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SUMMARY
Closed-loop interaction has the potential to regulate ongoing brain activity by continuously binding an
external stimulation to specific dynamics of a neural circuit. Achieving interactive modulation requires a sta-
ble brain-machine feedback loop. Here, we demonstrate that it is possible to maintain oscillatory brain activ-
ity in a desired state by delivering stimulation accurately aligned with the timing of each cycle. We develop a
fast algorithm that responds on a cycle-by-cycle basis to stimulate basal ganglia nuclei at predetermined
phases of successive cortical beta cycles in parkinsonian rats. Using this approach, an equilibrium emerges
between the modified brain signal and feedback-dependent stimulation pattern, leading to sustained
amplification or suppression of the oscillation depending on the phase targeted. Beta amplification slows
movement speed by biasing the animal’s mode of locomotion. Together, these findings show that highly
responsive, phase-dependent stimulation can achieve a stable brain-machine interaction that leads to robust
modulation of ongoing behavior.
INTRODUCTION

Oscillatory activity in the brain is supported by reciprocal con-

nectivity that allows the firing of action potentials in connected

areas to be precisely timed in relation to each other at specific

frequencies (Buzsáki and Draguhn, 2004). When recorded in

the local field potential or electrocorticogram (ECoG), such activ-

ities typically wax and wane in amplitude, indicating the fluctu-

ating strength and phase stability of these oscillatory interactions

over time (Buzsáki et al., 2012; Feingold et al., 2015). Importantly,

single oscillatory cycles are proposed to provide a temporal

framework to bind functionally related activity in many brain

networks (Buzsáki and Draguhn, 2004; Fries, 2005; Lisman and

Jensen, 2013). Achieving precise manipulation of neuronal

oscillations is of primary importance given their ubiquitous

association with widespread brain functions (Buzsáki et al.,

2012) and role in many prominent brain disorders including

schizophrenia, depression, motor disorders, Alzheimer’s dis-

ease, addiction, and epilepsy (Schnitzler and Gross, 2005; Uhl-

haas and Singer, 2006). Manipulating oscillations with individual

cycle accuracy—and thus with computationally relevant

timing—has the potential to provide restoration of dysfunctional

systems.

The functional timescales of fluctuating neuronal oscillations,

however, are challenging to target precisely using conventional

methods and require near-millisecond precision. Suppression

of oscillations can be reliably achieved by disrupting a network

node involved in their generation, but this will heavily affect
C
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many unrelated processes and does not allow bidirectional

manipulation. An alternative approach is to deliver a perturbation

on a specific phase of the oscillation (Busch et al., 2022; Cagnan

et al., 2019a; McNamara and Sharott, 2020; Pikovsky et al.,

2003; Siegle and Wilson, 2014; Wodeyar et al., 2021; Zanos

et al., 2018), which can energize or dampen ongoing activity

(Brittain et al., 2013; Cagnan et al., 2017; Escobar

Sanabria et al., 2020; Holt et al., 2019; Kanta et al., 2019;

Nicholson et al., 2018; Peles et al., 2020; Rosin et al., 2011;

Schreglmann et al., 2021; Takeuchi et al., 2021). Hitherto, these

approaches have been defined by the effect of the perturbation

on the amplitude or phase of input oscillation. Alternatively, if the

parameters of the closed loop were to allow a rapid response to

these perturbations, a bidirectional interaction could develop be-

tween the signal and the timing of stimulation. Such a fast-acting

system, continuously pushing a brain network toward a desired

state, has wide-ranging potential to provide physiologically rele-

vant manipulations. The interaction should be sufficiently light

touch that the brain network is still free to exhibit relevant phys-

iological fluctuations. This interactive modulation would be

fundamentally different and complementary to closed-loop ap-

proaches that drive conventional stimulation in response to neu-

ral activity associated with a specific behavioral and/or cognitive

state (Basu et al., 2021). Such existing approaches are reactive,

responding to behaviorally relevant activity with the aim of influ-

encing it as it arises. In contrast, holding a neuronal oscillation in

a given state through a fast timescale interaction has the poten-

tial to regulate network activity and, in turn, deterministically bias
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the network’s influence on behavior. This is attractive for thera-

peutic intervention as it could be used to maintain a network in

a more functional state rather than intermittently responding to

epochs of pathological activity. However, the feasibility and po-

tential of this type of brain-machine interaction remains to be es-

tablished. It requires a stable feedback loopwhere the combined

brain-machine system enters into a broad state of equilibrium.

Here, we sought to establish and characterize such a feedback

loop.

Many state-of-the-art developments in closed-loop stimula-

tion have been in the treatment of Parkinson’s disease (PD),

where high-frequency deep brain stimulation (DBS) of basal

ganglia structures is an effective treatment. Abnormally powerful

beta oscillations in basal ganglia networks are a well-established

biomarker of akinetic rigid symptoms (K€uhn et al., 2006; Sharott

et al., 2014). ‘‘Adaptive’’ DBS, whereby high-frequency stimula-

tion is triggered reactively on the detection of ‘‘bursts’’ of beta

activity, produces equivalent symptom amelioration to contin-

uous stimulation (Little et al., 2013; Tinkhauser et al., 2017).

The parkinsonian brain thus provides a highly relevant platform

to test the potential of interactive modulation in regulating dis-

ease-related activity. Here, in PD model rats, we demonstrate

that a stable brain-machine equilibrium can emerge from

closed-loop stimulation delivered to the basal ganglia at specific

phases of a cortical oscillation. By changing the target phase, we

could alter the point of equilibrium to suppress or amplify the

beta oscillation, with consequent changes in ongoing behavior.

Use of a rodent model allowed us to show that the amplifying

and suppressing phases and their behavioral effects were highly

consistent across many animals. These findings provide proof-

of-principle evidence that interactive modulation of neuronal os-

cillations—where interventions are accurately aligned with the

timing of successive individual cycles—is a viable approach for

reliably biasing behavior associated with dysfunctional brain

networks.

RESULTS

Real-time phase tracking and phase-locked stimulation
To enable the sustained application of phase-dependent stimu-

lation, we developed an approach for continuous real-time

phase estimation with zero filter delay (McNamara and Sharott,

2020), which we implemented as a digital circuit using the exist-

ing hardware of a commercially available recording system.

