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ABSTRACT: Background: Phase-amplitude coupling
(PAC) in the beta-gamma range has emerged as a promising
electrophysiological biomarker of Parkinson’s disease (PD).
Objective: This study aims to investigate how levodopa
and locomotion modulate cortical (central electro-
encephalogram [cEEG]) and corticomuscular (cEEG-
gEMG [gastrocnemius electromyography]) beta-gamma
PAC in patients with PD.

Methods: Thirty patients with PD underwent simulta-
neous cEEG and gEMG recordings during sitting, stand-
ing, and free walking in both off and on dopaminergic
states. Spectral features and PAC analyses were con-
ducted to assess the effects of levodopa, locomotion,
and their associations with motor symptoms.

Results: In the off levodopa state, patients showed pro-
longed gait cycle intervals and shorter step lengths, correlat-
ing with higher Movement Disorder Society-revised Unified
Parkinson’s Disease Rating Scale Part Ill (UPDRS-IIl) scores.
The cEEG beta-gamma PAC during sitting and standing,
and cEEG-gEMG beta-gamma PAC during walking, posi-
tively correlated with UPDRS-IIl in the off levodopa state.
The cEEG alpha/low beta-gamma and cEEG-gEMG low
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beta-gamma PAC increased from on to off levodopa while
walking, with the latter correlating with reduced step length.
Step event—related PAC analysis unveiled a dynamic
enhancement of alpha/beta cEEG-gamma gEMG PAC
around heel strikes in on levodopa compared with off.
Conclusions: Both cortical and corticomuscular beta-
gamma PACs are modulated by levodopa and locomotion,
with low beta-gamma corticomuscular PAC specifically
linked to gait dysfunction. Moreover, the levodopa-related
enhancement of alpha/beta-gamma PAC during heel
strikes highlights the functional relevance of dopaminergic
modulation during gait. These findings highlight the poten-
tial of PAC as a biomarker for PD, particularly in the devel-
opment of gait phase-locked adaptive deep brain
stimulation strategies for patients with PD guided by nonin-
vasive PAC monitoring. © 2025 The Author(s). Movement
Disorders published by Wiley Periodicals LLC on behalf of
International Parkinson and Movement Disorder Society.
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Parkinson’s disease (PD) impairs motor function
because of dopaminergic neuron loss in the substantia
nigra, leading to symptoms such as tremor, bradykinesia,
rigidity, and postural instability. Although clinical evalu-
ation by medical doctors remains the gold standard for
PD diagnosis and assessment,"” it is highly dependent
on clinician’s experience and lacks continuous monitor-
ing of symptom fluctuations throughout the day.’ Elec-
trophysiological biomarkers, such as beta and gamma
oscillations in subcortical local field potentials, electroen-
cephalographic (EEG) or magnetoencephalographic
(MEG) measurements, and electromyography (EMG),
offer objective insights into PD-related neural disruptions
and hold promise for diagnosis and assessment.* Ele-
vated beta power in basal ganglia, such as subthalamic
nucleus (STN) and globus pallidus interna (GPi), has
been well established as a hallmark for PD.>® Abnormal
beta bursts are associated with motor symptoms such as
bradykinesia and rigidity,” reflecting pathological beta
hypersynchronization that disrupts normal motor func-
tion.”® Meanwhile, a finely tuned gamma activity
becomes more prominent with dopamine therapy’ and
can be entrained by deep brain stimulation (DBS).'°
These insights have guided therapeutic strategies like
DBS, which aim to reduce beta and enhance gamma
activity in the basal ganglia.>>''"'® However, beta-
gamma power changes in the cortex, particularly when
measured noninvasively using EEG or MEG, remain
inconsistent.'*'®

Meanwhile, phase-amplitude coupling (PAC), which
describes the modulation of higher-frequency oscilla-
tions by the phase of lower-frequency rhythms, holds
promise for understanding cross-frequency interactions
in the brain. Previous studies have shown that PAC in
the STN and GPi, involving motor-relevant frequencies,
such as beta, coupled with high-frequency gamma
(40-200 Hz) oscillations, reflects the pathological syn-
chronization seen in PD.!”?? In addition, enhanced
beta-gamma PAC in the primary and sensorimotor cor-
tex has been proposed as a biomarker for PD, because
it correlates with motor symptoms***® and reduces
with dopamine medication®” and DBS.?® Notably, cor-
tical PAC has also been linked to freezing of gait
(FOG). One study using Electrocorticography (ECoG)
reported increased beta-gamma PAC in the motor cor-
tex during FOG,”” whereas another study recording
scalp EEG found gradually increased PAC in the sensori-
motor area during gait preparation when FOG symptoms
worsened.”® These findings suggest that cortical PAC may
serve as a biomarker for FOG, potentially informing new
strategies to prevent falls in patients with PD. However,
despite these insights, it remains unclear how cortical
beta-gamma PAC is modulated by different locomotion
states and dopaminergic medication.

