
Learning on Arbitrary Graph Topologies

via Predictive Coding

Tommaso Salvatori
1,⇤

Luca Pinchetti
1,⇤

Beren Millidge
2

Yuhang Song
1,2,†

Tianyi Bao
1

Rafal Bogacz
2

Thomas Lukasiewicz
3,1

1 Department of Computer Science, University of Oxford, UK
2 MRC Brain Network Dynamics Unit, University of Oxford, UK

3 Institute of Logic and Computation, TU Wien, Austria
tommaso.salvatori@cs.ox.ac.uk, luca.pinchetti@cs.ox.ac.uk

beren.millidge@ndcn.ox.ac.uk, yuhang.song@some.ox.ac.uk, tianyi.bao@cs.ox.ac.uk
rafal.bogacz@ndcn.ox.ac.uk, thomas.lukasiewicz@cs.ox.ac.uk

Abstract

Training with backpropagation (BP) in standard deep learning consists of two main
steps: a forward pass that maps a data point to its prediction, and a backward pass
that propagates the error of this prediction back through the network. This process is
highly effective when the goal is to minimize a specific objective function. However,
it does not allow training on networks with cyclic or backward connections. This is
an obstacle to reaching brain-like capabilities, as the highly complex heterarchical
structure of the neural connections in the neocortex are potentially fundamental for
its effectiveness. In this paper, we show how predictive coding (PC), a theory of
information processing in the cortex, can be used to perform inference and learning
on arbitrary graph topologies. We experimentally show how this formulation,
called PC graphs, can be used to flexibly perform different tasks with the same
network by simply stimulating specific neurons. This enables the model to be
queried on stimuli with different structures, such as partial images, images with
labels, or images without labels. We conclude by investigating how the topology of
the graph influences the final performance, and comparing against simple baselines
trained with BP.

1 Introduction

Classical deep learning has achieved remarkable results by training deep neural networks to minimize
an objective function. Here, every weight parameter gets updated to minimize this function using
reverse differentiation [1, 2]. However, in the brain, every synaptic connection is independently
updated to correct the behaviour of its post-synaptic neuron [3] using local information, and it
is unknown whether this process minimizes a global objective function. The brain maintains an
internal model of the world, which constantly generates predictions of external stimuli. When the
predictions differ from reality, the brain immediately corrects this error (difference between reality and
prediction) by updating the strengths of the synaptic connections [4–7]. This theory of information
processing, called predictive coding (PC), is highly influential, despite experimental evidence in the
cortex being mixed [8–11], and it is at the centre of a large amount of research in computational
neuroscience [12–16]. From the machine learning perspective, PC has promising properties: it is
able to achieve excellent results in classification [17–19] and memorization [20, 21], and is able to
process information in both a bottom up and a top down direction. This last property is fundamental

† Corresponding author.
* Equal contribution.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

Artificial Neural Network Biological Neural Network

Figure 1: Difference in topology between an artificial neural network (left), and a sketch of a network
of structural connections that link distinct neural elements in a brain (right) [26].

for the functioning of different brain areas, such as the hippocampus [22, 20]. PC also shares the
generalization capabilities of standard deep learning, as it is able to approximate backpropagation
(BP) on any neural structure [23], and a variation of PC is able to exactly replicate the weight update
of BP on any computational graph [24, 25]. Moreover, PC only uses local information to update
synapses, allowing the network to be fully parallelized, and to train on networks with any topology.

Training on networks of any structure is not possible in standard deep learning, where information
only flows in one direction via the feedforward pass, and then BP is performed in sequential steps
backwards. If a cycle is present inside the computational graph of an artificial neural network (ANN),
BP becomes stuck in an infinite loop. More generally, the computational graph of any function
F : Rd ! Rk is a poset, and hence acyclic. While the problem of training on some specific cyclic
structures has been partially addressed using BP through time [27] on sequential data, the restriction to
hierarchical architectures may present a limitation to reaching brain-like intelligence, since the human
brain has an extremely complex and entangled neural structure that is heterarchically organized with
small-world connections [26]—a topology that is likely highly optimized by evolution. This shape
of structural brain networks, shown in Fig. 1, generates a unique communication dynamics that is
fundamental for information processing in the brain, as different aspects of network topology imply
different communication mechanisms, and hence perform different tasks [26]. The heterarchical
topology of brain networks has motivated research that aims to develop learning methods on graphs
of any topology. A popular example is the assembly calculus [28, 29], a Hebbian learning method
that can perform different operations implicated in cognitive phenomena.

In this work, we address this problem by proposing PC graphs, a structure that allows to train on
any directed graph using the original (error-driven) framework by Rao and Ballard [7]. We then
demonstrate the flexibility of such networks by testing the same network on different tasks, which
can be interpreted as conditional expectations on different neurons of the network. Our PC graphs
framework enables the model to be queried on stimuli with different structures, such as partial
images, images with labels, or images without labels. This is significantly more flexible than the
strict input-output structure of standard ANNs, which are limited to scenarios when they are always
presented with data and labels in the same format.

