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Towards Real-Time, Continuous Decoding
of Gripping Force From Deep Brain

Local Field Potentials
Syed Ahmar Shah , Member, IEEE, Huiling Tan, Gerd Tinkhauser, and Peter Brown

Abstract— Lack of force information and longevity issues
are impediments to the successful translation of brain–
computer interface systems for prosthetic control from
experimental settings to widespread clinical application.
The ability to decode force using deep brain stimulation
electrodes in the subthalamic nucleus (STN) of the basal
ganglia provides an opportunity to address these limita-
tions. This paper explores the use of various classes of
algorithms (Wiener filter, Wiener-Cascade model, Kalman
filter, and dynamic neural networks) and recommends the
use of a Wiener-Cascade model for decoding force from
STN. This recommendation is influenced by a combination
of accuracy and practical considerations to enable real-
time, continuous operation. This paper demonstrates an
ability to decode a continuous signal (force) from the STN
in real time, allowing the possibility of decoding more than
two states from the brain at low latency.

Index Terms— Brain computer interface (BCI), Wiener-
cascade model, deep brain stimulation, Kalman filter, local
field potentials.

I. INTRODUCTION

BRAIN Computer Interface (BCI) systems convert signals
recorded from the brain into useful information (e.g. infer

a command, estimate state of the brain) in real-time with
potential applications in a number of areas. This is of particular
interest for patients with a wide spectrum of motor deficits of
different origin and severity. This includes wheel-chair control
for patients with limited mobility [1], communication tool
for patients with inability to speak (e.g. ALS or locked-in
patients [2]), neural control of prosthetic limbs after traumatic
amputation [3] and rehabilitative approaches after acute neu-
rological disorders such as stroke [4]. For a BCI technology to
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be developed for widespread use beyond experimental settings,
the signal recorded must remain stable over a long period and
the conversion of signal to information must be robust, stable
and reliable. The amount of information captured by a BCI
system depends on the number of states that can be decoded,
the accuracy of decoding and the speed at which this decoding
occurs (latency).

A variety of signal modalities can be used for recording
signals from the brain for BCI. These can be non-invasive
and include the electroencephalogram (EEG) [5], functional
magnetic resonance imaging (fMRI) [6], and functional near
infra-red spectroscopy (fNIRS) [7], or invasive such as the
electrocorticogram (ECoG), cortical single/multiunit record-
ings [8] and local field potentials (LFP) picked up using
depth electrodes from deep brain structures [9]. EEG suffers
from low signal to noise ratio (SNR) and significant volume
conduction [10]. fNIRS suffers from poor temporal resolution.
Practical considerations limit the use of fMRI outside exper-
imental settings and this signal also provides poor temporal
resolution. Furthermore, the majority of non-invasive BCI
studies to date rely on decoding two states (e.g. distinction
between movement/no movement [2]). Consequently, most
have only been experimental in nature.

In contrast, BCI systems using invasively recorded signals
have shown greater potential to restore functions important
to everyday life, such as reaching and grasping [3], [11].
This is because of the richer information content of these
signals. Yet a number of challenges still need to be addressed
before invasive BCI systems can be rolled out into routine
clinical and home use. Research into BCI for prosthetic
control has, to date, almost exclusively focused on decoding
only kinematic variables (position or velocity) from cortical
signals. A BCI-controlled device unable to incorporate force
information in reaching and grasping tasks is unlikely to be
useful and almost impossible to integrate in a patient’s life
for routine, everyday tasks. Thus far arguably the best clinical
demonstration of BMI has still not been able to accurately
manipulate the force level applied by a robotic hand [3], [11].
Consequently, the development of a BCI system able to decode
force would significantly improve the current state-of-the-art
of BCI-based prosthetic devices.

