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Highlights
Novelty induces dopamine release in
the hippocampus, triggering memory
consolidation to boost memory
persistence.

Two dopaminergic systems (the ven-
tral tegmental area- and locus coeru-
leus-hippocampus systems) can
stabilise memory through novelty-
induced dopamine release in the
hippocampus.

Novel experiences can be viewed as a
spectrum, from experiences that, while
clearly novel, share some commonality
with past experiences (‘common novelty’),
to more fundamentally distinct experi-
ences that bear minimal relationships to
past experiences (‘distinct novelty’).

We propose that events characterised
by ‘common novelty’ boost memory
retention via activation of the ventral
tegmental area-hippocampus system,
resulting in initial consolidation fol-
lowed by systems consolidation to
create neocortical, semantic, long-
term memories.

We further propose that events char-
acterised by ‘distinct novelty’ lead to
the boost of detailed hippocampal,
episodic, long-term memory via activa-
tion of the locus coeruleus-hippocam-
pus system through strong
upregulation of the synaptic tagging
and capture mechanism.

1Montreal Neurological Institute and
Hospital, McGill University, Montreal,
Canada
2Centre for Discovery Brain Sciences,
University of Edinburgh, Edinburgh,
UK
Adaptation to the ever-changing world is critical for survival, and our brains are
particularly tuned to remember events that differ from previous experiences.
Novel experiences induce dopamine release in the hippocampus, a process
which promotes memory persistence. While axons from the ventral tegmental
area (VTA) were generally thought to be the exclusive source of hippocampal
dopamine, recent studies have demonstrated that noradrenergic neurons in the
locus coeruleus (LC) corelease noradrenaline and dopamine in the hippocam-
pus and that their dopamine release boosts memory retention as well. In this
opinion article, we propose that the projections originating from the VTA and
the LC belong to two distinct systems that enhance memory of novel events.
Novel experiences that share some commonality with past ones (‘common
novelty’) activate the VTA and promote semantic memory formation via
systems memory consolidation. By contrast, experiences that bear only a
minimal relationship to past experiences (‘distinct novelty’) activate the LC
to trigger strong initial memory consolidation in the hippocampus, resulting in
vivid and long-lasting episodic memories.

Two Origins of Hippocampal Dopamine
Dopaminergic neuromodulation plays diverse roles in the central nervous system, depending
largely on its source and the target brain areas. In addition to its well-known role in influencing
ongoing and future behaviour through the control of movement [1,2] and reward signalling
[3–5], it has also been suggested as a critical modulator of hippocampal-dependent mnemonic
processes, acting to selectively enhance retention at different stages of memory formation
[6,7]. Behavioural studies have confirmed that activation of dopamine D1/D5 receptors (see
Glossary) not only contributes to memory encoding [8] but is also necessary to convert short-
term memory to protein synthesis-dependent long-term memory [9–13]. Although dopamine
D2-like receptors (D2, D3, and D4) are also expressed in the hippocampus and their activation
has been shown to affect hippocampal plasticity and excitability [14–19], their role in memory
consolidation processes has not yet been thoroughly characterized.

This enhancement of memory retention is achieved by prolonging the stability of changes in
synaptic efficacy [12,20], most notably long-term potentiation (LTP), a neural substrate for
memory storage (for review see [21,22]; see also Box 1). Novel experiences have been shown
to induce dopamine release in the hippocampus, promoting encoding and persistence of
transient memory traces on the physiological as well as behavioural level [10,12,23,24]. The
source of hippocampal dopamine was initially assumed to be the hippocampal terminals
originating from tyrosine-hydroxylase expressing (TH+) neurons in the ventral tegmental
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Figure 1. Two Dopaminergic Systems for Memory Consolidation. Both the ventral tegmental area (VTA; labelled
green) and locus coeruleus (LC; cyan) project to the dorsal hippocampus in mice, but projections from LC (right panel) are
denser than those from VTA (left). Both VTA and LC neurons can promote memory persistence via dopamine (DA) D1/D5

receptor-dependent mechanisms in the hippocampus and thus presumably via direct release of dopamine from their
axons. Reproduced from [28].
area (VTA) [6,25,26]. Indeed, optogenetic activation of this projection was shown to modulate
hippocampal synaptic responses [19] and to enhance memory retention [27]. However, recent
studies utilising ex vivo and in vivo approaches have collectively demonstrated that TH+

neurons in the locus coeruleus (LC) are also capable of enhancing memory retention through
corelease of dopamine, in addition to noradrenaline, in the hippocampus [28–30]. Although
both dopaminergic projections in the dorsal hippocampus (Figure 1) promote memory
consolidation, the reason for the existence of two separate dopaminergic inputs to the
hippocampus is currently unknown. In this opinion article, we characterise the recent advances
in our understanding of these two parallel dopaminergic systems and propose a framework for
their predicted roles in different memory consolidation processes.