Moreover, to better understand how these neural
dynamics relate to actual motor function, it is essential

to not only examine cortical activity but also its cou-
pling with muscular output. The mechanisms by which
cortical activity couples to muscle output remain insuf-
ficiently understood. Although limited studies®'* have
investigated cross-region coherence between the cortex,
basal ganglia, and muscles, cross-frequency coupling
between cortex and muscle has been largely
unexplored. For example, reductions in beta band corti-
comuscular coherence (CMC) in PD have been
reported,®**® while increases in gamma band CMC
have been observed during muscle contractions® and
dynamic force controls.>® However, the role of cross-
frequency corticomuscular coupling across different
locomotion contexts remains unstudied, yet this could
offer valuable insights into how cortical activity influ-
ences muscle output.

Our study aims to address these knowledge gaps by
employing simultaneous noninvasive EEG and EMG
recordings across multiple locomotion states (sitting,
standing, and free walking) in PD patients with medica-
tion both oz and off. Footpad sensors track key events,
such as heel-strike and toe-off, within each step cycle
during free walking. This approach enables us to inves-
tigate the role of beta-gamma PAC in the central EEG
(cEEG) and corticomuscular coupling across different
motor states, as well as to explore step-related modula-
tions. In addition, we aim to assess correlations
between PAC and clinical measures of motor disability
and gait instability, and to examine how levodopa
(-dopa) administration modulates both cortical PAC
and corticomuscular coupling.

Patients and Methods

Participants and Ethical Approval

This study was approved by the Ethics Committee of
Ruijin Hospital, Shanghai Jiao Tong University School
of Medicine. Thirty participants with PD (18 males),
aged 52 to 76 (63.97 £+ 6.97) years, took part in the
study. The participants were assessed under both off
and on dopaminergic treatments, as indicated in
Table 1. The Movement Disorder Society—revised Uni-
fied Parkinson’s Disease Rating Scale Part III
(UPDRS-III) score varied across participants from 26 to
101 in the off state (57.36 & 13.53) and from 9 to
68 in the on state (33.65 4+ 12.88), with a mean
improvement of 41.34% after dopaminergic treatment
(Table 1). The UPDRS-III assessments were performed
by professional clinicians before the study according to
MDS-UPDRS guidelines set by the International
Parkinson and Movement Disorder Society. The scale
was organized into specific subsections for detailed
analysis, such as rigidity (3.2-3.3), akinesia (3.4-3.14),
tremor (3.15-3.18), and gait problems (3.10-3.14).
The Hoehn and Yahr stage, patient age, and PD
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TABLE 1  Participant demographics

EEGSs

AND

EEG-EMG

UPDRS-III score

BETA-GAMMA

BIOMARKERS

PNa:fj I(l;ender Age/Duration (y) Total (off/on) Gait (off7 on)* FOG (off/on)* HY stage LED dose (mg/day)
1/M 65/3 52/32 2/1 0/0 2.5 400
2/M 66/10 101/68 2/1 2/0 3 1200
3/F 62/8 44/27 2/3 0/0 3 1147.5
4/M 74/8 69/46 2/2 2/2 2.5 600
5/M 76/3 64/44 2/1 1/0 2.5 150
6/M 56/4 64/31 2/0 0/0 2.5 875
7/F 54/8 50/32 1/0 0/0 2 225
8/F 67/2 61/41 2/1 0/0 2.5 525
9/M 56/2 41/25 2/1 0/0 2.5 375
10/M 63/20 49/11 2/2 2/0 2.5 1800
11/M 70/14 49/24 1/0 0/0 2.5 1200
12/F 74/5 78/47 3/2 4/1 3 200
13/F 71/7 54/33 3/3 2/1 3 1800
14/M 70/8 76/37 2/0 2/0 3 848.25
15/M 68/3 65/42 2/1 2/0 2.5 350
16/M 57/6 61/33 2/1 2/0 2.5 873.25
17/M 58/4 48/24 2/0 0/0 2.5 575
18/M 67/20 81/60 3/2 2/2 4 600
19/F 61/12 72/32 3/1 2/2 3 650
20/F 54/6 54/26 2/1 0/0 2.5 869.5
21/M 54/12 55/25 3/0 3/0 2.5 950
22/F 67/7 45/28 2/1 4/2 3 650
23/M 67/12 63/42 2/1 2/0 3 675
24/M 58/9 32/10 2/0 0/0 2.5 781.75
25/F 59/30 73/41 4/2 4/4 3 537.5
26/F 65/20 72/45 3/3 3/0 3 1200
27/M 61/8 79/40 2/0 4/0 3 550
28/F 71/5 67/40 2/1 0/0 2.5 187.5
29/M 52/3 26/9 1/0 0/0 2 300
30/F 76/3 47/22 2/1 0/0 2 300

*Gait and FOG at 12 hours’ withdrawal of parkinsonism medication (off) and 1-2 h after the administration of L-dopa (o) states.

Abbreviations: UPDRS-III, Movement Disorder Society—revised Unified Parkinson’s Disease Rating Scale Part III; FOG, freezing of gait; HY, Hoehn and Yahr; LED, 1-dopa
equivalent dose; M, male; F, female.

duration were examined and reported in Supporting
Information Data S1.