Another issue with BCI systems is the stability of neural
interfaces over time. This remains limited to a few years
at very best for devices directly detecting the discharge of
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cortical neurons [12]. Perhaps for this reason there has been
a shift in interest to decode ECoG activity picked up by
subdural grids, but these most often require craniotomies for
their placement. In contrast, the LFP activity recorded from
deep basal ganglia structures is known to be stable over many
years [13], and electrode implantation involves a limited burr-
hole and surgical techniques that have been honed through
the routine use of this procedure for therapeutic purposes
in Parkinsonian patients [14]. Accordingly, the surgery is
relatively benign, and in epileptic patients in whom both tem-
porary subdural grids and depth electrodes are often used there
is evidence to suggest that the latter may be safer [15]. Here
we demonstrate the decoding of force from the LFP recorded
in the Subthalamic Nucleus (STN) of the Basal Ganglia. This
could prove useful as a selection signal in communication aids,
potentially providing a higher bit rate than has been currently
demonstrated in locked-in patients [2], or as an adjunct to
ECoG-based kinematic control of robotic devices.

The current study builds on our previous work [9], [16], [17]
towards the development of a BCI system for continuous
decoding of force employing depth electrodes. Our previous
work [16] found that gripping force was encoded mostly in the
beta (13-30 Hz) and gamma (55-90 Hz) bands, with beta
band desynchronization during gripping initiation and gamma
band synchronization during gripping. In the previous work,
the magnitude of gamma band synchronization correlated with
the amount of force. Considering real-time implementation
constraints, the simplest possible decoder using a linear com-
bination of features with lags (the Wiener filter) was initially
investigated, for its simplicity, interpretability and ease of
implementation. To capture any non-linearity, the Wiener filter
was cascaded with a polynomial non-linearity (the Wiener-
Cascade model) and any improvement determined. In addi-
tion, Kalman filter based algorithms (1-D and 2-D) were
also investigated since they offer an interpretable framework
allowing the option to decode both force and yank. Such algo-
rithms represent the state-of-the-art in many successful BCI
applications [18]. Lastly, a dynamic Neural Networks-based
algorithm was also investigated to ensure that any non-linearity
not captured by the former approaches could be modeled.
Challenges posed by the demands of real-time implementa-
tion (feature extraction, feature selection, channel selection,
window length and step length) were also investigated and
appropriate strategies are recommended to address them. Data
recorded from 5 patients with idiopathic Parkinson’s disease
having bilateral depth electrode implantation were used in this
study. Their electrodes were implanted for the purposes of
therapeutic stimulation but used here for recording without
stimulation.

II. METHODS

This section will start by briefly describing the experimental
paradigm and the dataset collected, the time-domain and
frequency domain features extracted, and then explain the
different decoding algorithms explored in this study: Wiener
filter, Wiener-Cascade model (WC), Kalman filter (KC) and
Dynamic Neural Networks. The processing pipeline from input
to output is illustrated in Figure 1. The LFP from STN (input)

Fig. 1. Overview of the processing pipeline from input (LFP) to output
(decoded force).

is processed for feature extraction followed by a choice of
a decoding algorithm to provide the decoded force (output).
Each STN DBS lead provides 3 bipolar channels. Features can
be extracted from either a single channel deemed to be the best
in terms of localization or all channels thereby constructing
a high-dimensional feature space. All the algorithms in this
study were evaluated with a 5-fold cross validation, dividing
the original LFP time-series into five continuous chunks and
then training on 4 chunks of data while evaluating the per-
formance on the remaining fifth chunk. All results reported
are based on correlation between the test set and the original
force of the hand (contralateral to the STN) as measured by
the dynamometer.

A. Dataset Collection

This work is based on data collected from 5 Parkinsonian
patients providing 8 STNs who underwent surgery for bilat-
eral implantation of deep brain stimulation (DBS) electrodes
targeting the motor area (dorsolateral [19]) of the STN. These
patients were externalized (DBS leads were accessible for
recording) and kept in a hospital for about a week prior
to a second surgery for implantation of a pulse generator
under the skin while connecting the DBS electrode leads to
the pulse generator. All the recordings in this study were
undertaken prior to the second surgery (3-6 days after DBS
electrode implantation) while the patients were on their normal
anti-Parkinsonian (levodopa) medication. The experimental
paradigm consisted of a visual cue presented on a screen (red
Light Emitting Diode emitting for 3 seconds) and patients were
instructed to grip a dynamometer (Biometrics Ltd.) at an effort
level of their choosing ranging from very low to maximal
effort in a random order for as long as the light appeared.
The generated force and the LFPs from both sides of the STN
of the patient were simultaneously recorded with a sampling
frequency of 2048 Hz using a TMSI amplifier. Subsequent
analysis was performed off-line in Matlab (R2015b, Math-
works, US [20]). This study was approved by the local ethics
committee and all the patients provided informed consent for
their data to be used for research purposes. Table 1 provides
the demographic details of the patients including the duration
that the patient had PD. The paradigm is explained in more
detail in [16].
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TABLE I
LIST OF PATIENTS AND THE SITES THAT WERE SELECTED FOR

