
Contents lists available at ScienceDirect

Neurobiology of Disease

journal homepage: www.elsevier.com/locate/ynbdi

Beta bursts during continuous movements accompany the velocity
decrement in Parkinson's disease patients
Roxanne Lofredia,b,c,d, Huiling Tana,b, Wolf-Julian Neumannc, Chien-Hung Yeha,b,
Gerd-Helge Schneidere, Andrea A. Kühnc, Peter Browna,b,⁎

a Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
b Medical Research Council Brain Network Dynamics Unit, University of Oxford, Oxford, UK
c Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
d Berlin Institute of Health (BIH), 10178 Berlin, Germany
e Department of Neurosurgery, Charité – Universitätsmedizin Berlin, Berlin, Germany

A R T I C L E I N F O

Keywords:
Parkinson's disease
Bradykinesia
Subthalamic nucleus
Beta oscillations
Beta bursts

A B S T R A C T

Bradykinesia is reported to correlate with subthalamic beta power (13–35 Hz) recorded at rest in Parkinson's
disease (PD). Pilot studies suggest adaptive deep brain stimulation triggered by amplitude threshold crossings of
beta activity defined at rest is effective. This is puzzling, given that beta is suppressed during repetitive
movements when bradykinesia becomes apparent. Recently, increased beta power in PD has been linked to beta
bursts. Here we investigate whether beta bursts also occur during repetitive movements and relate to progressive
decrement in movement velocity. Therefore, subthalamic local field potentials were recorded in 12 PD patients
off medication while performing 30s blocks of rotatory movements alternating with rest periods. Bursts were
defined separately for the low (13–20 Hz) and high (20–35 Hz) beta band using thresholds defined at rest. As
expected, velocity significantly decreased within movement blocks. Despite the sustained suppression of both
beta sub-bands, bursts could still be detected during movement. Beta bursts were reduced in amplitude, duration
and rate during movement with beta rate correlating best with beta power. A mixed-effects linear model re-
vealed that percentage time spent in beta bursts predicted velocity decreases better than averaged power. This
correlation was specific for the low beta band. Our results link beta bursts during movement to bradykinesia.
This helps explain how beta activity may contribute to bradykinetic movement decrement even though mean
beta power is reduced during movement. Moreover, our findings help explain the effectiveness of adaptive DBS
triggered off beta bursts, even though these may be defined with respect to beta levels at rest.

1. Introduction

Parkinson's disease (PD) is a common neurological disorder with
bradykinesia as its core motor symptom. Bradykinesia describes the
slowness of movement initiation and the progressive decrement in
movement velocity and amplitude during repetitive movements that is
specific for PD. (Rodrigues et al., 2009; Ling et al., 2012; Rocco et al.,
n.d.) It is particularly well controlled by chronic deep brain stimulation
(DBS), an efficient treatment option for PD patients in whom dopami-
nergic medications no longer provide consistent benefit (Deuschl et al.,
2006; Schuepbach et al., 2013). Recordings from externalized DBS-
electrodes have revealed a correlation between the severity of brady-
kinesia and the extent of averaged beta amplitude (13–35 Hz) in the
subthalamic nucleus (STN) (Kühn et al., 2006; Neumann et al., 2016;