Note that the main goal of this work is not to propose a specific architecture that achieves state-of-the-
art (SOTA) results on a particular task, but to present PC graphs as a new flexible and biologically
plausible model, which can achieve good results on many tasks simultaneously. In this work, we
study the simultaneous generation, classification, and associative memory capabilities of PC graphs,
highlighting their flexibility and theoretical advantages over standard baselines. Our contributions are
briefly summarized as follows:

• We present PC graphs, which generalize PC to arbitrary graph topologies, and show how a single
model can be queried in multiple ways to solve different tasks by simply altering the values of
specific nodes, without the need for retraining when switching between tasks. Particularly, we
define two different techniques, which we call query by conditioning and query by initialization.

• We then experimentally show this in the most general case, i.e., for fully connected PC graphs.
Here, we train different models on MNIST and FashionMNIST, and show how the two queries can
be used to perform different generation tasks. Then, we test the model on classification tasks, and
explore its capabilities as an associative memory model.

2

Graph Vertex

Directed Connection

Error Node

Value Node

Excitatory Connection

Inhibitory Connection

(b) (c)(a)

Training Pattern Constrained Sensory Nodes

Sensory Nodes Internal Value Node

Figure 2: (a) An example of a fully connected PC graph with three vertices. Zoomed is the neural
implementation of PC, where learning is made local via the demonstrated inhibitory and excitatory
connections. (b) A sketch of the training process, where the value nodes of the sensory vertices are
fixed to the pixels of the image. (c) A sketch of query by conditioning, where a fraction of the value
nodes is fixed to the top half of an image, and the bottom half is recovered via inference.

• We next investigate how different graph topologies influence the performance of PC graphs on
generation tasks, reproducing common network architectures such as feedforward, recurrent, and
residual networks as special cases of PC graphs, and investigate how the chosen structure influences
the performance on generative tasks. Finally, we also show how PC graphs can be used to derive
the popular assembly calculus [28].

2 PC Graphs

Let G = (V,E) be a directed graph, where V is a set of n vertices {1, 2, . . . , n}, and E ✓ V ⇥ V is
a set of directed edges between them, where every edge (i, j) 2 E has a weight parameter ✓i,j . The
set of vertices V is partitioned into two subsets, the sensory and internal vertices. External stimuli
are always presented to the network via sensory vertices, which we consider to be the first d vertices
of the graph, with d < n. The internal vertices, on the other hand, are used to represent the internal
structure of the dataset. Each vertex i encodes several quantities. The main quantity is given by the
values of its activity, which change over time, and we refer to it as a value node xi,t. We call the
value nodes of the sensory vertices sensory nodes. Additionally, each vertex computes the prediction
µi,t of its activity based on its input from value nodes of other vertices:

µi,t =
P

j✓j,if(xj,t), (1)

where the summation is over all the vertices j connected to i via outgoing edges, and f is a non-
linearity. Equivalently, it is possible to consider the summation on every j, and have ✓i,j = 0 if
(i, j) 62 E. The error of every vertex at every time step t is then given by the difference between its
value node and its prediction, i.e., "i,t = xi,t � µi,t. This local definition of error, which lies not
only in the output, but in every vertex of the network, is what allows PC graphs to learn using only
local information. The value nodes xi,t and the weight parameters ✓i,j are updated to minimize the
following energy function defined locally on every vertex:

Et = 1
2

P
i("i,t)

2
. (2)

A fully connected PC graph with 3 vertices is sketched in Fig. 2a, along with the operations that
describe the dynamics of the information flow, showing also how every operation can be represented
via inhibitory and excitatory connections.

Learning: When presented with a training point s̄ taken from a training set, the value nodes of
the sensory vertices are fixed to be equal to the entries of s̄ for the whole duration of the training
process, i.e., for every t. A sketch of this is shown in Fig. 2b. Then, the total energy of Eq. (2) is
minimized in two phases: inference and weight update. During the inference phase, the weights are
fixed, and the value nodes are continuously updated via gradient descent for T iterations, where T is
a hyperparameter of the model. The update rule is the following (inference):

�xi,t = �� · @Et/@xi,t = � · (�"i,t + f
0(xi,t)

Pn
k=1"k,t✓i,k), (3)

3

where � is the learning rate of the value nodes. This process of iteratively updating the value nodes
distributes the output error throughout the PC graph. When the inference phase is completed, the
value nodes get fixed, and a single weight update is performed as follows (weight update):

�✓i,j = �↵ · @ET /@✓i,j = ↵ · "li,T f(xj,T), (4)

where ↵ is the learning rate of the weight update. We now describe two different ways to query the
internal representation of a trained model, where the values of some sensory vertices are undefined,
and have to be predicted. In both cases, the weight parameters ✓i,j are now fixed, and the total energy
E is continuously minimized using gradient descent on the re-initialized value nodes via Eq. (3).

Query by conditioning: While each value node is randomly re-initialized, the value nodes of
specific vertices are fixed to some desired value, and hence not allowed to change during the energy
minimization process. The unconstrained sensory vertices will then converge to the minimum of the
energy given the fixed vertices, thus computing the conditional expectation of the latent vertices given
the observed stimulus. Formally, let I = {i1, . . . , iq} ⇢ {1, 2, . . . , n} be a strict subset of vertices.
Assume now that we know that a subset of the value nodes corresponding to the vertices I is equal
to a stimulus q̄ 2 Rq. Then, running inference until convergence allows to estimate the conditional
expectation

E(x̄T | 8t : (xi1,t, . . . , xiq,t) = q̄), (5)

where x̄T is the vector of value nodes at convergence. Examples of tasks performed this way are
(i) classification, where internal nodes are fixed to the pixels of an image, and the sensory nodes are
fixed to a 1-hot vector with the labels, (ii) generation, where the single value node encoding the class
information is fixed, and the value nodes of the sensory nodes converge to an image of that class,
and (iii) reconstruction, such as image completion, where a fraction of the sensory nodes are fixed to
the available pixels of an image, and the remaining ones converge to a reasonable completion of it.
A sketch of this process is shown in Fig. 2c.