CONTINUOUS FORCE DECODING BASED ON GAMMA ERS AND

CLINICAL ASSESSMENT

Fig. 2. Overview of various time-domain and frequency-domain features.

B. Feature Extraction

A sliding window of a fixed length (with overlap between
consecutive windows) was used, in order to extract various
features from the LFP. The various features explored can
conveniently be divided into time-domain and frequency-
domain features depending on how they were extracted from
the LFP (Figure 2 shows an overview).

1) Time-Domain Features: The time-domain features
included the mean LFP, and the Hjorth parameters (activity,
mobility, and complexity) [21] computed for each sliding
window.

2) Frequency-Domain Features: The Discrete Fourier Trans-
form (DFT) with a Fast Fourier Transform (FFT) algorithm
of a signal provides the amount of power in differ-
ent frequency bands presuming local stationarity of the
signal. The short-time Fourier transform (applying FFT
on fixed, short length segments) and wavelet trans-
form have been developed to deal with non-stationary
signals.

Estimating power in specific frequency bands has been
widely used in neuroscience [22]. For example, increases
in power in the gamma band (55-95 Hz) and decreases
in power in the beta band (13-30 Hz) at movement onset
have been reported in several studies. These studies typically
employ a wavelet transform, and then average time-frequency
plots from several trials in order to investigate power changes
with cue or movement onset [23]. The most common wavelet
used in such studies is the Morlet wavelet (a sinusoid multi-
plied by a Gaussian) in order to capture ‘sinusoidal’ features.
A distinctive advantage of wavelet transform is the ability
to identify any arbitrary type of signal feature by using an
appropriate wavelet, and a variable window size to adapt
time-frequency resolution by using a longer segments for
low frequency (for better frequency resolution) and shorter
segments at higher frequency (for better time resolution) [22].
However, real-time applications have a number of practical
limitations including a fixed buffer size leading to fixed win-
dow sizes, and a limited time for processing (to avoid potential
packet loss). Consequently, a different approach has to be
employed for estimating power in different frequency bands.
The two fundamentally different approaches that can be used
are either the short-time discrete Fourier transform using the
FFT algorithm (a non-parametric approach) or Autoregressive
modeling (AR), a parametric approach for spectral estimation.
A potential problem with the FFT approach (while using short,
finite segments of data) is the edge effect due to spectral
leakage. This occurs due to the finite duration of signal
and it can be addressed by multiplying the signal with a
finite duration window. The choice of window depends on
the application and there is a trade-off between frequency
resolution (the frequency resolution improves with decreasing
width of the primary lobe of the window function) and the
amount of spectral leakage (spectral leakage decreases with
smaller side-lobes). In this work, we explored the use of
a rectangular window and a Hamming window. Compared
to a Hamming window, a rectangular window provides bet-
ter frequency resolution at the cost of increased spectral
leakage.

A major limitation of using FFT-based approaches on short,
finite, length segments is limited frequency resolution. In con-
trast, AR-based spectral estimation provides infinite resolution
and has been found to be superior to FFT-based methods in a
number of physiological signals [24], especially when long
segments of data are not available. Nevertheless, it is challeng-
ing to select an appropriate model order for AR-based spectral
estimation. An innovative approach, previously developed to
address this challenge, is to generate a large number of AR
models and then estimate the median spectrum. This method
is explained in greater detail in [25], and was employed in this
work.