Ordinarily, to produce such an online phase estimate, the signal

would be filtered with a pass band filter before a phase estima-

tion step such as the Hilbert transform or the detection of zero

crossings (Brittain et al., 2013; Cagnan et al., 2017; Escobar

Sanabria et al., 2020; Kanta et al., 2019; Peles et al., 2020;

Schreglmann et al., 2021; Siegle and Wilson, 2014; Takeuchi

et al., 2021; Zanos et al., 2018). Such filters exhibit a filter delay,

whereby the estimate at a given time point pertains to a fixed

time in the past. While easily corrected in offline analysis, when

calculating in real time, this results in a delay that typically can

amount to half a cycle or more. This delay (which is due to the al-

gorithm, not the hardware on which it is implemented) coupled

with loss of signal around stimulation artefacts and further delays

due to implementation hardware represent challenges in real-
2 Cell Reports 41, 111616, November 8, 2022
izing a system that can react responsively on a cycle-by-cycle

basis. Our algorithm, which we named OscillTrack, operates

directly on the wideband signal and provides a phase estimate

for each sample with zero filter delay (see STAR Methods).

Here, implementation as a digital circuit in the low-level hard-

ware of the recording system ensured that associated delays

were insignificant. Together, these innovations enabled the

continuous delivery of phase-targeted stimulation with each

stimulus informed by the immediately preceding cycle. No addi-

tional hardware was required beyond a means of TTL-triggered

stimulation and a recording system with the ability to add cus-

tomizations to a field-programmable gate array (FPGA) handling

the data stream such as those available from Intan Technologies.

Electrical stimulation was used here, but the approach is equally

suited for use with optogenetic stimulation. We also developed

and optimized the algorithm for use in embedded settings

such as low-power implantable devices, and we provide micro-

controller code to facilitate its use in a wide range of settings (see

https://colinmcn.github.io/OscillTrack/).

To demonstrate the utility of our approach, we performed

phase-locked stimulation of the pathologically exaggerated

beta oscillations (Figures 1A and S1) that occur in the parkinso-

nian cortico-basal ganglia network (Hammond et al., 2007). Elec-

trical stimulation was delivered to the globus pallidus (GPe) of

6-hydroxydopamine (6-OHDA) hemi-lesioned rats at 8 equally

spaced target phases of the ongoing ECoG beta oscillation.

The GPe is a key node in the generation of parkinsonian beta os-

cillations (Crompe et al., 2020; Mallet et al., 2008). As previously

reported (Avila et al., 2010; Brazhnik et al., 2014), the peak fre-

quency in these rats was in the high beta range between 35

and 40 Hz. While this range would often be described as low

gamma in other circuits (Buzsáki and Draguhn, 2004), we will la-

bel it beta frequency in line with previous studies in this field.

Stimulation consisted of a pair of charge-balanced consecutive

pulses of opposite polarity, each 50, 60, or 70 mA in amplitude

and 95 ms in duration, delivered across an electrically isolated

pair of adjacent stainless-steel electrodes. The real-time system

generated triggers during 20 s epochs (on-epochs) separated by

5 s trigger-free epochs (off-epochs). Across all phases, 58.66%

± 4.71% (mean ± SD, n = 13 rats) of the stimuli were delivered

within a quarter of a cycle of the target phase. This distribution

was almost identical to that produced by running the algorithm

in real time with the stimulation disabled and thus without stim-

ulation artefacts (p = 0.093, Kolmogorov-Smirnov [KS] test,

KS = 0.22; Figure S1C), suggesting that phase-tracking accu-

racy did not degrade with the addition of stimulation artefacts.

Phase-dependent modulation of oscillatory power
It was apparent in the raw data that stimulation at some target

phases reduced beta-band activity, whereas others increased

it (Figures 1B–1D). Absolute target-phase-modulated beta-

band power (p = 1.8e�07, Kruskal-Wallis test, H7 = 44.44)

around the closed-loop target frequency and the phases of

maximum amplification and suppression were different (p =

1.2e�07, Watson-Williams test, F1, 24 = 55.08), occurring

approximately anti-phase (Figures 1E and 1F). Maximally

amplifyingmodulation (2.54 ± 0.93 dB) occurred around the early

mid-descending phase (0.38 ± 0.27 p rad), and maximally

https://colinmcn.github.io/OscillTrack/
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Figure 1. Phase-dependent modulation of beta-frequency oscillations

(A) A digital circuit triggered delivery of electrical pulses to the globus pallidus at a predetermined beta-band ECoG phase.

(B) Example 1 s of raw wideband EcoG traces (pre-artefact removal) in awake, freely behaving rats (gray). Traces with artefact removal and downsampling

(calculated post hoc) are superimposed (black, orange, and blue). The superimposed traces largely cover the original raw trace except at the time of the artefacts

(grey). The artefacts are truncated in amplitude due to the limited plot area. The artefact-removed trace, band-pass filtered in the beta-band, is shown below each

trace. Three conditions are shown: no stimulation (top, black), stimulation targeted to mid-descending phase producing amplification (middle, orange), and

targeted to the mid-ascending phase producing suppression (bottom, blue).

(C) Stimulation triggered averages from the same example block of EcoG recordings, targeted to eight equally spaced phases. To aid visualization, trigger times

(black dots) are staggered across traces, and the first trace is repeated.

(D) Power spectra (mean ± SEM) from stimulation on-epochs for each target phase (colors as in C) from the same example recordings and for all off-epochs

imbedded in those same recordings (gray).

(E) Change in beta-band power (on- compared with off-epochs) due to stimulation across 13 rats for 8 target phases aligned by the most suppressing target

phase for each rat. Dotted lines show the values for each rat with mean ± SEM in black and SD in gray.

(F) Absolute phase versus change in beta-band power of themost suppressing andmost amplifying target phases for each rat. The dotted line represents the beta

cycle.