Oswal et al., 2016). Subthalamic beta power is reduced in parallel with
symptom alleviation by both dopaminergic medication (Kühn et al.,
2006; Kühn et al., 2009) and DBS (Oswal et al., 2016; Eusebio et al.,
2011; Kuhn et al., 2008). Accordingly, beta activity has been considered
a neurophysiological correlate of motor impairment and has been used
as local feedback parameter for adaptive instead of continuously de-
livered DBS. There are several approaches to adaptive DBS. One uses a
STN beta amplitude threshold to turn stimulation on and off and has
proven to have a similar or better efficacy / side-effect profile than
conventional DBS (Little et al., 2016a; Little et al., 2013; Little et al.,
2016b; Pina-Fuentes et al., 2017). The beneficial effects of this form of
adaptive DBS and of dopaminergic medication have recently been
linked to a shortening of pathologically prolonged and elevated beta
episodes, so called beta bursts (Tinkhauser et al., 2017a; Tinkhauser
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et al., 2017b). This is in line with findings from physiological brain
activity, where beta bursts preceding a movement have been associated
with a slowing of subsequent movements (Leventhal et al., 2012; Shin
et al., 2017). However, it has not been reported yet whether beta bursts
are also present during continuous movements and if so, what effects
their occurrence might have on movement velocity. Rather, the current
understanding derived from non-invasive and intracerebral recordings
in healthy primates and humans, as well as PD patients, is that con-
tinuously performed non-isometric movements are accompanied by a
sustained suppression of beta power below its level at rest
(Androulidakis et al., 2008; Joundi et al., 2013; Muthukumaraswamy,
2010; Steiner et al., 2017; Kühn et al., 2008; Erbil & Ungan, 2007;
Cassim et al., 2000; Bichsel et al., 2018). Yet, bursts of increased beta
power may not have been captured in previous studies, as beta power
was routinely averaged across the time domain. Here we hypothesize
that subthalamic beta bursts also occur during repetitive movements in
PD patients and may relate to the progressive decrement of velocity in
bradykinesia termed the sequence effect. Our findings help explain two
clinico-physiological paradoxes; how may beta activity contribute to
the sequence effect and how can adaptive deep brain stimulation trig-
gered off beta bursts improve bradykinesia when mean beta power is
reduced during movement (Johnson et al., 2016)?

2. Methods and materials

2.1. Patients and surgery

12 subjects with idiopathic Parkinson's disease (mean disease
duration 10.5 years, range 5–18 years; mean age 62.8 years, range
47–72 years; four women; further clinical details given in Table 1)
undergoing stereotactic functional neurosurgery for bilateral im-
plantation of DBS electrodes in the STN were enrolled in the study. All
subjects provided written informed consent which was approved by the
local review boards of the Charité - Universitätsmedizin Berlin and in
accordance with the standards set by the Declaration of Helsinki. DBS
electrode extension cables were externalized in a brief postoperative
interval of 5–7 days for clinical testing, allowing the recording of local
field potentials (LFP) from the STN. In 9 subjects, the permanent
quadripolar macroelectrode used was model 3389 (Medtronic Neuro-
logical Division, Minneapolis, MN, USA) with four platinum‑iridium
cylindrical surfaces (1.27 mm diameter, 1.5 mm length) and a centre-to-
centre separation of 2 mm. In 3 subjects, directional leads (Boston
Scientific, Marlborough, MA) with 2 cylindrical (most ventral and most
dorsal contact, here termed contacts 1 and 8) and 2*3 segmented sur-
faces (1.5 mm2) with a centre-to-centre separation of 2 mm (here
termed contacts 2, 3 and 4 for the ventral segmented ring and 5, 6 and 7
for the dorsal segmented ring) were implanted. In all subjects, correct
DBS-electrode placement was confirmed by intraoperative

microelectrode recordings and test stimulation. In 10/12 subjects, post-
operative CT imaging was available (case 2 and 12 did not have post-
operative images in our centre) and used for localization of DBS-elec-
trodes following the semi-automatic approach implemented in the
Lead-DBS toolbox (Horn et al., 2018; Horn & Kühn, 2015). In brief,
preoperative T2 and T1 weighted MR images were coregistered to
postoperative CT scans and normalized to MNI 2009b NLIN Asym
standard space. DBS contact artefacts in CT scans were visualized and
marked to obtain 3D coordinates in MNI space of all contacts for all
available scans.