The frequency bands used as features in this study were
5-7 Hz, 8-12 Hz, 13-20 Hz, 21-30 Hz, 31-45 Hz, 56-95 Hz,
106-200 Hz, 201-300 Hz, 301-349 Hz and 350-500 Hz.
Some frequency bands were not included; very low frequency
(0-4 Hz), as this may be confounded by movement artifacts,
and 46-55 Hz and 96-105 Hz which may be significantly
corrupted by powerline interference.
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C. Wiener Filtering

A Wiener filter attempts to find the weights of a linear
equation where the output is equal to a weighted sum of
different predictors. This method can also be viewed as
multiple linear regression where the dependent variable is
the estimated force, and the explanatory variables are the
time-domain and frequency-domain features at various lags.
Equation (1) represents such a linear equation where xi (n − j)
is the i th feature at a lag of j , ai j is the corresponding
weight to be determined with M features for up to N lags
and F ′(n) is the estimated force at time n. These weights
are determined using an optimality criterion based on min-
imizing the sum of the squares of the differences between
the estimated force (F ′(n)) and the actual force (F(n)).
Solution of this set of linear equations has a closed form
solution (commonly known as the Normal equation, or the
Wiener-Hopf equation [26]) given in equation (2) and can
thus be determined very fast on any computing device. In this
equation, X is a P × M(N + 1) matrix of all features at all
lags, A is a M (N + 1)×1 matrix of ai j , P is the total number
of samples (corresponding to the total number of sliding
windows) and F is the P × 1 vector of actual force. It is also
straightforward to add a regularization term (A2, ridge regres-
sion [27]) in order to deal with overfitting. Equation (3) show a
modification of the normal equation to include regularization
parametrized by λ.

F
′
(n) =

N∑

j=0

M∑

i=1

ai j xi(n − j) (1)

A = (X T X)−1 X T F (2)

A = (X T X+λI )−1 X T F (3)

D. Wiener-Cascade (WC) Model

A limitation of Wiener filter is its inability to model
any non-linear relationship between the input and output.
An approach that has previously been employed in many
applications [27] is to cascade a static non-linear unit to the
output of the Wiener filter thereby enabling the modeling of
non-linear systems. In this work, the output of the Wiener
filter is adjusted with a third order polynomial to model any
non-linearity in the system. The weights of the polynomial
function are determined with least squares optimization.

E. Kalman Filtering

KF-based methods are one of the most widely used algo-
rithms in BCI studies for prosthetic control [3] and cursor
control [18]. KF provides an explicit model for system dynam-
ics, and noise in the system. A KF is a special case of a
recursive Bayesian filter with two probabilistic models: state
estimation equation (a prior model) describing the evolution
of the states, and a measurement model relating measure-
ment to these states. The standard form of KF algorithm
assumes that both the measurement and state models are linear.
When the uncertainties associated with both the state model
and measurement are Gaussian with zero-means and known

covariations, the KF is an optimal estimator minimizing the
mean square error of the estimated parameters. Equation (4)
shows the measurement equation relating the neural activity,
xn ∈ RM(N+1), with the state, sn, at the current instant, n,
through a linear measurement matrix, H ∈ RM(N+1)xd, with
noise, qn . In this work, sn = [force]n for the 1-D case (d = 1)
and sn = [force yank]T

n for the 2-D case (d = 2). The noise
qn is assumed to be normally distributed with zero mean i.e.
qn ∼ N (0, Qn) , Qn ∈ RM(N+1)x M(N+1). The measurement
vector, xn, is a M(N + 1) dimension vector representing all
the M features for up to N lags. Equation (5) shows the
state evolution equation relating the state,sn, at instant, n,
with state, sn−1, at instant, (n − 1), through a state transition
matrix, A ∈ Rdxd , and noise, wn, assumed to be normally
distributed with zero mean i.e. wn ∼ N (0, Wn) , Wn ∈ Rdxd .
Consequently, the matrix A would be an identity matrix
in the case of 1-D model ((d = 1) and it would be as
shown in equation (6) in the case of 2-D model (d = 2)
where dn is the time interval between successive iterative
steps of the KF algorithm. The measurement matrix, H , and
the noise covariance matrices (W and Q) are learnt with a
least-squares optimization approach framing the problem as
a system identification task similar to the approach developed
in [28]. Once these parameters are estimated during the system
identification stage, an iterative procedure is used to compute
a new state value sn at every time instant, n.

xn = H sn + qn (4)

sn = Asn−1 + wn (5)

A =
⌈

1 0

dn 1

⌉
(6)