Task Paradigm

The task paradigm comprised three locomotion states

(sitting,

standing,

and walking)

within a

single

recording session where EEG and EMG were acquired
under both off and on 1-dopa states. The off L-dopa
state was defined as at least 12 hours of medication
withdrawal, whereas the on 1-dopa state was assessed
1 to 2 hours after 1-dopa intake of a challenge dose
(150%; see Table 1 for details). Participants sat quietly
for more than 1 minute and then stood for more than

Movement Disorders, 2025 3

85U8017 SUOWILIOD BAEa.D 8|qeol[dde au Aq peusenob ae S9olle YO ‘8sn JO S8 10} AkeiqiTaul|uO /8|1 UO (SUORIPUOD-PUE-SWBY W0 A8 | 1M AeIq 1 BU1UO//:SANY) SUORIPUOD Pue swe 1 8y} 88S *[6202/60/2T] Uo AkidiTaulluo A8im ‘AISeAIUN PIoJXO AG TE00L SPU/ZO0T OT/I0P/LLI00" A3 1M ARe.d1[Bul JUO'S BP.I0S IPIUBLLBAOW/:StHIY WO1) pepeojumod ‘0 ‘2GZ8TEST



ZHAO ET AL ]

J

1 minute. For the walking condition, they walked back
and forth over a distance of 5 m for 5 minutes. All par-
ticipants completed the sitting and walking tasks in the
on L-dopa state, whereas only 24 completed the stand-
ing task. In the off 1-dopa state, 26 participants com-
pleted the sitting and walking tasks, and 21 completed
the standing task.

Data Recording

EEG was recorded using a 10-20 system cap with an
embedded reference electrode (FCz) and additional elec-
trodes at C1 and C2, totaling 23 channels. For analysis,
channels C1, C2, and Cz, located near the primary motor
cortex (M1), were selected because of their established rel-
evance to lower-limb motor functions.’”*** The remaining
channels were used to ensure signal quality, support noise
removal, and allow for channel interpolation when
needed. EMG signals were recorded from the gastrocne-
mius muscle, which is crucial for maintaining balance dur-
ing the heel strike* and plays a vital role during the
push-off phase. These neuroelectrophysiological measure-
ments are referred to as cEEG (C1, C2, Cz) and gEMG
throughout this article. Both EEG and EMG were sam-
pled at 512 Hz using the Compumedics Neuroscan Grael
EEG 2 system. Foot pressure data were acquired and
processed using a custom system described in Supporting
Information Data S1.

Data Processing

Initial analyses were conducted on 1-minute continu-
ous data for each locomotion state (sitting, standing,
and walking). Walking data were then further seg-
mented into individual steps using footpad pressure
sensor triggers, and 20 clean straight-walking steps
with both feet were chosen for individual step analysis.
The gait cycle interval was defined as the time between
consecutive heel strikes from the same foot. Because
step length could not be measured directly by the sen-
sors, video recordings were used to count the number
of steps between two fixed 5-m landmarks, with the
mean step length calculated by dividing the distance by
the number of steps. All EEG data were filtered, aver-
age referenced, and cleaned using independent compo-
nent analysis to remove nonbrain artifact components
and retain “brain” components as labeled by ICLabel.**
The focus on selected central lobe channels could also
help to reduce neck-related movement artifacts. Addi-
tional artifact rejection criteria, including peak-to-peak
thresholds and mean/standard deviation (SD) outlier
removal, were applied to exclude noisy epochs. Subse-
quently, time-frequency representations were visually
inspected to ensure that no cross-frequency artifacts
were included in the analysis. All further analyses were
performed on channel level and then averaged. All
event-related analyses were time locked to heel strikes,

using EMG from the ipsilateral muscles and EEG from
the contralateral hemisphere. The processing was done
by using MNE-Python.*> Detailed descriptions of the
preprocessing methods are provided in Supporting
Information Data S1.

Phase-Amplitude Coupling

To investigate PAC, we employed the Gaussian Cop-
ula PAC (GC-PAC) method from Tensorpac,** which is
well suited for analyzing short-duration data between
different signal sources:

gePAC=1(a(t);[sin(¢(2)), cos(¢(2))]) (1)

The method first applies a copula normalization to
transform the phase and amplitude data into a standard
normal distribution. This step mitigates variations in
amplitude scaling and signal-to-noise ratios across
modalities, allowing for a robust, bias-corrected Gauss-
ian estimation of mutual information. The step-related
PAC was calculated using the event-related PAC mea-
sure, which employs a circular-linear correlation
approach. This method evaluates the Pearson correla-
tion across trials between the amplitude and the sine
and cosine of the phase:

rex = c(sin(d,), ar), rex = c(cos(d, ), a¢),and ry

=c(sin(¢,), cos(dy)) (2)
r2 412 = 2rg oo g
pCl = \/ 1 _ rz (3)

Statistical Analysis

We employed two complementary approaches: an
evidence-based method that replicated baseline results
using established bandwidths (eg, alpha: 8-12 Hz, beta:
12-30 Hz, and gamma: 40-200 Hz) from previous
studies,””* and a data-driven method using permuta-
tion and surrogate testing to identify frequency bands
sensitive to specific L-dopa and locomotion conditions.

