area of the nervous system of a
human or animal body are known to provide information about neurological function. It is
also known that the electrophysiological signals may be influenced by stimulation signals
applied to the human or animal body. This effect can be used to treat neurological
disorders.

By way of example, Deep Brain Stimulation (DBS) is a standard treatment for a
variety of movement disorders such as Parkinson’s Disease, Dystonia and Essential
Tremor. DBS has been also proposed and tested for the treatment of psychiatric disorders
such as major depression, obsessive compulsive disorder (OCD), addiction and eating
disorders. Conventional DBS delivers continuous stimulation at a fixed high frequency
stimulation and constant amplitude. Adaptive deep brain stimulation (aDBS) aims to
improve efficacy, efficiency and selectivity of the treatment by using dynamic markers of
disease activity to optimise and control DBS. One particularly informative biomarker for
Parkinson’s disease is oscillatory activity in the beta frequency band (~20Hz) in the local
field potential (LFP) recorded directly from the stimulation electrode when the latter is
implanted in the subthalamic nucleus (STN) or globus pallidus interna (GP1).

Currently existing DBS system delivers constant stimulation to the brain at a level
set by a medical staff. A closed-loop DBS system may be used to automatically adjust the
parameters of the stimulation signal in real-time based on the brain response to the
electrical stimulation, and therefore offers a great potential to further improve efficacy,
reduce side effects and decrease treatment cost. However, closed-loop DBS control
requires a good understanding of the dynamic response of the LFP signal to the stimulation
[Reference 1].

Other scenarios where such closed-loop stimulation may be performed include (but
are not limited to), closed-loop spinal cord stimulation, peripheral or autonomic nerve
stimulation, and closed-loop non-invasive brain stimulation.

Such stimulation treatment confers major therapeutic benefits and are life-changing
for many conditions, so there is a need for development of stimulation systems and
protocols for their use.

The difficulty and often infeasibility in testing different control algorithms in real
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patients is a main obstacle in the research for improving the algorithms for close-loop
stimulation. Meanwhile, lack of understanding on how the stimulator will behave given the
variations in the electrophysiological signals in patients during the closed-loop stimulation
protocol reduces the confidence of the clinical team in implementing those more advanced
protocols, compared to the traditional stimulation protocol, in which all the stimulation
parameters are under the manual control of the clinical carer.

According to a first aspect of the present invention, there is provided an emulation
apparatus arranged to emulate an electrophysiological signal derived from a target area of
the nervous system of a human or animal body under the influence of a stimulation signal
applied to the human or animal body, the emulation apparatus comprising: a prior signal
generator arranged to generate a prior signal representing an electrophysiological signal
derived from a target area of the nervous system of a human or animal body in the absence
of a stimulation signal; a test signal input arranged to receive a test signal representing a
stimulation signal applied to the human or animal body; a modelling unit arranged to derive
a modulation signal, which modulation signal represents the degree of modulation of the
electrophysiological signal by the stimulation signal, from the test signal in accordance
with a model implemented within the modelling unit of the temporal evolution of the
modulation of the electrophysiological signal caused by the stimulation signal; and a
modulation unit arranged to modulate the prior signal in accordance with the modulation
signal to output an emulation signal representing an electrophysiological signal derived
under the influence of the stimulation signal.

The emulation apparatus is therefore a tool that provides emulation of an
electrophysiological signal derived from a target area of the nervous system of a human or
animal body under the influence of a stimulation signal applied to the human or animal
body, and is a core part of the intelligent deep brain stimulation system (iDBS) for
advanced control of the nervous system. This is achieved based on an appreciation that the
temporal evolution of the modulation of the electrophysiological signal caused by the
stimulation signal may be modelled. Such a model may take advantage of knowledge about
the physiological response of the specific target area to electrical stimulation. Accordingly,
a model of that temporal evolution is implemented with a modelling unit and is used to
derive a modulation signal which represents the degree of modulation of the
electrophysiological signal. The modulation signal is used to modulate a prior signal
representing the electrophysiological signal, and thereby to output an emulation signal

representing an electrophysiological signal derived under the influence of the stimulation
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signal.

This allows the effect of stimulation signals represented by the test signal to be
understood, which is useful in a wide range of applications, some examples of which are as
follows.

One type of application is the study of stimulation by neuroscience researchers, the
development of stimulation systems by bioengineers, and the training of clinicians.

The emulation apparatus allows researchers to explore complex control algorithms
capable to adapt automatically to a specific patient, and simultaneously addressing multiple
symptoms. The emulation apparatus similarly allows testing in real-time of the developed
algorithms, the research protocol and safety of their experiments before collecting data
from patients. This provides optimal use of scarce recording opportunities and high-quality
data from experiments. The emulation apparatus can be extended to any medical condition
where a set of signals respond to electrical stimulation by updating the structure of the
model and its implementation.

Bioengineers developing stimulation systems are provided with the same benefits
as researchers. At the present time, control algorithms embedded in implanted medical
devices are simple, but the design of more complex control algorithms for the stimulation
signal requires the possibility to test both functionality and real-time electrical behaviours
for improving reliability and safety prior to clinical use. In addition, the emulation
apparatus can provide evidence to demonstrate to regulatory bodies that equipment has
been thoroughly tested for scenarios not easily reproducible with animal testing or with
human for ethical reasons, based on a proved mathematical model. This approach is known
to facilitate significantly regulatory approval.

Another type of application is to assist clinicians with clinical usage of stimulation
systems. The emulation apparatus may assist clinicians with training, for example by
facilitating a clinician to train on a specific stimulation system in an environment very
much like that of a patient. The emulation apparatus may also assist clinicians with clinical
usage of a stimulation system to treat a condition of a specific patient. For example,
templates of specific disease conditions and/or information from the patient allows the
clinician to carry out tests of their clinical interventions ahead of time and to derive a
suitable parameters for the stimulation signal. This can improve both the patient’s safety
and the clinician’s efficiency. Therefore, the emulation apparatus presented here is a core
part of the intelligent deep brain stimulation system (1iDBS) for advanced control of

neurological medical conditions.
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The stimulation signal may be a DBS stimulation signal for application to a target
area of the brain of the human or animal body in DBS, for example aDBS. However, the
techniques disclosed herein is equally applicable to other forms of stimulation of any part
of the nervous system of a human or animal body.

For example, the techniques described herein may be applied to neuroscience
applications where the stimulation signal target area is in the brain or any other part of the
nervous system. A few examples are: closed-loop deep-brain stimulation for movement
disorders or psychiatric disorders, closed-loop spinal cord stimulation (as used for example
in chronic pain management), closed-loop cortical stimulation (as used for example in
seizure control), peripheral or autonomic nerve stimulation, or closed-loop non-invasive
brain stimulation.

Preferably, the model may include some or all of the following features.

The model may represent an algebraic change in the modulation with at least one
parameter of the stimulation signal. The algebraic change may be for example an algebraic
decrease, which may be an exponential decrease.

The model may include at least one differential stage, preferably two cascaded
differential stages with time constants of different orders of magnitude. The difterential
stages may be, for example, of first order. One of the time constants may correspond to the
low pass response of neural membranes of neurons to the stimulation signal. One of the
time constants may represents the dynamic response of a gross average of the
electrophysiological signal derived from the target area of the nervous system to the
stimulation signal.

The model may further represent a saturation of the modulation at a magnitude that
is dependent on at least one parameter of the stimulation signal, preferably being dependent
on plural parameters of the stimulation signal.

The model may represent a gain of the modulation with respect to plural parameters
of the stimulation signal.

Optionally, the emulation apparatus may further comprise an external disturbance
signal generator arranged to generate an external disturbance signal representing external
disturbances to the electrophysiological signal, the modulation unit being arranged to add
the external disturbance signal to the emulation signal. For example, the external
disturbances may include one or more of’ artefacts of the stimulation signal on the signal
measured from the human or animal body; DC-drift bias; electrocardiogram artefacts; and

electrical noise. This is not essential and relates to practical considerations rather the target
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area itself. However, the use of the external disturbance signal is useful because it
advantageously produces a modulation signal that more closely represents the
electrophysiological signal that is derived under the influence of the stimulation signal in a
practical system.

The prior signal may be, or may be derived from, a signal measured from an actual
human or animal body. This allows the emulation apparatus to provide information based
on actual human or animal data. This is useful in many applications, for example where a
clinician is deriving suitable parameters for a stimulation signal to treat a specific patient.

Alternatively, the prior signal may be a synthetic signal. This is useful in many
applications, for example allowing testing of stimulation signals over a wider range of
patient parameters for which measured data is not available, for example due to scarcity of
data or to cover situations for which it would be dangerous or unethical to take
measurements.

The electrophysiological signal represented by the prior signal may be a signal
representing a frequency domain parameter of a signal measured from the human or animal
body in the absence of a stimulation signal. The measured signal may be a measured
voltage, for example an LFP signal in the case of DBS. Similarly, the signal representing a
frequency domain parameter thereof may be the power of given frequency band, for
example a beta band signal in the case of DBS.

As an alternative, the electrophysiological signal represented by the prior signal
could be an actual signal measured from the human or animal body, for example a
measured voltage such as an LFP signal in the case of DBS. In that case, the emulation
apparatus may further comprise a frequency domain processing unit arranged to process the
emulation signal in the frequency domain to derive a processed emulation signal
representing a frequency domain parameter of the electrophysiological signal derived under
the influence of the stimulation signal, for example a beta band signal in the case of DBS.

The test signal may comprise a temporal signal representing the stimulation signal
or may comprise parameters representing the waveform of the stimulation signal.

The emulation apparatus may be implemented in hardware by electronic
components, may be implemented in software by a computer program, or a combination of
both.

According to a second aspect of the present invention, there is provided a method
similar to that implemented in the emulation apparatus.

The steps of the method may be performed by a computer apparatus. Thus, further
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according to the second aspect of the present invention, there may be provided a computer
program capable of execution by a computer apparatus and configured, on execution, to
cause the computer apparatus to perform the method according to the second aspect of the
present invention. The computer program may be stored on a computer-readable storage
medium.

To allow better understanding, an embodiment of the present invention will now be
described by way of non-limitative example with reference to the accompanying drawings,
in which:

Fig. 11is a functional block diagram of an emulation apparatus;

Fig. 2 is a schematic diagram of the waveform of a stimulation signal for DBS;

Fig. 3 is a set of plots illustrating the power spectral response and LFP signal
derived under the influence of a DBS stimulation signal from an actual participant;

Fig. 4 is a graph of the power spectrum of an envelope of the beta band signal
response to DBS at different voltage amplitude;

Fig. 5 is a set of histograms of prediction errors of three models for modulation of a
beta band signal under the influence of a stimulation signal;

Fig. 6 is a set of plots of prediction accuracy of the three models vs. the actual data;

Fig. 7 1s a graph of frequency against amplitude for the three models for a constant
beta power reduction of -1.5 dB;

Fig. 8 are graphs of the beta band signal measured from three participants with PD
in response to a step change in stimulation amplitude;

Fig. 9 are two graphs of the beta band signal measured from two participants with
PD in response to a step change in stimulation amplitude;

Fig. 10 is a graphical representation of a dynamic Wiener memoryless (nonlinear)
saturation function;

Fig. 11 is a functional block diagram of an external disturbance signal generator of
the emulation apparatus;

Figs. 12 and 13 are graphs at different time scales of an example of an LFP signal
on which a stimulation artefact is present;

Fig. 14 is plot of the spectral intensity of an LFP signal on which a stimulation
artefact is present;

Fig. 15 is a graphical representation of an implementation in a simulation
environment of a modulation dynamics block of a modelling unit of the emulation

apparatus;
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Fig. 16 is a set of graphs of signals recorded within an example of a software
implementation of the emulation apparatus;

Fig. 17 is a functional block diagram of an implementation in hardware of a
stimulation effect block of a modelling unit of the emulation apparatus;

Fig. 18 is a chronogram of the operation of the stimulation effect block of Fig. 21.