F. Dynamic Neural Networks

Neural Networks offer a powerful class of computational
tools due to their ability to model complex, non-linear rela-
tionships between input and output. However, their uptake
has been limited due to their susceptibility to overfitting
and expensive computational requirements. With increasing
computational capabilities and innovation in algorithms, these
algorithms (especially deep learning) have been found to be
increasingly useful as opposed to more classical approaches
in applications with large amounts of data (e.g. Natural Lan-
guage Processing, Speech Processing and Image Processing
with several applications in healthcare [29]). Within the class
of Neural Networks, dynamic neural networks are the most
suitable for time-series analysis as opposed to static neural
networks since the former have memory and can thus model
temporal relationships. In this work, we explored the use of a
(N − 10 − 1) neural network with N equal to the number of
features, 10 hidden units and a single output. The input layer
included a tapped delay line, with delays of up to 20 time
steps. The parameters of the neural network were learnt with
a gradient descent technique with the Levenberg-Marquardt
algorithm (implemented in Matlab [20]) and early stopping
on the validation set was used to avoid overfitting.
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Fig. 3. Actual force (blue) and estimated force (red) using a Wiener-
Cascade model on a single patient (256 milliseconds, window, with a
50 milliseconds step) on test data.

III. RESULTS

Figure 3 illustrates a typical profile of force (shown in blue)
and the corresponding force level estimated (shown in red) by
using a decoding algorithm on LFP data recorded from a single
patient. In this particular case, the decoding algorithm was
based on the Wiener-Cascade model with a 256 milliseconds
sliding window, using a step of 50 milliseconds, a lag of 30
(with a 2048 Hz sampling frequency) and a 5-fold cross
validation. The decoded force shown in red is based on the
test data and provided a correlation of 0.76. The reference
force (measured by the dynamometer) was normalized by the
maximum gripping force for each patient.

All methods were investigated at different lags (0, 10, 20,
30 and 40 time windows). The Kalman filter did not offer
additional benefit after introducing a second dimension for
modeling yank. With enough complexity, neural network-
based algorithms can learn any transfer function and should
therefore theoretically lead to the best performing algorithms.
However, getting the optimal weights for neural network units
is challenging and heavily dependent on getting an appropriate
architecture for the problem at hand. For lags of more than 10,
the WC model outperformed all the other methods and was
consequently selected for subsequent analysis.

Apart from choosing an appropriate decoding algorithm, our
ability to decode force from STN also depends on the accuracy
of localization of the DBS electrodes. Ideally, these electrodes
should be positioned to record from the motor areas of the
STN (dorsolateral part [19]), also the preferred clinical target,
but this can be difficult. A proxy measure of electrode local-
ization is the increase in power of the low gamma band with
movement onset. An approach, adopted previously in [16],
is therefore to determine the average increase in power of the
gamma band with gripping onset (termed as Event-Related
Synchronization or ERS) across all movement trials for all
bipolar channels and identify the channel with the most ERS
to be the optimally placed channel. An alternative approach is
based on feature extraction using all bipolar channels thereby
creating a larger matrix for the decoding algorithm. From
Figure 4, it can be seen that using all channels improves per-
formance up to a lag of 20. This approach, however, is prone
to overfitting and therefore requires more computational time

Fig. 4. Comparison of decoding performance using the WC model
at various lags, with a single bipolar channel and with using all bipolar
channels. Note that the WC model uses features from all windows, from
the lag time (t = lag) to the time of decoding (t = 0)

Fig. 5. Comparison of performance of force decoding with various
combinations of step length and window duration.

to find the optimal regularization parameter. This explains
the superior performance with a single channel as opposed
to using all channels for lags greater than 30. Consequently,
selecting a single bipolar channel based on ERS for feature
selection is recommended.

