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ABSTRACT

Background: High frequency Deep brain stimulation (DBS) targeting motor thalamus is an effective
therapy for essential tremor (ET). However, conventional continuous stimulation may deliver unnec-
essary current to the brain since tremor mainly affects voluntary movements and sustained postures in
ET.
Objective: We aim to decode both voluntary movements and the presence of postural tremor from the
Local field potentials (LFPs) recorded from the electrode implanted in motor thalamus for stimulation, in
order to close the loop for DBS so that stimulation could be delivered on demand, without the need for
peripheral sensors or additional invasive electrodes.
Methods: LFPs from the motor thalamus, surface electromyographic (EMG) signals and/or behavioural
measurements were simultaneously recorded in seven ET patients during temporary lead externalisation
3—5 days after the first surgery for DBS when they performed different voluntary upper limb move-
ments. Nine different patients were recorded during the surgery, when they were asked to lift their arms
to trigger postural tremor. A machine learning based binary classifier was used to detect voluntary
movements and postural tremor based on features extracted from thalamic LFPs.
Results: Cross-validation demonstrated that both voluntary movements and postural tremor can be
decoded with an average sensitivity of 0.8 and false detection rate of 0.2. Oscillatory activities in the beta
frequency bands (13—23 Hz) and the theta frequency bands (4—7 Hz) contributed most to the decoding
of movements and postural tremor, respectively, though incorporating features in different frequency
bands using a machine learning approach increased the accuracy of decoding.
© 2019 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Introduction disease progression or habituation to stimulation [6]. These cir-
cumstances often require an increase in the energy delivered
Continuous high frequency Deep brain stimulation (DBS) tar- through increased amplitude, frequency, and/or increased pulse

geting ventral-intermediate thalamus is an effective therapy for width, which is commonly associated with more pronounced
medically refractory essential tremor (ET) [1—4]. However, as many adverse effects, resulting in slurred speech, unpleasant sensations,
as 70% of patients lose the benefit of DBS over time [5], due to incoordination and walking difficulty [7]. Furthermore, tremor in
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ET is typically intermittent, predominantly occurring during
voluntary movements and sustained postures [8—10], suggesting
that stimulation could be more focussed in time to control
symptoms.

Closed-loop stimulation, in which stimulation parameters are
automatically adjusted to stimulate on demand, is seen as a po-
tential breakthrough for the treatment of essential tremor [2,11].
Prior studies of closed-loop DBS for ET have used wearable inertial
sensors [12,13] and/or surface electromyography (EMG) [14] to
provide feedback for the control of the stimulator. While wearable
sensors provide reliable measurements of tremor, the wireless
communication between the neurostimulator and the external
sensors introduces a potential vulnerability to the system due to
breaks in transmission. In more recent studies [15,16], movement-
related signals have been recorded using a strip of intracranial
electrodes implanted over the surface of the motor cortex. These
signals are used to detect movements and to activate the DBS [8].
A recent single case study has shown that this approach can
reduce tremor during writing and spiral drawing [16]. Neverthe-
less, the use of cortical strip electrodes introduces further
instrumentation and additional cost. It is therefore still not stan-
dard clinical practice to implant cortical strip electrodes in pa-
tients undergoing therapeutic DBS for the treatment of tremor. In
addition, triggering DBS at the detection of movements may not
provide sufficient control of tremor during sustained posture
which is also an important aspect of ET [9].

Local field potentials (LFPs) recorded in the motor thalamus may
contain information related to both voluntary movements and
postural tremor. Movement-related potentials in ventral interme-
diate (ViM) thalamic LFPs were observed with a similar latency as in
the cortex [17,18]. In the frequency domain, reduction in the power
of beta oscillations (14—30Hz) and increase in a broad gamma
frequency range (55—80 Hz) were reported in ViM thalamus during
movements [17,19]. Ventral thalamic nucleus also expresses activ-
ities relating to ongoing tremor. For example, populations of neu-
rons in the ViM thalamus exhibit tremor-frequency activity during
tremor but not during rest [20]. Increased synchronisation at
tremor and double tremor frequency in the ventral lateral posterior
(VLP) nucleus of the thalamus has also been associated with the
presence of tremor [21—23].