2.2. Paradigm and recordings

LFP-recordings were performed after the subjects had been with-
drawn from dopaminergic medication for at least 12 h (OFF state).
Subjects were comfortably seated in an armchair and asked to con-
tinuously rotate a swivelling handle as quickly and with the largest
amplitude as possible for 30 s with their clinically more affected upper
limb (right: n= 7, left: n= 5). Every movement block was preceded
and followed by 30 s of rest recording. This sequence was repeated with
the same instructions three times (see Fig. 1). Subjects could initiate
and execute the repetitive movement in their own time so that it was
self-paced in nature. LFPs were recorded between adjacent contact pairs
in the 9 subjects with the 3389 electrode model. In the 3 cases with
directional leads, bipolar recordings were obtained by referencing each
contact to the lowermost contact of the electrode. The recordings were
then re-referenced offline to approximate the bipolar recordings de-
rived from adjacent pairs of the circular contacts of the 3389 electrode
model (for example: (STNR12 + STNR13 + STNR14)-
(STNR15 + STNR16 + STNR17)). Signals were amplified (x 50.000)
and low (1 kHz) and high pass (0.5 Hz) filtered using a D360 amplifier
(Digitimer Ltd., Welwyn Garden City, Hertfordshire, UK). Data were
sampled at 2 kHz on the analog to digital converter (1401). All data
were low-pass filtered below 500 Hz and down sampled to 1 kHz offline
for further analysis. 9/12 patients also performed the same task several
months after implantation of an impulse generator with the option of
recording local field potentials where the signal-to-noise ratio allowed
only a more limited analysis of the dynamics of beta activity (Steiner
et al., 2017).

2.3. Data analysis and signal processing

Analyses of both behavioural and electrophysiological data were
performed in MATLAB (version R2016a; The MathWorks, Natick, USA)
using custom Matlab code based on the Statistical Parametric Mapping
(Litvak et al., 2011a) and Fieldtrip (Oostenveld et al., 2011) toolboxes.
Segments with visually detected artefacts were removed before re-
cordings were down-sampled to 200 Hz and high-pass (3 Hz) and notch

Table 1
Clinical details.

Case Age/Gender Disease duration (years) Symptoms Handedness More affected side UPDRS ON/OFF Medication Brady-kinesia Subscorea

1 62/M 15 Tremor, Bradykinesia Right Right 21/24 4
2 66/M 8 Bradykinesia, Rigidity Right Right 17/26 5
3 72/M 9 Tremor, Bradykinesia, Rigidity Right Left 20/35 5
4 63/M 16 Bradykinesia, Rigidity Right Left 29/42 6
5 72/F 5 Bradykinesia, Rigidity Right Right 19/34 7
6 61/F 10 Tremor, Bradykinesia, Rigidity Right Right 4/20 4
7 47/F 7 Tremor, Bradykinesia, Rigidity Right Left 6/29 6
8 58/F 7 Tremor, Bradykinesia Right Right 10/32 5
9 57/M 18 Tremor, Bradykinesia Right Left 20/41 4
10 65/M 12 Bradykinesia, Rigidity Right Left 39/55 6
11 69/M 9 Tremor, Bradykinesia Right Right 23/33 6
12 62/M 10 Bradykinesia, Rigidity Right Right 30/47 6

a Sum of bradykinesia sub-items in MDS-UPDRS-III of more affected upper limb (finger taps, hand movements, supination/pronation movements) in the OFF
medication state.
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filtered (48–52 Hz) to limit movement artefacts and effects of line noise.
During movement, the local maxima of the movement velocity (first
derivative of movement trace) were automatically detected (matlab
function: findpeaks, minimal peak height 0.01, minimal peak distance
30 data points). All automatically defined time points were visually
checked and adjusted if necessary. By interpolating between the peaks
of movement velocity, a continuous measurement of movement velo-
city across movement time was obtained which mitigated the effects of
directional changes in movement. The interpolated traces were
smoothed with a moving average Gaussian smoothing kernel of 50 ms.
LFP recordings were transferred to the frequency domain using Morlet
wavelets with 10 cycles and a frequency resolution of 1 Hz. Power-
spectra were normalized to the sum of total power of 5–45 Hz and
55–95 Hz over the entire recording session to allow comparison across
subjects. The bipolar channel with highest peak in the beta band
(13–35 Hz) during rest, contralateral to the moved hand, was selected
for further analyses. This selection was based on previous reports that
demonstrated a significant correlation between contact-pair location in
the sensorimotor part of the STN and beta power (Horn et al., 2017). In
the present cohort, post-hoc verification of contact pair localization,
defined as the Euclidean midpoint between adjacent contacts (Horn
et al., 2017; Neumann et al., 2017), confirmed that highest beta power
coincided with location in the sensorimotor STN, see Supplementary
Fig. 1. Moreover, selected contact pairs were on average 3 ± 0.29 mm
distant to a previously reported optimal target location for best clinical
DBS outcome in PD. (Caire et al., 2013) The wavelet amplitude was
separately averaged across the low beta (13–20 Hz) and high beta
(20–35 Hz) sub-bands as distinct roles for both sub-bands in motor
control and with respect to dopamine-responsivity have been reported