This work also explored the optimal selection of window
length and step length. A longer window length will allow
more data to be utilized for feature extraction while the step
length will determine the frequency of update. From Figure 5,
it can be seen that the mean correlation is lowest for a step
length of 20 milliseconds. The performance improves as the
step length is increased from 20 milliseconds to 40 millisec-
onds. Any further increase in step length only marginally
improves the mean correlation. Based on these results, a step
length of greater than 40 milliseconds is suggested. Comparing
the median values at step lengths of greater than 40 millisec-
onds, it can be seen that the median correlation performs better
while using a window size of 256 milliseconds, as opposed to
512 milliseconds. While the mean marginally improves with
longer windows, a window size of 256 milliseconds is more
appropriate to ensure generalizability of these results (in order
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TABLE II
RANKING OF FEATURES BASED ON USING LASSO FOR FEATURE

SELECTION. THE 14 FEATURES ARE RANKED FOR EACH PATIENT AND

THE TABLE LISTS THEM ACCORDING TO THE MEAN RANK ACROSS

THE 8 STNS (THE HIGHER A FEATURE IS IN THE TABLE,
THE MORE IMPORTANT IT IS).

to avoid analyzing previous trial data to decode force for the
current trial).

This work also investigated the importance of various fea-
tures used in decoding force from LFP. Given 14 features,
it would take (214 = 16, 384) regression models in order to
investigate every possible combination of features (assuming
every other parameter is fixed) to determine the most impor-
tant features. Such an exhaustive procedure is prohibitively
computationally expensive. Consequently, there are alterna-
tive strategies for identifying the most important features
in a classification or regression task. This includes sequen-
tial search (forward or backward [30]) and Least Absolute
Shrinkage and Selection Operator (LASSO) [31]. LASSO is
a regularization technique that works by modifying the cost
function to include absolute sums of all weights that are
to be determined. The amount of regularization is increased
systematically, from no regularization to include all features,
to heavy regularization to knock out all features. The features
are knocked out (by getting a magnitude of 0) depending
on the importance of the feature. Consequently, the LASSO
technique can help us rank various features based on their
importance. In this work, we applied the LASSO based feature
selection and ranked all features based on how soon they were
knocked out as regularization was increased. Table 1 provides
a table of all the 14 features, sorted according to their mean
ranking across all patients. From the table, it can be seen that
the two most important features for force decoding are the
low gamma band (56-95 Hz) and high beta band (21-30 Hz).
The wide range of rankings does suggest that the rankings
do vary from patient to patient and it is still advisable to use
all the available features for force decoding. This is further
corroborated by Figure 6 which shows that adding additional
features on top of the top 2 identified here (21-30 Hz and
56-95 Hz) improves overall performance (based on analysis

Fig. 6. Addition of different features on top of ‘Reference’(top 2 identified
via LASSO) lead to a better overall performance (“<100 Hz” corresponds
to using all frequency-domain features up to 95 Hz, “<100 Hz+time”
corresponds to the addition of time-domain features to frequency-domain
features of up to 95 Hz, “all” corresponds to using all the 14 features).

Fig. 7. A small window centered around the maximum gripping force
for each trial was used to extract the maximum estimated force and the
actual maximum force.

of 5 STNs that resulted in a correlation of at least 0.5). This
figure also provides information on the performance detriment
of using only features from frequencies of up to 95 Hz in order
to reduce the sampling rate and thus reduce energy demands
when the proposed algorithm is implemented in implantable
devices.

This work also investigated any dependence of force decod-
ing performance on the magnitude of gripping force. Figure 7
shows the procedure adopted to determine the force decoding
error with respect to the maximum gripping force attained
in each trial. A small window was chosen and placed around
the maximum gripping force (identified by red crosses for
each trial) in each trial (shown by the green margins in
the figure). The maximum decoded force in that window was
then identified (decoded force is shown in red in the figure).
Figure 8 shows the regression line fitted for the single patient
showing the estimated force and the actual force. The gradient
of 0.74 suggests that, although force tended to be consis-
tently under-estimated in this patient, estimates were no better
or worse for any particular grip force.

Subsequently, we investigated the performance of force
decoding with various force levels for all the patients. Figure 9
shows the results (similar to Figure 8) but for all the 8 STNs.
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Fig. 8. Actual maximum force and estimated maximum force for each trial
for a single patient, along with fitted regression line and 95% confidence
bounds.

Fig. 9. Actual maximum force and estimated maximum force for each
trial for 8 STNs, along with fitted regression line and 95% confidence
bounds.