Table 1

Here we show that both voluntary movements and postural
tremor can be decoded based on LFPs recorded from the same
electrodes that are implanted in motor thalamus for therapeutic
DBS. Importantly for the practical application of the proposed
methods in decoding movements and triggering DBS, the classifier
identified based on data recorded while patients performed pre-
defined cued movements can also be used to decode different
natural movements such as drawing and pointing. Additionally, we
show that postural tremor can also be decoded but the features for
decoding postural tremor are different from those for decoding
movements, suggesting a separate model would be required in
order to deliver stimulation during postures that provoke tremor
without further voluntary movements. Together these results pave
the way for adaptive DBS based on LFP signals recorded from motor
thalamus, without additional intracranial electrodes or external
Sensors.

Materials and methods
Participants

LFPs were recorded from seven ET patients (26—74 years old, 4
females) after obtaining informed written consent to take part in
the study, which was approved by the local ethics committee. These
participants underwent surgery for the implantation of DBS elec-
trodes targeting the ViM thalamus at the Department of Functional
Neurosurgery at the John Radcliffe hospital, Oxford. Leads were
temporarily externalised following electrode implantation and re-
cordings were performed 3—5 days later, before final implantation
and connection to the implantable pulse generator. Three patients
received unilateral implantation whereas the other four patients
received bilateral implantation, affording recordings from 11 ViM
thalami in total. Details of the patients are reported in Table 1.

Both postural tremor and action tremor pose challenges in
everyday life activities for patients affected by essential tremor.
Here we explore the potential of the ViM thalamus LFP to provide a
feedback signal capable of controlling DBS so that it focusses on
periods when tremor is likely or present. It is therefore important
that both voluntary movements likely to trigger tremor, and
postural tremor itself, can be decoded from the signal, to ensure

Patient details and motor tasks that have been tested. Patients in Oxford (Ox**) were recorded post-operatively during temporary lead externalisation and different motor
tasks that have been tested. Patients in Cologne (CI**) were recorded inside the theatre during the surgery.

ID Age Gender Recorded Recording electrode

Pre-defined movements

Cross Task Validation

hemisphere

Ox1 35 M Left ViM 3389; Medtronic Cued Gripping Force (right hand only)

Ox2 54 F Bilateral ViM 3387; Medtronic Cued Joystick Movement (both hands
separately)

Ox3 62 F Left VIM 3387; Medtronic Cued button pressing (right hand only) Drawing (right hand only)

Ox4 26 M Bilateral ViM 3387; Medtronic Self-paced continuous finger tapping (both Drawing (both hands separately)
hands)

Ox5 37 F Left VIM 3387; Medtronic Self-paced continuous flexion/extension of Drawing (right hand only)
right wrist

Ox6 65 F Bilateral ViM 6180; Cued Gripping Force (both hands separately) Self-paced reach and grasp + Self-paced

St. Jude Directional pegboard movement (right hand only)

Ox7 74 M Bilateral ViM 3389; Medtronic Cued Gripping Force + Self- paced continuous Drawing + Self-paced pegboard movement
tapping (both hands separately) (right hand only)

Cl1 64 M Right VLp micro-macroelectrode Keep arm rest for 30—60 s and then elevate and hold their forearm at an angle of ~30° and to

Cl2 52 M Right VLp (LFPs recorded from the macro spread their fingers for 30—60 s