An Unexpected New Source of Dopamine
TH+ neurons in the midbrain, most notably in VTA, project sparsely to the hippocampus in
rodents [25–27,31] and potentially somewhat more densely in primates [32,33]. Nonetheless,
the mismatch between the low density of VTA-TH+ axons (Figure 1) and high density of
dopamine D1/D5 receptors in the rodent hippocampus (for review see [34]) has raised ques-
tions about the possibility of other sources of dopamine to the hippocampus [35]. Similarly,
dopamine concentration reported in many neocortical areas does not seem to match the local
density of axons from VTA-TH+ neurons [35]. Surprisingly, neocortical dopamine levels are
strongly attenuated by activation of a2-adrenoceptors, a pharmacological manipulation that
suppresses the noradrenergic system [35,36]. This led Paola Devoto and colleagues [35,36] to
suggest that LC-TH+ neurons, which project to many diverse brain areas and synthesise
dopamine as a precursor for noradrenaline, may in fact be the dominant source of dopamine in
some cortical regions. Like dopamine, noradrenaline serves an important role in synaptic
plasticity [37] as well as mnemonic processes in the hippocampus [38–40] (Box 2).

Evidence of dopamine corelease from the axons of LC-TH+ neurons projecting to the hippo-
campus first came from indirect inference in both ex vivo and in vivo experiments [41,42]. More
specific evidence was subsequently provided by the demonstration that the memory consoli-
dation-boosting effect created by optogenetic activation of LC-TH+ neurons was prevented
through a pharmacological blockade of hippocampal dopamine D1/D5 receptors [28,29], and,
finally, by the direct detection of dopamine release after prolonged optogenetic stimulation of
hippocampal LC-TH+ axons ex vivo [29].
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Glossary
Dopamine D1/D5 receptors: D1-like
family of receptors, coupled to the G
protein GSa that subsequently
activates de novo protein synthesis.
These receptors are known to gate
hippocampal plasticity and memory.
In the dorsal hippocampus of mice,
the dopamine D1 receptor is
expressed in granule cells in the
dentate gyrus, as well as a subset of
inhibitory interneurons in the hilus
and CA1/CA3 subregions. Dopamine
D5 receptor is expressed in
pyramidal neurons in CA1 and CA3
and granule cells in the dentate
gyrus.
Flashbulb memory: a psychological
phenomenon whereby unexpected,
novel, and often emotionally salient
events are remembered for a long
time and with unusually high
vividness that includes many
seemingly unrelated details.
Hippocampal reactivation: off-line
(i.e., occurring after an actual
experience) reoccurrence of network
activity patterns in the hippocampus
reflecting the cell firing relationships
which occurred during the actual
experience. Place cell replay after a
spatial experience is a well-known
example of this phenomenon: as a
rodent transverses different place
fields during exploration,
hippocampal place cells fire in
sequences representing current
trajectories, and these sequences
are then replayed off-line during
subsequent sleep/rest episodes.
Hippocampal reactivation is thought
to play a role in memory
consolidation and is prevalent during
hippocampal sharp wave-ripple
oscillations in non-rapid eye
movement (non-REM) sleep.
Locus coeruleus (LC): small
nucleus in the brainstem and the
main source of noradrenaline in the
central nervous system.
Noradrenaline released from LC
promotes overall arousal and induces
attention shifts, but at least some LC
neurons are also capable of
coreleasing noradrenaline’s precursor
dopamine.
Memory consolidation: general
term for a range of cellular- and
systems-level processes that
collectively strengthen or modify
encoded memories.
In comparison with the projection by VTA-TH+ neurons, the LC-TH+ innervation of the hippo-
campus is more dense [28,30]. This suggests that hippocampal LC-TH+ terminals may mediate
more global dopamine release while dopamine released from VTA-TH+ terminals could have a
more specific effect, perhaps by selectively targeting particular interneuron types [19,43]. Still,
direct quantitative comparisons of hippocampal dopamine release from LC-TH+ and VTA-TH+