At the group level there was the suggestion that force estimates
were proportionately more variable at very low grip forces.
This was confirmed by correlating estimate error per unit
actual force with the actual force magnitude. Figure 10 shows
that the mean absolute error per unit force magnitude does not
depend on the magnitude of the actual force except for very
low forces (∼<0.1). The force decoding therefore performed
poorly at these low forces, possibly due to the higher cognitive
load associated with the performance of such fine force levels.
Elsewhere it has been suggested that the STN codes for effort
rather than force per se, although under most circumstances
the two will be indistinguishable [32].

Finally, Figure 11 shows the result of applying various
feature extraction techniques ranging from using Periodogram
with FFT (with a rectangular window and a Hamming win-
dow), and Autoregressive Modeling (using both a single order
of 7, and a median spectrum-based approach). For com-
parison, the results of applying a wavelet-based technique
(Morlet wavelet) are also shown. These results suggest that
the FFT-based technique was superior to using AR modeling-
based approach. While AR modeling results in a less noisy
method and has been found to perform better in certain
applications, attempting to find broad-band frequency features
is better achieved using an FFT-based approach. A further

Fig. 10. Absolute difference between actual and estimated maximum
force per unit force for each trial for 8 STNs.

Fig. 11. Comparison of force decoding performance using different
spectral estimation techniques for feature generation.

challenge in AR modeling is selecting the right model order.
This work attempted to use the median spectrum based
technique suggested earlier in a different context [25] but
overall, the FFT based method still outperformed AR based
methods.

IV. DISCUSSION

In this work, we developed an optimal algorithmic approach
for decoding force and explored various issues pertinent to
the development of a BCI system, able to function in real-
time to investigate the decoding potential of several time-
domain and frequency-domain features (14 in total). A Wiener
filter-based algorithm was found to be most suitable for force
decoding. This algorithm has a closed form solution (both with
and without regularization) and is therefore computationally
efficient. Any non-linearity present in the system can be
captured by cascading a static non-linearity to the Wiener filter
(the WC model). The performance of force decoding did not
improve with a Kalman filter, even if yank was added as an
additional state. While some previous studies have reported
improvement with KF algorithms [33], [34], there have also
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been studies reporting no additional benefit with using a KF
algorithm [28], similar to our findings. KF-based algorithms
are likely to lead to improvement in situations where there are
neural features independently encoding the force yank. A pre-
vious study has proposed using unscented KF to model non-
linear relationships between input and output [35]. However,
having explored non-linearity with a WC model and Dynamic
Neural Networks, it was considered unlikely that unscented
KF would lead to any further improvement over and above
than shown with WC in the current study.

For spectral estimation of streaming data in real-time,
either an FFT-based algorithm (Periodogram) or an AR-based
algorithm could be used for extraction of frequency-domain
features. However, even if the model order selection challenge
in AR modeling were addressed, FFT-based algorithm may be
more suitable due to the broadband nature of the features to
be extracted. Other approaches, not investigated in this study,
include techniques based on multitaper methods that aim to
reduce the variance of power estimates, or hybrid methods
(e.g. the approach proposed by Kim et al. [36] combining
state-space and multitaper methods) which may lead to more
stable estimates of frequency features.

It is advantageous to use short steps for sliding windows
but the performance degrades with using a step length shorter
than 40 milliseconds. Consequently, a step length of at least
40 milliseconds is recommended.

With conventional DBS electrodes targeting the STN, it is
better to identify a single bipolar channel based on the gamma
ERS and then extract features from that channel as opposed
to extracting features from all available bipolar channels for
use in a force decoding algorithm. This is partly due to
susceptibility to overfitting with increasing dimensions (curse
of dimensionality [30]) and partly due to the small size of the
dorsolateral part of STN relative to the size of DBS electrode
contacts making it less likely that multiple bipolar channels
will have force information. This is, however, likely to change
with innovations in DBS electrodes leading to better decoding
performance when using multiple channels. This could come
from having longer electrodes allowing acquisition of signals
from multiple structures (e.g. SNr, STN and ventral thalamus,)
or directional electrodes to be more robust and specific.

The error in decoding force per unit force was constant
for all force magnitudes except very low force levels (<0.1).
This may be because patients dealt with a higher cognitive
load at very low force levels leading to increased activity
in the STN [32]. It is recommended that potential applications
other than prosthetic control (e.g. communication) should
exclude the intention to create very low forces due to the
disproportionate distribution of decoding error at very low
forces.