Figs. 19 to 22 are plots of signals developed within a hardware implementation of
the emulation apparatus, with different magnifications; and

Figs. 23 and 24 are plots of signals developed within a hardware implementation of
the emulation apparatus in closed-loop, with different magnifications.

Fig. 1 illustrates an emulation apparatus 1 that emulates an electrophysiological
signal derived from a target area of the nervous system of a human or animal body under
the influence of a stimulation signal applied to the human or animal body, i.e. an externally
generated electrical signal. The application to the human or animal body may in general be
by any appropriate means, for example by an electrode in the example of DBS described
below, or by other types of probe such as a coil.

As described further below, the emulation apparatus 1 may be implemented in
hardware or software, but in both cases the emulation apparatus 1 receives a test signal
representing a stimulation signal applied to the human or animal body and outputs an
emulation signal representing an electrophysiological signal derived under the influence of
the stimulation signal represented by the test signal. The emulation apparatus 1 is capable
of closely reproducing the electrical, temporal and spectral behaviour of
electrophysiological signals seen in patients. The electrophysiological signal represented by
the output emulation signal may be studied as a response to different stimulation signals
represented by the test signal.

As such the emulation apparatus 1 provides a practical tool for neuroscience
researchers and bioengineers as described above, for example for designing, developing
and testing advanced control algorithms prior to clinical tests and chronic implementation
in patients.

The example of the emulation apparatus 1 described in detail below relates
specifically to DBS, in which the target area is the subthalamic nucleus (STN) or globus
pallidus interna (GP1), and the electrophysiological signal is a beta band signal which is a
frequency domain parameter in the beta frequency band (~20Hz) derived from the LFP
signal by frequency domain processing. Similarly, the stimulation signal has a waveform

for deep brain stimulation of the brain. The waveform may be selected to treat a disorder in
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the brain, including movement disorders, such as Parkinson’s disease (PD), or other
neurological and psychiatric disorders. The stimulation signal may take a conventional
form for this purpose.

By way of example, the stimulation signal may have a waveform 2 as shown in Fig,
2. In this example, the stimulation signal comprises a pair of stimulation pulses 3 of
positive and negative polarity. The stimulation pulses 3 are square in the example of Fig. 2
but in general may be of other shapes. The stimulation pulses 3 may have widths 4 in a
range from a lower limit of 0.1 ps, preferably 1 ps, to an upper limit of 5000 ms, preferably
500 ps. For example, the width 4 may typically be 60 ps. The stimulation pulses 3 may
have widths 4 that are the same or different. The pairs of stimulation pulses 3 may have no
separation or may have a separation. Where present, the separation may be less than 1000
us, preferably less than 500 s, typically 20 us, and/or may be less than the duration of
each of the pulses. The stimulation pulses may have an amplitude 5 in a range from 0.1 V
to 10.0 V. The stimulation signal may have a period 6 corresponding to a stimulation
frequency in the range from 1 Hz to 500 Hz, typically being 130 Hz in currently available
devices.

However, the example of DBS is not limitative, and the emulation apparatus 1 may
be adapted to other forms of stimulation of any target area of the nervous system of a
human or animal body. For example, the emulation apparatus 1 may be applied to
neuroscience applications where the target area is in the brain or any other part of the
nervous system. As mentioned above, a few examples are: closed-loop deep-brain
stimulation for movement disorders or psychiatric disorders, closed-loop spinal cord
stimulation (as used for example in chronic pain management), closed-loop cortical
stimulation (as used for example in seizure control), peripheral or autonomic nerve
stimulation, or closed-loop non-invasive brain stimulation.

Similarly, the electrophysiological signal derived from a target area of the nervous
system of a human or animal body may be of any form without limitation to the example of
a beta band signal. Some non-limitative alternative examples are an EMG
(electromyogram) signal, and EEG (electroencephalogram) signal, a MEG
(magnetoencephalography) signal or a ECG (Electrocardiogram) signal. The
electrophysiological signal may be of any electrical type including a voltage physiological
signal, a current physiological signal, an electrode impedance signal, and may in general be
an analogue signal or a digital signal.

The emulation apparatus 1 will now be described in more detail. The emulation
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apparatus implements a model of the target area in order to emulate the
electrophysiological system. The emulation apparatus 1 includes various functional blocks
that implement the model. Thus, the functional blocks in operation perform steps of a
method of emulating an electrophysiological signal derived from a target area of the
nervous system of a human or animal body under the influence of a stimulation signal
applied to the human or animal body.

To assist understanding in view of the complexity, the functions of the functional
blocks will be described first, before then describing the software and hardware
implementations of those functional blocks within the emulation apparatus 1.

The emulation apparatus 1 includes a prior signal generator 10 that generates a prior
signal representing the beta band signal, which is the electrophysiological signal in this
case, derived from the target area in the absence of the stimulation signal.

The prior signal may be a signal that is, or is derived from, a signal measured from
an actual human or animal body. For example, the signal may be measured from an actual
patient to be treated by a stimulation signal.

Alternatively, the prior signal may be a synthetic signal. In this case, the prior signal
generator 10 may implement a simplified and hypothetical representation how beta activity
is generated at the neural network level by a generator with different degrees of a tonic
activity corresponding to ongoing relatively stable background beta activity, and a phasic
activity representing a more sporadic bursting activity to produce the beta band signal z;
extracted from the overall local field potential recorded from the implanted electrodes.

In either case, the beta band signal can be either expressed in the power domain by

zz ,orin the voltage domain by mﬁm( ) (as described below in more detail).
v

Has)
The emulation apparatus 1 has a test signal input 20 that receives a test signal u,

representing a stimulation signal applied to the human or animal body.
The test signal may comprise a temporal signal representing the stimulation signal,

for example being a temporal signal having the waveform 2 of the stimulation signal shown
in Fig. 2. The test signal «,, may be generated by a test signal generator 21.

Alternatively, the test signal may comprise parameters representing the waveform
of the stimulation signal. For example in the case of the waveform 2 of the stimulation
signal shown in Fig. 2, the parameters may be the amplitude uy, , pulse-width u, and
frequency uy, of the stimulation signal.

The emulation apparatus 1 includes a modelling unit 30 which derives a modulation
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signal that represents the degree of modulation p, of the beta band signal by the

stimulation signal. The emulation apparatus 1 is based on an appreciation that the
stimulation signal modulates the beta band signal and that is possible to model the temporal
evolution of the modulation from the stimulation signal. Accordingly, the modelling unit
30 derives the modulation signal from the test signal which represents the stimulation
signal in accordance with a model implemented within the modelling unit 30 described in
detail below.

Thus, the emulation apparatus 1 also includes a modulation unit 40 that modulates
the prior signal in accordance with the modulation signal. As the prior signal represents the
beta band signal derived from the target area in the absence of the stimulation signal and

the modulation signal represents the degree of modulation caused by the stimulation signal,
the modulation unit 40 outputs an emulation signal 7,  that represents the beta band
signal derived under the influence of the stimulation signal. This may be implemented by
the modulation unit 40 including a multiplier 41 (in software or hardware) that multiplies

the prior signal representing the beta band signal z; by the modulation signal p

representing the degree of modulation, both being temporal signals, thereby producing the
emulation signal 7,  representing the beta band signal derived under the influence of the
stimulation signal.

The modelling unit 30 implements the model of the temporal evolution of the
modulation of the beta band signal caused by the stimulation signal models based on a
Hammerstein-Wiener model structure [Reference 2]. In particular, the modelling unit 30
includes functional blocks which operate on the test signal. An overview of the functional
blocks of the modelling unit 30 is as follows.

The command saturation block 31 receives the input test signal », and outputs a
limited test signal » which is a temporal signal representing the stimulation signal but with
its parameters (e.g. amplitude uy,, pulse-with u, and frequency w,, ) limited to be within
a clinically safe range to generate the actual stimulation pulse. For example, the limited test
signal u characterised by its amplitude u,, pulse-with v, and frequency u; .

The limited test signal « is input to a stimulation effect block 32 that models the

temporal evolution of the building of the stimulation effect state variable z;,. To increase

simulation speed, it is possible to use the stimulation pulse action u,, (input) represented

by the (mathematical) multiplication of the three stimulation parameters, instead of the
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actual stimulation pulse u (explained further down). This function is characterised by its

steady-state gain &, , time constant 7, and a continuous-time first-order differential

equation.

The output of the stimulation effect block 32 is input to a modulation dynamics

block 33 that models the state variable (output) z, representing the dynamic beta

modulation evolution/response function to the stimulation parameters. This function is also
represented by a continuous time-varying first-order system characterised by its time-
varying steady-state gain %, (¢) and time-varying time constant 7, (¢).

The stimulation effect block 32 and the modulation dynamics block 33 therefore
form two cascaded differential stages (being first order in this example) with time constants
of different orders of magnitude. In particular and as described in more detail below, the
time constant of the stimulation effect block 32 represents the low pass response of neural
membranes of neurons to the stimulation signal and the time constant of the modulation
dynamics block 33 represents the dynamic response of a gross average of the beta band
signal to the stimulation signal.

The stimulation effect block 32 and the modulation dynamics block 33 together
apply a gain of the modulation with respect to plural parameters of the stimulation signal as
described in detail below.

The output of the modulation dynamics block 33 is input to a modulation saturation
block 34 that models the state variable (output) z4 representing the limited modulation as a
response to the stimulation parameters, using a Wiener function. The modulation dynamics
block 33 represents a saturation of the modulation at a magnitude that is dependent on

plural parameters of the stimulation signal, for example each of amplitude v, , pulse-with

u, and frequency w, .

That said, the use of two cascaded differential stages (i.e. the stimulation effect
block 32 and the modulation dynamics block 33 in this example) is not essential. As an
alternative, a block performing a single first order differential function could be used
instead. For example, the stimulation effect block 32 may be omitted.

The output of the modulation saturation block 34 is input to a modulation algebraic

block 35 that outputs the modulation signal p,;, modelling the static algebraic relationship
between the degree of modulation represented by the modulation signal p; and the three

stimulation parameters amplitude w, , frequency «, and pulse-with u, . This may for
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example be an algebraic decrease, for example an exponential decrease. It is also possible
to position this algebraic function before the modulation dynamics block 33, and adapt its
relationship with an appropriate function.

The modelling unit also includes an external disturbance signal generator 36 that
generates an external disturbance signal w representing external disturbances to the beta
band signal. As described below, these external disturbances represented by the external
disturbance signal w include artefacts of the stimulation signal on the signal measured from
the human or animal body; DC-drift bias; electrocardiogram artefacts; and electrical noise.

The modulation unit 40 includes an adder 41 that adds the external disturbance signal w to

the emulation signal 7, ., to provide a modified emulation signal j; . The use of the

external disturbance signal generator 36 is not essential, but is advantageous in that the

modified emulation signal g, ~produced thereby better reflects the output of a practical

stimulation system.

The basis of the model implemented in the modelling unit 30 will now be discussed.