(G) Power spectral density plots (mean ± SEM, n = 13 rats).
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suppressing modulation (�1.30 ± 0.93 dB) occurred around the

early mid-ascending phase (1.35 ± 0.30p rad). Stimulation at the

amplifying and suppressing target phases enhanced and flat-

tened the beta-band spectral peak, respectively (Figure 1G). Ab-

solute target phase also modulated oscillatory power in bands

directly above and below the central band (below: p =

2.6e�07, Kruskal-Wallis test, H7 = 43.57; above: p = 0.0064,

Kruskal-Wallis test, H7 = 19.64). The central beta-band power

was calculated from the power spectral density (1 Hz bins) using

the eleven bins centered on the target frequency bin, with the

eleven bins on either side of this central band forming the bands

below and above. The out-of-band effect size was larger below

than above the central band (Figure 1G), with suppressing stim-

ulation producing amplification at around 26 Hz. Many of the

electrodes were located at the striatal GPe border, and such

electrodes produced a similar effect size as those fully within

(Figure S2). Furthermore, similar modulation could be achieved

through stimulation of the subthalamic nucleus (STN) area (Fig-

ure S3) only when electrodes were located close to the STN

(Figure S4).

Interplay between stimulus train and oscillation
Modulation of beta-band oscillatory power represents a change

to the signal that the algorithm uses to calculate phase. Next, we

addressed the hypothesis that the feedback loop would produce

an interplay between the temporal properties of the oscillation

and stimulus train, which would differ between amplification

and suppression. The pattern of stimulation was visibly different

between these conditions (Figures 1B and 2A), as were the inter-

stimulus interval histograms and autocorrelograms (Figures 2B–

2E). We thus investigated if there was a matching difference in

the temporal structure of the fluctuations in oscillatory ampli-

tude. Coefficient of variation-type measures when applied to

time intervals describe variation in time. However, when directly

applied to constant sample rate processes such as oscillatory

amplitude, they describe variability in amplitude, not time.

Thus, to describe the temporal structure of the oscillations, we

developed the temporal variation index (TVI), which is the SD

of the derivative of the Hilbert amplitude envelope divided by

the envelope mean (see STAR Methods and Figure S5).

The amplified oscillation had a lower TVI than the suppressed

oscillation, indicating that it was more stable over time (p =

0.0005, Wilcoxon signed-rank test [WSRT], W13 = 1; Figure 3A).

In line with this, the variation in short timescale dynamics of the

stimulation train was lower during amplifying stimulation (CV2;

p = 0.0005, WSRT, W13 = 1; Figure 3A). Furthermore, the differ-

ences in temporal variation of the oscillation and stimulus train

between amplification and suppression were positively corre-

lated (p = 0.026, Pearson correlation, r = 0.61; Figure 3A),

demonstrating that the stimulus evoked change in the stability

of the oscillation was mirrored in the pattern of stimulation itself.

Such changes in stimulation pattern likely occurred due to the

ability of our system to adapt to the length of each individual cy-

cle and/or not stimulate when the phase estimate was deemed

unstable (see STARMethods). Further evidence of this brain-ma-

chine interaction was seen in the difference in stimulation

rate (amplifying 25.95 ± 3.34 Hz; suppressing 20.82 ± 2.10 Hz;

p = 0.0002, WSRT, W13 = 0; Figure 3B) and accuracy (amplifying
4 Cell Reports 41, 111616, November 8, 2022
73.37% ± 8.48%; suppressing 45.52% ± 9.09% within a quarter

cycle of target phase; p = 0.0002, WSRT, W13 = 0; Figures 3C

and S6). These findings suggested that the phase-dependent

modulation of spectral power resulted from the equilibrium that

developed between the temporal properties of the beta oscilla-

tion and the pattern of the stimulus train.

Stimulation pattern alone was not sufficient to
reproduce the differences in modulation
To test whether the pattern of stimulation alone could result in

phase-related power changes, we delivered closed-loop stimu-

lation at amplifying and suppressing phases and then immedi-

ately used the recordings to deliver open-loop ‘‘playback’’ of

the same stimulation trains (n = 27 recordings, 3 rats). While

closed-loop stimulation led to significantly different beta power

at amplifying and suppressing phases (p = 1.1e�05, Mann-

Whitney rank test, U13, 14 = 182), open-loop playback did not

(p = 0.75, Mann-Whitney rank test, U13, 14 = 98; Figures 3D

and 3E). Thus, the temporal relationship between signal and

stimulation train was necessary for bidirectional modulation of

beta power. Indeed, during open-loop playback, both stimula-

tion trains increased beta-band power (previously amplifying

p = 0.0002, WSRT to zero, W13 = 0; previously suppressing p =

1.2e�04, WSRT to zero, W14 = 0; Figure 3E). It is additionally

noteworthy that closed-loop amplification was greater than

that produced by open-loop playback (p = 0.0007, WSRT,

W13 = 2; Figure 3E). Overall, the markedly different spectral mod-

ulation produced by closed-loop stimulation highlights the

importance of the feedback loop.

Beta amplification altered the mode of locomotion
Finally, we sought to establish if the neurophysiological differ-

ences seen when targeting stimulation to an amplifying, as

opposed to a suppressing, phase were functionally relevant.

Beta oscillations are associated with slowing or holding of

ongoing movement (Engel and Fries, 2010). We hypothesized

that the different modes of beta modulation generated by our

system would lead to accompanying changes in behavior. To

test this, speed and gait parameters were evaluated while a sub-

set of GPe- and STN-stimulated animals (n = 7) traversed a linear

track. Recordings were between 5 and 20 min in duration and

typically consisted of eight valid runs with multiple groups of re-

cordings per animal collected across different days. Stimulation

was continuously enabled throughout. Amplification, as

opposed to suppression, of cortical beta power significantly

reduced the speed at which animals moved across the linear

track (p = 0.016,WSRT,W7 = 0; Figures 4A and S7). Rodent loco-

motion can be categorized into distinct gaits that can be broadly

divided into slower alternating limb patterns (e.g., walking and

trotting) and faster ‘‘bounding’’ patterns, where the forelimbs

and hindlimbs are moved synchronously and landed together

(Bellardita and Kiehn, 2015). We classified a run as being bound-

ing if it exclusively contained a bounding gait for all strides. The

remaining valid runs were classified as non-bounding. This

included runs with at least one alternating stride in addition to

runs with exclusively alternating gait. We then examined the

expression of these locomotor patterns across stimulation pro-

tocols. This analysis revealed that the speed changewas caused
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Figure 2. The pattern of stimulation differed between amplifying and suppressing stimulations

(A) Example beta-filtered ECoG traces frommaximally amplifying and suppressing conditions from the same block. Five consecutive off- to on-epoch transitions

in each case. Stimulation times are shown above each trace. Note the difference in stimulation pattern between the two conditions. Beta power is similar during

both sets of off-epochs, higher during stimulation targeted to an amplifying phase, and lower during suppressing stimulation yet still waxes and wanes in all

conditions.