A two-way analysis of variance (ANOVA) was con-
ducted to assess the main and interaction effects
between 1-dopa state (off vs. on) and locomotion state
(sitting, standing, walking) on the powers and PAC.
For post hoc comparisons, the nonparametric test
Mann-Whitney U was employed. A cluster-based per-
mutation test with 2000 iterations was employed to
identify statistically significant differences in powers/
PAC. EEG and EMG time-frequency decompositions
were permuted between walking steps and random,
same-length segments from sitting. The original data
were permuted at the step segment level between off
and on conditions, and then PAC was recalculated to
generate a null distribution. Significant step-related
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[ EEGs
PAC clusters in each L-dopa state were identified by
comparing the target PAC with its phase-signal surro-
gates. We first used a generalized linear model (GLM)
to examine the association between measured gait
symptoms and UPDRS-III attributes. Subsequently, the
GLM was employed to identify which PAC measure—
derived from different locomotion conditions—best
predicts motor symptoms, including UPDRS-III scores,
step length, and gait cycle intervals. Pearson correla-
tion assessed linear relationships between variables.
z score outlier removal with a threshold of 3 was
used to ensure data quality by eliminating data
points. The false discovery rate (FDR) was controlled
for multiple comparisons using the Benjamini-
Hochberg with error rate set to 0.05 (a = 0.05). The
original results were reported in the figures, and
results with FDR-corrected P values specified in
annotations.

AND

Results

Behavior Measurements

The Mann-Whitney U test showed a significantly
longer gait cycle interval (U =491.0, P = 0.0285;
Fig. 1A) and shorter step length (U = 182.0,
P =0.0028) in the off compared with on L-dopa state
(Fig. 1C). Pearson correlation analyses demonstrated
that both gait cycle intervals (r = 0.4243, P = 0.0308;
Fig. 1B) and step length (r = —0.5797, P = 0.0024;
Fig. 1D) correlated with UPDRS-III scores in the off
state, indicating significant influence of PD symptoms
on these walking patterns. GLM regression further indi-
cated that the gait cycle interval increase might be ascribed
to rigidity (p=0.0140, P = 0.0405, FDR-adjusted
P = 0.1620; akinesia: p = —0.0042, P = 0.3597; tremor:
B = 0.0046, P =0.1432; gait: f =0.0083, P = 0.3651),
although this did not survive multiple comparisons correc-
tion, whereas shorter step length remained significantly
linked to higher UPDRS-III subsection gait scores (gait:
B =1.6998, P = 0.0018, FDR-adjusted P = 0.0073; rigid-
ity: p=—0.0006, P =0.9082; akinesia: = —0.0041,
P =0.2214; tremor: f = 0.0009, P = 0.7009). 1-Dopa
treatment significantly improved motor performance, with
an average 41.34% reduction in the UPDRS-III score. The
improvement was observed across various motor symp-
toms, with reductions of 38.24%, 41.50%, 44.50%, and
53.27% in rigidity, akinesia, tremor, and gait, respec-
tively (P < 0.01).

Central EEG and Gastrocnemius EMG Powers

A two-way ANOVA indicated significant main effects
of 1-dopa (F = 7.5470, P =0.0070) and locomotion
(F=220.8337, P <0.0001) on gEMG gamma band
(40-200 Hz), as well as a significant interaction effect
between 1-dopa and locomotion (F= 5.0968,

EEG-EMG

BETA-GAMMA PAC BIOMARKERS
P = 0.0075). Post hoc tests confirmed a substantial
decrease in gEMG power during the oz compared with
off 1-dopa state while sitting (U = 393.0, P = 0.0047,
FDR-adjusted P = 0.0061), whereas no significant dif-
ferences were observed during standing (U = 140.0,
P =0.4408) or walking (U=248.0, P=0.7332).
Movement significantly increased gEMG power from
sitting to standing and then walking in both off and on
L-dopa states (P < 0.0001, FDR-adjusted P < 0.0001).

Conversely, a two-way ANOVA showed a significant
effect of locomotion on c¢EEG alpha (F=3.1583,
P = 0.0459) and broad gamma band power (F = 7.2906,
P =0.0010). No significant L-dopa effects were observed
in any specific band. Post hoc comparisons showed that
alpha power was reduced during walking compared with
sitting, especially when on medication (U= 439.0,
P =0.0127, FDR-adjusted P = 0.1145; Fig. 2A). In con-
trast, gamma band power increased during walking com-
pared with sitting in both on (U= 186.0, P = 0.0034,
FDR-adjusted P = 0.0308; Fig. 2A) and off 1-dopa states
(U=160.0, P=0.0228, FDR-adjusted P =0.1028;
Fig. 2A). The power spectrum density (PSD) analysis of
the cEEG demonstrated a decrease within the alpha and
beta bands as participants transitioned from sitting to
standing to walking, but permutation testing showed no
frequency-specific differences reaching statistical signifi-
cance (Fig. 2B). In addition, we investigated how cEEG
and gEMG activities were modulated within the gait
cycle. Significant modulations were observed in alpha and
beta band power in the cEEG within a single gait cycle
during both on and off 1-dopa states, with both alpha
and beta activity decreasing before the contralateral heel
strike and increasing afterward (Fig. 2C).