Many research studies have reported a decrease of the beta band signal (15 - 30 Hz)
recorded in the STN when standard high frequency electrical DBS is applied in the same
area to treat Parkinson’s disease (PD). In previous studies, the average of the beta band
signal decreased when the system reached steady state was quantified via the power
spectrum. This is illustrated in Fig. 3 which shows the standard power spectral response
(upper plot) to stimulation pulses having increasing amplitude (middle plot) and the
resultant LFP (lower plot) from the right STN obtained from a male participant with PD.
The amplitude of the electrical stimulation was varied with a constant stimulation
frequency of 130 Hz and a constant pulse-width of 60 us. The LFP was then filtered, and
the power was estimated using a wavelet transform. Fig 3 shows a visible decrease in the
power of beta band signal when DBS is turned on at different voltage amplitudes (enclosed
in boxes in Fig. 3).

The dynamics and frequency components of the power of the beta band signal was
investigated, applying the wavelet transform, were investigated. The dynamics of the
power changed with the amplitude of the stimulation pulses as shown in Fig. 4. It can be
seen that the frequency content of the beta envelope ranges between 0 and 5 Hz with a peak
around 1 to 1.5 Hz. Most importantly, there is a relationship between the level of beta
envelop reduction obtained and the amplitude of the stimulation applied. That is, the higher
the stimulation amplitude, the higher is the observed decrease in power of the beta band

signal (light to dark lines in Fig. 4 correspond to low to high amplitude stimulation,
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respectively).

Thus, it can be seen how the stimulation signal modulates the beta band signal. This
modulation is modelled within the modelling unit 3 as follows.

Based on a study of the results from Qian ef al. [Reference 3], the present inventors

have concluded that a linear static relationship is satisfactory for the aim to represent the

relationship between the log transformed beta reduction Pius and the three stimulation

pulse parameters: amplitude u,, frequency v, and pulse-with v, within a certain tested

range, when these parameters were tested independently while the other two parameters
were kept constant.
In this regard, three plausible candidate models were considered for describing the

relationship between the stimulation pulse parameters and the degree of modulation

represented by the modulation signal Plus) This relationship (log transformed) is given by

equation (1):
v

5

B

£10- log,,

(1)

Pb1am)

Pﬁ
s 12920 -logy,
Pﬁ
1

In equation (1), P, is the initial beta band power measured before stimulation
(when the stimulator is OFF), and P, the beta power measured during stimulation (when

the stimulator is ON).

Model 1 assumes that the beta reduction is a linear sum of the stimulation
parameters with no interaction between the stimulation parameters and shown in equation
2).

Po,, (e, ) = ey = (g, w9, w, + 9, 0) ()

In equation (2) ¢, is the intersect, and ¢ the constant gain associated with each
pulse parameter contributing to the overall beta reduction induced by the stimulation.

Model 2 assumes that beta reduction is related to the product of the three stimulation

parameters equation (3).
pﬁmz(ua,uf,up) =Co— g Uy Uy, Uy (3)

Model 3 is based on the hypothesis that the beta reduction is linearly related to the

electrical energy of the stimulation pulse equation (4).

Py, (ua,uf,up) =c,— g, u Uy, Uy 4)

Model 3 is based on the Total electrical energy delivered (TEED) as proposed by
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Koss et al. [Reference 4] given by equation (5).

u, "U/p"U/f

Preep = — r (5)

In equation (5) R is the equivalent resistance “seen” by the stimulating electrode,
and is encapsulated into the gain g, .

Both Model 1 and Model 2 capture the linear relationship between the stimulation-
induced beta reduction (log transformed) and the different stimulation parameters when
they are tested independently as shown in Qian et al. [Reference 3]. Model 3 is also
considered since TEED has been related to improve therapeutic window in Parkinson’s
disease (PD).

The goodness of fit and prediction accuracy was used to evaluate how the three
candidate models capture the results described in Qian ef al. [Reference 3]. 66 data points
in total were extracted from the linear regions (ignoring saturating data from lower or
higher stimulation parameters) from Figure 7, 8 and 9 of [Reference 3]. These included 18
data points with the stimulation amplitude ranging between 1.3 V and 3.0 V averaged
across 21 participants, where a constant stimulation frequency of 130 Hz and pulse-width
of 60 ps is assumed (Figure 7 of [Reference 3]); 15 data points (from each sub-figure) with
the stimulation frequency ranging between 80.0 Hz and 120.0 Hz averaged across 14
participants, with constant stimulation amplitude at 1.5, 2.0 and 3.0 V, and a pulse-width of
60 us (from Figure 8 of [Reference 3]) is assumed; and 33 extra data points (17 from the 60
us pulse-width graph and 16 for the 90 us graph) with the stimulation amplitude ranging
between 1.3 V and 2.9 V (2.8 V for the 90 us graph due to saturation at 3.0 V) averaged
across 6 participants, where a constant stimulation frequency of 130 Hz is assumed. Using
the Matlab function fitnlm designed for fitting nonlinear models, and with robust fitting
enabled, the three model structures were fitted to these 66 data points.

The ‘leave-one-out’ cross-validation method was used to evaluate the prediction
accuracy of each model fitted in the previous stage. To do this, in each iteration 65 data
points were selected to estimate the model parameters, and the remaining single data point
was used to test the predictive power of the model. This process was repeated 66 times for

each model separately, so each data point was used for testing only once. Finally, the

correlation coefficient R?, adjusted for number of parameters, between the model-
predicted value and the measured value, the mean prediction error £ and the standard

deviation (SD) of the prediction error p_ of the three models were quantified and

compared. The results are given in Table 1:
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Model 1 Model 2 Model 3
ga'ua ch—g. U C—g~u2
Equation ¢ —|+9, u, oo o
+g u xup~uf xup~uf
oY
¢, = +10.59
g, = —2.5075 €, = +2.47 ¢, = +0.84
Parameters ‘ s 0 0
g, = —6.8 x10 g, = +269.75 g, = +79.02
Adjusted R? 0.61 0.64 0.62
& p-value p < 2.67x107" p < 6.53%x1071 p <307 %1071
Mean error
0.050 0.069 0.059
g
Error SD: 4, 1.388 1.204 1.317

The comparison revealed that Model 2, in which the beta reduction is linearly

related to the product of the three stimulation parameters, provides the simplest relationship

and best data fitting, with a predicting power of R = 0.64; p < 6.53 x 109, whiles Model 1
has prediction capacity of R” = 0.61; p < 2.67 x 102, and Model 3 has a

RZ =2 0.62; p < 3.07 x 10 '* (c.f Table 1). However, those values are closed to each other

mainly because the number of data points available is relatively small given that all three
models have three variables.

Furthermore, the analysis of the prediction error ¢ in Fig. 5 shows that it is almost
normally distributed for Model 2, whiles being slightly positively skewed for the two other
models. Table 1 shows that the Model 2 has a mean prediction error g, = 0.069 , whereas
Model 1 and Model 3 have a mean value of g =~ 0.050 and &, =~ 0.059 respectively; values
that are very closed to each other. The prediction accuracy of these three models with
respect to the amplitude «, and frequency u,, and at constant pulse-with u, = 60 ps, can
be evaluated in Fig. 6 (wherein the mesh is the prediction, the dark circles are the actual
data, and the light circles are the data behind the predicted mesh).

In addition to this quantitative analysis, a qualitative analysis has been conducted to
further support the choice of one of these three proposed models. To this end, the situation

was considered where a constant beta power reduction of p; = —1.5 dB, which is a value

existing in all figures of [Reference 3]. Since there is not enough data for the pulse-width
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u, , only the effect of the amplitude «, and frequency «, parameters was considered for
this purpose. In this situation, the pulse-width is taken to be constantu, = 60 ps, and the
three models are written as given by equations equation (2), (3) and (4) in their updated
expression in equation (6).

P (o) = 0 = (90 + 97y )

P, (ua,uf) =c) — g, U, U (6)

pﬂma(ua’uf) =c, — 9, ug Sy

The values of amplitude and frequency required to achieve the constant beta power

reduction of p, = —1.5 dB are considered. Four pairs of data points have been estimated

directly from figures 7, 8 and 9 of [Reference 3], which lead to the desired constant beta

power reduction of p; = —1.5 dB as shown in equation (7).
130 1.35
118 1.50
= 7
[ =100 200 )
81  3.00

The relationship between the frequency «, and the amplitude v, is shown in Fig. 7,
when the modulation is equal to p;, = —1.5 dB.
From equation (6), the frequency v, can be expressed as a function of the

amplitude «, for the three candidate relationships as given by equation (8).

(7, =) = -
@%—%>i:

(e, =)

ga‘ua_gf ufl
‘ua‘ufz

2

s‘ua ufl

95
g

)

The first relationship is a straight line between the frequency «, and the amplitude
u,, whereas the second is a 1/ z and the third a 1/ o” relationship. In order to fit these models

onto our current data, general forms are taken as given by equation (9), and then the
optimal fit for these three cases is computed numerically (using the ‘fit’ function from

Matlab), as shown in Fig. 7.
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Fig. 7 shows that the actual data seems to follow closely Model 2 represented by a

1/ = relationship; whereas, the model 1 based on a straight line is clearly a poor fit. The last
analysis is to evaluate the slope between the beta reduction p and the stimulation

amplitude u, by taking the partial derivative with respect to the stimulation amplitude «, of
Model 2 & 3 given by equation (6) when the frequency u, is kept constant; the slopes of

both models are given on equation (10).

Moy _ A — ot

au P2 gs f

o (10)
Bz _ — 9.0 -u -ul=92. .

8%3 B Aﬂg =2 s - Yy uf =2 AP2 Uy

From equation (10), Model 2 implies a constant slop, whiles Model 3 implies that
the slope is proportional to the amplitude of the stimulation, which is clearly at odds with
data in Figure 7 of [Reference 3].

Overall, Model 1, based on a linear sum of the stimulation parameters, has the

poorest fit both to the actual data and to the situation where a constant beta power reduction

of p;, =—L15 dB is required. Model 3, based on the pulse total electrical energy, although

offering a good fit, implies that the reduction slope is proportional to the amplitude of the
stimulation, which is not the case. Finally, Model 2, based on the interaction of the three
stimulation parameters, both offers a good data fitting and a slope consistent with currently

available data. These conclusions are supported by a visual inspection of the prediction
accuracy given in Fig. 6 of the these three models with respect to the amplitude «, and
frequency u,, and at constant pulse-with w, = 60 ps .

In total, Model 2 provides the best data fitting and yet the simplest and most
consistent relationship, and therefore has been chosen as the structure of the static algebraic

relationship within the model implemented in the modelling unit 30 between log

transformed beta modulation Pl and the three stimulation parameters of amplitude «, ,

pulse-with u, and frequency u, as given by equation (11).
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(11)

with ¢, = +2.4657, g, = +269.7454
u, > 0, uf>0andup>0
The algebraic relationship implemented in the modulation algebraic block 35 will
now be considered. This may for example be an algebraic decrease, for example an
exponential decrease.

Modulation of the beta band signal induced by stimulation can be expressed in two

related domains: the power domain where z;  is the power of the beta band LFP signal,

Hlas)
and is particularly useful for designing and evaluating the overall functionality of the

closed-loop algorithm in simulation; the voltage domain where z;  is the beta band LFP

Fv)
voltage signal, and is particularly useful for designing and evaluating the overall
functionality of the real-time closed-loop algorithm and the signal conditioner
implementation (real-time estimation of the beta and extraction of its envelope).
Considering the power domain, equation (11) expresses the modulation of the beta
band signal in relation to stimulation parameters in the power domain: as a ratio of power.
Combining the definition of a power spectrum and equation (11) yields the identity in

equation (12).