Query by initialization: Again, every value node is randomly initialized, but the value nodes of
specific nodes are initialized (for t=0 only), but not fixed (for all t), to some desired value. This
differs from the previous query, as here every value node is unconstrained, and hence free to change
during inference. The sensory vertices will then converge to the minimum found by gradient descent,
when provided with that specific initialization. Again, let I = {i1, . . . , iq} ⇢ {1, 2, . . . , n} be a strict
subset of vertices, and assume that we have an initial stimulus q̄ 2 Rq. Then, we can estimate the
conditional expectation

E(x̄T | (xi1,0, . . . , xiq,0) = q̄) . (6)

Examples of tasks performed this way are (i) denoising, such as image denoising, where the sensory
neurons are initialized with a noisy version of an image, which is cleared during the energy minimiza-
tion process, and (ii) reconstruction, such as image completion, where the fraction of missing pixels
is now not known a priori.

3 Proof-of-concept: Experiments on Fully Connected PC Graphs

In this section, we perform experiments on a fully connected PC graph G = (V,E), i.e., where
E = V ⇥ V . Such PC graphs are fully general and encode no implicit priors on the structure of the
dataset. It is possible to obtain any possible graph topology by simply pruning specific weights of G.

Given a dataset of m datapoints D = {s̄i}i<m, with s̄i 2 Rd, we train the PC graph as described in
Section 2: The first d neurons are fixed to the entries of a training point, and the energy function Et is
minimized via inference and weight updates, via Eqs. (3) and (4). When the training is complete,
we show the different tasks that can be performed, without the need of retraining the model. We use
MNIST and FashionMNIST [30], fixing the first d nodes to the data point, and show how to perform
the tasks of generation, denoising, reconstruction (without and with labels), and classification by
querying the PC graph as described in Section 2.

Setup: For every dataset, we have trained 3 models: one for generation and classification tasks, one
for denoising and reconstructions, and one for associative memories. The first two models consist
of a fully connected graph with 2000 vertices, trained with 794 sensory vertices for classification
and generation tasks (784 pixels plus a 1-hot vector for the 10 labels), and 784 sensory vertices

4

(a) Generation

(b) Reconstruction

(c) Denoising

(d) Reconstruction + Label (e) Associative Memories

Figure 3: Generation experiments using the first 6 classes of the MNIST and FashionMNIST
datasets from the labels {0, 1, 2, 3, 4, 5, 6} and {t-shirt, trouser, pullover, dress, coat, sandal,
shirt}, respectively; (b) reconstruction of incomplete images using query by conditioning, when
only the top half is available; (c) reconstruction of corrupted images using query by initialization;
(d) reconstruction of incomplete images using query by conditioning when also providing the correct
label of the test image; and (e) associative memory experiments when presented with half of a training
image (left) or a corrupted version (right) that it has already seen and memorized; from top to bottom
row: image provided to the network, retrieved image, and original image.

for reconstruction and denoising. Further details about other hyperparameters are given in the
supplementary material.

Generation: To check the generation capabilities of a trained PC graph, we queried the model by
conditioning on the labels: Here, the value nodes dedicated to the 10 labels were fixed to each 1-hot
value, and the energy of the model (Eq. (2)) was minimized using Eq. (3) until convergence. The
generated images are then taken to be the value nodes of the unconstrained sensory nodes, which
were originally fixed to the pixels of the images during training. An example of the images generated
for each label is given in Fig. 3a.

Reconstruction: We provide the PC graph with half of a test image, and ask it to reconstruct the
second half. This can be done using both queries: when querying by conditioning, half of the pixels
of a test image are fixed to the corresponding sensory nodes; when querying by initialization, the
value nodes are simply initialized to the same values. At convergence, we consider the value nodes
of the unconstrained nodes, which should reconstruct the missing part of the image based on the
information learned during training. The results are given in Fig. 3b. We have also replicated the same
experiment using a network trained with the labels, and provided the label during the reconstruction.
This computes the distribution of the missing pixels knowing the available ones and the label. The
results in this case are visibly better and are given in Fig. 3d.

Denoising: We provide the PC graph with a corrupted image, obtained by adding zero-mean Gaussian
noise with variance 0.5. This is done by querying by initialization: before running inference, the
value nodes of the sensory nodes are initialized to be equal to the pixels of the corrupted image. At
convergence, we consider the value nodes of the unconstrained nodes, which should reconstruct the
original image. The results are given in Fig. 3c.

Results: As stated above, we picked a fully connected PC graph due to its generality, and not to
obtain the best performance. However, the results show that this framework is able to learn an
internal representation of a dataset, and that it can be queried to solve multiple tasks with a reasonable
accuracy. The PC graph was in fact able to always generate the correct digit, and almost always
able to generate the correct clothing item in generation tasks, and always able to provide a noisy but
reasonable reconstruction of incomplete test points. The same happened with denoising experiments,
as a cleaner (plausible) image was always produced. In Section 4, we show how to improve all these
performances by using different PC graph topologies.