Central EEG Alpha/Beta-Gamma PAC

We observed an increase in cEEG beta-broad gamma
PAC in the off 1-dopa state compared with the on
L-dopa state, particularly during standing (Fig. 3A).
Specifically, phase modulation was most prominent
around 10 Hz. However, to maintain consistency with
previous studies, we initially adopted a hypothesis-
driven approach, focusing on the beta frequency range
(12-30 Hz) for phase and broad gamma range (40—
200 Hz) for amplitude. A two-way ANOVA on data
within these frequency bands confirmed a significant main
effect of 1-dopa (F = 4.7642, P = 0.0306) and an interac-
tion effect between 1-dopa and locomotion (F = 4.2484,
P =0.0161), whereas the main effect of locomotion was
not significant (F = 2.6811, P = 0.0718). Specifically,
L-dopa significantly reduced beta-gamma PAC, with the
effect most pronounced during standing, although this
reduction did not survive FDR correction (U = 339.0,
P =0.0227, FDR-adjusted P = 0.0680; Fig. 3B). In the
off 1-dopa state, beta-gamma PAC during standing
increased significantly compared with sitting (U = 148.0,
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FIG. 1. Statistics of gait cycle intervals and step length. Significance levels were determined based on the original P values (without false discovery rate
[FDR] correction). Values that passed the FDR threshold are indicated in red, whereas those that did not pass are presented in black. (A) The gait cycle
intervals in the on L-dopa state are significantly shorter than those in the off L-dopa state. (B) The gait cycle intervals in the off L-dopa state show a sig-
nificant correlation with Movement Disorder Society-revised Unified Parkinson’s Disease Rating Scale Part Il (UPDRS-III) scores. (C) The step lengths
in the off L-dopa state are significantly shorter than those in the on L-dopa state. (D) The step lengths in the off L-dopa state are significantly correlated
with UPDRS-III scores. [Color figure can be viewed at wileyonlinelibrary.com]

P =0.0119, FDR-adjusted P = 0.0537), although not
after FDR correction. In the on 1-dopa state, beta-
gamma PAC during walking decreased significantly
compared with sitting (U = 625.0, P = 0.0041, FDR-
adjusted P = 0.0366). In the off I-dopa state, higher cen-
tral EEG B~y PAC was associated with higher UPDRS-III
scores during sitting (B = 43.9625, P = 0.0302, FDR-
adjusted P = 0.0453) and standing (f = 19.0411, P =
0.0203, FDR-adjusted P = 0.0453), but not walking
(B = —1.1020, P = 0.8914), in the off r-dopa state
(Fig. 3C).

To explore the frequency range with the most signifi-
cant phase modulation, we averaged PAC across the
broad gamma range (40-200 Hz). This analysis identi-
fied a significant difference in the phase modulation fre-
quency band from 8.5 to 17.0 Hz (P < 0.05; Fig. 3D),
corresponding to the alpha/low-beta frequency band.
This PAC was subsequently averaged across phase fre-
quencies for post hoc tests that indicated a significant
increase in PAC in the off compared with on 1-dopa
state during walking (U =435.0, P =0.0332). The
Pearson correlation analysis showed a significant corre-
lation between alpha/low beta (8.5-17.0 Hz) to broad
gamma (40-200 Hz) PAC and UPDRS-II scores
(r=10.4284, P = 0.0467; Fig. 3E).

Permutation testing of the frequency-resolved PAC
spectrum showed a narrowband peak coupling at 7.5
to 11.5 Hz phase and 93 to 117 Hz amplitude. This
narrowband gamma PAC increased off versus on
L-dopa difference significance (P = 0.0015; Fig. 3F) and
positively correlated with UPDRS-III with a lower
P value (r =0.5162, P = 0.0139; Fig. 3G). When the
93 to 117 Hz window was notched out, the corr-
elation between low-frequency phase and “broad”
(40-200 Hz) gamma PAC vanished (P = 0.2735). In a

GLM containing both predictors, only narrowband
gamma remained explanatory (f = 20.3476, P = 0.14),
whereas the broadband term was negligible (f = —0.82,
P =0.96), confirming that the apparent broadband
effect is driven by the narrowband gamma.