(B) Distribution (mean ± SEM from multiple recording days) of inter-stimulation intervals to the next stimulation (left) and to all subsequent stimulations (right;

autocorrelogram) from the same rat as (A).

(C and D) Same as (B) for two additional example rats (C and D).

(E) Same as (B) for all animals (mean ± SEM, n = 13 rats). Note that the only experimenter-controlled variable change between amplifying and suppressing

conditions was selection of a different target phase.
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Figure 3. Phase-dependent modulation was produced through brain-machine equilibrium

(A) Amplified beta-band oscillations were more stable (lower temporal variation; TVI; n = 13 rats) as were their associated stimulation patterns (lower variation in

adjacent inter-stimulus intervals; CV2) reflecting the different state of brain-machine equilibrium associated with amplifying, as opposed to suppressing, stim-

ulation (Wilcoxon signed-rank test [WSRT]). The difference between amplifying and suppressing stimulations for both measures was correlated (bottom left,

Pearson correlation).

(B and C) The different states of brain-machine equilibrium also resulted in differences in mean stimulation rate (B) and post hoc accuracy of stimulation phase (C).

P values from WSRT.

(D) Power spectra from open-loop playback (bottom) of the closed-loop stimulation patterns (mean ± SEM, n = 27 sessions from 3 rats).

(E) Open-loop playback of both suppressing and amplifying closed-loop stimulus trains led to beta amplification (previously amplifying p = 0.0002 and previously

suppressing p = 1.2e�04, WSRT), but this was lower in magnitude than closed-loop amplification (p = 0.0007, WSRT, amplifying closed- vs. open-loop).
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by a reduction in the ratio of faster bounding-basedmovement to

slower alternating-based movement, irrespective of the animal’s

affinity for bounding without stimulation (Figures 4B–4E; speed

difference correlated with difference in percentage of bounding

p = 0.035, Pearson correlation, r = 0.79). Beta amplification

therefore elicited a change in the mode of locomotion, leading

to slower movement.

DISCUSSION

Closed-loop stimulation has enormous potential to improve the

treatment of brain disorders (Cagnan et al., 2019a). The majority

of closed-loop applications thus far have attempted to detect the

occurrence of a biomarker of disease and disrupt it, with the aim

of ameliorating the associated symptoms. Here, we describe

a fundamentally different approach. We demonstrate that

phase-dependent interaction with an oscillatory biomarker on

fast timescales (milliseconds) can establish a flexible brain-ma-

chine equilibrium, resulting in a sustained amplification or sup-

pression of the target activity. By comparing closed- and

open-loop stimulation protocols, we demonstrate unambigu-

ously that this interaction was necessary for bidirectional modu-

lation, which could not be induced using the stimulation patterns

alone. Crucially, interactive modulation of ongoing beta activity

resulted in a change in behavior, altering the speed of movement

by biasing the locomotor pattern. Together, these findings

demonstrate that maintaining a continuous interaction between

an external system and brain activity could be used to drive brain

and behavior toward a desired state.

Cortical circuits entrain widespread populations of neurons

across subcortical nuclei, which project directly or indirectly
6 Cell Reports 41, 111616, November 8, 2022
back to the same cortical areas. Such connectivity has been

proposed to underlie the generation of beta-frequency syn-

chronization across cortico-basal ganglia circuits (Brazhnik

et al., 2016; Cagnan et al., 2019b; Mirzaei et al., 2017). Deliv-

ering phase-locked stimulation that exploited the temporal rela-

tionship between cortical and basal ganglia populations was

sufficient to fundamentally change the power and stability of

the cortical oscillation. These changes were mirrored by the

pattern of the stimulus train, thus an equilibrium emerged,

determined by the fixed parameters of the system and the

properties of the brain network. Furthermore, altering the phase

of stimulus delivery was sufficient to adjust the point of equilib-

rium. Open-loop playback of the suppressing stimulus train led

to amplification of the cortical beta oscillation, presumably due

to the oscillatory pattern of the stimulus. This reversal in effect

clearly illustrates the temporal dependence of signal and stim-

ulus in preventing the oscillation from emerging rather than the

primary statistics of the stimulation train. Similarly, stimulation

at the amplifying phase reinforced the stability of the ongoing

oscillation more than could be achieved by the stimulus pattern

alone. The system, therefore, worked like an external node,

simultaneously adapting to and influencing the state of the

network.

An outstanding question is how this brain-machine interaction

manifests at the level of single units in the cortex and basal

ganglia. Several factors are likely to contribute to the relationship

between underlying spiking activity and suppression or amplifi-

cation. For example, specific phases of the ECoG could have

fixed relations to the absolute refractory period of a large number

of synchronized neurons, perhaps of a particular cell type. This

could make the stimulus more or less likely to reinforce
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(A) Rats (n = 7) traversed a linear track with reduced mean speed in the

presence of amplifying stimulation (WSRT).

(B) Same day, same rat example runs (no simulation; one bounding, one non-

bounding) visualized from above. Bars depict the time each foot spends in

contact with the track. Average speed is noted on the right. The rat covers a

similar distance in half the time when bounding.

(C) The percentage of bounding runs differed across animals and largely

determined mean speed.

(D) Same as (C) plotted relative to the no stimulation condition (black dot).

(E) The difference in speed between amplifying and suppressing stimulation

correlated with the difference in the percentage of bounding runs (Pearson

correlation).
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oscillatory spiking both locally and downstream. The phase

could also represent when a stimulus is more likely to reinforce

or disrupt spike-timing synchrony across the local population

or in relation to the rest of the network. In all cases, which are

not mutually exclusive, the stability generated by the closed-

loop interaction could act to maintain a specific temporal rela-

tionship between spiking and the ECoG. Unit recordings would

also enable further investigation of off-band effects, whereby

suppressing stimulation led to an increase in the power of neigh-

boring, lower frequencies. Such effects were also sometimes

visible in the pattern of the stimulation pulses, whereby suppres-

sion slowed the frequency of stimulation with respect to the

target frequency (e.g., Figure 2D). Previous work in 6-OHDA-

lesioned rats has shown that basal ganglia spiking is locked to

beta oscillations at the target frequency (Brazhnik et al., 2014).