Classification: We consider the same PC graph trained for the generation experiments. To check
its generalization capabilities, we query by conditioning the pixels of every test image to the first
784 sensory nodes, and run inference to reconstruct the 1-hot label vector. We do not expect to
obtain results directly comparable with standard multilayer perceptrons for two reasons: firstly, the

5

Table 1: Test accuracy of different models on MNIST, FashionMNIST, and SVHN.

Model Ours Hopfield Nets Boltzmann Machine Almeida Pineda
MNIST 91.76 ± 0.02 % 65.23 ± 2.21 % 79.23 ± 0.15 % 76.36 ± 0.14 %
FashionMNIST 83.72 ± 0.33 % 51.74 ± 3.94 % 61.31 ± 0.17 % 69.63 ± 1.64 %
SVHN 84.51 ± 0.11 % 48.92 ± 3.11 % 55.74 ± 1.23 % 59.14 ± 2.64 %

Recurrent Generative Network

(a) Feedforward Network (b) Generative Network

1 0 0 1
1 0 1 0
0 1 0 0

0 0 0 0
0 0 0 0
0 0 0 0

(c) (d) Assemblies of Neurons

Figure 4: Examples of PC graphs that can be built by masking a part of the weights of a fully
connected PC graph. (a) Masking required to build a standard multilayer architecture, such as the
one in [17]. (b) Masking required to build a multilayer architecture, where the weights go in the
opposite direction. Here, the sensory nodes are at the end of the hierarchical structure. This model
is equivalent to the generative networks in [20]. (c) Examples of masking needed to implement
popular architectures with lateral connections, similar to the model in [35]. (d) This is the model in
[28], which consists of a set of Erdõs–Renyi graphs that simulate brain regions (dark squares on the
diagonal) and connections between them (dark squares off the diagonal).

model does not contain any implicit hierarchy, which empirically appears crucial to obtaining good
classification results. Secondly, the PC graph is also simultaneously learning to generate the pixels,
which are much more numerous than labels. However, to check whether the obtained results were
acceptable, we tested against different learning algorithms that train on similar or equivalent fully
connected architectures, such as Hopfield networks, unconstrained Boltzmann machines, and a local
variation of BP introduced in the late 080, called Almeida-Pineda, named after the two scientists
who independently invented it [31, 32]. As for Hopfield networks, we used the implementation
provided in [33]. The results, given in Table 1, show that our model outperforms every other learning
algorithm that can be trained on fully connected architectures. Despite this, the results also show that
the obtained test accuracy is not nearly comparable to the results obtained by multilayer perceptrons,
as they are only slightly better than a linear classifier (obtaining 88% accuracy on MNIST). However,
this is not due to the learning rule of PC, which is well-known to be able to reach a competitive
performance when provided with a hierarchical multilayer structure [17]. For the SVHN [34]
experiment, we used models with 5000 vertices.

Associative memory: We now test whether PC graphs are able to memorize training images and
retrieve them given a corrupted or incomplete version of it. Particularly, we show that a fully
connected PC graph is able to store complex data points, such as colored images, and retrieve them
via running inference. To do that, we trained a novel fully connected PC graph on 100 data points
of the MNIST, FashionMNIST, CIFAR10, and SVHN datasets. We have used a model with 1000
vertices for MNIST and FashionMNIST, and 3500 for SVHN and CIFAR10, and asked it to retrieve

6

the original memories by presenting it either only half of the original pixels, or a corrupted version
with Gaussian noise variance 0.2. This task is similar to image reconstruction and denoising, with the
non-trivial difference that here we only use already seen data points, and hence no generalization is
involved. The results of these experiments are given in Fig. 3e, and show that our method is able to
successfully store and retrieve data points via energy minimization. More details about the capacity
of fully connected PC graphs are given in the supplementary material.

4 Extension to Different PC Graph Topologies

As well-known in deep learning, the performance of the trained model strongly depends on its
architecture: the number of vertices, layers, and their intrinsic structure. In Section 3, we studied the
general architecture of fully connected PC graphs. Here, we show how to reduce a fully connected
PC graph to lighter and even more powerful PC graphs. Particularly, we show how to generate
different neural architectures by simply pruning specific edges of a fully connected PC graph
G = (V,E). In this case, the pruning is performed by applying a sparse mask M . However, there
are multiple equivalent ways of implementing it. Consider now the weight matrix ✓̄ 2 Rn⇥n, where
every entry ✓i,j represents the weight parameter connecting vertex i to vertex j. To generate a neural
architecture that consists of a subset of the original connections, it suffices to mask the matrix ✓̄ via
entry-wise multiplication with a binary matrix M , where Mi,j = 1 if the edge (i, j) exists in E, and
Mi,j = 0 otherwise. This allows the creation of hierarchical discriminative architectures such as a
PC equivalent of the multilayer perceptron (MLP) in Fig. 4a, or hierarchical generative networks
in Fig. 4b, c. More generally, it creates a framework to generate and study architectures with any
topology, such as small-world networks inspired by brain regions [36], as shown in Fig. 4d. Guidance
on which topology should be used depends on the tasks and dataset, and it is hence hard to propose a
general theory (as it is with BP). In what follows, however, we provide multiple examples.