(12)

From equation (12), P, is the initial beta band power measured before stimulation
(when the stimulator is OFF), and P, the beta power measured during stimulation (when

the stimulator is ON). The change of base formula allows to convert log,, into the natural
logarithm In as shown in equation (13).

L

log,, () x log, (z) = x In(z) (13)

loge(l()) ln(lO)

The static power ratio relationship given by equation (12) is expressed in the natural

logarithm base given by equation (14).

by In(10)
pﬁ(d}a)_ P_/Bj :T‘(Co_gs‘ua‘up‘uf) (14)

Taking the exponential on both sides of equation (14) leads finally to the expression
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of the direct relationship between beta power reduction Ps, in the power domain and the

three stimulation parameters: amplitude u, , frequency «, and pulse-with «, as shown in

equation (15).
P .
Pﬁ(uavupvuf )P - P/@S e(kUP Fop e uf)
B
=k, Uy Uy, U
= pﬁop [ P
—k,_ u,u Uy
= g, = B, oy = To, pg, € ’
(15)
, In (10)
with k, = ——+-¢, = +0.5678
P 10
. In (10)
= 1o -g, = +62.1111
and p, = ¢for ~ 4+1.7643
Op

Alternatively, the definition of the relative power used in spectral analysis may be

converted into the voltage domain. This time as a ratio of voltage is shown by equation (16)

'S 8
Pp (ua’uf’up )(dB) =10 -log), [P_;]
1

&]
Vﬂj

Similarly, equation (16), V, is the initial beta band voltage measured before

(16)

£920. log,,

stimulation (when the stimulator is OFF), and v, the beta voltage measured during

stimulation (when the stimulator is ON). Using equations (12) to (15), the direct

relationship between beta reduction Ps, in the voltage domain and the three stimulation

parameters of amplitude w, , frequency «, and pulse-with u, is shown in equation (17).
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Ps (ua’up’uf )V = V/@

= Vo, = Vs P57
(17)
In(10
with £, = £0 ‘e = +0.2839
In(10)
hy =~ 0, = 310356
and p, = ¢ ~ +1.3283

From this stage, when &, , kg , Pa, and p, are mentioned without their associated

indices, either the power or voltage domains is meant.
The dynamics of the modulation of the beta band signal are now considered.
So far, there have been presented the algebraic relationships governing the steady-

state behaviour of the modulation of beta band signal due to the stimulation parameters

amplitude v, , pulse-with u, and frequency u,. However, the knowledge of the time

course of the beta attenuation allows more sophisticated control algorithms that can
optimise for reduced side effects and energy consumption for instance.

Data processing for dynamic modelling is considered as follows. To achieve this
objective, STN LFPs were recorded from five participants with Parkinson’s disease (PD)

who were implanted with electrodes for deep brain stimulation (DBS). Standard electrical

stimulation with a pulse-width u, = 60 ps , frequency u, = 130 Hz and with different

amplitudes v, was applied in an on-off fashion to evaluate the ‘step’ response of beta

reduction to stimulation. The step response was also obtained by increasing the stimulation
amplitude step by step with several minutes between each step change.

A notch filter (based on the filtfilt function in Matlab) centred at 50 Hz with a Q-
factor of 30 was used in order to remove the artefact due to the mains. Then, the LFP signal
was filtered with a second order Butterworth high-pass filter of 1 Hz to remove any DC
component. This was followed by a second order Butterworth low-pass filter of 50 Hz to
remove the frequencies above the beta band of interest. Then, the power spectrum of the
filtered signal was computed using a standard wavelet transform approach, with 1 Hz
frequency resolution (Fig. 3). Then, the frequencies components that were close to the peak

beta frequency were added together. For participant 1, the frequency components between
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22 and 28 Hz were summed. For participant 2, frequency components between 22 to 32 Hz
were summed. For participant 3, frequency components between 15 and 30 were summed.

Fig. 8 shows an example of the step response of the beta band observed when DBS
was switched ON in the three participants. It took several seconds before beta reached its
reduced steady-state or static value.

Dynamic modelling considerations are as follows.

The main objective is to propose a model allowing the design and implementation
of (dynamic) closed-loop control algorithms. Such a model is required to be close enough
to the practical clinical situation where (temporal) electrical stimulations lead to temporal
evolution of the beta reduction. In another words, the model is between the actual electrical

stimulation pulses » from the output of the neurostimulator with a time scale in
microsecond, and the beta p; measured from the local field potential (LFP) with a time
scale in seconds. Thus, the goal is to propose a framework allowing to transpose (almost)

directly the design and implementation of the control algorithm based on simulation and
emulation, to the patient with minimal, if any, change.

To this end, two cascaded first-order differential dynamical functions #, and I,
are implemented to simulate the temporal evolution of the beta envelop responses to
electrical stimulation (the use of a single first-order differential dynamic function is also
possible), as follows.

A linear first-order continuous-time model H, is implemented within the
stimulation effect block 32 to describe the building up of the “stimulation effect’ z, that

defines the steady-state value or static beta reduction that will be reached after some times

(several seconds) following the start of the stimulation. This model is used to represent the
‘conversion’ of the actual temporal train of electrical stimulation pulses into an ‘effect’ that
will then drive the slow temporal beta reduction exemplified in Fig. 8 and represented by

the transfer function .
The transfer function H, represents proximal and fast reactions to the stimulation
pulses, whereas the transfer function H,, is used to represent more distal network wide and

slow phenomena. Thus, the transfer functions H, and H,, have time constants of different

orders of magnitude.
This approach is consistent to a physiologically based mean-field model of the basal
ganglia-thalamocortical system (BGTCS) shown to account to a good level for some

electrophysiological correlates of Parkinson’s disease (PD) [Reference 10], [Reference 11].



WO 2020/165591 PCT/GB2020/050337
22
Van Albada and Robinson capitalised on modelling work carried out over more than half
century by a large community of researchers to propose their mean-filed approach using a
linear second-order damped-wave equation to model at neurone level local transmission of
information, and a linear first-order equation to model information processing at distal level
between neural population which uses a second order damped-waves equation to model
propagation waves [Reference 10], [Reference 11]. In taking the past work modelling into
account, we have simplified it to use two linear first order equations: a linear first-order

continuous-time model H, to account for local neural processing, and a linear first-order
continuous-time model H,, to account for more distal network-wide and slow phenomena.
In doing so, we need to assume that the primary first-order model H, has a time constant
compatible with the time duration of the pulses in order for its output to reach a steady-
state value, here called an ‘effect’, that is directly proportional (direct product) to the
stimulation parameters, and would remain stable for stable stimulation parameters.
Therefore, the time constant of the primary first-order model 7, has to be necessary much
shorter than the time constant 7, observed on the more distal behaviour of beta envelop
response to stimulation (c.f. Fig. 8), represented by the second first-order system given by
the transfer function H,, (c.f below).

Conveniently the transfer function H, of the ‘stimulation effect’ z, given by
equation (18) is defined in the Laplace domain £ [Reference 5], where s represents the
Laplace variable, z, the state variable (output) that defines the steady-state value of the
beta envelop responses to electrical stimulation, » the electrical stimulation as the control
variable (input) of the stimulation effect, #, the steady-state gain and 7, the time constant

of the stimulation effect evolution in response to the stimulation « .

i (s) = fﬁj((;)) T, %§+1

(18)

with 7, < 1)
where “(¢)’ denotes a continuous-time variable, and ¢ € R* throughout this

document. Expanding the Laplace equation (18), and taking the inverse Laplace Transform

£~ from both sides leads to its differential temporal form in equation (19) required for

further modelling and practical implementation [Reference 5].

iy (1) + =2 (1) = 2£ u(2) (19)

e g
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The model given by equations (18) and (19) hypothesises that the stimulation effect
has a (proportional) linear relationship with the stimulation pulse parameters as defined by
equation (14) when the stimulation frequency is comprise within the linear range

(70 Hz < u; < 130 Hz). The choice of a first order low-pass system of equations (18) and

(19) is further consolidated by the fact the intrinsic lowpass filtering of electrical
stimulation signals by neural membrane is likely to be a universal property displayed by
neurons ; this lowpass filtering behaviour prevent neurons to follow a high stimulation
frequency [Reference 6], [Reference 7].

Moreover, in the previous section looking at the static relationship of stimulation-
induced beta modulation, it is shown that Model 2, postulating that beta reduction is related
to the direct product of the three stimulation parameters, is the best out of the three
proposed models to represent the structure of our static algebraic relationship between beta

power modulation p, and the stimulation parameters given by equation (11). As only the
positive alternance of the stimulation pulse is the ‘active’ part that leads to beta reduction
(the negative part is used for charge balance), it can be considered that the input of the
primary transfer function of the stimulation effect H, has a shaped of a square-wave signal

with a very small duty-cycle. In the standard situation this will be a positive pulse of 60 us

with a period of 1/130 ~ 7.7 ms , thus leading to a duty-cycle of roughly 0.0078 . If there is

used a first-order model with a time constant compatible with the duration of the

stimulation pulses and this duty-cycle, the output z, will reach an average value which is

directly proportional on the product of the three stimulation parameters: amplitude «,

2

frequency u, and pulse-with u, as required by equation (11). At this stage, for the efficient

implementation of this model for numerical simulation, it is completely equivalent in term
of steady-state behaviour to use the exact stimulation pulses as generated by an actual

neurostimulator, or to take directly the product of the three parameters of the stimulation
pulse: amplitude «,, pulse-with «, and frequency u, as the input of H, . In both cases, the
steady-state value will be very close to each other, but the dynamic behaviour different,
which is not relevant for our modelling goal, and would only last a very short period of
time. Herein, this is called the ‘combined’ set of the stimulation parameters the ‘pulse
action’ u,, shown in equation (20). The advantage of using this combined ‘pulse action’
up, rather than the actual stimulation pulse « is that the simulation will be much faster.

This approach is compatible with the fact that our goal is to develop control algorithms that
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act at hundred millisecond time scale to control the beta reduction behaviour that is in the
time scale of several seconds.

Upy = Uy U, Uy (20)

From now on, when reference is made to the stimulation command, the pulse action
defined in equation (20) is intended unless stated. And, for simulation purpose, the time

constant 7, is set in its compatible range: 1 ms < 7, <100 ms . In this implementation,
77 =10 ms is chosen.

The dynamic model structure is now considered.

A second first-order model is used to simulate the response of the beta envelop p,

to the stimulation effect z, , with a time constant 7, supposed to be the dominant time

constant (dominant pole); thus, with a duration much longer than the primary first-order

system H,:7, > 7,. This second system is represented by the dynamic transfer function
H, given in equation (21) in the Laplace domain £ [Reference 5]; where s represents the
Laplace variable, z;, the state variable (output) of the dynamic beta modulation
evolution/response function to stimulation effect z, as the control variable (input), &, the
steady-state gain and 7, the time constant of the beta envelop evolution in response to the

stimulation effect z;, (and subsequently the response to the stimulation pulse « ).