axons are yet to be reported. Given that VTA-TH+ terminals are specialised for dopamine
release whereas LC-TH+ terminals corelease dopamine and noradrenaline, it is conceivable
that despite the differences in projection density, both projections are equally potent sources of
hippocampal dopamine [44]. Furthermore, increased dopamine concentration was not
detected in vivo after short phasic LC stimulation [39] which indicates that in contrast to
intermittent, phasic LC activity reported in response to discrete stimuli [45–47] only a sustained
increase in LC-TH+ neuron activity on the scale of minutes may induce dopamine corelease
[28,29]. While further investigation is required to determine the exact dopamine release
dynamics of each projection, it is possible that LC-TH+ terminals release minimal dopamine
in response to moderate, transient LC activation but are then suited to releasing large amounts
of dopamine in response to infrequently occurring sustained increases in LC activity. By
contrast, dopamine release dynamics of VTA-TH+ terminals may be closer to linear, allowing
downstream responses to subtler changes in VTA-TH+ neuron firing.

Possible Roles for the Distinct Dopamine Systems in Memory Consolidation
Despite its modest innervation density, the VTA-hippocampus system is clearly functional both
ex vivo and in vivo [19,27,48]. Optogenetic activation of hippocampal VTA-TH+ axons can
bidirectionally modulate CA3–CA1 synaptic responses ex vivo [19]. Photo-activation of hippo-
campal VTA-TH+ axons during spatial learning over many trials increases memory strength and
promotes stability of the hippocampal spatial map as tested 1 h after memory encoding [27].
Similarly, optogenetic activation of hippocampal LC-TH+ axons during memory encoding
promotes spatial memory retention [29] whereas inhibition of hippocampal LC-TH+ axons
projecting specifically to the CA3 subregion during memory encoding blocks formation of new
contextual memories and disrupts the stability of spatial representations in CA3 [30].

Notably, dopamine released by hippocampal LC-TH+ terminals creates a ‘grace period’ of
enhanced memory persistence that can strengthen seemingly unrelated memory traces in a
manner reminiscent of vivid ‘flashbulb memories’ reported in novel and surprising situations
[49,50]. Evidence for this comes from selective manipulation of the initial (or cellular) memory
consolidation phase (30 min after memory encoding). In this experiment, optogenetic activation
of LC-TH+ but not VTA-TH+ neurons enhanced the persistence of seemingly unrelated spatial
memories encoded close in time in the same way as a novel experience [28]. This interesting
consequence of the activation of LC-hippocampal system is in line with the synaptic tagging
and capture theory of initial memory consolidation, which explains such late-associativity of
hippocampal memory traces by virtue of short-lived ‘synaptic tags’ present in recently potenti-
ated synapses (Box 1) [51,52]. Moreover, because of a 30-min delay between memory
encoding and optogenetic LC-TH+ neuron activation, this beneficial effect on memory persis-
tence is unlikely due to noradrenaline-mediated changes in attention or arousal.

Activation of the VTA-hippocampal system, on the other hand, has been shown to promote the
network level process known as hippocampal reactivation [27]. During sleep, neural pat-
terns present at the time of preceding awake experiences are reactivated in a time-compressed
manner via fast hippocampal oscillatory events called sharp wave-ripples (SWRs). This is
important for the stabilisation of previously encoded memories and hippocampal representa-
tions [53–55]. Hippocampal reactivation is associated with ‘systems memory consolidation’
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Sharp wave-ripples (SWRs): 100–
150 Hz oscillation in the
hippocampus (sharp wave in the
stratum radiatum, ripple in the
pyramidal layer) occurring during
awake behaviour and especially
during rest and sleep.
Tyrosine hydroxylase (TH): an
enzyme involved in synthesis of
catecholamines (dopamine and
noradrenaline). In this opinion article,
we use the term TH-expressing (TH+)
neurons to refer to catecholamine-
producing neurons in the ventral
tegmental area (VTA) and locus
coeruleus (LC).
Ventral tegmental area (VTA):
midbrain nucleus that is the main
origin of dopaminergic fibres
innervating the brain’s higher
cognitive centres, including the
ventral striatum, neocortex, and parts
of the limbic system. Dopaminergic
neurons in VTA are part of the
brain’s reward circuitry, but some are
also activated in response to salient
stimuli with no immediate reward
value.
that transforms new memories off-line during sleep, extracting overlapping content across
multiple events (Box 3) [56,57], and that involves coordinated activity between the hippocam-
pus and the prefrontal cortex, mediated by SWRs [53,54,58,59]. SWRs promote the rein-
statement of hippocampal representations for novel, but not familiar, places [55], indicating the
importance of novelty in this consolidation process. Interestingly, dopamine released by
hippocampal VTA-TH+ terminals at the time of the experienced event is thought to enhance
systems memory consolidation. In support of this, optogenetic stimulation of hippocampal
VTA-TH+ axons as the animal explores an environment with novel geometry enhances subse-
quent SWR-associated hippocampal reactivation [27]. Moreover, activation of this projection
during encoding of a spatial route-learning task called the ‘crossword maze’ promotes memory
persistence as measured through hippocampal place cell map stability as well as behavioural
performance [27]. Interestingly, this boost in reactivation fidelity is limited to the activity patterns
observed during the period of stimulation of hippocampal VTA-TH+ axons and does not extend
to the patterns representing immediately preceding experiences [27], suggesting, at the
physiological level, the VTA-hippocampal system is less suited to extending the ‘grace period’
of enhanced memory persistence.