(Oswal et al., 2016). Each power amplitude trace was z-scored (X-μ/δ)
over the entire recording session and smoothed with a moving average
Gaussian smoothing kernel of 175 ms. A burst was defined separately
for the high and low beta sub-bands when the instantaneous normalized
power exceeded the 75th percentile of the signal amplitude distribution
across the rest periods of the recording in the respective frequency band
(Tinkhauser et al., 2017a). We took the 75th percentile to define bursts
as this has been the one used in previous studies of PD patients in the
literature (Tinkhauser et al., 2017a; Tinkhauser et al., 2017b;
Tinkhauser et al., 2018; Torrecillos et al., 2018; Lofredi et al., 2018a;
Lofredi et al., 2018b). Importantly, using this threshold it has been
shown elsewhere that bursts in the STN LFP overlap bursts in the ip-
silateral EEG and contralateral STN LFP more often than predicted by
chance from permuted data. Moreover, the phase synchronization be-
tween cerebral cortex and STN is greater during STN beta bursts than
outside of these bursts (Tinkhauser et al., 2018). This is evidence that
bursting tends to be synchronised across the basal-ganglia cortical cir-
cuit and is not simply the product of a thresholded, time-varying local
signal. In line with this, we have previously shown that the pattern of
findings is similar regardless of whether the 55th to 90th percentile
thresholds is used to define bursts (Tinkhauser et al., 2017a). Another
important reason for using the 75th percentile to define bursts is that it
equates to the median threshold used in amplitude-responsive adaptive
DBS when allowance is made for the processing and ramping applied
during adaptive DBS (Little et al., 2016a; Little et al., 2013). Thus the
findings with this threshold are relevant to the delivery of adaptive DBS
(Tinkhauser et al., 2017a). However, to show that the correlation be-
tween change in velocity and low beta bursting is similar regardless of
the exact threshold applied, we also tested additional linear mixed-

Fig. 1. Schematic of task and examplary behavioural results. (A) Subjects were asked to continuously rotate a swivelling handle as quickly and with the largest
amplitude possible for a block of 30 s (rotatory cycle in black). (B) Example movement trace from first movement block in case 1. (C) Each subject performed three
blocks (B1–3) and velocity dropped across the blocks and also within the blocks which were each divided into three windows. Data averaged across subjects are
shown. (D) Shown is an example movement trace from case 5. The movement velocity is shown in light grey. Peaks of movement velocity were interpolated (red
trace), resulting in a continuous estimation of peak velocity in each 10s window (W1–3) of each block. Patients had 30 s rest between each block. To determine the
change in velocity within each window we took the difference between the mean interpolated peak velocity over the 1 s at the beginning and end of each window.
This is shown schematically for the first window of the first block in the figure. There was a stepwise decrease of movement velocity when averaging across
movement blocks and across windows within a block. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
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effects models with results derived from thresholding with the 55th,
65th, 85th and 95th percentile. Beta burst duration was defined as the
time spent over the predefined threshold. Threshold crossings lasting
shorter than 100 ms were not considered, so that bursts involved more
than one complete oscillation cycle. The amplitude of a beta burst was
defined as the area under the curve between signal and threshold line.
Beta burst properties at rest and during movement were compared se-
parately for both beta sub-bands. The distribution of burst durations
was considered by categorizing them into five time windows of 100 ms
starting from 200 ms to > 600 ms in duration.