cEEG Beta-gEMG Gamma PAC

Both 1-dopa and locomotion had main effects on
cEEG-gEMG  beta-gamma  PAC  (F=4.9622,
P =0.0274; F=45.2271, P <0.0001). However, no
interaction effect between L-dopa and locomotion was
observed (P = 0.8929; Fig. 4A). Post hoc test demon-
strated the significant reduction impact of rL-dopa on
cEEG-gEMG PAC only during walking (U = 532.0,
P = 0.0092, FDR-adjusted P = 0.0138), but showed no
significant effect during sitting or standing (P = 0.1553,
P =0.3451). The cEEG-gEMG beta-gamma PAC
decreased significantly during walking compared with
both sitting (U= 535.0, P =0.0003, FDR-adjusted
P =0.0007, off; U=737.0, P<0.0001, FDR-
adjusted P < 0.0001, on) and standing (U = 530.0,
P < 0.0001, FDR-adjusted P < 0.0001, off; U = 665.0,
P <0.0001, FDR-adjusted P < 0.0001, on), indepen-
dently of 1L-dopa state. In the off L-dopa state, GLM
demonstrated that increased cEEG-gEMG beta-gamma
PAC during walking was significantly associated with
higher UPDRS-III scores (8 = 76.0980, P = 0.0035,
FDR-adjusted P = 0.0106; Fig. 4B), whereas no such
association was observed during sitting (8 = —3.7152,
P =0.7560) or standing (8= 5.9677, P =0.5615).
Moreover, the average cEEG-gEMG PAC during walk-
ing negatively correlated with step length in the off
L-dopa state, where increased cEEG-gEMG beta-gamma
PAC was associated with shorter step lengths during
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FIG. 2. EMG and EEG power analysis. Values that passed the false discovery rate (FDR) threshold are indicated in red, whereas those that did not pass
are presented in black. (A) For the averaged EEG power analysis across C1, C2, and Cz channels, only locomotion and not medication leads to signifi-
cant changes in power. Alpha band power significantly decreases during walking compared with sitting at rest in the on L-dopa state. Conversely,
gamma band power significantly increases during walking in both the off and on L-dopa states. All values are processed with log10 + 5 for improved
presentation. (B) Power spectrum density (PSD) of central lobes EEG: The PSD in alpha and beta bands decreases from sitting to standing to walking,
but no significant differences were observed among various locomotions or between off and on L-dopa status. (C) Gait cycle power spectra aligned to
heel strikes as starter (time 0) showed a prominent event-related modulation especially in the alpha and beta frequency band during on L-dopa. EEG
powers were averaged over the contralateral side of heel strike (C2, Cz for the left heel strike, C1, Cz for the right heel strike), then further averaged
between two sides of the body. EMG was recorded from the ipsilateral gastrocnemius of heel strikes. The gait cycle percentage was demonstrated only
on the lateral side for better presentation, with blue indicating the right foot and green the left foot. The start and end time points correspond to consec-
utive heel strikes, and the power spectrum was z score normalized before plotting. cEEG, central electroencephalogram; gEMG, gastrocnemius electro-
myography. [Color figure can be viewed at wileyonlinelibrary.com]

walking (= —0.5576, P =0.0066, FDR-adjusted Permutation-based analysis of the cEEG-gEMG PAC

P =0.0197; Fig. 4C). However, GLM analysis did not
demonstrate any significant associations between step
length and cEEG-gEMG beta-gamma PAC during sitting
(#=0.1149, P =0.2185) or standing (B = 0.0582,
P = 0.4653; Fig. 4C).

When examining the decomposed PAC averaged across
gEMG amplitude frequencies (40-200 Hz), significant
modulation phases were confined to the 12.0 to 15.0 Hz
range, corresponding to the cEEG low beta frequency
(Fig. 4D). Further paired analysis confirmed significant dif-
ferences between off and on 1-dopa states (U = 478.0,
P =0.0207) during walking in the cEEG low beta (12.0-
15.0 Hz) and gEMG broad gamma (140.0-200.0 Hz)
PAC. Moreover, cEEG-gEMG PAC in the off condition
significantly correlated with UPDRS-III scores (r = 0.5025,
P =0.0145; Fig. 4E). This frequency-specified cEEG-
gEMG PAC also significantly correlates with step length
(r = —0.490, P = 0.0206; Fig. 4F).

spectrum showed a significant cluster centered on 13 to
14.5 Hz phase and 134 to 200 Hz amplitude, consistent
with a broadband high-gamma component. Figure 4G
presents the step-related PAC during the gait cycle. Sur-
rogate testing showed significant time-locked contours
in the on L-dopa state, indicating increased cEEG alpha/
beta-gEMG gamma PAC during contralateral heel
strike (P < 0.05). The permutation test confirmed the
significance of these increases during on L-dopa com-
pared with off condition.

Discussion

This study introduces a novel, noninvasive system for
monitoring cortical activities and corticomuscular inter-
actions in patients with PD during sitting, standing, and
free walking. Our results confirm the pathological
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FIG. 3. Phase-amplitude coupling (PAC) results for central electroencephalogram (cEEG). The PAC values were processed with 1og10 + 5 for improved
presentation. Significance levels were determined based on the original P values (without false discovery rate [FDR] correction). Values that passed the
FDR threshold are indicated in red, whereas those that did not pass are presented in black. (A) The off versus on PAC during various locomotions illustrates
a high contour around alpha/beta phase and gamma amplitude. (B) A two-way ANOVA demonstrates a significant effect of L-dopa and an interaction
between L-dopa and movement state on cortical beta (12-30 Hz) to gamma (40-200 Hz) PAC. Post hoc test further showed significant differences between
off and on states when standing. (C) A generalized linear model (GLM)-based multiple regression model demonstrates that off L-dopa sitting and standing
PAC correlated with Movement Disorder Society—revised Unified Parkinson’s Disease Rating Scale Part Il (UPDRS-II) scores in the off L-dopa state. (D)
The frequency decomposed walking cortical PACs were further averaged across 40-150 Hz in amplitudes dimension to explore the significantly different
phase frequencies. The permutation test shows that during walking cortical PAC at phase frequencies of 8.5-17.0 Hz is significantly higher in the off L-dopa
state compared with the on L-dopa state. (E) Off L-dopa averaged alpha/low beta to broadband gamma PACs during walking were significantly correlated
with UPDRS-IIl overall scores (P = 0.0467). (F) Permutation test on frequency decomposed walking cortical PAC identifies significantly different areas
between off and on L-dopa states, specifically around phase frequencies of 7.5-11.5 Hz and amplitude frequencies of 93.0-117.0 Hz. (G) Scatterplot show-
ing the positive correlation between low beta-gamma PAC (off L-dopa) and UPDRS-III scores during walking (r = 0.5162, P = 0.0139). [Color figure can be
viewed at wileyonlinelibrary.com]
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L EEGs
significance of cortical beta-gamma PAC, as well as cor-
tical beta-gEMG gamma PAC, in the motor symptoms
and gait impairments in PD. Both of these cross-
frequency couplings were found to be increased in the
off 1-dopa state, correlating with UPDRS scores and
reduced step length during free walking. These findings
are consistent with previous studies reporting increased
cortical beta-gamma PAC in PD, measured via EEG,
MEG,>»2¢4647 or ECoG,*”*® further supporting its
potential as a biomarker for motor impairment and
FOG. We also demonstrated dynamic fluctuation of
cortical beta-EMG gamma PAC within each step cycle
when patients were on L-dopa, with relatively increased
corticomuscular beta-gamma PAC around heel strikes.
In contrast, when off medication, this corticomuscular
coupling remained high and stable throughout the step
cycle without dynamic fluctuations. These results offer
new insights into how cross-frequency and cross-region
coupling are modulated not only by r-dopa but also dif-
ferent locomotion states and the specific dynamics
within each step cycle during free walking.