A key question is whether this spiking activity also moves to

lock to the shifted oscillatory peak frequency or only disengages

from the target band. Recordings of spiking across the network

will ultimately be required to address these questions.

The change in locomotion between amplifying and suppressing

stimulation—where the only difference between the two condi-

tions was the phase to which the stimulation was targeted—dem-

onstrates that the different states of equilibrium resulted in func-
tionally relevant changes in brain state. Amplification influenced

the locomotive preference toward walking over bounding, yet

the inter-animal variation in bounding and walking still occupied

a similar range to the no-stimulation condition. This suggests

that the stimulation did not completely disrupt normal function

but instead biased the natural operation of the network,

resulting ina shift inbehavioral tendencies.Betaoscillations incor-

tico-basal ganglia networks are associated with a holding of the

current motor state (Brittain and Brown, 2014; Engel and Fries,

2010) rather than with a specific type of movement or behavior.

Indeed, the patterned limb movements needed for walking or

bounding are mostly coordinated in the brainstem and spinal

cord (Ferreira-Pinto et al., 2018). As the rats turned in the reward

arena prior to entering the track, they could only move using a

walking-like locomotor pattern. Increased beta activity in cortico-

basal ganglia networks potentially served to maintain the walking

motor program, reducing instances of clean transition into bound-

ing across the track. This ability to bias ongoing behavior may be

particularly advantageous for proposed translational applications

of phase-dependent stimulation, where the goal is to shepherd

dysfunctional networks away from pathological cognition and

behavior (Takeuchi and Berényi, 2020; Widge and Miller, 2019).

Our work supports the idea that integrating an external system

within the intrinsic dynamics of a pathophysiological neural circuit

can provide a ‘‘network prosthesis,’’ whereby the closed-loop

system compensates for the myriad of maladaptive changes

that prevent the network from functioning within its normal range.

Moreover, we demonstrate that it is possible to achieve this by in-

teracting with the brain at millisecond timescales and, in turn, that

this timescale is functionally important.We have provided tools to

implement these methods in preclinical experiments and in med-

ical devices. The approach is already clinically tractable by

combining the fast real-time algorithm used here with a next-gen-

eration DBS device (Gilron et al., 2021; Opri et al., 2020; Toth

et al., 2020). Our demonstration that network oscillations can be

manipulated bidirectionally, and within their normal functional

range, provides a technical and conceptual approach to define

the role of these activities in the function and dysfunction of mem-

ory, sleep, and other fundamental brain operations.

Limitations of the study
We targeted two basal ganglia structures known to be highly

coupled to cortical beta oscillations (Cagnan et al., 2019b;

Crompe et al., 2020; Mallet et al., 2008). While we were able to

show that closed-loop stimulation targeted to the STN can lead

to similar physiological and behavioral effects to those of the

GPe, more experiments will be needed to fully characterize the

amplifying and suppressing phases of STN stimulation to allow

comparison of the two targets. A more general limitation is that

we cannot be sure which neuronal elements around the stimula-

tion electrode were most important in modulating cortical oscilla-

tions. It is important to acknowledge that we do not claim that it

was necessary for the stimulating electrode to bewithin the target

structure to see electrophysiological and/or behavioral effects of

closed-loop stimulation. Aswith our own complementary work on

phase-dependent effects of stimulation in people with PD (Holt

et al., 2019), we expect effects on neurons in the target areas, sur-

rounding areas, and fibers of passage to all have the potential to
Cell Reports 41, 111616, November 8, 2022 7
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disrupt or reinforce cortico-basal ganglia oscillations. Dissection

of exactly which of these components is necessary or sufficient

to modulate cortical beta power would require our methods to

be combined with optogenetic stimulation. As in clinical DBS,

however, the less-specific effects of electrical stimulation may

enable multiple routes of modulation, which is not necessarily a

disadvantage when trying to manipulate a large network.

The oscillations that wemeasured andmanipulated here had a

center frequency of around 35 Hz. In most other systems and

contexts, this frequency would be considered low-gamma range

(Buzsáki and Draguhn, 2004). However, frequencies up to 35 Hz

are often considered part of the extended beta range in studies

of patients with PD (Baaske et al., 2020; Iskhakova et al., 2021;

K€uhn et al., 2006; Neumann et al., 2016; Sharott et al., 2018),

and this higher range has been repeatedly shown to be the domi-

nant frequency in the awake, 6-OHDA-hemi-lesioned rat (Avila

et al., 2010; Brazhnik et al., 2014; Sharott et al., 2005). It should

be acknowledged, however, that patients with PD generally have

considerably lower dominant frequencies and that these may be

the most clinically relevant (Darcy et al., 2022; Neumann et al.,

2016). Importantly, the main findings of this study relate to the

interactive properties of our system when coupled to a pro-

nounced neural oscillation and would likely translate to the lower

beta range or other bands.
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Buzsáki, G., Anastassiou, C.A., and Koch, C. (2012). The origin of extracellular

fields and currents — EEG, ECoG, LFP and spikes. Nat. Rev. Neurosci. 13,

407–420. https://doi.org/10.1038/nrn3241.

https://doi.org/10.1016/j.celrep.2022.111616
https://doi.org/10.1016/j.celrep.2022.111616
https://doi.org/10.1016/j.expneurol.2009.11.016
https://doi.org/10.1016/j.nbd.2020.105119
https://doi.org/10.1038/s41551-021-00804-y
https://doi.org/10.1016/j.cub.2015.04.005
https://doi.org/10.1016/j.cub.2015.04.005
https://doi.org/10.1523/JNEUROSCI.3582-15.2016
https://doi.org/10.1523/JNEUROSCI.3582-15.2016
https://doi.org/10.1016/j.expneurol.2014.07.010
https://doi.org/10.1016/j.expneurol.2014.07.010
https://doi.org/10.1016/j.neuroimage.2013.05.084
https://doi.org/10.1016/j.neuroimage.2013.05.084
https://doi.org/10.1016/j.cub.2013.01.068
https://doi.org/10.1016/j.expneurol.2021.113869
https://doi.org/10.1016/j.expneurol.2021.113869
https://doi.org/10.1038/nrn3241


Article
ll

OPEN ACCESS
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recordings and associated data
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SciPy scipy.org; conda-forge.org Version 1.8.1