()= 2 = @

The transfer function given in equation (21) is represented in its expanded Laplace
form in equation (22).

wp(s) (1p s +1)=ky x5(s) (22)

Taking the inverse Laplace Transform £ ! [Reference 5], from both sides of
equation (22), leads to its differential temporal form in equation (23) required for further
modelling and practical implementation.

iy (1) + (1) = 22 (1) (23)

p p

Such a situation to cascade two first-order systems is classical in control
applications: the first leading the second with typically the time constant of the first system
being negligible compare to (much shorter than) the second, in order for the first system to

establish its action before being able to drive the output of the second system. This is
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essentially the approach adopted where the “stimulation effect” function z, has a time
constant 7, much shorter than the time constant 7,, of the “stimulation dynamics” function
z;,. Therefore, the total dynamic response of the beta envelop z, now in response to the
electrical stimulation pulse action u,, can be represented by the transfer function H,,

given in equation (24).

Hpy(s)= ;;((Ss)) = Hy(s) Hp(s)

kp y kp
T8+l 75-5+1

24)

kE 'kD

T TS+ (Tp ) s+ 1

The cascaded two first-order model hypothesises that the stimulation effect z,, is
proportional to the pulse action u,, in the steady-state regime, where it stabilises quickly

(within ~ 5 x 7, ) to a constant value given by equation (25).

Lim(mE(t)> ~ky up, =ky u, Uy, U (25)

t—00
Whereas the final steady-state value of the stimulation modulation is reached
following the end of the second first-order dynamics with has a much longer time constant

(within ~ 5 x 7, ). This final steady-state value is proportional to the static gains &, and &,
of both first order systems and the pulse action «,, as given by equation (26).

Lim(mD(t)):kE by upy = kg kyou, cu

t—o00

p " Us

= kg u, u, (26)

P
with kg = ky, - k),

In implementing the model, for convenience from equation (26) there has been set
kg = ky = k, =1, which allow us to account for variation of the gain %, by a direct
percentage of variation of %, .

The Matlab function procest may be used to identify the model parameters of the
continuous-time transfer function given by equation (24). Since the time constant 7, of the
first pole has been set to be negligible in comparison to the dominant pole 7, , for the

actual identification procedure a first-order model is fitted because the intention is to get an

estimate of the order of magnitude of the time constant 7,, rather than an accurate value.

Fitting a second-order transfer function leads to an over-dumped dual-pole each having a
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time constant roughly half that of a first-order transfer function, their sum being very close

to it. Fig. 8 shows examples of such a model using equation (21) fitted onto each patient’s

step response data (being the light lines). A total of 13 step responses were measured from
five participants with an average time constant 7, =~ 2.94 s + 3.85 s. The large standard
deviation in the time constant is indicative of non-normal distribution. The time delay 7,

found is essentially due to the ramping of the stimulation amplitude to avoid side effects,
and is not taken into consideration in the model.

A rapid variation is seen within the same participant in the time constant 7, (from
6 to 0.5 second) over a short period of time (less than 5 minutes in our case), for example
as shown in Fig. 9 while the static gain remained constant. In addition, a relatively rapid
variation of steady-state beta reduction p, for the same stimulation pulse is seen over a
longer period of time. Such parameter variation has to be taken into consideration by
effectively using a time-varying model rather than a time-invariant model as originally
presented in equations (21) and (23). Such a time-varying model is presented in equation

(27), where the time constant 7, (¢) and the gain of the stimulation modulation dynamic
kp(t) are both a function of the time variable. For simplicity, it is considered that the static
gain of the stimulation effect function &, remains constant. In such a case, the variation of
the overall static gain &, due to a variation of the steady-state beta reduction p, for the

same stimulation pulse mentioned just above, 1s simply assigned to the static gain &, . This

relatively rapid variation of the parameters of the stimulation modulation dynamic function
cannot be represented with the classical Laplace transform [Reference 8]. Instead, it is

directly represented in the time-varying differential equation given by equation (27).

ip(t)+a(t) z,(t)=b(t) z5(t) (27)

with a(t) = & b(t) = kp (1)

Th (t ) Tp ( t )
In summary, a second-order continuous time-varying system is used to model the

temporal evolution of the beta reduction p, in response to stimulation pulses « in order to

capture the main temporal features measured from patients. The time-varying time constant

and static gain is unusual, and will be particularly challenging when controlling the
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dynamic profile of the beta reduction in real-time.

The saturation of the modulation implemented in the modulation saturation block
34 will now be considered.

It is noted that Model 2 from equation (11) and (15) is only valid within a certain

range of each stimulation parameter. With a stimulation amplitude «, <1.3 V or

stimulation frequency u; <wu; =70 Hz, the reduction of beta power P, obtained does

not follow anymore the linear relationship established in equation (11), and seems to
remain roughly constant (c.f. Figure 8 of [Reference 3]). This indicates that a minimal
stimulation voltage amplitude and frequency are required to obtain a reduction of beta. At

the other extreme, when the stimulation frequency u, > ~ 130 Hz, beta reduction

U
szgh

saturates to a minimum value. However, different minimum values pg(’m> were reached for
dB

different stimulation amplitudes or pulse widths tested. This plateau value is lower for
higher amplitude and pulse-width, and higher for lower values; thus, the saturation limits

are dynamically dependant on the stimulation amplitude u,, pulse-with u, . Also, there is

an obvious limitation of the three stimulation parameters to a safe clinical range.
To take into consideration these two types of limitations, a Hammerstein-Wiener
model is generally used [Reference 2] as represented in Fig. 1. The stimulation parameters

are first limited to a safe clinical range by a Hammerstein memoryless (nonlinear)

saturation function f, defined by equation (28).

w(t)= Fy (6 uy, (8) g () (1))

Ugos iy, (1) > uly
& fy(t) =, (1) i uli <uy, ,(£)<ulsy (28)
Uy if oy, (1) <upy

From equation (28), u, , , represents each stimulation parameters limited

individually (6 in total): «™", u™> etc.

Then, to take into consideration the dynamic nonlinear response of the beta
reduction to stimulation pulse, a dynamic (nonlinear) saturation function is implemented, at
the output of the beta reduction model, by a dynamic Wiener memoryless (nonlinear)

saturation function f,, defined by equation (29).
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where T (t) =T (t) & Ty (t) =1y (t)

For the practical implementation of equation (29), =, =, ~and z;, needto have
the same dynamics for a smooth transition within the dynamic boundary of the saturated
modulation signal z,. As beta modulation z,, in response to the stimulation parameters
obeys a dynamic function (modelled here by a first-order dynamic function), since that
response cannot happen instantaneously. Similarly, the establishment of the beta
modulation boundaries z, ~and zp, cannot also happen instantaneously; it is natural to

consider that these boundaries follow the same dynamic as z,,. Therefore, the same transfer

function H,,, is used, here (second-order given in equation (24), to derive z,,, D and

z, .Alternatively, its equivalent time-varying differential equation given by equation

Low

(27) may be used when considering that #,, are time dependant. Fig. 10 shows the

structure of this dynamic Wiener memoryless (nonlinear) saturation function in more

detailed way based on the case of time-invariant H,,, for illustration; the case of time-

varying, H,, is replaced by the time-varying differential equation given by equation (27).
In the case of the time-invariant transfer function H, is written in the Laplace

domain £ [Reference 5], D> ¥ and z, by equation (30), where H,, is givenin

equation (24).
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(30)

“TSLW(S) - IDLW(S) = Hpyp(s) Upy,

= Hp, (s)x(ua u, ‘ufm)

In the steady-state regime, z;, , z, and z;, are given by equation (31), where &

2

is defined by equation (26).

Lim(mSHigh(t)) = Lim(mDHwﬁ(t)): kg -u, ‘U, ~uwah

t—00 t—00

ﬁgﬁ(%(t)) = Ry

G

Lim(mSLDw(t)) = Lim(mDm(t)) = kg -u, - u, =,

00
with kg = ky - k)
Combining equations (31), (15), and (16) the algebraic modulation boundaries is

finally expressed by equation (32). Note that equation (32) is valid for both power and

voltage domains, and that p; is defined by Ty, and vice versa for Ps, which is defined

by =g

High

If up < uf(t) <y

- fmgh

i) w05 () a0
= (1 up ) = pg, e
el )
1}

(32)

x tu U U ~kou (t)u (t)u
SHigh,Low(’ a’ 7p? ingh,Luw) =75 Ta P wah,Low

—zg
= tu U U = e Chowthd:
pﬁHwh,Luw ? e Tp? fH,L pﬂo
) frow, High

gpﬂo'e

The available evidence from the literature suggests that motor impairment shows a
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strong dependence on stimulation frequency. When this stimulation frequency is
sufficiently high, DBS can eftectively override the intrinsic pathological activity
[Reference 9]. Thus, stimulation frequency is the key parameter that conditions the

transition from a saturated to linear relationship in the beta band response to stimulation

parameter. A chosen minimum frequency u, = 70 Hz is required in order to reduce the

beta activity, whereas above the chosen maximum frequency u, = 130 Hz, a further

reduction can be obtained only by increasing the stimulation amplitude and/or pulse-width.

The effect of disturbances will now be considered.

Above there is discussed the modelling of the main characteristics of the temporal
evolution of the modulation of the beta band signal caused by the stimulation signal, which
is essential a neurological effect at the target area of the brain from which measurements
are taken. In addition, a set of other, as yet unmodelled phenomena may be taken into
consideration and represented as modelling noise and disturbances. A succinct description
of these disturbances is given for a sound completeness of the models proposed, although
not essential.

Disturbances may be classified into two categories.

The first category comprises disturbances that are applied to the functional blocks
of the modelling unit 30 described above. The first category includes a state disturbance v
that is applied to the modulation dynamics block 33 and directly affects the temporal
dynamics of the state variables of the dynamic evolution of the gross average of the beta

band signal and state variable of the stimulation effect z, . The first category also includes

a saturation disturbance m that is applied to the modulation saturation block 34 and affects
the generation of the saturated signal.

The second category of disturbances comprises external disturbances to the beta
band signal. These are of particular importance in the field of DBS because they have the
potential to cause significant distortions to the LFP measured from inside the target area.
The external disturbance signal generator 36 mentioned above generates an external
disturbance signal w representing external disturbances to the beta band signal of the this
second category as will now be described in detail.

As shown in Fig. 11, the external disturbance signal generator 36 includes four
functional blocks that output respective signals representing different types of external
disturbance, as follows.

The external disturbance signal generator 36 includes a stimulation artefact block

50 outputs a signal representing artefacts of the stimulation signal on the signal measured
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from the human or animal body. These are the main external disturbances and come from
the stimulation pulses themselves. Such artefacts can in the worst case be a million times
larger than the actual LFP signal recorded from the brain that is typically in the range of

1 ~ 10 pV . Such extremely low signal to noise ratio (SNR) is one of the most important
barriers in processing meaningfully signals recorded from the brain whiles simultaneously
applying high frequency electrical stimulations.

By way of example, Figs. 12 and 13 both show the same example, at two different
time scales, of a signal measured from the target area during simultaneous stimulation and
recording from a PD patient with a DBS implant. As can be seen from Fig. 13 in particular,
a single biphasic stimulation pulse is measured almost intact (although with reduced
amplitude) despite high common mode rejection in the differential amplification of the
recorded brain signal, and several stages of filtering. Such stimulation artefacts may in
some circumstances lead to large aliasing effects.

An example of such aliasing effects can be seen for example in Fig. 14 illustrating
actual data come from a simultaneous recording and stimulation where the amplitude

u, = 3.5V, pulse-with u, = 60 us and frequency u; = 130 Hz. Fig. 14 shows that the

impacts of stimulation artefacts are particularly deleterious and spread across a large

frequency band for a stimulation amplitude u, = 3.0 V, pulse-with v, = 60 us and
frequency u; = 130 Hz. In particular, Fig. 14a shows the main harmonic 130 Hz harmonic

as a dark strip. Fig. 14b shows the expected integer harmonics at 260 and 390 Hz also as
dark strips, and large number of aliased harmonics as lighter strips. And in Fig. 14c, itis
seen that that aliased harmonics are present inside the frequency of interest (0 — 100 Hz),
and especially the beta band (15 -30 Hz).