Cl3 75 F Left VLp contacts were used for analysis)

cl4 71 F Left VLp

Cl5 73 F Bilateral VLp

Cl6 67 F Bilateral VLp

Cl7 69 F Bilateral VLp

C18 62 M Left VLp

cl9 72 M Bilateral VLp
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that the DBS is switched on in both situations. Tremor may be
considerably improved over the days following electrode implan-
tation due to the stun effect of surgery [24,25], and prominent
postural tremor was only observed in one of the seven patients
recorded post-operatively in Oxford. This case (0x7) still displayed
significant postural tremor with amplitude larger than 2 cm when
holding the arms abducted, up in the air with elbows flexed and the
fingers of both hands pointing towards each other. To test whether
we can decode the presence of postural tremor from thalamic LFPs,
intra-operative data from another cohort of ET patients who un-
derwent bilateral implantation of DBS electrodes into the thalamus
at the Department of Stereotactic and Functional Neurosurgery in
Cologne were also analysed. This afforded an opportunity to record
from the micro-macroelectrodes used during target identification
before the definitive DBS electrode implantation. The micro-
macroelectrodes (INOMED MER System 2.4 beta) consist of a
microelectrode tip (diameter 4 um) and a macroelectrode ring
(diameter 800 pm) 1 mm above the tip. The electrodes have nar-
rower diameter than the definitive DBS electrodes, and are less
prone to induce a stun effect [24]. The macroelectrodes are low
impedance electrodes (at about 1 kQ) and were used to record the
LFPs once the target location was reached. Raw data were first
visually inspected, and those with severe artefact were excluded.
The average standard deviation of the recorded LFP signals was
around 8 pA across all patients. Low frequency variations or
broadband activities with amplitude larger than 30 pA were treated
as artefact. Only data sets with at least 30s of artefact-free
recording from each condition (rest and postural tremor) were
included for final analysis in this study. These were from 12 ViM
thalamus recordings from 9 patients (5 females, 67.4 + 2.4 years
old). The study was approved by the local ethics committee in
Cologne and carried out in accordance with the Declaration of
Helsinki. Detailed information about the patients and different
aspects of the data have been previously described [22,26].

The exact procedures of the surgery in the two centres are
described in Supplementary methods.

Experimental design and recording

During the post-operative recordings in Oxford, patients were
seated in a chair in front of a desktop monitor and performed
different upper limb movements. In order to test the versatility of
the proposed methods in detecting different movements, several
motor tasks with different durations and different muscle effectors,
such hand gripping, finger tapping, finger joystick movements
were used across different patients (see Table 1, supplementary
methods and Supplementary Fig. 1 for more details of the motor
tasks). In order to further test the within-subject generalisability of
the classifier for detecting movements, five of the seven patients
performed some other self-paced movements such as spiral
drawing, reaching and grasping (Table 1). Importantly, these
movements were different from those used to train the classifier, so
as to see if the classifier trained on pre-defined movements can
decode other self-paced movements the patient might perform in
everyday life.

Patients in Cologne were asked to perform a simple motor
paradigm inside the operation theatre. This consisted of two con-
ditions: (1) supine patients rested their arm in a comfortable po-
sition for 30—60 s; (2) supine patients were asked to elevate and
hold their forearm contralateral to the implantation side at an angle
of ~30° and to spread their fingers for 30—60 s. Subjects performed
the tasks sequentially while awake after at least 15 min of with-
drawal of sedation (remifentanil and/or propofol). Patients per-
formed the task without speaking or performing any other
activities.

ViM thalamic local field potentials, electromyography (EMG)
and behavioural measurements such as gripping force, joystick
positions and accelerometer attached to hand were simultaneously
recorded (details presented in Supplementary Methods).