Lastly, there was a wide variation in the relative importance
of different features for force decoding. The low gamma band
(55-95 Hz) and high beta band (21-30 Hz) had the most
predictive power on average. However, the accuracy of force
decoding still improved when all features are used, as opposed
to when using a small subset of features.

Our investigation has some limitations. All the results in this
study are based on an isometric gripping task only, and thus it

is not possible to draw conclusions on force generation using a
different kind of action. Furthermore, the dataset used in this
study was acquired from patients with Parkinson’s disease,
and not patients (e.g. paralyzed or locked-in patients) for
whom force decoding from STN is likely to be useful. It is
expected that the target patients will have a fully functioning
STN similar to healthy people. Nevertheless, patients in this
study were on levodopa which will have helped approximate
the basal ganglia physiology of the target population. In this
study, the gamma ERS was used as a measure of the accuracy
of localization of DBS electrodes to the motor area in the
STN. This is, however, an indirect measure of localization
and to date, there has been no clinical validation of this
measure for localization. It is possible that some of the
patients in the study did not exhibit much gamma ERS due
to their disease. All the patients in this study had surgery for
DBS implantation and were subsequently externalized. While
the recordings were undertaken 3-6 days after surgery, it is
possible that there was some stun effect affecting the LFP.
It is important to highlight that the target population for the
potential application of force decoding would be patients with
locked-in syndrome or ALS (for communication), or patients
requiring prosthetic/robotic arms who are likely to have normal
STN activity and not need deep brain stimulation per se. This
was not the case in the present patient cohort as both the under-
lying Parkinsonian pathology and the temporary stun effect
caused by recent surgery may have deranged STN activity
and led to an underestimate of the decoding performance to
be expected in the chronically implanted target BCI patients.
Lastly, patients were requested to sit at rest and only apply
gripping force when cued. It is yet to be ascertained how
the performance would be affected when the patient is not
at rest (e.g. walking or speaking). It is anticipated that this will
largely depend on the spatial specificity of the DBS electrodes.
Ideally, the contact pair used for decoding should be recording
from the contra-lateral hand region in the STN and with the
advent of directional/multi-contact DBS electrodes offering
higher spatial specificity than conventional DBS, we expect
that force decoding with directional DBS electrodes would be
more robust to behavioral interference.

The results from this study are unlikely to be influenced by
movement artifacts because the gripping tasks were isometric
thereby minimizing any potential movement. Furthermore,
any movement artifact is expected to manifest as increased
power in the low-frequency band and in this work, the very
low-frequency band (0-4 Hz) was excluded from the fea-
ture list for decoding force. In addition, the performance of
the decoding algorithm improved with lag suggesting that
using LFP recordings prior to movement contributes to force
decoding and hence decoding is unlikely to be due to the
presence of movement artifacts. This study demonstrated the
ability to decode force on a continuous basis, using the
whole signal, both during the gripping task and during rest
periods. Since a sliding window was used, and the features
were extracted from the raw time-series signal in each sliding
window, unlike previous studies with pre-processing across
the dataset, the proposed algorithm lends itself to real-time
implementation.
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V. CONCLUSION

We can decode force from the LFP recorded via DBS
electrodes targeting STN in the basal ganglia in real-time
(with a correlation of up to 0.79). A WC model combined
with a sliding window using the FFT provides a practical
solution for real-time force decoding from DBS electrodes.
Future work will involve the development of a BCI pipeline
to demonstrate force decoding on similar patients in real-time.
The use of the basal ganglia LFP signal in BCI-controlled
devices has the advantages of providing force information
using a signal that is stable over many years and which can
be relatively safely recorded, leveraging a surgical technique
refined over decades for deep brain stimulation. This study
thus provides an important advance in the development of
BCI-controlled prosthetic devices by offering the possibility of
decoding force from the brain in real-time. This can potentially
be combined with real-time decoding from other modalities
(e.g. EEG, ECoG) to provide a robust and more natural control
of prosthetic devices than has been demonstrated to date,
or exploited as a selection signal for communication aids
in locked-in patients.
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