Experiments: Here, we study how the network topology influences the final performance, performing
the same experiments shown on the fully connected PC graph. We expect the generated images to be
visibly better due to the enforced hierarchical structure of the PC graph.

Setup: We trained generative PC graphs, recurrent generative PC graphs, assemblies of neurons PC
graphs, and standard BP autoencoders with different numbers of hidden layers and hidden dimension,
and report the best results. For the generation results, we used the same setup, but added an input
layer with 10 vertices, whose value nodes during training were initialized with the 1-hot label vector.
We performed a search across learning rates � and ↵, and on the number of iterations per batch T .
More details are given in the supplementary material, as well as a long discussion on how different
parameters influence the final performance of the architecture.

Results: The results are given in Fig. 5a and b. As expected, the hierarchical structure of the
considered PC graphs improves over the fully connected PC graph, despite being comparable in
the number of parameters. Compared against autoencoders (Fig. 5c), the standard ANN baseline
trained with BP, the PC graph results are similar in image denoising, and better in image reconstruction.
FID scores on denoising tasks for different levels of noise are given in Table 7.

5 Conditioning on Labels

Assume that we need to reconstruct a test image from an incomplete version of it, with the further
assumption that that this time we are also provided with the label of the corrupted image. It would
be useful to be able use this extra information to obtain a better reconstruction. In PC graphs, this
is straightforward: it suffices to simultaneously fix the value nodes representing the labels to the
1-hot vector of the provided label, and the sensory nodes to the pixels of the corrupted image. This
method can be applied when it is difficult to infer to which class an incomplete image belongs, and
providing the label during the reconstruction allows the preferred label to influence the reconstruction.
Hence, we perform the following task: we provide images of digits that look similar when incomplete,
and ask the model to reconstruct the missing half when giving the label information, i.e., use the
additional label information to correctly resolve the inherent ambiguity in the reconstruction task.

Experiments: We used the same PC graphs from above for generation tasks. We provided the PC
graph the bottom 33% of random images representing 7s or 9s. Note that it is hard to distinguish
between these two numbers when only this small portion of the image is available. Then, we generated

7

(a) Generative Network (b) Recurrent Generative Network (d) Autoencoder(c) Assembly of Neurons

Figure 5: Query by initialization (top) and query by conditioning (bottom) on three different PC
graph architectures and different datasets. Particularly, we tested these PC graphs against ANN
autoencoders trained with BP (d), which perform comparably to the PC graphs on denoising tasks,
but less well on image reconstruction.

Generation (b) Conditioned Reconstruction(a)

Figure 6: Left: Generated images given the labels using feedforward (top) and recurrent (bottom) PC
graphs. Right: conditional inference on the labels.

the missing 67% of the pixels by first giving 7 as a label, and then giving 9. We have repeated the
same task using 3s and 5s. The results, available in Fig 6b, show that our model is able to perform
conditional inference, as the reconstructed digits always agree with the provided labels.

6 Assembly of Neurons Figure 7: FID Score on MNIST
on images corrupted with Gaussian
noise of different variance.

Method PC Autoencoder
0.2 25.61 43.93
0.5 44.53 53.79
0.7 51.38 57.56

Recently, a model made by assemblies of neurons that are
sparsely connected with each other has been proposed to em-
ulate brain regions [28]. This model consists of m ordered
clusters of neurons (C1, . . . , Cm), and any two ordered neu-
rons of the same cluster are connected by a synapse with
probability p, creating an Erdõs–Renyi graph Gm,p. Depend-
ing on the desired task, two clusters can be connected via
sparse connections following the same rule: if cluster Ca is
connected to cluster Cb, then, given a vertex vi 2 Ca and a vertex vj 2 Cb, there exists a synaptic
connection connecting vi to vj with probability p. Note that this structure is highly general, and
allows to build networks such as the one represented in Fig. 1b. To conclude, at each time step, only
the k neurons of every cluster with the highest neural activity fire. In the original work, the authors
propose a Hebbian-like learning algorithm, however, we show that it can also be trained using PC
graphs. A graphical representation on how to encode as a PC graph a network made by assemblies
of neurons is given in Fig. 4d. In this case, each dark block on the diagonal represents connections
between neurons of the same region. Unlike the other networks in the same figure, these are sparse
matrices where every entry is either zero, or one with probability p. As in the brain, not every region
is connected with the other, and whether two regions are directly connected has to be decided a
priori when designing the architecture. Again, two neurons between connected regions are directly
connected with probability p. In Fig. 4d, dark blocks off the diagonal represent the presence of
directed connections between two regions Ca and Cb. If situated below the diagonal, the connections
go from Ca to Cb, with a < b; if situated above the diagonal, they go from Cb to Ca.

8

Experiments: We replicated this structure, using 4 clusters with 3000 vertices each, connected in a
feedforward way: the first cluster is connected with the second, which is connected with the third,
and so on. As sparsity and top-k constants, we used p = 0.1 and k = 0.2, and performed the same
generative experiments. The results are given in Fig. 5c. While the results look cleaner than the other
methods, note that they are specific to MNIST and FashionMNIST, as the top-k activation on the last
cluster well cleans the noise surrounding the reconstructions.