Although not the subject of this application, this type of artefact has let to numerous
publications on models to represent it and methods to mitigate it. Nonetheless, the
stimulation artefact block 50 outputs a signal representing these artefacts.

The external disturbance signal generator 36 includes a DC-drift bias block 51
outputs a signal representing the DC-drift bias. Such a DC-drift bias appears because of an
excess of charge accumulation over time on the electrodes used to measure a signal from
the target area and on tissue, due to electrode asymmetry and tissue properties. The DC bias
can potentially lead to the destruction of both the electrodes and the tissue, and is an
important issue to take into consideration. This issue is particularly present when passive
charge balance is used, and even with active charge balance albeit to a lesser level. By way

of example Figure 14 of [Reference 13] shows an example of the complex temporal
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evolution of the DC-drift bias with offset regulation charge balancer, which seems to
follow a second order under damp transfer function as the stimulation pulses are delivered.
Because this DC-drift bias is several magnitudes larger than the signal of interest, it can
lead to saturation and inadequate brain signal measurements.

The external disturbance signal generator 36 includes an electrocardiogram artefact
block 52 that outputs a signal representing electrocardiogram artefacts.

The external disturbance signal generator 36 includes a noise block that outputs a
signal representing noise, for example electronic components noise, (typically mains noise
including 50/60 Hz harmonics) and electromagnetic interferences due to electrical radiation
from external devices. Such different sources of noises add up together giving an elevated
noise floor that may corrupt measurements.

A specific example of the model implemented by the functional blocks of the
modelling unit 30 will now be given. This section defines the mathematical relationships
representing the full standard model, which allows its numerical and electronic
implementation, and forms the basis for the state-space representation of the ‘nonlinear

(Hammerstein-Wiener) stochastic time-varying differential-algebraic equation’ modelling

of how the beta reduction p, responds to the electrical stimulation parameters: amplitude
u,, pulse-with v, and frequency u, [Reference 2].
It is possible to express the transfer function between the state variable (output) z,

representing the dynamic beta modulation and the stimulation ‘pulse action’ wp,

representing here the input (and indeed the actual stimulation pulse « ), when considering at
this stage the modulation dynamics block 33 as a time-invariant system, by a second order
lowpass system given by equation (24), which is re-written in the standard canonical form
in equation (33) allowing the direct use of standard analysis results and derivation of the

state-space model [Reference 9].

kS‘wQ
HED(S): 2 ! 2
s +2‘§‘wn‘s+wn
with ke = kg - kp (33)

TE+TD

NTE " Tp

JE B
In particular, from standard analysis [Reference 9], the equivalent time-varying
ordinary differential equation expressed by equation (34) is derived directly, to which there

is added a zero mean stationary stochastic process v(t) to represent measurement and
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modelling errors of the state, a time-varying time constant 7,,(¢) and an overall time-

varying static gain k. (t) instead of constant as described above.
rying g 5

ip(t)=-a,(t )y (t)-a)(t)ip(t)+b () up,(t)+ov(t)

with i, (t) = dmi)ﬁ(t) i (t) = d%gt(t)
(1) = (1) = — (34)

a,(t)=2-&(t) w, (t) =75+ 7p(¢)
kot
(1) =k (1) = s
The actual saturated modulation state z¢ due to stimulation parameters is limited by
the Wiener memoryless (nonlinear) saturation function £, defined in equation (29), to
which there is added a zero mean stationary stochastic process m(t) to represent also
modelling errors of the actual saturated beta reduction factor as defined by equation (35).
wg(t)=Fy (oo (t),u, (t),u, (t), up (1)) + mt) (35)
The static algebraic relationship p, allows to estimate the reduced beta magnitude
Ug,,, due to electrical stimulation using equation (15), to which there is added the external

disturbances w composed of the stimulation artefact, electrocardiogram artefact and noise;

this estimated reduced beta j,  is expressed by equation (36).

iy, (1)=ps -y () +w(t)  (36)
A mono-biomarker state-space model may be applied as follows.
In order to establish the our mono-biomarker state-space model (based on beta band

— B8 —only), a change of variable is operated as per standard canonical transformation to

re-write equation (34) of z,, by equation (37) [Reference 9].

v (t) ==, (t) &z (t)=,(t)
G7)

(a) = I4(t)
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The exact same principle is followed to re-write equation (24) of z, ~and Zp, by

equation (38).

T (t) =2y, (t) & IQ(t) = CtDHwh (t)

(38)
Ty (t) = iDHwh (t)
(a) = (t)
(o) |, (t) =i, (¢)
=—a -1 (t) — Gy T (t) + b UPAHW (t)
Rewriting z;,  from equation (24) provides equation (39).

7 (t) = wp, () & a5 (t) = @5, (1)

(39)

& ()=, (¢)

(a) = IG(t)
(b) :tG(t)::ﬁDm(t)

= —a - IS(t) — a2~m6(t) + bl'uPALow (t)

The mono-biomarker continuous-time ‘nonlinear (Hammerstein-Wiener) stochastic
time-varying differential-algebraic state-space equation’ (see below for the demonstration
of its differential-algebraic nature) is given by equation (40), where a lowercase letter
represent a unidimensional variable, uppercase for a vector and bold uppercase for a

matrix.

U(t) = Fu (t g () (1) uys (1))

T
- ua’up’uf]

Upy(t) = fou (t U(t), Ut ufm)

X(t)=A(t) - X(t)+B(t) Uy (t)+F V(t) (40)

zg(t) = Fy (¢, Y (t)) +m(t)

Do (1) = 05, oy () (1)
From equation (40), U represents the limited stimulation pulse (here expressed as a

vector) to a safe clinical range of the original neuromodulation pulse parameters uy, , , as
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defined by equation (28). U,, is the ‘pulse action’ vector defined by equation (41) based on

equations (20) and (30).
uPAHwh(t)
Upa ()= | upy (8) [= fou (£, U(0) oy )

uPALow(t)
Uwah u

S]] N e H e
up P
u () -y (t) - ug,

= (6) (1) 1)
ua(t ‘up(t) ufm

X is the state vector, X is the derivative of the state vector defined by equation
(42) based on equations (37), (38) and (39). In equation (42), the vector V is a zero mean

stationary stochastic process, whereas Y is the output vector.

X(1)=[n(t) ay(t) my(e) mi(t) (1) o))

(42)

fE%h(t) wp(t) IDW(t)]T

From equation (40), A is the state matrix, B is the input matrix, F is the state

measurement and modelling error matrix, C is the output matrix and y the scalar output.
These matrices are defined in equation (43).

Finally, from equation (40), the saturated modulation state z, is defined by
equations (29), (30), (32) and (35); whereas the estimated reduced beta band 7, is defined

by equations (15) and (36).
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The model given in equation (40) is based on a single biomarker; here the beta band
4, but defined with two variables: the dynamic evolution z,, of the beta envelop and its
derivative .

As an important note, Wills ef al. have proposed an approach to identify
automatically and online Hammerstein-Wiener state-space models [Reference 2]. This
approach could be used with the model in order to update automatically its time-varying
parameters, as well as individualised it to a particular person. Also, data presented by Qian
et al. [Reference 3] used for deriving the steady-state behaviour of our model is limited to a
narrow region of the complex nonlinear space of the beta response to stimulation as
suggested by the mean field model of the basal ganglia-thalamocortical system (BGTCS);
this model has a structure and parameters based on physiology and anatomy, and has been
shown to account for some electrophysiological correlates of Parkinson’s disease (PD)

[Reference 10], [Reference 11]. It is expected that the time-varying static gain k,(¢) to be

dependant not only on the time variable, but also on the stimulation

parameters: kg (¢ ) = f; (t, u, (t),up (t),uf (t)) . In this way, it would possible to replicate
nonlinear and time dependant behaviours of beta response to stimulation as studied by
Grado et al. [Reference 12]. Thus, our proposed model is a global and steady-state
approximation of the complex nonlinear behaviour of beta response to stimulation, that can

be easily adapted by setting the adequate time constant 7,,(¢) and static gain k(¢) to the

region of interest.
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In order to establish the structure of the model (ordinary differential equation
(ODE) vs. differential-algebraic equation (DAE), it is evaluated if the determinant of its
Jacobian matrix is singular (non-invertible) leading to a differential-algebraic equation
(DAE), or non-singular (invertible) leading to an ordinary differential equation (ODE). To
express the Jacobian matrix, the situation is considered when the system is not saturated (in

the linear region of both Hammerstein and Weiner saturation functions f, and f,
respectively) with no disturbances; therefore when =z, = =, = 2, i, = 2, and

v=m = w = 0. Equations (36) and (37) are combined to set the non-saturated system of

equations (44). A change of variable from z to 2 is done in order to avoid confusion.

=2 (t)—2(t) =0
Fy=ay -2 (t)+2, (t)+ay 2 (t)= b up, (t) =0 (44)
Bmpy 0 (el =0

Setting the state vector 7 = [z1 Zy 2 ]T, the system from equation (44) can be re-

written on its matrix form in equation (45).

F (. 2(t). 2(1))

F(t,Z(t),Z(t)): FQ(t,Z(t),Z'(t)) =0 (45)

Fg(t,Z(t),Z'(t))
The determinant of the Jacobian matrix |3F/3Z | of the system F (t L Z(t), 72 (t))

given by equation (46) is singular (non-invertible), leading therefore to conclude that our

model has the structure of a differential-algebraic equation (DAE).

OF, OF, OF,
04, 9% 04| I o o

or| _lof ot o5 |y ol

07| |0z, 0z, 04 (40)
or, orF, or,| 1°°°
0 0%, 0

A multi-biomarker state-space model may be used as follows.
Finally, the model given by the state-space equation (40) can be easily extend by
adding additional biomarkers of Parkinson’s disease (PD). In order to exemplify this, let us

consider that three biomarkers of PD have been retained: the beta band noted with the
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index 3 and defined by the state variable X, , a putative biomarker X (which could be for

example the alpha band, gamma band, or a combination of frequency bands) defined by the

state variable X, and the tremor 7' measured by an accelerometer attached to the subject’s
wrist defined by the state variable X, . Supposing that all three biomarkers respond on their

own way to the same stimulation command U , and are not coupled to each other (i.e. do

not interact with each other). In this case, the multi-biomarker continuous-time ‘nonlinear
(Hammerstein-Wiener) stochastic time-varying differential-algebraic state-space model in
equation (47) is given by the same structure of the equation (40), but extended to take into

consideration the new biomarkers X, and X .
U(t) = Ja (£ uwe () mg (1) (¢))
Up (t): Jpa (t ) U(t) R ufm>

Xo(t)=Ag(t) X,5(t)+By(t) Upy(t)+E;Vy(t)

® (47)

@ Xy (t) =Fy (1. Y (t) )+ P-M(t)

OY(t) =T, (t, Xs(t)) X, (1) +Q -W(t)

From equation (47), the first relation ®@ defines the command variables. U is the
limited stimulation pulse parameter vector derived from the original neuromodulation pulse
parameters u,, , , as defined by equation (28). U, is the ‘pulse action’ vector defined by
equation (41). For the same reason as already mentioned above, for the efficient
implementation of this model for numerical simulation, it is completely equivalent in term
of steady-state behaviour to use the exact stimulation pulses as generated by an actual

neurostimulator, or to use the ‘pulse action” U,, shown in equation (41). The advantage of

using this ‘pulse action’ U, rather than the actual stimulation pulse is that the simulation
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will be much faster.
The second relation @ from equation (47) defines the multivariable state-space
equation here represented as three sub-set of equations for more clarity; they can be indeed

grouped into a single expression by simply concatenating them vertically. X, , are the

state vectors of the three states variables considered in this case: the beta band, the putative

biomarker X, and the tremor 7 respectively; X, , ;. are their respective derivatives, and
both are defined by equation (48). Matrices A, , ,, the state matrices, have exactly the
same structure as the matrix A given by equation (43), where o, and «, are replaced by

their equivalent variables: o, — ¢ 1and ay — ay, , - Similarly, matrices B, , ,, the

BAT ,

B,A,

input matrices, are each defined exactly as the matrix B given by equation (43), and

operating the same variable renaming as per above: 5, — by AT Whereas, matrices F,, ,,

the state measurement and modelling error matrices, are each defined exactly as the matrix

F given by equation (43): F;, , =F.