Pycircstat pypi.org Version 0.0.2

Matplotlib matplotlib.org; conda-forge.org Version 3.5.2

CatWalk XT Noldus, Netherlands Version 10.6.608

Inkscape inkscape.org Version 1.1.2
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to andwill be fulfilled by the lead contact, Andrew Sharott (andrew.

sharott@bndu.ox.ac.uk).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d Electrocorticogram recordings are available from theMRCBrain Network Dynamics Unit Data Sharing Platform/Oxford Univer-

sity Research Archive (https://data.mrc.ox.ac.uk/ecog-closed-loop; https://doi.org/10.5287/bodleian:9omadD7Pp). Addi-

tional data reported in this paper will be shared by the lead contact upon request.

d All original code is available from (https://colinmcn.github.io/OscillTrack/; https://doi.org/10.5287/bodleian:qa9ngXrzr)

including Hardware Description Language for the OscillTrack algorithm along with alternative Microcontroller C code.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Male Lister Hooded rats (starting weight 350–450 g; estimated starting age 3–4 months; experiment duration 2–4 months; Charles

River, strain code 603) were housed with free access to food and water in a dedicated housing room with a 12/12-h light/dark cycle.

Closed-loop stimulation, data acquisition and behavioural testing took place in a separate room during dedicated recording ses-

sions. Experiments involving animals were conducted in accordancewith the UKAnimals (Scientific Procedures) Act 1986 under per-

sonal and project licenses issued by the Home Office following ethical review.
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METHOD DETAILS

Surgical procedures
Rats underwent two separate recovery stereotaxic surgical procedures performed under deep anaesthesia using isoflurane (4%

induction, 2–0.5% maintenance) and oxygen (2 L/min). Local anaesthetic (Marcaine, 2 mg/kg, 2.5 mg/mL) and non-steroidal anti-

inflammatories (Metacam, 1 mg/kg, 5 mg/mL) were administered subcutaneously at the beginning of all surgeries, while opioid anal-

gesia (Vetergesic, 0.3 mg/mL, 0.03 mg/kg) was also provided for three consecutive post-operative days.

The first surgical procedure produced a unilateral lesion of dopaminergic neurons of the substantia nigra pars compacta by intra-

cranial injection of the neurotoxin 6-hydroxydopamine (6-OHDA) at their cell bodies through a glass pipette located 4.9 mm posterior

and 2.3 mm lateral from bregma at a depth of 7.8 mm from the brain surface. 6-OHDA (Sigma: H4381-100MG; Bio-techne: 2547/50)

was dissolved immediately before use in phosphate buffer solution containing 0.02% w/v ascorbate to a final concentration of

6 mg/mL. Between 0.10 and 0.15 mL of 6-OHDA solution was injected at a rate of 0.01 mL/min through the pipette, which was left

in place a further 5 min before being withdrawn. Front-foot use asymmetry pre- and post-lesion while rearing against the wall of a

transparent acrylic cylinder was used to indicate lesion severity and select candidates for electrode implant.

Following full recovery and not less than 13 days later, selected animals underwent a second surgical procedure to implant two

pairs of stainless steel stimulation electrodes (California Fine Wire, stainless steel, bifilar, heavy formvar insulation, 127 mm strand

diameter). Electrodes were secured with bone cement and six M1.4 X 3 mm stainless steel screws. For stimulation of the globus pal-

lidus (GPe), electrodes were implanted 1mmposterior and 3.1mm lateral from bregma at a depth of 6mm from the brain surface. For

stimulation of the subthalamic nucleus (STN) electrodes were implanted 3.8 mm posterior and 2.5 mm lateral from bregma at a depth

of 7.2 mm from the brain surface. ECoG was measured from the most frontal screw located above motor cortex at approximately

4.6 mm anterior and 1.6 mm lateral from bregma referenced to two screws above cerebellum. Neurotoxin injections, electrical stim-

ulation and ECoG recording were all performed on the right hemisphere.

Immunohistochemistry and electrode location
Upon completion, rats were deeply anesthetized with isoflurane (4%) and pentobarbital (3 mL, Pentoject, 200 mg/mL) and transcar-

dially perfused with phosphate-buffered saline (PBS) followed by fixative (paraformaldehyde dissolved in PBS, 4%, wt/vol). With

stimulation wires still in place, heads were placed in fixative for a further 12 hours before brains were extracted and sectioned.

Lesions were verified using antibodies to tyrosine hydroxylase (rabbit anti-TH primary; diluted 1:1000; Millipore Cat# AB152,

RRID:AB_390204; donkey anti-rabbit Alexa Fluor 488 secondary; diluted 1:1000; Thermo Fisher Scientific Cat# A-21206,

RRID:AB_2535792) to visualise the unilateral loss of cell bodies in the SNc and loss of dopaminergic innervation in the dorsal striatum.

Sections containing electrode tracks were stained for either parvalbumin (guinea pig anti-parvalbumin primary; diluted 1:1000;

Synaptic Systems Cat# 195-004, RRID:AB_2156476; donkey anti-guinea pig Cy3 secondary; diluted 1:500; Jackson

ImmunoResearch Cat# AB_2340460, RRID: AB_2340460) or FoxP2 (rabbit anti-FoxP2 primary; diluted 1:500; Sigma Cat#

HPA000382, RRID:AB_1078908; donkey anti-rabbit Alexa Fluor 488 secondary; diluted 1:1000; Thermo Fisher Scientific Cat#

A-21206, RRID:AB_2535792) to determine electrode location in relation to the GPe and STN respectively. Stimulation electrode

tracks were visualised with epifluorescence microscopy. Electrode tips classified as at the GPe striatal border were a maximum

of 600 mm from the border. The electrode located above the STN was 250 mm from the dorsal border and the two electrodes located

below the STN were both 450 mm from ventral border.

Open field eight phase protocol
Rats freely explored a 90 by 50 cm dimly lit open field surrounded on three sides, above and below with electrical shielding with a

black curtain for access on the remaining side. Three to six recording blocks were performed per rat. Recording blocks consisted

of eight pairs of recordings with a different real-time target phase applied in each pair (Figure S1A). Target phase order was rando-

mised across blocks. Stimulation was enabled in the first recording of each pair (stimulation recordings) and disabled in the second

(baseline recordings). Stimulation recordings were approximately 4.5 min in duration and baseline recordings were approximately

2 min in duration. The real-time system generated triggers during 20 second epochs (on-epochs) separated by 5 second trigger

free epochs (off-epochs) and was in operation across all recordings. Recordings were made both when triggers were used to drive

stimulation and with stimulation disabled. Generating real-time triggers in the absence of stimulation during baseline recordings al-

lowed comparison of the real-time system performance of phase tracking with and without stimulation influencing the neural activity.