7 Related Work

Our work shares similarities and the final goal with a whole field of research that aims to improve
current neural networks by using techniques from computational neuroscience. In fact, the biological
implausibility and limitations of BP highlighted in [37, 38] have fueled research in finding a new
learning algorithm to train ANNs, with the most promising candidates being energy-based models
such as equilibrium propagation [39, 40]. Other interesting energy-based methods are Boltzmann
machines [41–43], and Hopfield networks [44, 45]. These differ from PC, as they do not encode
the concept of error, but learn in a pure Hebbian fashion. Furthermore, they have undirected
synaptic connections, and make predictions by minimizing a physical system initialized with a
specific input. This is different from PC, that has directed synaptic connections and is tested by
fixing specific nodes to an input, while letting the latent ones converge. The PC literature ranges
from psychology to neuroscience and machine learning. Particularly, it offers a single mechanism
that accounts for diverse perceptual phenomena observed in the brain, examples of which are end-
stopping [7], repetition-suppression [46], illusory motions [47, 48], bistable perception [49, 50], and
even attentional modulation of neural activity [51, 52], and it has even been used to describe the
retrieval and storage of memories in the human memory system [22].

Although inspired by neuroscience models of the cortex, the computational model introduced by
Rao and Ballard [7] still presents some implausibilities, with the main one being the presence of
symmetric connections. An implementation of PC with no symmetric connections that is able to
successfully learn image classification tasks has been presented in [53], and in the neural generative
coding models, used for continual learning, generative models, and reinforcement learning [54, 55].

8 Discussion

In this work, we have shown that PC is able to perform machine learning tasks on graphs of any
topology, called PC graphs. Particularly, we have highlighted two main differences between our
framework and standard deep learning: flexibility in structure and query. On the one hand, a flexible
structure allows for learning on any graph topology, hence including both classical deep learning
models, and small-world networks that resemble sparse brain regions. On the other hand, flexible
querying allows the model to be trained and tested on data points that carry different kinds of
information: supervised signals, unsupervised, and incomplete. On a much broader level, this work
strengthens the connection between the machine learning and the neuroscience communities, as it
underlines the importance of PC in both areas, both as a highly plausible algorithm to train brain-
inspired architectures, and as an approach to solve corresponding problems in machine intelligence.

The research of this paper (and current PC literature in general) is also of great importance from
another perspective: training modern neural networks with BP has become computationally extremely
expensive, making modern technologies inaccessible. Biological neural networks, on the other
hand, do not have these drawbacks thanks to their biological hardware. Recent breakthroughs in the
development of neuromorphic and analog computing, such as the finding of the missing memristor
[56], could allow the training of deep neural models using only a tiny fraction of energy and time
that modern GPUs need. To do this, however, we need to train neural networks end-to-end on the
same chip, something that is not possible using BP (or BP through time), due to the need of a control
signal that passes information between different layers. The energy formulation of neuroscience-
inspired models allows to overcome this limitation, making them perfect candidates to train deep
neural models end-to-end on the same chip [57]. This strongly motivates research in PC and other
neuroscience-inspired algorithm, with a potentially huge long-term impact.

9

Acknowledgments

This work was supported by the Alan Turing Institute under the EPSRC grant EP/N510129/1, by
the AXA Research Fund, the EPSRC grant EP/R013667/1, the MRC grant MC_UU_00003/1, the
BBSRC grant BB/S006338/1, and by the EU TAILOR grant. We also acknowledge the use of the
EPSRC-funded Tier 2 facility JADE (EP/P020275/1) and GPU computing support by Scan Computers
International Ltd. Yuhang Song was supported by the China Scholarship Council under the State
Scholarship Fund and by a J.P. Morgan AI Research Fellowship.

References

[1] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-
propagating errors,” Nature, vol. 323, no. 6088, pp. 533–536, 1986.

[2] S. Linnainmaa, “The representation of the cumulative rounding error of an algorithm as a Taylor
expansion of the local rounding errors,” Master’s Thesis (in Finnish), Univ. Helsinki, pp. 6–7,
1970.

[3] D. Hebb, The Organization of Behavior. Wiley, New York, 1949.

[4] M. V. Srinivasan, S. B. Laughlin, and A. Dubs, “Predictive coding: A fresh view of inhibition in
the retina,” Proceedings of the Royal Society of London. Series B. Biological Sciences, vol. 216,
no. 1205, pp. 427–459, 1982.

[5] D. Mumford, “On the computational architecture of the neocortex,” Biological Cybernetics,
vol. 66, no. 3, pp. 241–251, 1992.

[6] K. Friston, “Learning and inference in the brain,” Neural Networks, vol. 16, no. 9, pp. 1325–
1352, 2003.

[7] R. P. Rao and D. H. Ballard, “Predictive coding in the visual cortex: A functional interpretation
of some extra-classical receptive-field effects,” Nature Neuroscience, vol. 2, no. 1, pp. 79–87,
1999.

[8] K. S. Walsh, D. P. McGovern, A. Clark, and R. G. O’Connell, “Evaluating the neurophysio-
logical evidence for predictive processing as a model of perception,” Annals of the New York
Academy of Sciences, vol. 1464, no. 1, p. 242, 2020.

[9] A. J. Kell, D. L. Yamins, E. N. Shook, S. V. Norman-Haignere, and J. H. McDermott, “A
task-optimized neural network replicates human auditory behavior, predicts brain responses,
and reveals a cortical processing hierarchy,” Neuron, vol. 98, 2018.