LFP pre-processing and feature extraction

The monopolar LFP data were re-referenced offline to obtain
more spatially focal bipolar signals by subtracting the data from
neighbouring electrode contacts [27]. The data were band-pass
filtered between 1 Hz and 200 Hz (Butterworth filter, filter
order = 4) and down-sampled to 1000 Hz. Time-frequency decom-
position was obtained on each down-sampled bipolar channel by
applying continuous Morlet wavelet transforms with a linear fre-
quency scale ranging from 1 Hz to 195 Hz and constant number (= 6)
of cycles across all calculated frequencies. Relative power was then
calculated for each frequency by normalizing the absolute power by
its average across time for each channel: (power — average power)/
average power * 100. Average movement-related modulation in the
power spectra was calculated for each bipolar channel by taking the
average of each 2 s epoch aligned to movement onset. The bipolar
channel in each electrode with the highest modulation in the
15—35 Hz within the [-1 s, 1 s] window aligned to the movement
onset (max-min) was selected for further processing. This was
motivated by evidence linking maximal beta band activity and re-
activity to the dorsal (motor) region of the STN [28—32]. For
postural tremor detection, where LFP measurements were recorded
from multiple micro-macroelectrodes, the decoding was tested
based on each LFP measurement. The channel with best decoding
accuracy (the largest AUC value) was selected to report for that side.

A logistic regression (LR) model (more details in Supplemen-
tary Methods) was used to predict the probability of the presence
of movements or tremor at the current time point t (p(t)) based on
a linear combination of features extracted from pre-processed
LFPs. Informed by our previous work, the power of oscillatory
activities in different frequency bands over a short time window
can be potential predictive features for decoding movements
[33—35]. Here, the average power of eight non-overlapping fre-
quency bands were quantified after wavelet transformation
applied to the selected thalamic LFPs contralateral to the moving
hand: 1-3 Hz, 4—7 Hz, 8—12 Hz, 13—22 Hz, 23—34 Hz, 35—45 Hz,
56—95Hz and 105—195Hz. The mean power in each of these
bands was calculated over a moving time window with window
length of 250 ms and overlap ratio of 60%, and then normalized
against the mean power of that frequency band over the recording
session. Predictive features over 10 consecutive moving windows
(equivalent to 1 s preceding the current time point) were included
as predictor variables. This time window was selected since
movement-related potentials in ViM thalamic LFPs can be
observed up to one second before the actual movement [17,18]. In
addition, only data preceding the decision-making time point was
used for decoding to ensure that the algorithms proposed here can
be implemented in real-time. This resulted in 80 predictor vari-
ables (8 frequency bands * 10 moving windows) as the inputs for
the logistic regression model. The output of the LR classifier was
updated every 100 ms.

Classifier training, evaluation and cross-task validation

Five-fold cross validation was performed for each recording
session (more details in Supplementary Methods and
Supplementary Fig. 2). This was used to evaluate the capacity of the
classifier to decode the same pre-defined movement recorded
within the same recording session. In order to further evaluate the
across-session and across-task generalisability of the LR based
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classifier, the classifier trained with data recorded during pre-
defined movements was tested for decoding other types of self-
paced movements in five patients. The decoded movement prob-
ability reported hereafter are ‘test’ results, with the model trained
on one dataset and applied on different data. Labelling of move-
ment states based on behavioural measurement (detailed in Sup-
plementary Methods) was used as the ‘ground truth’ in the training
and testing.

To evaluate the performance of the classifiers, the ROC was
plotted, the area under the curve (AUC) and the sensitivity (per-
centage of movement time that was accurately detected) were
quantified and presented. In addition, the detection rate and the
detection latency of individual movements was also quantified. To
do so, the LR classifier output around a time window
between —2.5 s and +2.5 s around each individual movement
onset was evaluated. A movement was treated as detected if
within this time window, the LR output started from a value lower
than the threshold of 0.4, increased to values higher than the
threshold and stayed above this threshold for at least 500 ms. The
percentage of successfully detected movements in all movements
recorded in a task session was quantified as detection rate. The
time of the LR output first exceeded the threshold relative to the
actual movement onset was quantified as the latency of the
detection.