These recordings also provided the opportunity to assess baseline physiology in the absence of stimulation. Embedding short

epochs lacking stimulation within recordings with stimulation provided an internal comparison point to assess the effect of stimula-

tion without the need to correct for changes occurring over longer time frames such as arousal, brain state, general movement levels

and external electrical noise. The centre frequency (fc) for real-time phase tracking for each block was chosen at the start of the block

based on power spectra generated from previous recordings from the same rat and was in the range 35 to 41 Hz.

Electrocorticogram and electrical stimulation
Electrocorticogram (ECoG) signals measured from M1.4 stainless steel screws referenced to two cerebellar screws were amplified

and digitised using a RHD2000 family amplifying and digitising headstage connected to a RHD USB Interface Board both from Intan
e2 Cell Reports 41, 111616, November 8, 2022
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Technologies (intantech.com). The USB Interface Board was recently discontinued and an RHD recording controller is the recom-

mended replacement. Electrical stimulation was driven using a fully isolated current source (battery powered with an optically

coupled trigger, A365RC, World Precision Instruments) with the source and sink terminals connected to the adjacent strands of

the pair of stainless steel wires forming the stimulation electrode. Stimulation events were biphasic consisting of two consecutive

pulses of opposite polarity each 50, 60 or 70 mA in amplitude and 95 ms in duration separated by 10 ms. To achieve closed-loop stim-

ulation, a custom designed digital circuit was used to access the digital data stream from the headstage, track phase within a band of

interest in real-time and generate digital pulses to activate the optically coupled trigger of the stimulation current source. The custom

designed digital circuit was implemented using extra available digital circuitry within the field programmable gate array (FPGA)

located on the RHD USB Interface Board.

Real-time phase tracking and closed-loop trigger algorithm (OscillTrack)
To perform real-time oscillatory tracking, we developed theOscillTrack algorithm,whichwe use for the first time here. In addition to the

described FPGA implementation, we also provide an alternative implementation in the form of microcontroller code (https://colinmcn.

github.io/OscillTrack/). The approach seeks to match the measured signal to a fixed model (a pair of constant frequency sine and

cosine waves) to build a signal estimate. In this sense, it can be thought of as a partial implementation of a Kalman filter with modi-

fications for application-specific functionality and computational efficiency. By design, the measurement and process noise are not

explicitlymodelled and the error update coefficient (g, see below) is set constant by the user, versus the explicit calculation of a Kalman

gain term. Intuitively, the update coefficient sets the width of the passband allowing the user to select a value to suit their application.

ECoG recordings were performed with a sample rate of 20 kHz per channel to capture the full detail of stimulation artefacts aiding

their removal in post hoc analysis. However, for phase tracking in real-time, the data was downsampled by producing a single sample

from the sum of 8 to 12 (Ndn) successive samples, since tracking beta-band phase did not require such a high number of samples per

cycle. Thus, the phase tracking component operated at sample rates in the range 1.67 to 2.5 kHz (varying the sample rate was one of

the ways to achieve different target oscillation centre frequencies).

To track phase in real-time, an iterative algorithmwas appliedwhere in each step (n) we estimated the phase (4n) based on the input

signal (sn) as follows. A pair of continuously oscillating constant frequency sine and cosine reference waves (sin qn and cos qn) were

generated from a precomputed quarter cycle lookup table containing N values such that:

qn =
np

2N

A band limited complex estimate of the signal (rn) was calculated using a pair of weighting coefficients (an and bn) that jointly deter-

mined the phase and amplitude of the estimated signal with respect to the reference waves as follows:

rn = ð an sin qn + bn cos qn Þ + i ð bn sin qn � an cos qn Þ
On each iteration theweighting coefficients were updated tominimize the error (Dn) between the input signal (sn) and the real part of

the estimate ( ReðrnÞ ).
Dn = sn -- ReðrnÞ

Specifically, the weighting coefficients were updated for the next iteration such that:

an+ 1 = an + gDn sin qn

bn+ 1 = bn + gDn cos qn

The convergence between the estimate and the signal was thus limited by a constant coefficient (g) on the error update terms,

which in these experiments was set to 2� 4. Choice of a negative power of two reduced the computation required from amultiplication

to a bitwise right shift. The real-time phase estimate (4n) was generated from rn using an 11 stage CORDIC (Volder, 1959) comprising

entirely of combinatorial logic.

4n = angleðrnÞ
The centre frequency (fc) of the band of interest was set by the frequency of the reference waves (sin qn and cos qn). As described,

this depended on the original sample rate (20 kHz), the amount of downsampling (Ndn), and the number of values in the lookup table

containing a quarter of a sine wave (N).

fc =
20000

4 N Ndn

where N˛ f11; .; 15g and Ndn ˛ f8; .; 12g

The width of the band of interest was set by the error update coefficient (g), which damped the rate of convergence between the

estimate and the signal. The only state information retained between iterations was thus the weighting coefficients (an+ 1 and bn+1)

and the reference wave lookup index which was incremented by one each iteration and reset on completion of a reference wave cy-

cle. The operations described above were implemented as dedicated combinatorial logic.
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A real-time trigger was generated when the phase estimate passed into the target phase range unless it had been less than 0.8 of a

target frequency (fc) period since the most recent passing into the target phase range. This was important to reduce stimulation at

times of poor phase estimates caused by low power in the target frequency range. Additionally, a phase shift corresponding to half

the stimulation width (100 ms) was subtracted from the target phase causing the stimulation to be triggered slightly early allowing the

middle of the stimulation to occur at the desired target phase. To reduce the effect of electrical stimulation artefacts on the phase

estimate, a digital hold circuit operating on the 20 kHz data stream held the sample preceding the stimulation trigger on the input

of the downsampling circuit for 600 ms from the start of the trigger. An offset removal digital filter was also implemented on the input

to the phase tracking algorithm to remove residual offset remaining from the analogue front-end electronics; for each sample step (n)

the offset removed signal (sn) was generated from the downsampled original signal (qn) whereby:

sn = qn � xn

xn+ 1 = xn + 2� 6 sn

Data analysis
First, stimulation artefacts were removed from the 20 kHz recordings by interpolation between the sample immediately preceding the