[10] B. Millidge, A. Seth, and C. L. Buckley, “Predictive coding: A theoretical and experimental
review,” arXiv:2107.12979, 2021.

[11] A. M. Bastos, W. M. Usrey, R. A. Adams, G. R. Mangun, P. Fries, and K. J. Friston, “Canonical
microcircuits for predictive coding,” Neuron, vol. 76, no. 4, pp. 695–711, 2012.

[12] K. J. Friston, T. Parr, and B. de Vries, “The graphical brain: Belief propagation and active
inference,” Network Neuroscience, vol. 1, no. 4, pp. 381–414, 2017.

[13] K. Friston, “A theory of cortical responses,” Philosophical Transactions of the Royal Society B:
Biological Sciences, vol. 360, no. 1456, 2005.

[14] M. W. Spratling, “A review of predictive coding algorithms,” Brain and Cognition, vol. 112,
pp. 92–97, 2017.

[15] Y. Huang and R. P. Rao, “Predictive coding,” Wiley Interdisciplinary Reviews: Cognitive Science,
vol. 2, no. 5, pp. 580–593, 2011.

[16] K. J. Friston, N. Trujillo-Barreto, and J. Daunizeau, “DEM: A variational treatment of dynamic
systems,” Neuroimage, vol. 41, no. 3, pp. 849–885, 2008.

10

[17] J. C. Whittington and R. Bogacz, “An approximation of the error backpropagation algorithm
in a predictive coding network with local Hebbian synaptic plasticity,” Neural Computation,
vol. 29, no. 5, 2017.

[18] B. Byiringiro, T. Salvatori, and T. Lukasiewicz, “Robust graph representation learning via
predictive coding,” arXiv preprint arXiv:2212.04656, 2022.

[19] T. Salvatori, Y. Song, B. Millidge, Z. Xu, L. Sha, C. Emde, R. Bogacz, and T. Lukasiewicz,
“Incremental predictive coding: A parallel and fully automatic learning algorithm,” arXiv
preprint arXiv:2212.00720, 2022.

[20] T. Salvatori, Y. Song, Y. Hong, L. Sha, S. Frieder, Z. Xu, R. Bogacz, and T. Lukasiewicz,
“Associative memories via predictive coding,” in Advances in Neural Information Processing
Systems, vol. 34, 2021.

[21] M. Tang, T. Salvatori, B. Millidge, Y. Song, T. Lukasiewicz, and R. Bogacz, “Recurrent
predictive coding models for associative memory employing covariance learning,” bioRxiv,
2022.

[22] H. C. Barron, R. Auksztulewicz, and K. Friston, “Prediction and memory: A predictive coding
account,” Progress in Neurobiology, vol. 192, p. 101821, 2020.

[23] B. Millidge, A. Tschantz, and C. L. Buckley, “Predictive coding approximates backprop along
arbitrary computation graphs,” arXiv:2006.04182, 2020.

[24] Y. Song, T. Lukasiewicz, Z. Xu, and R. Bogacz, “Can the brain do backpropagation? — Exact
implementation of backpropagation in predictive coding networks,” in Advances in Neural
Information Processing Systems, vol. 33, 2020.

[25] T. Salvatori, Y. Song, T. Lukasiewicz, R. Bogacz, and Z. Xu, “Reverse differentiation via
predictive coding,” in Proc. AAAI, 2022.

[26] A. Avena-Koenigsberger, B. Misic, and O. Sporns, “Communication dynamics in complex brain
networks,” Nature Reviews Neuroscience, vol. 19, no. 1, pp. 17–33, 2018.

[27] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Computation, vol. 9,
no. 8, 1997.

[28] C. H. Papadimitriou, S. S. Vempala, D. Mitropolsky, M. Collins, and W. Maass, “Brain compu-
tation by assemblies of neurons,” Proceedings of the National Academy of Sciences, 2020.

[29] M. Dabagia, C. H. Papadimitriou, and S. S. Vempala, “Assemblies of neurons can learn to
classify well-separated distributions,” arXiv:2110.03171, 2021.

[30] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-MNIST: A novel image dataset for benchmarking
machine learning algorithms,” arXiv:1708.07747, 2017.

[31] L. B. Almeida, “A learning rule for asynchronous perceptrons with feedback in a combinatorial
environment,” pp. 102–111, 1990.

[32] F. J. Pineda, “Generalization of back-propagation to recurrent neural networks,” Physical Review
Letters, vol. 59, 1987.

[33] M. A. Belyaev and A. A. Velichko, “Classification of handwritten digits using the Hopfield net-
work,” in IOP Conference Series: Materials Science and Engineering, vol. 862, IOP Publishing,
2020.

[34] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng, “Reading digits in natural
images with unsupervised feature learning,” 2011.

[35] A. Ororbia and D. Kifer, “The neural coding framework for learning generative models,”
arXiv:2012.03405, 2020.

[36] Q. K. Telesford, K. E. Joyce, S. Hayasaka, J. H. Burdette, and P. J. Laurienti, “The ubiquity of
small-world networks,” Brain Connectivity, vol. 1, no. 5, pp. 367–375, 2011.