Contribution of different LFP features in movement decoding

The percentage of contribution of LFP features in different
frequency bands and different time lags (%C(k,m)) and the per-
centage of contribution from features in each frequency band
(%Cfreq(k)) for movement or tremor decoding are calculated based
on the absolute value of the weight attributed to each predictive
feature (wy):

%C(k,m) = #
Zm:OZk:l ‘Wk,m‘

er\n/l:O Wl(,m

%Cfreq(k) —y K‘ ‘
Zm:OEk:] Wk‘m’

The importance of frequency bands for decoding movements
was also evaluated by comparing the AUC values as the perfor-
mance of the classifier after removing features of specific frequency
bands.

Results
Activities in ViM thalamic LFPs are modulated by movements

Average time-evolving power spectra of changes in ViM
thalamic LFPs induced by movements were derived by aligning the
normalized power spectra to all contralateral movement onsets
and averaging across all individual movements in an experimental
run (Fig. 1). This identified power increase in the theta/alpha band
(4—12 Hz), power reduction in the beta range (13—34 Hz), and po-
wer increases in the mid gamma (56—95Hz) and high-gamma/
high-frequency (105—195 Hz) ranges during movements. Howev-
er, the peak frequencies and ranges of movement-related changes
varied from patient to patient.

Both cued brief movements and blocks of continuous movements are
detected

The within-task cross-validation tests showed that ViM LFPs
could be used to detect hand gripping despite the variation in force
generated in each grip (Supplementary Fig. 3A), as well as joystick
movements (Supplementary Fig. 3B) or button pressing
(Supplementary Fig. 3C), despite the short duration of individual
movements. The same approach could also detect blocks of self-
paced continuous movements (Supplementary Fig. 4). In all cases,
the LR-based classifier output increased when movements began
and remained high until the movement stopped. The AUC ranged
between 0.74 and 0.89 for cued brief movements, and between 0.89
and 0.99 for blocks of continuous movements (Fig. 2A&B). With a
constant threshold of 0.4, 95.6% + 2% (mean = SEM across different
test session) of individual movements were detected with a mean
latency of —300 ms. The negative detection latency meant that the
classifier output exceeded the decision threshold 300 ms before the
actual movement onset. With the decision threshold of 0.4, the
decoding sensitivity was between 0.67 and 0.84 for brief move-
ments and between 0.76 and 0.99 for continuous blocks of move-
ments. The corresponding false positive rate was between 0.15 and
0.33 for brief movements, and between 0.002 and 0.20 for
continuous movements. If DBS was actuated when the movement
decoder output exceeded 0.4, the DBS would be switched on
80.8% +2.6% of the time when the patients were making any
voluntary movements, and the DBS would be switched on
20.0% + 3.0% of the time when the patients were at rest. It seems
that decoding performance is better for continuous movements. As
shown in Fig. 2C, a large percentage of the brief movements were
detected with negative delays, which means they were detected
before the actual movements happened. Provided this anticipation
is not too great then the earlier detection of movement is beneficial
for the clinical implementation of closed-loop control, because DBS
can be triggered and develop its effect before any tremor develops.
However, that anticipation will be counted as a ‘false positive’ in the
present analysis. For brief movements, the percentage of time
quantified as ‘false positive’ would be larger than for the continuous
movements. This may be the reason why the detection of contin-
uous movement has a higher sensitivity and lower false detection
rate.

Contribution of different ViM LFP features in decoding of movement

Averaged across all test recording sessions, activities in the low
beta band (13—22 Hz) contributed most to the movement decod-
ing, and this was followed by activities in the theta (4—7 Hz), delta
(1-3 Hz), alpha (8—12 Hz), and high beta band (23—34 Hz) in order
of contribution (Fig. 3A&B). The decoding performance remained
high after removing activities lower than 8Hz, which could
potentially be contaminated by movement artefacts, from the Lo-
gistic regression. Similar decoding performance was reached after
further removing activities higher than 45 Hz, which might be
contaminated by stimulation artefact if DBS were switched on.
However, if only the broad-band beta activity and its history were
included, the decoding performance was noticeably lower (Fig. 3C).

