
Implementing Knowledge Database in Neural Networks���������	��
������
Computer Science and Management Department������� ���������� ���!#"� $&%(')*+!#'��,-��.

Abstract:
Knowledge database coded as triples: Agent, Relationship, Patient may be easily
implemented in neural network. In the described program all the arguments of
relations are coded in patterns - orthogonal sequences of bits. After giving patterns
of Agent and Relationship to the input of the network, there is a pattern of the proper
Patient in the output of the network. BAM network was used in the system. The
learning rule of this network is so easy, that controlli ng of the network can be done
also by a neural network. In the described problem BAM network obtained better
results, when signal was being sent between the layers only one time. The possibilit y
of using Hopfield network to filter noises introduced by the layer network has been
discussed.

1. Introduction
There are two approaches to the artificial intelli gence: based on logic expert systems and

imitating working of human neurons neural networks. The aim of my work is to combine the
two approaches - to create expert system, which would be one big neural network or consist
of a few cooperating networks. In this article one describes one part of this problem - neural
implementation of the part of expert system - knowledge database.

One of the possibiliti es of representing knowledge is remembering relations between
objects [4]. For example: the sentence “Filemon likes milk” can be remembered as relation
of liking (called further Relationship, designated R), elements of which are “Filemon” - the
“agent” of this relation (called further Agent, designed A) and milk - “patient “ of relation
(called further Patient, designated P). We know usually Agent and Relationship and we ask
about Patient - in this case it would form such a question:

“What does Filemon like?”
The aim of this work is creating the system which is the neural network, remembering

these relations.

2. Theoretical project of system
The described program is conversation system. Entering from command line information

has a very simple syntax:
<Agent> <Relationship> <Patient> - sentence to remember, e.g. “Filemon likes milk” .
? <Relationship> <Agent> - question about Patient, e.g. “? likes Filemon” . After asking

this question system should answer: “milk” . (1)

2.1. Representation of relations in neural networks
In the local representation model [1] each object is represented by one neuron. As object

one should understand any component of relation (A, R or P). In order that network would
satisfy the formed earlier assumptions (1), for each relation, after activation of neurons
which represent A and R, representing P neuron should activate. One object can be a Patient

in many relations. Therefore it is difficult to find weights of direct connections between
neurons, in order to satisfy the assumptions (1). To fulfil the assumptions it is enough to add
one neuron for each relation to network.

It is enough to find proper threshold of neuron N, to see the network satisfies the
assumptions - after activating neurons A and R (and only then) neuron P is activated (and
no other neuron).

It is even better visible, when the whole set of relations is coded in this way (to simplify
one should assume that sets A, R, P are disjoint) .

In distributed representation model [1], each object is not represented by one neuron, but
by the pattern of activation of lots of neurons. This sequence of values will be further called
the pattern. So each object can be represented not by the neuron, but by the pattern. One can
also replace additional neurons N, by layer network. Its inputs are the signals from neurons
A and R and its outputs activate neurons P. This network should be trained in such a way,
that if one gives patterns A and R of the relation, the network would give us in output the
proper pattern P.

2.2. Project of system
The assumption of this work was, that the whole system would consist of only cooperating

with one another neural networks. Also controlling of system work can be done by neural
network, but than learning of layer network must be very easy. Therefore BAM [2] network
is used in the system, learning of which is based on extremely easy Hebb learning rule. That
is the model of this kind of system

R

A PN

A

R

N

P

R

A

P

Interface reads commands from command line and in the dependence of the syntax (point
2) it writes proper words to registers A, R, P, and gives information to control unit.

Words entered form keyboard have to be coded to create the pattern. The pattern for each
entered word is created as a sequence of bits of settled length (this length will be designated
further as DL). The bits can have values { -1,1} .

The pattern is generated at random, but in such a way that these patterns would be
orthogonal, i.e. that for each pair of different patterns a, b value:

a bi
i

DL

i
=
∑

1

(2)

would be minimal, and if it is possible, equal to zero. Orthogonal patterns give bigger
capacity of neural network.

Identification unit creates patterns for new entered words, translates words to the patterns
and the patterns to the words.

The neural network BAM [2] is the heart of the whole system. This network has 2*DL
neurons in the input layer and DL neurons in the output layer. In the input of network is
provided concatenation of patterns A and R of the relation, and to the output of network
pattern P. The weights of this network are settled by the equation:

w y xij i
k

j
k

k

l

=
=

∑
1

(3)

where l - number of patterns;
xj

k - value of j bit of k learnt input (input is concatenation of patterns A, R of k relation).
yi

k - value of i bit of k learnt output (output is the pattern P of k relation).
In order to teach the network a new relation, it is enough to modify weights in a very

simple way:

w w y xij ij i
k

j
k' = + + +1 1 (4)

In this model learning is very simple - it is enough to enter triple of patterns R, A, P from
registers to proper neurons, and then insert the network to “ the learning state”, in which the
weights of connections change proportionally to values of neurons activating, which they
connect.