11

[37] T. Lillicrap, A. Santoro, L. Marris, C. Akerman, and G. Hinton, “Backpropagation and the
brain,” Nature Reviews Neuroscience, vol. 21, 04 2020.

[38] J. C. Whittington and R. Bogacz, “Theories of error back-propagation in the brain,” Trends in
Cognitive Sciences, 2019.

[39] B. Scellier and Y. Bengio, “Equilibrium propagation: Bridging the gap between energy-based
models and backpropagation,” Frontiers in Computational Neuroscience, vol. 11, p. 24, 2017.

[40] B. Scellier, A. Goyal, J. Binas, T. Mesnard, and Y. Bengio, “Generalization of equilibrium
propagation to vector field dynamics,” arXiv:1808.04873, 2018.

[41] R. Salakhutdinov, A. Mnih, and G. Hinton, “Restricted Boltzmann machines for collaborative
filtering,” in Proceedings of the 24th International Conference on Machine Learning, 2007.

[42] R. Salakhutdinov and G. Hinton, “Deep Boltzmann machines,” in Artificial Intelligence and
Statistics, pp. 448–455, PMLR, 2009.

[43] G. E. Hinton, “Deep belief networks,” Scholarpedia, vol. 4, no. 5, p. 5947, 2009.

[44] J. J. Hopfield, “Neural networks and physical systems with emergent collective computational
abilities,” Proceedings of the National Academy of Sciences, vol. 79, 1982.

[45] J. J. Hopfield, “Neurons with graded response have collective computational properties like
those of two-state neurons,” Proceedings of the National Academy of Sciences, vol. 81, 1984.

[46] R. Auksztulewicz and K. Friston, “Repetition suppression and its contextual determinants in
predictive coding,” Cortex, vol. 80, 2016.

[47] W. Lotter, G. Kreiman, and D. Cox, “Deep predictive coding networks for video prediction and
unsupervised learning,” arXiv:1605.08104, 2016.

[48] E. Watanabe, A. Kitaoka, K. Sakamoto, M. Yasugi, and K. Tanaka, “Illusory motion reproduced
by deep neural networks trained for prediction,” Frontiers in Psychology, vol. 9, p. 345, 2018.

[49] J. Hohwy, A. Roepstorff, and K. Friston, “Predictive coding explains binocular rivalry: An
epistemological review,” Cognition, vol. 108, no. 3, 2008.

[50] V. Weilnhammer, H. Stuke, G. Hesselmann, P. Sterzer, and K. Schmack, “A predictive coding
account of bistable perception-a model-based fMRI study,” PLoS Computational Biology,
vol. 13, no. 5, 2017.

[51] H. Feldman and K. Friston, “Attention, uncertainty, and free-energy,” Frontiers in Human
Neuroscience, vol. 4, 2010.

[52] R. Kanai, Y. Komura, S. Shipp, and K. Friston, “Cerebral hierarchies: Predictive processing,
precision and the pulvinar,” Philosophical Transactions of the Royal Society B: Biological
Sciences, vol. 370, 2015.

[53] B. Millidge, A. Tschantz, A. Seth, and C. L. Buckley, “Relaxing the constraints on predictive
coding models,” arXiv:2010.01047, 2020.

[54] A. G. Ororbia and A. Mali, “Biologically motivated algorithms for propagating local target
representations,” in Proc. AAAI, vol. 33, pp. 4651–4658, 2019.

[55] A. Ororbia and A. Mali, “Active predicting coding: Brain-inspired reinforcement learning for
sparse reward robotic control problems,” arXiv preprint arXiv:2209.09174, 2022.

[56] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The missing memristor found,”
Nature, vol. 453, no. 7191, pp. 80–83, 2008.

[57] J. Kendall, R. Pantone, K. Manickavasagam, Y. Bengio, and B. Scellier, “Training end-to-end
analog neural networks with equilibrium propagation,” arXiv:2006.01981, 2020.

12

[58] J. Sacramento, R. P. Costa, Y. Bengio, and W. Senn, “Dendritic cortical microcircuits approxi-
mate the backpropagation algorithm,” in Advances in Neural Information Processing Systems,
pp. 8721–8732, 2018.

[59] D. Krotov and J. J. Hopfield, “Dense associative memory for pattern recognition,” in Advances
in Neural Information Processing Systems, 2016.

[60] J. Kendall, R. Pantone, K. Manickavasagam, Y. Bengio, and B. Scellier, “Training end-to-end
analog neural networks with equilibrium propagation,” arXiv preprint arXiv:2006.01981, 2020.

[61] L. G. Wright, T. Onodera, M. M. Stein, T. Wang, D. T. Schachter, Z. Hu, and P. L. McMahon,
“Deep physical neural networks trained with backpropagation,” Nature, vol. 601, no. 7894,
pp. 549–555, 2022.

13

	Introduction
	PC Graphs
	Proof-of-concept: Experiments on Fully Connected PC Graphs
	Extension to Different PC Graph Topologies
	Conditioning on Labels
	Assembly of Neurons
	Related Work
	Discussion
	A Discussion on Biological Plausibility
	Methodology and Further Experiments
	Architectures and Hyperparameters
	Feedforward vs. Recursive Networks
	Importance of Weight Decay

	Associative Memory Experiments
	Classification Results
	Restricted Boltzmann Machines
	High Levels of Noise
	Efficiency of the Model