Cross-task validation of movement detection

The LR-based classifier trained using data recorded while the
subjects performed pre-defined cued movements decoded other
self-paced voluntary movements such as drawing, reaching and
picking up objects with high sensitivity (Fig. 4). In all the 8 cross-
task validation test sessions from 5 patients, the AUC of the
movement detection was 0.82 + 0.023. With a constant threshold of
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Fig. 1. Examples of power changes induced by movements in ViM thalamus contralateral to the voluntarily moved hand. Changes were quantified relative to the average of
the whole recording session and averaged across all trials during A) hand gripping for patient Ox1; B) finger joystick movements for patient Ox2; C) button pressing for patient Ox3.

Time zero represents onset of individual movements.

0.4, the sensitivity for movement detection was 0.77 + 0.038 and
the false positive rate was 0.23 +0.033. If movement detection
were used to actuate DBS, DBS would be switched on 77% + 3.8% of
the time when the patients were engaged in free voluntary
movements, and DBS would be switched on 23% + 3.3% of the time
when the patients were at rest.

Postural tremor detection

Tremor was considerably improved in the patients recorded in
Oxford in the post-operative period, but one patient recorded post-
operatively (0x7) still displayed significant postural tremor when
he was holding the arms abducted, up in the air with elbows flexed
and the fingers of both hands pointing towards each other. The
postural tremor was evident in the increased 3—7 Hz activity from
the accelerometer attached to the hand. However, the model for
decoding voluntary movements based on data recorded while the
patient performed the cued gripping movements failed to decode
postural tremor (AUC=0.51). A separate model was therefore
trained based on data recorded during postural tremor. The within
task cross validation showed that the postural tremor could also be
decoded based on ViM LFP measurements with the AUC of 0.88
(Fig. 5A&B) if a separate model trained for postural tremor detec-
tion was used. With the decision threshold of 0.4, the sensitivity of
the detection was 80% and false positive detection was 22%. For the
seven blocks of postural tremor recorded, the detection on average
anticipated tremor onset by —0.1 + 0.13 s, ranging from - 0.4 to 0.3 s.
However, the LR model for detecting postural tremor, as repre-
sented by the weights attributed to different features (Fig. 5C), was
very different from that optimised for decoding voluntary move-
ments (Fig. 5D), indicating that separate models might be required
to detect voluntary movements and postural tremor in the same
subject.

In all the patients recorded intraoperatively in Cologne, postural
tremor emerged after the elevation of the arm as shown by
increased 3—7 Hz activity in the EMG (Fig. 6A). Postural tremor was
associated with increased activity in the tremor frequency band
(4—7 Hz) in the thalamic LFPs (Fig. 6B). The LR-based classifier
based on thalamic LFPs detected postural tremor well above
chance-level in all the 12 tested hands from the 9 patients (Fig. 6C).
The AUC of tremor detection was 0.79 +0.027. With a constant
threshold of 0.4, the sensitivity for movement detection was
0.77 £0.020 and the false positive rate was 0.29 +0.038. The
oscillatory activities between 4 and 7 Hz (theta frequency band) in

thalamic LFPs contributed most to the tremor decoding, and the
AUC of the decoding increased with increasing levels of theta band
modulation in thalamic LFPs relative to rest across tested hands
(Spearman correlation, ry2 = 0.825, p = 0.0017).

Discussion

We have demonstrated that both voluntary movements and
postural tremor can be detected based on thalamic LFPs recorded
using the same electrode as used for therapeutic stimulation, with
an average sensitivity of 0.8 and false positive rate of 0.2. Oscillatory
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Fig. 2. Evaluation of movement detection. A) ROC plots showing sensitivity against
the false positive rate for the different possible thresholds used for decoding. Blue and
red thin lines show the ROC curves of individual cases for cued brief movements and
self-paced continuous movements, respectively. The thick blue line shows the ROC
averaged across all cases. B) Area Under the Curve (AUC). C) Histogram of detection
delays of individual movements. Zero is movement onset. D) Sensitivity and false
positive rate for detecting brief and continuous movements, respectively, with a
constant decision threshold of 0.4. (For interpretation of the references to colour in this
figure legend, the reader is referred to the Web version of this article.)
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(13—34 Hz) are also shown.