Thus, we are confronted with two distinct dopamine systems, and we propose that each
system is optimized for the promotion of different memory consolidation processes. Although
activation of hippocampal TH+ axons coming from either VTA or LC enhances the persistence
of memory, LC-TH+ neuron activation also enhanced the persistence of other, unrelated
memories encoded close in time [28] by globally strengthening the synaptic modifications
within the hippocampus [52]. By contrast, VTA-TH+ neuron activation enhances hippocampal
reactivation [27], a process associated with promoting selective reorganisation of memory
traces via systems-level mechanisms (Box 3). Such processes are thought to strengthen
connections that directly connect elements of the memory trace encoded in the neocortex and
thus reduce its hippocampal dependency [57,60]. It should be noted, however, that the effects
Box 1. Initial Memory Consolidation within the Hippocampus

In the first few hours after memory encoding, initial (or cellular) memory consolidation processes are required for memories to last [21,87,88]. In absence of a
neuromodulatory signal, hippocampal synapses modified during encoding via canonical NMDA (N-methyl-D-aspartate)-type glutamate receptor-mediated plasticity
mechanisms return to their baseline state (Figure IA). However, heterosynaptic activation of metabotropic neuromodulatory receptors (most notably dopamine D1/D5

receptors) followed by de novo protein synthesis in the same neuronal population promotes persistence of these normally transient synaptic modifications,
preventing the associated memory traces from being wiped out (Figure IB) (see [7] for review).

Importantly, dopamine D1/D5 receptor activation does not need to happen at the time of memory encoding. The synaptic tagging and capture mechanism [51,52]
enables hippocampal neurons to preserve synaptic modifications that happened within a few hours’ time window (or a ‘grace period’) around the time of
dopaminergic activation. Neurons keep track of recently potentiated synapses with ‘synaptic tags’ induced by post-translational mechanisms (e.g., phosphorylation
and actin dynamics, etc.) [89]. These tags promote the capture of ‘plasticity-related proteins (PRPs)’ that are synthesised de novo in response to activation of
dopamine D1/D5 receptors. Once the potentiated and tagged synapse captures the PRPs, the LTP that would normally decay to baseline after several hours is
instead transformed into a long-lasting, stable form. As both synaptic tags and PRPs have a life-span in the order of hours, the time-window of the availability of these
two factors defines the ‘grace period’ for late-associativity. In other words, the tagged synapses that are potentiated within a few hours’ window before or after the
dopamine D1/D5 receptor activation are consolidated. What follows is that the synaptic changes, even those of a normally transient nature, are preserved within the
brain thanks to long-lasting plasticity within the associative hippocampal network.

This physiological phenomenon can be demonstrated on a behavioural level through an analogous phenomenon of ‘behavioural tagging’ [10,12,28,66]. In such
experimental protocols, memory tasks inducing weak memory (that does not normally undergo initial memory consolidation) are coupled with unrelated novel events
experienced close in time. If the two events occur within the ‘grace period’ postulated by the synaptic tagging and capture mechanism, the novel event boosts
persistence of the weak memory via LC-mediated dopamine release and subsequent activation of hippocampal dopamine D1/D5 receptors [28]. Importantly, both
synaptic tags induced by weak memory encoding and PRP production triggered by unrelated novel events have to happen in the same neuronal population, and
sharing hippocampal neuronal ensembles between transient and novel/unexpected memories is a postulated network mechanism of the synaptic tagging and
capture theory [68]. In the hippocampus, such overlap in neuronal ensembles representing events encoded close in time is achieved by increased neuronal
excitability in a CREB (cAMP-responsive element-binding protein)-dependent manner [22,90].
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Figure I. Dopamine D1/D5 Receptor Activation Promotes Initial Memory Consolidation within the Hippocampus. (A) N-methyl-D-aspartate (NMDA)
receptor (NMDA-R) activation by presynaptic glutamate release coupled with postsynaptic depolarisation leads to transient long-term potentiation (LTP) of the
synapse via Ca2+/calmodulin-dependent protein kinase II (CaMKII) and protein kinase A (PKA)–mediated a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
(AMPA) receptor (AMPA-R) phosphorylation and their postsynaptic recruitment. The postsynaptic spine is also tagged for consolidation but in absence of plasticity-
related proteins (PRPs) synaptic strength decays to baseline after several hours. (B) Activation of dopamine (DA) D1/D5 receptors (DA D1/5-R) leads to de novo PRP
synthesis. If dopamine D1/D5 receptors are activated in the same neuron around the time of LTP induction, PRPs will be captured by the tagged synapses, leading
to persistent LTP through initial consolidation.
of dopamine released from hippocampal LC-TH+ axons, in the awake state, on subsequent
sleep/rest-associated hippocampal reactivation have not yet been established.