Ko (t)=[Tanr (1) Toar(t) Toar (1)

Zoa (1) B (1) B (O]

(1) oo (1) (48)

ol

DHzgh

Drow Drow

o

Vectors V, , , are zero-mean stationary stochastic processes to represent state

VB,A,T(t):[Uﬂ,A,THM(t) “ﬂ,A,T(t) Ys a1

Low

measurement and modelling errors.
The third relation @ from equation (47) represents the multivariable output

equation, where Y, , ;. are the output vectors defined by equation (49). Matrices C, , ,, the

output matrices, are each defined exactly as the matrix C given by equation (43):

Conr=C.

T

Vorr(O)=[or (1) Tonr (1) Tonr (1))

(49)

T

(t)

From equation (47), the fourth relation @ is the multivariable dynamic Weiner

Tiar () Iﬂ,/\,TD(t) Lo AT

DHzgh

Drow
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saturation relationships which are defined by equation (50), where X is the saturated state
dynamics vector, F,, is the dynamic Weiner saturation vector, P and M are respectively

the modelling errors of the actual saturated state dynamics matrix and vector.

® Xg(t) = Fy(t,Y(t))+P M(t)

with
0 h, (1. Y5(1))
Xy (t)= mzi(t) & By ()= (6, 1(1))
zg (1) . (50)
I, (t’YT(t)>
100 my (t)
P =101 0] & M(t)=|m,(t)
00 1 me (t)

Finally, from equation (47) the fifth relation ® is the static algebraic equation,

where Y is the estimated output vector, F, is the algebraic function matrix, X, is the
saturated dynamic state vector, X, is the algebraic input vector, Q and W are respectively

the external disturbance matrix and vector. Those vectors and matrices are defined by

equation (51).

®.}£(t) =F,(t, Xg(t) ) X, (t)+Q -W(t)
A Us,.,, () v, (1)
() =i (0] € X, (0)= e (0

i (t) 7 (t)

(1)

fAﬁ(t, fvsﬁ(t)) 0 0

F,(t.)= 0 IAEND) 0
0 0 fAT(t, mST(t))

100 wy (t)

Q =1010] & W(t)=|w,(t)

001 wy (t)

In equation (51), f, , , are the actual algebraic function used for predicting each of

the estimated state variable, and are defined in equation (52).
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fAﬁ(t, Isﬁ(t)> = py, ‘efzsﬁ(t) -z, (t)

Li(tos(8) = oy, e (1) (52)

7IT)\(t)
fAT( t, J:ST(t)) - pTO € ‘mT(t)

It should be highlighted here that the state-space model is not unique and depends
on particular choices related to the modelling goals. As already mentioned, in the following
definition, it is also considered that the three biomarkers beta 3, the putative second
biomarker )\ and the tremor 7 are decoupled from each other; i.e. they do not interact.
This does not have to be the case, and in the situation of coupled biomarkers our
multivariable model structure applies as it, and one has only to adapt the actual definition
of the vectors and matrices used accordingly.

Finally, by applying classical continuous-time to discrete-time transformation, there
is obtained the discrete-time equivalent of the continuous-time mono- or multi-biomarker
‘nonlinear (Hammerstein-Wiener) stochastic time-varying differential-algebraic state-space
model’ given respectively in equations (40) and (47). It is indeed these discrete-time
expressions that are actually implemented in a software implementation, as discussed
further below.

The emulation apparatus 1 may in general be implemented entirely in software,
entirely in hardware or in a combination thereof by implementing different functional
blocks in hardware or software. Some key aspects to facilitate the implementation of the
software and hardware emulation are highlighted as follows.

For a software implementation, the emulation apparatus 1 may be implemented by a
computer program capable of execution by a computer apparatus. The computer program is
configured so that, on execution, it causes the computer apparatus to operate as the
emulation apparatus 1 and perform the emulation method. In this case, the emulation
apparatus 1 processes digital signals representing the various signals mentioned above.

The computer apparatus, where used, may be any type of computer system but is
typically of conventional construction. The computer program may be written in any
suitable programming language. The computer program may be stored on a computer-
readable storage medium, which may be of any type, for example: a recording medium
which is insertable into a drive of the computing system and which may store information
magnetically, optically or opto-magnetically; a fixed recording medium of the computer

system such as a hard drive; or a computer memory.
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In one convenient implementation, the emulation apparatus 1 may be implemented
by a computer program in a simulation environment such as Matlab/Simulink.

In general, the practical realisation of the emulation apparatus 1 in software is
straightforward merely by implementing the different function blocks described above by
corresponding software blocks. Some optional details are as follows.

The implementation of the prior signal generator 10 can be done in two different
ways. First, one can generate the prior signal as synthetic data that represent some aspects
of current understanding of the LFP characteristics. In such a case, this function generates
the synthetic envelope of the beta band activity either as the envelope of the power of the
beta activity together with a carrier represented by a sinewave or a sum of sinewaves used
to represent the beta band. This carrier will be then temporally multiplied by the modulated
envelope (modulated by the stimulation command) in the modulation algebraic function.

An alternative solution is to use data directly recorded from an actual patient (i.e. a
person with Parkinson’s disease) when the stimulation is OFF. After adequate filtering and
processing of the beta power envelope, the data can be used as the signal that will be
modulated by the stimulation.

In addition, both the synthetic and actual participant data can be also directly
defined at the temporal/voltage domain as opposed to the frequency/power domain as
described above. Depending on the choice of the temporal vs. frequency domain, the
correct set of parameters needs to be used as described above.

Turning to the modelling unit 30, the command saturation block 31 may be
implemented by a classical saturation function.

The stimulation effect block 32 may be implemented by a first order system. From

equation (33), a simple approach is to set &, = 1, leading to express &, by equation (53).
kp =1=ky = kg (53)
Since the numerical value of k4 is different depending on the domain (frequency vs.
temporal) of the LFP provided by the LFP Generator function, &, can be seen as a variable

parameter with regard to the domain of functioning (frequency vs. temporal).

The modulation dynamics block 33 may be represented in its temporal or recurrent
form for digital implementation. As mentioned above, since the modulation dynamics
function is a time-variant first order system given by equation (27), it cannot be represented
by a classical Laplace transfer function. An example of such implementation under
Matlab/Simulink is presented in Fig. 15. In such case, there is a need to choose the right

method of integration implemented by the discrete-time integrator. For instance, under
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Matlab/Simulink with a fixed-step discrete solver (no continuous state), the forward Euler
integration method could be chosen to avoid algebraic loop during the initialisation stage.
Alternatively, one can decide to consider a stationary model for a given period where the
model parameters are seen as constant; thus, allowing the modulation block to be
implemented by classical Laplace transform transfer function.

The modulation saturation block 34 may be implemented by a dynamic saturation
function.

The modulation algebraic block 35 may be implemented directly by equation (15).

Fig. 16 shows an example of signals developed within a software implementation of
the emulation apparatus. This example uses data from the actual participant between 0 and
114 seconds when the stimulation is OFF, which are repeated until the end of the
simulation at 1420 seconds. The top plot shows the estimated beta power LFP response to

stimulation g, , whiles the second plot (from top) shows the actual beta power response
ys,,, recorded from the participant. The third plot shows the saturated modulation z; and
the modulation algebraic p; calculated by the model. The fourth plot shows when the

stimulation is ON or OFF together with the actual stimulation amplitude «, applied to the

participant brain. For modelling, the signal is the same.

For a hardware implementation, the emulation apparatus 1 may be implemented
using standard electronic components, for example as follows.

The emulation apparatus 1 may be implemented either in an analogue, digital or
mixed-design fashion. In the following example, an analogue implementation is described,
but could be combined with the software implementation of any of the functional blocks as
described above if a mixed-design approach is chosen. In that case, typically a supervisory
computer will control the emulator, although this is not required, while a processor is used
to implement the digital parts.

The prior signal generator 10 can use directly either the synthetic or actual
participant data signal produced by the software implementation. Another possibility for
the prior signal generator 10 to be implemented by an external signal generator, or an
arbitrary wave generator (AWG) or another computer with a digital-to-analogue converter
if it is desired to totally desynchronise the hardware emulation apparatus from the
supervising computer. The latter option guarantees a complete desynchronisation between
the LFP generator and the hardware emulation apparatus 1. Such a situation can be

important if the hardware emulation apparatus 1is used in closed-loop fashion to implement



WO 2020/165591 PCT/GB2020/050337
44

and test new advanced control algorithm for managing the symptoms of PD.

Turning to the modelling unit 30, the test signal is typically a temporal signal
generated by the test signal generator 21, which may be part of an external
neurostimulation device under test.

The command saturation block 31 may be implemented by a clamp operational
amplifier or by a saturation circuit which operates to limit the voltage amplitude of the
stimulation pulse. Limiting the pulse-width and frequency is a more complex task that is
best performed at the supervisory computer level, or at the level of the external
neurostimulation device, if it is used.

An alternative situation where the test signal represents parameters representing the
waveform of the stimulation signal is for the command saturation block 31 to be
implemented as a neurostimulation device which generates temporal stimulation signal in
accordance with the supplied parameters, in which case the limitation function may be
implemented by control of the supplied parameters prior to generation of the temporal
signal.

The stimulation effect block 32 may be implemented by a circuit of the type shown
in Fig. 17 and arranged as follows.

The first stage of the stimulation effect block 32 is a rectifier 50 which can be either
a classical half-wave rectifier if the negative pulse is considered not to be physiologically
meaningful, but simply for charge balance at the neural level, or otherwise by a full-wave
rectifier.

The next stage of the stimulation effect block 32 comprises first and second
resistors 51 and 52 and a switch 53 which implement equation (20) of the ‘pulse action’

up, noting the very small duty cycle (7, /TON = 0.0078) of the standard stimulation pulse

(60 ps at 130 Hz ). The first resistor 51 is connected to the output from the rectifier 50 while
the second resistor 52 is connected to ground. The switch 53 switches synchronously with
the stimulation pulses 3, connecting to the first resistor 51 when the pulse is on and to the

second resistor 52 when the pulse is off. This approximates u,, at the pulse level, which is

required especially when one desires to drive the hardware emulation apparatus 1 by an
external third-party neurostimulation device as the test signal generator 21. The output of
the switch 53 is connected to a capacitor 54 which is connected to ground and is therefore
charged through the first resistor 51 when the stimulation pulse is ON, and discharged
through the second resistor 52 when the stimulation pulse is OFF.