activities in the low beta (13—22 Hz) and theta (4—7 Hz) frequency
bands contributed most to detecting voluntary movements and
postural tremor, respectively. The movement detection on average
preceded movement onset. Critically, the same classifier trained on
data recorded during prompted pre-defined movements was also
able to detect different self-paced movements, representative of
those made during everyday life. However, separate models are
required for detecting voluntary movements and postural tremor.

Implications for closed loop DBS for essential tremor

This study suggest that thalamic LFPs can be sufficient to trigger
anticipatory DBS to suppress tremor during action and sustained
posture. A previous study monitoring natural hand movements
made during everyday life in healthy subjects showed that the hand
was essentially at rest for approximately half the time when sub-
jects were awake [36]. Accordingly, actuating DBS only during
movement or during postural tremor could lead to up to 50%
reduction in the total energy delivered to the brain during awake
hours and possibly more once sleep is considered. Compared to
previous studies [12—16], our results showed that responsive DBS
for essential tremor can be achieved without the requirement of
external sensors or additional electrocorticography strips. Using
LFP activities recorded from the stimulation electrode for closing
the loop for DBS has advantages in minimising the time delays and
data loss associated with wireless communication with limb-
mounted external sensors, and in minimising the surgical risk of
additional invasive instrumentation.

Patients with ET may also develop tremor during sustained
postures such as holding an open book. Tremor under these cir-
cumstances might not be addressed by triggering DBS with the
detection of voluntary movements, whether using thalamic LFPs
or electrocorticographic recordings. In addition, decoding failed to
detect voluntary movement in a small fraction of active move-
ment trials. So an important aspect of the present study is the
‘failsafe’ procedure of detecting tremor should it develop. In
contrast, and to our knowledge, there is still no evidence showing
that postural tremor can be detected from cortical signals alone. It
should be noted that data reported here for decoding postural
tremor were recorded intraoperatively using a micro-

macroelectrode system. The macroelectrodes used during intra-
operative recordings were different from the definitive DBS elec-
trodes: they have smaller diameters (0.8 mm) compared to DBS
electrodes (1.27—1.4 mm) and are therefore likely to cause less of a
lesion effect [24,25]. However, the impedances of the two types of
electrodes were comparable: the impedance of the macro-
electrode tip used during intraoperative recordings was measured
at around 1 kQ; the impedances of DBS electrode contacts have
been reported to range from 0.5 to 2 kQ [37]. Therefore, the ac-
tivities measured from the two types of electrodes should be
roughly similar within the frequency range of interest in the
current study (<195 Hz).