Different Fates of Novelty-Associated Memories
Novelty induces dopamine release in the hippocampus [61,62] and dopamine-releasing TH+

neurons in both VTA and LC increase their activity during exposure to a novel stimulus
[27,28,45,63]. Moreover, novel experiences promote hippocampal plasticity [23,42], hippo-
campal reactivation [27,64,65], and memory persistence [10,12,28,50,66–68]. However,
novelty can come in different flavours and can be viewed as a spectrum. On one end of
106 Trends in Neurosciences, February 2019, Vol. 42, No. 2



Box 2. Noradrenaline and Hippocampal Plasticity and Memory

While recent behavioural studies highlighted the mnemonic role of dopamine released from LC-TH+ axons in the
hippocampus [28–30,41], it is important to emphasise that LC fibres are primarily known as the main source of
noradrenaline in the central nervous system. Adrenoceptors are expressed ubiquitously in the hippocampus [91] and a
large body of work focused on characterising their importance in hippocampal plasticity and memory [92–97].
Pharmacological blockade of b-adrenoceptors has been shown to impair long-term plasticity in the dentate gyrus
in a manner similar to the role of dopamine D1/D5 receptors in CA1 [98,99]. Moreover, activation of LC enhances
synaptic plasticity in the dentate gyrus in b-adrenoceptor-dependent manner [100,101], indicating that noradrenaline
and dopamine may act in concert to strengthen hippocampal memory traces.

Behavioural studies utilising pharmacological blockade of hippocampal b-adrenoceptors in rats observed robust
impairment in memory consolidation [38,40,102,103] and in LC-mediated enhancement of memory encoding
[101], establishing a link between noradrenergic modulation of hippocampal plasticity and memory. However, recent
studies in mice did not detect interference of contextual memory encoding [30] or attenuation of LC-TH+ neuron-
mediated boost in memory encoding [29] and consolidation [28] in response to similar pharmacological interventions.
This discrepancy warrants further investigation and may be due to different behavioural tasks, differences between
animal species, or the timing of b-adrenoceptor blockade.
the spectrum are novel experiences that share common aspects with past experiences, such
as visiting a new beach after having been to many other beaches before (Figure 2A). We refer to
this type of novelty as ‘common novelty’. Common novelty is a novel experience that is similar
and relevant to the previous experiences and thus can possibly be memorised by updating the
memories already stored in the neocortex. By contrast, completely new experiences such as
seeing the ocean for the first time (Figure 2B), pose unique challenges for the brain’s memory
systems. Such novelty is by definition unique, bearing little resemblance to previous experi-
ences. Thus, it is less suitable for incorporation into memory representations already stored in
the neocortex and it may even interfere with already stored information [69,70]. We refer to this
type of novelty as ‘distinct novelty’.

A practical example of common novelty in rodent experiments is a new configuration of maze
walls, reward location, and orientation of both local and surrounding spatial cues in the
crossword maze, for instance (Figure 3A, Key Figure). This represents a highly novel environ-
ment that triggers global remapping of the hippocampal cognitive map measured through
place cell firing [27]. Still, aspects of the task and the surroundings have been experienced
before, thus providing a cognitive substrate for the retention of the new experience. In these
experiments, optogenetic activation of hippocampal VTA-TH+ axons was sufficient to boost
memory retention in a retrieval test held 1 h later. A possible contributing factor to this effect is
dopaminergic modulation of synaptic plasticity [23,71], to trigger initial memory consolidation in
the hippocampus. On a network level, optogenetic activation of hippocampal VTA-TH+ axons
enhanced SWR-associated memory reactivation in the hippocampus in a dopamine-depen-
dent manner [27]. Thus, activation of the hippocampal VTA-TH+ axons during encoding
resulted in enhanced memory persistence accompanied by enhanced SWR-associated reac-
tivation in the intervening period.