INTERFACE

P’R’A’

PRA

CU

BAM

IDENTIFICATION UNIT

For the above algorithm the control unit of the whole network could be constructed only
of a few gates, so implementing CU in neural network also would not be any problem.

3. Software system implementation
The controlli ng is not done by neural network in software system implementation. One

concentrated the implementation of layer network.
One also improved learning rule. At the beginning the network learns at one time each

relation and one modifies the weight according to equation 4. If the network does not
remember all the relations (i.e. in some cases gives wrong results) it learns relations, which
it did not remember, till it remembers all of them, or after 10 cycles of presenting relations
one stops learning.

3.1. Capacity of the network
Number of relations, which network manages to learn for the settled number of neurons is

a random variable. The number was approximated for the settled value DL in the way “ try 3
times” . One considers that network can learn the number of relations, if it succeeds in one
of 3 attempts. The number of relations, which network succeeds to learn is shown at chart 1
(series BAM).

As literature says [3], the recurrent networks are able to remember almost all orthogonal
patterns. The number of orthogonal patterns, which can be coded on DL bits, is DL. In this
model 3 patterns fall to one relation. Therefore for higher DL, the number of remembered
relations approaches DL/3.

3.2. Tolerance of errors
In the system the entered words are coded to orthogonal patterns. The Hamming distance

of orthogonal patterns with length DL is DL/2. Therefore, if the output of network was
wrong only in a few bits, information is still univocal. It concerns specially high DL. The
number of relations, which network can learn is much higher, when one tolerates some
percent of wrong answers in the output layer. It is shown by chart 2. By tolerance the
acceptable percent of output neurons, which give wrong answers, is designated.

3.3. BAM network with single signal sending
If network learnt the given relation, so after giving into the input layer the patterns A and

R of the relation, then after the first signal sending, there is a proper P pattern in the output
layer and the network is stable. If network learnt the relation not exactly (i.e. after giving to
the input layer patterns A and R, the pattern in the output layer is different on a few bits than
pattern P), one can observe the interesting thing. When we give to the input layer learnt
pattern (concatenation A and R), after the first sending from input layer to output, there is
the pattern in output layer which is different than learnt (P) in a few bits. During further
iterations the differences between pattern in output layer and learnt pattern (P) are bigger
and bigger, so the error grows. In this case in BAM network the multiple sending signals
between layers is not necessary. If the network stabilizes on learnt pattern, it does it in the
first iteration. If the network does not find the right pattern in the first iteration, it will never
do it.

The BAM provides with better results, in which the signal is sent only once from input
layer to output, and not till the stabilization of the network. Results are shown in chart 3.

Connections from output layer to input layer can be useful - if there were also connections
in input layer between neurons representing A and neurons representing R - one could ask
questions about every component of relation (also about A and R)

There are two more data series on chart 3. Results of the network are even better, when as
the right answer one treats pattern P with the shortest Hamming distance to the answer of
output layer. The results are shown by series OPT. The series LOS shows the modification
of this algorithm, in which patterns are not orthogonal but random.

3.5. Knowledge database with Hopfield network
If the information in output layer of the network has some errors, one can use neural

network as a filter. The Hopfield network is good to solve this problem:

This network is learning P patterns, at the same time, as layer network. The number of
patterns, which one succeeds to teach the network is not big - It is shown in chart 1 (series
Hopfield). In this case also network capacity is limited by a number of orthogonal patterns
P, which for the settled DL with used encoding is DL/3 (point 3.1).

4. Conclusion
Knowledge database - one of the parts of the expert system - can be implemented in a

neural network. The best results were obtained by using in this aim BAM network with
single signal sending.

This work is rather a set of ideas, that can be developed. The improvement of network
results may be achieved by creating patterns not at random, but on basis of taught relations.
One can also improve filtering of noises, which are given by BAM network. Neural
networks are good for this aim, but presented Hopfield network has too low capacity. The
most interesting results can be obtained by implementing the whole expert system in the
similar way.

References:
[1] Hinton G.E., McClelland J. L., Rumerhart D. E.: Distributed Representation, The PDP

Perspective
[2] Kosko Bart: Adaptive bidirectional associative memories. Applied Optics, 1987 vol. 26
[3] /1032546087�9:�;=<?>@9A0CB#<D4FE�:@9AGIHJ95KFGDLNMO25>�2�4PGNQR/PST9AHVU�>@<XWYU@Z�<D4[>@9&HI\J<X]^2�_A9`;�GJH?aN>�9`7�9�Wb<?M30C\R<?46087�9AGTcDd

Warszawa 1994
[4] Schalkoff Robert J.: Artificial Intelli gence: An Engineering Approach, Mc Graw-Hill

Inc, New York 1990

INTERFACE

P’R’A’

PRA

CU

IDENTIFICATION UNIT

HOPFIELD