AND

Locomotion Status-Dependent Modulation of
Cortical Alpha/Low Beta-Gamma PAC Is
Impacted by L-Dopa in PD

Elevated cortical alpha/low beta to gamma PAC dur-
ing sitting has been previously associated with higher
UPDRS-III scores.*” In addition, Yin et al*’ observed
enhanced low beta-gamma PAC in the motor cortex
during standing and at the onset of FOG. This enhance-
ment was attributed to beta hypersynchrony in the
basal ganglia, which likely drives stronger beta-gamma
coupling in the motor cortex.’® Our results also suggest
that cEEG beta-gamma PAC is a more reliable predic-
tor for UPDRS scores when quantified during sitting
and standing than during walking. This is consistent
with previous studies?”*°*'*? and suggests that cEEG
PAC may serve as a more stable indicator of symptom
severity in static postures. Although cortical beta-
gamma PAC significant differences between off and on
conditions during standing were observed, they did not
survive FDR correction, warranting further investiga-
tion into their potential as biomarkers. In addition, our
data-driven approach highlighted a broader modula-
tory frequency band, including both alpha and low-beta
(8.5-17.0 Hz), modulating broad gamma activity (40—
200 Hz) in the cortex. This PAC was significantly
higher in the off L-dopa state compared with on L-dopa
during walking and correlated with motor symptom
severity, as reflected by higher UPDRS-III scores. These
findings suggest that the frequency bandwidth of PAC
changes associated with symptom severity and L-dopa
effects may vary depending on the locomotion context.
By statically isolating 7.5 to 11.5 Hz and 93 to 117 Hz
coupling, we show that 1-dopa specifically restores a

EEG-EMG

BETA-GAMMA PAC BIOMARKERS
narrowband cortical gamma PAC that tracks UPDRS-
I during free walking. In PD, broadband gamma
(~50-200 Hz) appears as a smooth 1/f-like elevation
reflecting asynchronous multiunit spiking and overall
cortical excitability,”® whereas finely tuned gamma is
normally seen as true rhythmic oscillations generated
by synchronized interneuron—pyramidal loops, is
enhanced by dopaminergic therapy or DBS, and corre-
lates closely with motor performance and symptom
severity.'%>* However, it should be noted that the stati-
cally identified narrowband gamma in PAC in this
study may simply reflect the most consistent phase-
locked frequency range to alpha/low beta across partici-
pants during free walking.

Cortical Low Beta-Muscular Gamma PAC
Reflects Motor Symptom Severity During Free
Walking in PD and Is Selectively Enhanced by

L-Dopa at the Heel-Strike Phase

Interestingly, corticomuscular beta-gamma PAC was
reduced during walking compared with sitting and
standing, with this reduction appearing independent of
L-dopa state. In previous studies, cortical beta was
found to be a “promoter of status quo,””° whereas
gamma rhythms track active muscle contraction.*® The
observed reduction in corticomuscular beta-gamma
PAC during walking may reflect a functional
uncoupling of cortical beta from muscular gamma to
permit dynamic motor adjustments. The loss of dopa-
mine could contribute to the increase in aberrant corti-
comuscular beta-gamma coupling during walking.
Further GLM analysis confirmed that this increase was
associated with severe motor impairment (higher
UPDRS-III scores) and worsened gait (shorter step
length). These findings suggest that corticomuscular
beta-gamma PAC during walking could serve as a key
marker of both 1-dopa status and symptoms severity.
Furthermore, our data-driven approach indicated that
cortical low beta (12-15 Hz) and muscular gamma
PAC was specifically elevated during walking in the off
L-dopa state, and this was positively correlated with
motor symptom severity, highlighting its role in the
pathophysiology of free walking. The corticomuscular
PAC in the amplitude frequency band lacks a narrow
spectral peak and instead shows a smooth, broadband
increase, reflecting observed corticomuscular PAC in
this range primarily indexes peripheral muscle activa-
tion strength.