SWR-associated memory reactivation is thought to mediate brain-wide systems memory
consolidation [53,57,58] and is particularly important for retention of neuronal assembly
patterns formed gradually throughout a novel experience [55]. We propose that the VTA-
hippocampus system is particularly suited to promote systems memory consolidation while
also providing sufficient dopamine to allow initial memory consolidation (Figure 3B). Dopamine
release in the prefrontal cortex has been shown to increase hippocampal-prefrontal cortex
coherence and subsequent reactivations during sleep, and such extra-hippocampal effects
could thus contribute additionally to dopamine’s effect on systems memory consolidation [72].
Trends in Neurosciences, February 2019, Vol. 42, No. 2 107



Box 3. Brain-Wide Network Reorganisation during Systems Memory Consolidation

Due to the limited capacity of our memory systems, our brains need to decide which experiences to integrate into our
long-term memory. Brain-wide reactivation of recent experience allows for the comparison of new memories with the
experiences and knowledge already stored in the memory systems, thus perhaps leading to the integration of similar
memories into pre-existing memory networks. The process whereby initially hippocampal-dependent memories
become less dependent on the hippocampus and more dependent on the neocortex over time is referred to as
‘systems memory consolidation’ [60].

Events that can be incorporated into pre-existing networks are reactivated during subsequent sleep/rest [104] under
neocortical guidance [105,106] and are thus gradually integrated into neocortical networks [107]. In principle, this could
be achieved by the mechanisms postulated early on by Marr [69] and modelled by McClelland and colleagues [70,107].
Memories are thought to be consolidated from the short-term, temporally organized storage of the hippocampus to a
long-term neocortical, semantic memory network, becoming more categorised by content instead of time [60,88,108].

On a physiological level, systems memory consolidation is thought to integrate new memories into pre-existing
neocortical networks during sleep/rest through coordinated reactivation of cell assemblies [57]. This bidirectional
communication between the hippocampus and prefrontal cortex might be orchestrated through slow oscillations and
hippocampal SWRs; slow oscillations travel from the neocortex to the hippocampus to first induce SWR-associated
hippocampal reactivation, and subsequently reactivation in the neocortex time-locked to SWRs [58,109–111]. This
sequential reactivation is thought to lead to the strengthening of neocortical connections and integration of new
information into pre-existing memory networks. Further, SWR-related reactivations have been associated with wide-
spread downregulation of hippocampal synapses [112], suggesting a means by which hippocampal representations
could be transformed to prune less relevant information while also strengthening specific connections to aid the later
reinstatement of relevant information.
Activation of the VTA-hippocampus system by common novelty enables the elements of these
novel episodes to be incorporated into neocortical semantic knowledge structures based on
past experience (i.e., ‘schemas’) [73,74], and those memories should become less vividly
episodic in quality (Figure 2). Moreover, in contrast to the more prominent ‘grace period’
associated with dopamine released by the LC-hippocampal system (which produces a more
widespread memory enhancement), this common novelty-associated memory boost involving
Common novelty(A) (B) Dis nct novelty
Visit to a new beach having
seen the ocean many mes

Seeing the ocean for
the first me

Time Time

Memory representa on
more seman c in nature

Highly episodic
‘flashbulb memory’

Figure 2. Common and Distinct
Novel Experiences May Result in Dif-
ferences in Memory Fate. (A) A first
time visit to a new beach after having seen
the ocean many times (common novelty)
results in systems memory consolidation
and incorporating the memory into pre-
existing, neocortical networks (i.e.,
semantic knowledge). This semantic
representation could reflect different
aspects of the beach such as the general
layout, the quality of the waves, or the way
to a nearby bar. (B) By contrast, another
person who has never seen the ocean
before may retain the memory of a similar
experience (e.g., visiting that same beach
on the same day) differently. On seeing
the vast expanse of the ocean and experi-
encing the crashing of the waves for the
very first time (distinct novelty), they may
experience a sense of amazement such
that the detailed, hippocampal-depen-
dent episodic memory trace is better
retained for a longer time, through stron-
ger initial memory consolidation.
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Key Figure