By choosing the resistance R, of the first capacitor 51 and resistance R, of the
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second capacitor 52 such that R, > R, the brief charge acquired when the stimulation is

ON (typically 60 s )1is ‘preserved’ to a certain level when the stimulation is OFF (typically
around 7.6 ms for a stimulation frequency of 130 Hz ). This avoids the capacitor C
discharging too much or completely when the pulse is OFF, which in turn generates a more

stable average voltage across the capacitor v, > 0 as shown schematically in Fig. 18.

The output of capacitor 54 is connected to a low pass filter 55 which extracts the

‘average effect’ U, and also used to implement the transfer function #, of the
‘stimulation effect’ z, given by equation (18) by adding an amplification stage 56 after the

low pass filter 55.
The modulation dynamics block 33 may be implemented by a tunable lowpass filter
based on a voltage-controlled amplifier (VCA), which is used to implement the variable

time constant 7, (¢) of the stimulation modulation dynamic. In such case, the VCA serves

as a variable-gain of the voltage-controlled lowpass filter. Alternatively, one of many
alternative ways to implement a voltage-controlled filter (VCF) may be implemented.

In order to implement the variable gain %, (¢) of the stimulation modulation

dynamic, a classical voltage-controlled amplifier (VCA) can be used.

The modulation saturation block 34 requires a dynamic saturation function where
both the lower and upper limits can be dynamically set. Thus, the modulation saturation
block 34 may be implemented by a voltage clamp operational amplifier or an equivalent
circuit.

The modulation algebraic block 35, when providing an exponential function, may
be implemented by a voltage-controlled amplifier (VCA), or by a commercially available
integrated circuit that directly offers an exponential transfer function.

In the above example, the electrophysiological signal is a beta band signal which is
an example of a signal representing a frequency domain parameter. However, as an
alternative, the electrophysiological signal represented by the prior signal may be the LFP
signal itself, which is a voltage measured from the target area, or more generally any signal
measured from the target area. This is possible, with appropriate adaption of the model
implemented by the emulation apparatus 1, because the frequency domain parameter is
derived in a linear manner from the measured signal. In this case, the emulation signal
output from the emulation apparatus is similarly the signal measured from the target area
derived under the influence of the stimulation signal. In this case, if the frequency domain

parameter, for example the beta band signal, is of interest, then emulation apparatus 1 may
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further comprise a frequency domain processing unit (not shown) which processes the
emulation signal in the frequency domain to derive a processed emulation signal
representing a frequency domain parameter of the electrophysiological signal derived under
the influence of the stimulation signal.

Fig. 19 shows an example of signals developed within a hardware implementation
of the emulation apparatus. Fig. 20 shows the same hardware emulated signal as Fig. 19 but
magnified for the time period between 18m40s and 22m90s. Fig. 21 shows the same
hardware emulated signal as Fig. 19 but magnified for the time period between 20m11s and
20m43s. Fig. 22 shows the same hardware emulated signal as Fig. 19 but magnified for the
time period between 20m18s and 20m27s. The data was recorded with a PicoScope 5442B
and the PicoScope software (version 6.13.6.3775). The plots show the actual stimulation
amplitude 60 and the beta power LFP estimated oscillations 61, the beta power LFP initial
envelope 62 and the beta power LFP estimated envelope 63.

This example is the same as above, but this time the modulation level is determined
by the hardware implementation. In particular, the modulation is derived directly from the
actually generated stimulation pulses whose amplitude is directly controlled by the actual

stimulation amplitude «, applied to the participant brain. The only difference is that, when
the stimulator is turned OFF, the minimum amplitude U determined by the equation

below:

ln[%]
_ Po
ua‘OFF (V) - kE ‘kD " (54)

Porr Torr

The minimum amplitude u,  is necessary to guarantee that when the stimulator is

turned OFF, the emulator calculates the right modulation amplitude, which the
modulization has shown to be slightly higher than the actual amplitude of the beta activity

recorded from the patient. For the current patient results shown here, u, ~~1.055 V.

This real-world data shows that the hardware emulator can remarkably well
replicate actual electrical data recorded from actual patient brain, and therefore offers
accurate patient brain activity emulation.

Fig. 23 shows an example of signals developed within a hardware implementation
of the emulation apparatus in closed-loop. Fig. 24 shows the same hardware emulated

signal as Fig. 23 but magnified for the time period between 58s and 1m8s. The plots show
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the actual stimulation amplitude 60 and the beta power LFP estimated oscillations 61, the
beta power LFP initial envelope 62 and the beta power LFP estimated envelope 63.

This example implements the current state-of-the-art in closed-loop DBS in
Parkinson’s disease disclosed in [Reference 14]. Contrary to [Reference 14], in this
example, we set two threshold values 64 and 65 for the beta power LFP estimated envelope
63, the higher threshold 64 being at 0.75 (representing here the classically used 75%
percentile threshold value as in [Reference 1]), and the lower threshold 65 being at 0.5
(representing here therefore 50% percentile).

When the temporal beta burst activity increases above the higher threshold 64, the
stimulation is turned ON with an amplitude of 3 V, pulse-width of 60 us and at a frequency
of 130 Hz as with current standard in clinical applications. Then, when the temporal beta
(envelope) activity decreases below the lower threshold 65, the stimulation is turned OFF
again.

This real world data shows that the emulation apparatus is able to replicate closely
the switching pattern found in the literature during an aDBS control algorithm as disclosed
in [Reference 14].

Overall, these open- and closed-loop results demonstrate the potential of the
software and hardware emulation apparatuses to provide the state-of-the art in brain signal
emulation to support the design and real-time implementation of advanced control
algorithms for treating neurophysiological disorders in human.
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Claims

1. An emulation apparatus arranged to emulate an electrophysiological signal derived
from a target area of the nervous system of a human or animal body under the influence of
a stimulation signal applied to the human or animal body, the emulation apparatus
comprising:

a prior signal generator arranged to generate a prior signal representing an
electrophysiological signal derived from a target area of the nervous system of a human or
animal body in the absence of a stimulation signal;

a test signal input arranged to receive a test signal representing a stimulation signal
applied to the human or animal body;

a modelling unit arranged to derive a modulation signal, which modulation signal
represents the degree of modulation of the electrophysiological signal by the stimulation
signal, from the test signal in accordance with a model implemented within the modelling
unit of the temporal evolution of the modulation of the electrophysiological signal caused
by the stimulation signal; and

a modulation unit arranged to modulate the prior signal in accordance with the
modulation signal to output an emulation signal representing an electrophysiological signal

derived under the influence of the stimulation signal.

2. An emulation apparatus according to claim 1, wherein the model represents an

algebraic change in the modulation with at least one parameter of the stimulation signal.

3. An emulation apparatus according to claim 1 or 2, wherein the model includes two

cascaded differential stages with time constants of different orders of magnitude.

4. An emulation apparatus according to claim 3, wherein one of the time constants
correspond to the low pass response of neural membranes of neurons to the stimulation

signal.

5. An emulation apparatus according to claim 3 or 4, wherein one of the time
constants represents the dynamic response of a gross average of the electrophysiological

signal derived from the target area of the nervous system to the stimulation signal.
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6. An emulation apparatus according to any one of the preceding claims, wherein the
model further represents a saturation of the modulation at a magnitude that is dependent on

at least one parameter of the stimulation signal.

7. An emulation apparatus according to claim 6, wherein the model further represents
a saturation of the modulation at magnitudes that are dependent on plural parameters of the

stimulation signal.

8. An emulation apparatus according to any one of the preceding claims, wherein the
model represents a gain of the modulation with respect to plural parameters of the

stimulation signal.

9. An emulation apparatus according to any one of the preceding claims, further
comprising an external disturbance signal generator arranged to generate an external
disturbance signal representing external disturbances to the electrophysiological signal, the
modulation unit being arranged to add the external disturbance signal to the emulation

signal.

10.  An emulation apparatus according to claim 9, wherein the external disturbances
include one or more of

artefacts of the stimulation signal on the signal measured from the human or animal

body;
DC-drift bias;
electrocardiogram artefacts; and
electrical noise.
11. An emulation apparatus according to any one of the preceding claims, wherein the

electrophysiological signal comprises a signal representing a frequency domain parameter

of a signal measured from the human or animal body.

12. An emulation apparatus according to any one of the preceding claims, wherein the
prior signal is a synthetic signal, or the prior signal is, or is derived from, a signal measured

from an actual human or animal body.
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13. An emulation apparatus according to any one of the preceding claims, wherein the
test signal comprises a temporal signal representing the stimulation signal or comprises

parameters representing the waveform of the stimulation signal.

14. An emulation apparatus according to any one of the preceding claims implemented

by electronic components.

15. A method of emulating an electrophysiological signal derived from a target area of
the nervous system of a human or animal body under the influence of a stimulation signal
applied to the human or animal body, the method comprising:

generating a prior signal representing an electrophysiological signal derived from a
target area of the nervous system of a human or animal body in the absence of a stimulation
signal;

receiving a test signal representing a stimulation signal applied to the human or
animal body;

deriving a modulation signal, which modulation signal represents the degree of
modulation of the electrophysiological signal by the stimulation signal, from the test signal
in accordance with a model of the temporal evolution of the modulation of the
electrophysiological signal caused by the stimulation signal; and

modulating the prior signal in accordance with the modulation signal to output an
emulation signal representing an electrophysiological signal derived under the influence of

the stimulation signal.

16. A method according to claim 15, wherein the model represents an exponential

decrease in the modulation with at least one parameter of the stimulation signal.

17. A method according to claim 15 or 16, wherein the model includes two cascaded

first-order continuous-time stages with time constants of different orders of magnitude.

18. A method according to claim 17, wherein one of the time constants represents the

low pass response of neural membranes of neurons to the stimulation signal.

19. A method according to claim 17 or 18, wherein one of the time constants represents

the dynamic response of an envelope of the electrophysiological signal derived from the
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target area of the nervous system to the stimulation signal.

20. A method according to any one of claims 15 to 19, wherein the model further
represents a saturation of the modulation at a magnitude that is dependent on at least one

parameter of the stimulation signal.

21. A method according to claim 20, wherein the model further represents a saturation
of the modulation at magnitudes that are dependent on plural parameters of the stimulation

signal.

22. A method according to any one of claims 15 to 21, wherein the model represents a

gain of the modulation that is dependent on plural parameters of the stimulation signal.

23. A method according to any one of claims 15 to 22, further comprising generating an
external disturbance signal representing external disturbances to the electrophysiological

signal, and add the external disturbance signal to the emulation signal.

24. A method according to claim 23, wherein the external disturbances include one or
more of:

artefacts of the stimulation signal on the signal measured from the human or animal

body;
DC-drift bias;
electrocardiogram artefacts; and
electrical noise.
25. A method according to any one of claims 15 to 24, wherein electrophysiological

signal comprises a signal representing a frequency domain parameter of a signal measured

from the human or animal body.
26. A method according to any one of claims 15 to 25, wherein the prior signal is a
synthetic signal, or the prior signal is, or is derived from, a signal measured from an actual

human or animal body.

27. A method according to any one of claims 15 to 26, wherein the test signal
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comprises a temporal signal representing the stimulation signal or comprises parameters

representing the waveform of the stimulation signal.

28. A computer program capable of execution by a computer apparatus and configured,
on execution, to cause the computer apparatus to perform a method according to any one of

claims 15 to 27.

29. A computer-readable storage medium storing a computer program according to

claim 28.
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