In addition, we observed dynamic fluctuation in corti-
comuscular alpha/low beta-gamma PAC within the gait
cycle, but only in the on and not off L-dopa state. This
suggests that selective enhancement of corticomuscular
PAC during heel striking within the gait cycle may play
a key functional role under dopaminergic influence.
This is consistent with previous findings showing that
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FIG. 4. Phase-amplitude coupling (PAC) results for cEEG-gEMG. The PAC values are processed with log10 + 5 for better presentation. Significance levels
were determined based on the original P values (without false discovery rate [FDR] correction). Values that passed the FDR threshold are indicated in red,
whereas those that did not pass are presented in black. (A) A comparison of averaged beta (12-30 Hz) to broadband gamma (40-200 Hz) PACs across L-dopa
and gesture conditions shows a significant reduction in corticomuscular PACs during walking in the on L-dopa state compared with the off L-dopa state, with
walking exhibiting lower PACs than sitting in both states. (B) Generalized linear model (GLM) analysis demonstrates a significant correlation between off L-dopa
walking PACs and Movement Disorder Society—revised Unified Parkinson’s Disease Rating Scale Part Il (UPDRS-IIl) scores, but not sitting and standing. (C)
GLM analysis also shows the walking step length is specifically correlated with walking cEEG-gEMG PAC during off conditions. (D) Analysis of phase frequen-
cies highlights a 12-15 Hz low beta band difference between L-dopa states in walking corticomuscular PAC. (E) The data-driven determined phase frequency
band walking cEEG-gEMG PAC shows significant correlations to UPDRS-IIl in the off L-dopa state (P = 0.0145). Frequency-specified walking cEEG-gEMG
PACs in the off L-dopa state significantly correlate with the walking step length (P = 0.0206). (F) Permutation testing identifies significant walking corti-
comuscular PAC differences between 13.0-14.5 Hz (phase) and 135.0-200.0 Hz (amplitude) frequencies, with higher values observed in the off L-dopa state.
Significant areas are highlighted by black contours. (G) Step-based PAC analysis shows significant cEEG-gEMG alpha/beta-gamma coupling around heel
strikes. The permutation test confirmed these increased modulations are more significant in on than off L-dopa. cEEG, central electroencephalogram; gEMG,

gastrocnemius electromyography. [Color figure can be viewed at wileyonlinelibrary.com]
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activities in  the  STN,’®  pedunculopontine
nucleus (PPN),* and motor cortex are dynamically
modulated within the step cycle. L-Dopa appears to
suppress baseline corticomuscular beta-gamma PAC
and restores dynamic cortical beta gating. As a result,
phasic alpha/low beta-gamma PAC peaks reappear at
key stages, such as the heel strike, facilitating more pre-
cise muscle control. These PAC enhancements, occur-
ring in different temporal contexts, may have distinct
functional implications. Our results align with previous
work suggesting that temporally targeted interventions,
such as alternating DBS*”*® or gait phase-locked DBS,
may offer improved therapeutic outcomes for gait
impairments in PD.

Limitations

This study has several limitations. First, recordings
were relatively short and confined to a laboratory set-
ting. It remains to be tested whether the reported results
generalize to everyday life, where motor behavior is
more diverse. Second, we used central lobe EEG to non-
invasively monitor cortical activity over the motor
regions. However, the scalp and skull introduce resis-
tance that can influence recorded signals. Therefore, the
measured activity likely reflects cortical electrical field
potentials rather than direct neural sources. This limits
the precision with which we can interpret EEG data as
a direct readout of cortical processes. Future work
could improve spatial resolution by incorporating high-
density EEG or invasive methods such as stereo-EEG or
ECoG. Third, the reported correlations between beta-
gamma PAC and motor impairment were based on
cross-participant correlations. Although informative at
the group level, these do not capture individual vari-
ability over time. This is particularly important for esta-
blishing PAC as a real-time biomarker for applications
such as adaptive DBS (aDBS), which requires sensitivity
to within-subject fluctuations in symptom severity.
Despite these limitations, our current results offer
promising support for PAC as an objective biomarker
of motor impairment in PD. Nevertheless, further work
is needed to determine its reliability and specificity at
the individual level. Future research should aim to
include longer, real-world recordings and adopt within-
subject analyses to more fully explore the potential of
PAC as a dynamic and personalized biomarker for PD
and its application in aDBS.

Conclusions

This study identifies enhanced alpha/low beta-gamma
PAC in both cortical and corticomuscular networks as
potential biomarkers for PD. Altered walking-related
PAC interactions, particularly during r-dopa with-
drawal, suggest that increased beta-gamma coupling
may contribute to motor and gait impairments in

EEG-EMG

BETA-GAMMA PAC BIOMARKERS

PD. The sensitivity of alpha/beta-gamma PAC to medi-
cation status highlights its potential utility for assessing
therapeutic efficacy and informing targeted interven-
tions. Furthermore, the application of noninvasive,
dynamic monitoring, particularly during gait, presents
a promising avenue for the development of clinically
relevant biomarkers. Such approaches may ultimately
enable more precise, closed-loop systems for tracking
and modulating neural and muscular activity in real
time, with the goal of improving clinical outcomes in
patients with PD.@
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