Two Forms of Novelty and Memory Consolidation
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Figure 3. (A) In the ‘crossword maze’ task, each day mice experience a new configuration of maze walls, reward location,
and orientation of both local and surrounding spatial cues. This represents a highly novel environment, yet the task and
characteristics of the surroundings share some common aspects with previous experiences. This represents a form of
what we refer to as ‘common novelty’. Due to these common aspects it may be stored via updating of the pre-existing
semantic networks in the neocortex. (B) We propose that such common novelty activates the ventral tegmental area-
hippocampus (VTA-HPC) system to trigger initial memory consolidation, followed by increased systems memory con-
solidation between HPC and the prefrontal cortex (PFC), with enhanced sharp wave-ripple (SWR)-related reactivations
aiding long-term retention of the memory trace and associated semantic information. Indeed, in crossword maze
experiments, optogenetic activation of hippocampal VTA-tyrosine-hydroxylase expressing (TH+) axons increases hippo-
campal reactivation and enhances memory retention [27]. (C) Completely new experiences pose unique challenges to the
brain’s memory systems, as they cannot be as easily incorporated into memory representations already stored in the brain.
We refer to this type of novelty as ‘distinct novelty’. In rodent experiments, distinct novelty can come in different forms, for
instance altering floor substrates, or presenting dramatically distinct objects not previously experienced by the animal. (D)
We propose that such distinct novelty activates the locus coeruleus (LC)-HPC system, boosting initial memory con-
solidation in HPC and enhancing retention of unrelated experiences (both preceding and subsequent ones, e.g., training in
a maze), which results in long-term retention of a detailed episodic memory trace. It has been shown that LC-TH+ neurons
(but not VTA-TH+ neurons) are sufficient to induce this ‘grace period’ of memory retention and are indispensable for it [28].
VTA is more selective to the novel experiences themselves. Data in support of this include an
experiment where rats were allowed to explore previously unavailable arms of a radial arm maze
(representing new experiences in a known context) [64]. Enhanced reactivation of the novel arm
representations was not accompanied by enhanced reactivation of representations associated
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Outstanding Questions
Brain systems that detect either com-
mon novelty or distinct novelty: which
brain circuits provide information
about the different types of novelty to
the VTA and LC?

Subcellular localization of dopamine
receptors in the hippocampus: what
is the subcellular localization pattern
of the different dopamine receptor
types, particularly D1 and D5 recep-
tors, in hippocampal principal neu-
rons? Similarly, what is the
localization pattern in the various types
of interneurons? What are the func-
tional implications of these
distinctions?

Innervation pattern of LC-TH+ and
VTA-TH+ axons in the hippocampus
and neocortex: what are the specific
connectivity patterns of LC-TH+ and
VTA-TH+ axons to principal neurons
and various types of interneurons?
How do they vary across different
species?

Dopamine release in the hippocampus
from the two dopamine systems: what
are the qualitative and quantitative dif-
ferences in hippocampal dopamine
release from LC-TH+ and VTA-TH+

axons? What are the specific LC firing
patterns that lead to dopamine release
from hippocampal LC terminals in nat-
ural conditions?

Synergistic role between dopamine
and noradrenaline: what are the syn-
ergistic interactions between dopa-
mine and noradrenaline released
from LC-TH+ axons in the hippocam-
pus that may enhance persistence of
memory?

LC-hippocampal system and hippo-
campal reactivation: does dopamine
released from hippocampal LC-TH+

axons during wake affect subsequent
sleep/rest-associated hippocampal
reactivation?

VTA-hippocampal and LC-hippocam-
pal systems-mediated memory con-
solidation: are there qualitative
differences between memories con-
solidated via the VTA and LC dopami-
nergic systems?
with familiar arms visited around the same time. Similarly, in crossword maze experiments,
enhancement in hippocampal reactivation was limited to spatial maps formed at the time of
optogenetic activation of hippocampal VTA-TH+ axons and did not enhance reactivation of the
maps present in the hippocampal network prior to the optogenetic manipulation [27].

Distinct novelty can come in different forms, such as novel floor substrates as well as objects
and spatial context in rodent experiments (Figure 3C), the main commonality being that distinct
novelty cannot be related to the animal’s past experiences [28,75]. When animals are given a
unique one-of-a-kind experience, this distinct novelty activates the newly-characterised dopa-
minergic LC-hippocampus system [28,34]. Dopamine coming from hippocampal LC-TH+

afferents creates a ‘grace period’ of enhanced initial memory consolidation for events that
happened shortly after, as well as before, the event characterised by distinct novelty, supplying
the rich contextual details that characterise long-lasting hippocampal-dependent memories
[28,34,75]. Interestingly, a recent study reported that such distinct novelty downregulates the
expression of immediate early genes in the prefrontal cortex after learning [75], which suggests
that such novel experiences interfere with subsequent systems consolidation processes.
Furthermore, distinct novelty causes the memory to be retained for longer in its detailed,
hippocampal form and its consolidation is sleep- and thus perhaps hippocampal reactivation-
independent [75].