Nevertheless, there are a few important technical consider-
ations related to using thalamic LFPs for closed-loop DBS. First, all
results presented here are based on recordings made with stim-
ulation switched off. Stimulation artefacts lower the signal-to-
noise ratio of LFPs recorded when stimulation is on, as shown in
Supplementary Fig. 5 for data recorded from a patient diagnosed
with tremor dominant Parkinson's disease and receiving DBS
targeting ViM thalamus. The detection of movement or tremor
onset to start stimulation will not be affected by stimulation
artefact. Yet once stimulation is switched on, the classifier needs
to detect the offset of movement or tremor to switch off stimu-
lation; here the performance of the classifier may be compro-
mised by the presence of stimulation artefact. Noteworthy,
activities in the beta and theta frequency bands recorded from the
stimulation electrodes contributed most to movement and tremor
detection and can both be monitored even during stimulation,
with sufficient filtering and signal processing [38—41].
Supplementary Fig. 5 shows it is possible to decode movements
when the high frequency stimulation is switched on with a similar
accuracy as with the stimulation was off. It remains to be seen how
consistent this is across subjects and whether separate models
may be required for detecting movement and tremor offset with
simultaneous stimulation. Second, in the approach proposed here,
the sensitivity and false-positive rate are dependent on the
detection threshold. It is important to consider what is the desired
sensitivity and false-positive rate for the best patient outcome in
clinical practice. The detection threshold could be further opti-
mised for each patient according to factors such as tolerance to
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across all test sessions in black; C) AUC values, sensitivity and false positive detection rate at the threshold of 0.4. * indicates values from individual test sessions, thick horizontal
lines show the average across all test sessions. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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normalized tremor frequency power in accelerometer measurements; thin black line shows the time points with tremor judged from accelerometer measurements; the red line
shows the classifier output based on ViM LFPs; grey shaded area show the time points with classifier output larger than 0.4. B) ROC plot of the tremor detection shows that 80%
detection rate can be achieved with 20% false positive rate. The model optimised for tremor detection (shown in C) is very different from the model optimised for movement
detection (shown in D) in the same subject. In C) and D) the x axis is the time window number, where ‘" means the most recent time window and ‘t-N’ means the N time window
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side effects and desirable levels of power saving. Third, we showed
that the model optimised for detecting postural tremor was very
different from that optimised for detecting voluntary movements.
Separate models for detecting movement and postural tremor
would be required to ensure that DBS is actuated when either of
these two situations is detected for optimal treatment of the
disease. Considering all these issues, we propose the framework
shown in Fig. 7 to detect both movements and tremor based on
ViM LFPs for closed-loop DBS for ET.

Machine learning based approach vs. single feature threshold-based
decision-making

In this study, we used a linear combination of activities in eight
non-overlapping frequency bands in the thalamic LFPs for
decoding. Even though oscillatory activities in the low beta
(13—20 Hz) and theta (4—7 Hz) frequency bands contributed most
to the decoding of voluntary movements and postural tremor,
respectively, activities in other frequency bands also contributed
and increased the decoding accuracy. Thus the present approach
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Fig. 7. A proposed schematic for closed-loop DBS for essential tremor based on ViM LFPs. The detection of movement or tremor is used to actuate the DBS; and the detection of
movement offset is used to switch off the DBS, but only provided tremor detection, if present, has ceased.
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may potentially be more effective than threshold-based closed-
loop DBS based on activities in one single frequency band, as used
in most previous studies [15,16,38], because machine learning
based algorithms can automatically attribute appropriate weights
to multiple features specific to each patient through optimisation.
The algorithm used in this study was based on a multiple linear
regression model which can be trained with data recorded over
just a few minutes, and can also be easily implemented in real-
time for closed-loop DBS applications. It remains to be seen
whether other more sophisticated machine learning approaches,
which take into account nonlinear relationships, can further
improve decoding performance, and whether their implementa-
tion is feasible in small, ultra-low power, implantable neuro-
stimulator devices.

Limitations and caveats

A few general caveats should be borne in mind. First, closed-
loop approaches that are based on brain signals assume that
these signals do not change significantly over the long life-time
of implanted electrodes. So far this has proven to be the case
with regard to subthalamic LFPs in patients with Parkinson's
disease [42], but this remains to be shown in those with ET.
Second, ours is essentially a technical proof-of-principal study.
Real-time decoding based on ViM thalamic LFPs, online closed-
loop stimulation and the potential advantages of closed-loop
DBS based on the detection of movements likely to trigger
tremor, and of tremor itself, remain to be tested in acute and
chronic clinical trials.

In conclusion, this study demonstrates that LFPs recorded from
the ViM thalamus can be used to detect both voluntary movement
and postural tremor. This work lays the foundation for future work
developing a closed-loop DBS system which continuously updates
the decision on whether to stimulate based on activities recorded
directly from the point of stimulation, in order to save battery po-
wer and minimise side effects in patients with ET.
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