stimulation and the sample 1.7 ms later. The resulting signals were downsampled to 1 kHz in two steps using finite impulse response

anti-aliasing filters (designed using scipy.signal.remez(), combined pass band ripple less than 0.001 dB below 420 Hz, stop band

attenuation greater than 90 dB above 498 Hz). All spectra and phase calculations were performed on the artefact-removed and

downsampled signal. Post hoc trigger phase in the beta-band was calculated by filtering (scipy.signal.firwin(), numtaps = 513) the

signal between ±5 Hz of the centre frequency (fc) chosen for real-time phase tracking. The trigger phase was then calculated as

the polar angle of the Hilbert transform analytic signal at the midpoint of the biphasic trigger. Power spectral density (PSD) calcula-

tions were performed usingWelch’s method (Welch, 1967) with a resolution of 1 Hz spectral bins. Changes in beta-band power were

calculated from the respective PSDs (mean of fc bin ± 5 bins inclusive, i.e. mean of 11 bins total) in dB. For capturing the variation in

stimulation dynamics, coefficient of variation 2 (CV2) was used (Holt et al., 1996). It was calculated as themean value across the stim-

ulation train of two times the absolute value of the difference over the sum of adjacent stimulation intervals. It has a value of one for a

Poisson process and zero for regularly spaced (fixed frequency) stimulation.

Temporal variation index
In order to quantify the interplay between the stimulus train and the beta oscillation, we required ameasure of the oscillatory variability

in amplitude with respect to time. Coefficient of variation-type measures when applied to time intervals, capture the variability in time

for point processes such as neuronal spiking or stimulation trains. However, for constant sample rate processes such as oscillatory

amplitude they cannot be directly applied to the time axis and give a measure of the variability in amplitude, not time. Consider two

identical signals with one difference; one is progressing at twice the rate of the other. Their variance and coefficient of variation (CV) in

amplitudewould be identical. However, the variance in their rate of changewould differ and this is the property we sought tomeasure.

Themore slowly progressing signal could be described asmore stable as its amplitude changesmore slowly. We thus developed the

temporal variation index (TVI; Figure S5) where the differential of the signal is taken before variance is measured. Differentiation of

such a signal results in values that are normally distributed being centred on zero and hence can be fully described by their standard

deviation (see Figure S5 bottom row). A second requirement was that the measure should be independent of mean amplitude as we

wished to compare the temporal dynamics between the amplified and suppressed signals. This was achieved by normalisation by the

mean. Without normalisation, signals with a higher mean would have a higher TVI. This normalisation is equivalent to that to produce

CV. Thus, we defined TVI as the standard deviation of the derivative of the Hilbert amplitude envelope divided by the envelope mean.

A more stable signal will have a lower TVI and a more variable signal will have a higher TVI.

Linear track gait analysis
Gait analysis during closed-loop stimulation was performed using a customised version of theCatWalk XT (Noldus, Netherlands). The

CatWalk system consists of a glass walkway raised above a camera capturing at 100 fps. The glass plate is illuminated by green light

that reflects within the glass at points being touched, allowing for semi-automated detection of footprints as rats traverse the

walkway. The CatWalk wasmodified to include arenas extending from the ends of the track each containing a reward port. Aluminium

sheeting was attached along thewalls of the track to provide electrical shielding and increase thewall height. The red strip light above

the track was replaced with red ambient lighting allowing the addition of a zip line to accommodate the recording and stimulation

tether.

Sugar pellets were delivered by the experimenter through dedicated tubing to the reward delivery ports at alternating ends of

the track. During training, tethered rats were allowed to freely explore the glass walkway and reward areas for approximately four

fifteen-minute sessions until they consistently crossed thewalkway to collect reward. Amplifying and suppressing stimulation phases

and stimulation target (GPe or STN) for each rat were selected based on spectra generated from open field eight phase recordings.

During data acquisition, no stimulation, amplifying-phase stimulation and suppressing-phase stimulation were applied in separate
e4 Cell Reports 41, 111616, November 8, 2022
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recordings in a randomised order. Recordings were between five and twentyminutes in duration and typically consisted of eight valid

runs with multiple groups of recordings per animal collected across different days. Gait analysis was performed on rats in which suc-

cessful amplification and suppression was achieved during linear track recordings. Damaged implants prevented collection of linear

track data from two of the 13 rats comprising the open field data. Post hoc analysis of linear track ECoG data revealed that ampli-

fication and suppression of beta-band power did not occur in a further four rendering the data unsuitable for the comparison of ampli-

fying and suppressing stimulation (two had no modulation and the incorrect target phases were selected during data collection for

another two). Of the remaining seven included in gait analysis, five received stimulation of the GPe and two received stimulation of the

STN.

Paw prints were detected and descriptive properties generated using CatWalk XT software (Noldus, Netherlands, version

10.6.608) and the resulting output further analysed using SciPy (scipy.org). Only runs less than four seconds in duration having at

least eight valid footprints and an average speed of greater than 10 cm/s were included in the analysis. To identify faulty recordings,

the total spectral power below 200 Hz was calculated for each recording and those in the upper tail of the resulting distribution were

excluded (20 of 420). The average number of valid runs per condition per animal was 100.7 with a minimum of 69. Average speed for

each runwas calculated as the average distance travelled divided by time taken for each step cycle i.e. from start of contact to start of

next contact for each cycle of each foot (CatWalk XT). Runs were classified as bounding if each forelimb contact was followed or

preceded by the other across the entire valid run with the same being true of hindlimbs e.g. front-front-hind-hind-front-front etc.,

never front-hind-front (CatWalk XT 100 % cruciate or rotate). The percentage bounding was the percent of total valid runs for that

condition that were classified as bounding.

QUANTIFICATION AND STATISTICAL ANALYSIS

Post hoc analyses of ECoG spectral properties, stimulation phase and behavioural data including statistical tests were performed

using SciPy (scipy.org; version 1.8.1). The Watson-Williams test was performed using pycircstat (pypi.org/project/pycircstat version

0.0.2). Values in the text are reported as mean ± standard deviation and error bars in plots show mean ± standard error of the mean

unless otherwise stated. Nonparametric tests were used and each test is specified in the results text along with the p-value, asso-

ciated test statistic, degrees of freedom and n.
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