We therefore postulate that the LC-hippocampus system acts to preserve the vivid quality of
episodic-like memories by strengthening the hippocampal memory traces through dopamine
release and upregulation of initial memory consolidation (Figure 3D). As opposed to becoming
more semantic in nature over time, memories consolidated this way retain their rich cooccurring
contextual details which were enhanced within the temporal ‘grace period’ and remain
anchored to the hippocampus as vivid, flashbulb-like representations [49,50]. Preservation
of memories characterised by such distinct novelty in an exceptionally rich, episodic-like form is
beneficial due to the inability to assess which aspects of such a salient experience will prove to
be the most important [76]. Obviously, the transition between the common and distinct novelty
categories is unlikely to be abrupt, but rather gradual, with various novel experiences activating
both systems to different degrees depending on the features of the experience.

Concluding Remarks and Future Perspectives
To summarize, this opinion article proposes that memory of events accompanied by novelty
can be selectively retained through either of two distinct dopaminergic mechanisms, depend-
ing on the nature of the novel experience itself. In our view, ‘common novelty’ leads to selective
enhancement of memory retention via activation of the VTA-hippocampus system, and to initial
memory consolidation without a grace period, followed by systems memory consolidation
between the hippocampus and neocortex. By contrast, we hypothesise that ‘distinct novelty’
leads to the enhancement and preservation of detailed hippocampus-dependent memory
representations in a broader temporal window via greater activation of the LC-hippocampus
system. This activation enhances initial memory consolidation in the hippocampus [28], and
possibly suppresses systems memory consolidation between the hippocampus and the
neocortex [75,77]. Furthermore, hippocampal LC-TH+ axons may be better suited for releasing
dopamine in response to emotive, infrequently occurring events. The synergistic role of
simultaneous noradrenaline and dopamine corelease in promoting plasticity and/or arousal
may also be of importance [78]. Put differently, we suggest that the VTA-hippocampus system
upregulates memory retention via systems consolidation, ultimately leading to greater memory
generalisation (neocortex-dependent long-term semantic memory), whereas the LC-hippo-
campus system enhances retention in a fashion that serves to more fully preserve the
110 Trends in Neurosciences, February 2019, Vol. 42, No. 2



contextual content of the memory (hippocampus-dependent long-term episodic memory). A
note should be added in relation to the often discussed roles of VTA and LC in reward signalling
and arousal/attention, respectively [3,79]. We would like to emphasise that our postulated roles
of these brain regions in memory are separate from and complementary to their abovemen-
tioned functions.

Although the involvement of both hippocampal dopaminergic systems in mnemonic process-
ing is well-established, dissecting the qualitative differences between VTA- and LC-mediated
memory consolidation requires more systematic testing on both physiological and behavioural
levels. Furthermore, while we have discussed the role of VTA and LC activity during actual
experiences, their roles in subsequent reactivation events during sleep/rest may also be
important and require better understanding. It has been shown that VTA neurons coordinate
with hippocampal SWR-associated reactivation during quiet wakefulness but only in some
cases during non-REM sleep [80,81]. However, dopamine D1/D5 receptor activation in vitro
promotes SWR occurrence [82], and selective closed loop medial forebrain bundle activation
(including projections from the VTA) triggered by the activity of a place cell during sleep can
create a memory for that location [83]. Additionally, and in line with our hypothesis, SWR-
triggered electrical LC activation in vivo prevents further SWR occurrence [84], suggesting
differential roles for VTA- and LC-hippocampus systems in memory consolidation even during
off-line states. For possible differential consolidation mechanisms of these two types of novelty
during sleep see [77].

Importantly, since activation of either of the dopaminergic streams during experience leads to a
boost in memory retention, future studies contrasting their effects on mnemonic processing
should look beyond simple behavioural readout and focus instead on the quality of boosted
memory; physiological hallmarks of intra-hippocampal reactivation and hippocampal-neocor-
tical dialogue; and molecular markers of hippocampal and neocortical plasticity [75,85,86] (see
Outstanding Questions). The recent discoveries regarding the dual nature of dopaminergic
modulation of memory consolidation, as discussed in this opinion article, will hopefully inspire
future comparative studies that will directly assess the qualitative differences between memory
traces consolidated via these two distinct dopaminergic systems.
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