2.4. Statistics

Non-parametric Monte Carlo permutation tests were used for sta-
tistical analyses. Permutation tests do not rely on assumptions about the

underlying data distribution. Note that the interchanged values always
stem from the same physiological source and differ only in the test
condition in which they occur. To illustrate the method we refer to the
comparison between high beta power at rest and during movement, as
shown in the right bar plots in Fig. 2B. For legibility, high beta is ab-
breviated beta in the following. First, beta power was averaged sepa-
rately over rest and over movement within each patient. Thereby, two
groups of twelve beta values at rest and twelve corresponding beta
values during movement were generated. We refer to this distribution
as the original distribution. We then averaged the beta power at rest
across subjects and the beta power during movement across subjects
and subtracted mean beta power at rest from mean beta power during
movement. In this specific case the mean difference between beta
power during movement and at rest was −0.3118, showing that beta
power at rest was higher than beta power during movement in the

Fig. 2. Averaged power spectra and burst properties at rest and during movement. (A) Group average power spectra were estimated separately over movement (red)
and rest periods (black). (B) When averaging over the low (13–20 Hz) and high (20–35 Hz) beta sub-bands, there was a significant power decrease in both beta sub-
bands during movement. (C, D) Both low and high beta power were continuously suppressed when averaged over 10 s windows within movement blocks. (E) Group
averaged data. Beta burst properties during movement (red bars) and rest (black bars) periods were compared separately for the low (upper panel) and high beta sub-
bands (lower panel). There was a significant decrease in burst duration and rate during movement when compared to rest, in both beta sub-bands. Additionally, burst
amplitude during movement was significantly decreased in the low beta band when compared to rest. (F) During movement, the percentage amount of short bursts
(< 200 ms) was higher. At rest, the amount of longer bursts was higher. Shaded areas in A and error lines indicate standard errors of the mean. Means and standard
errors of the mean are shown. *P < .05; **P < .01. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
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original distribution. In a second step, we created a shuffled distribution
by randomly interchanging beta values averaged in each subject over
rest and beta values averaged in each subject during movement to give
a shuffled distribution. We then averaged the shuffled beta power at
rest across subjects and the shuffled beta power during movement
across subjects and subtracted mean beta power at rest from mean beta
power during movement in the shuffled distribution. The shuffling
procedure was randomly repeated 5000 times to generate 5000 mean
difference estimates. The mean difference between beta power at rest
and beta power during movement in our original distribution was then
compared to that in the distribution of 5000 mean differences gener-
ated from the shuffled data. If the mean difference in the original data
was outside the 95% confidence limits of the mean difference of the
shuffled data then this was considered a significant difference.

Rank-based Spearman correlations were calculated if data deviated
significantly from a normal distribution as assessed by Kolmogorov-
Smirnov tests. Otherwise, linear Pearson correlations were conducted.
Correlation coefficients were Fisher transformed before averaging and
then back-transformed. Results are reported as mean ± standard de-
viation and considered significant at an α-level of 0.05 after correction
for multiple comparisons by controlling for the false discovery rate
(FDR) (Benjamini & Hochberg, 1995). Averaged LFP power and per-
centage time with burst activity were derived from the activity over 3
windows per 30-s movement block (~10 s per window; see Fig. 1B, D).
To assess the sequence effect, the difference in velocity averaged over
1 s (corresponds to approximately two rotations) at the beginning and
the end of each time window (~10 s) was calculated. In addition, we
repeated analyses when averaging across windows of ~5 s to test for the
consistency of any identified effects. Separate linear mixed effects re-
gression models were compared to assess the relationship between
change in velocity and mean power or bursting in both beta sub-bands
using the Matlab function fitlme. Linear mixed effects regression models
have excellent statistical power, as they allow for both fixed and
random effects as well as for consideration of non-independence in the
data, which arises from a hierarchical structure (here the consideration
of both individual subject data and cross-subject results). In our im-
plementation, the change in velocity was set as the dependent variable.
Averaged power, change in averaged power or percentage time spent in
bursting were entered into the model as fixed effects, separately for the
low or high beta sub-band. In order to take into account the cross-
subject variability in the linear regression intercepts and slopes between
the dependent variable and the considered independent variables, the
intercepts and the slopes were considered as additional random factors
grouped by subjects. Thus, the fixed effects give the estimated popu-
lation mean values of the slopes in the tested within-subject relation-
ship across all subjects. To control for effects of non-normal distribu-
tion, significant models were compared to results after transforming all
model inputs to normal distribution (van Albada & Robinson, 2007).
Window duration was kept relatively long (10 or 5 s) to observe the
sequence effect on velocity and to capture the effects of several beta
bursts within each window, thereby increasing potential effect sizes. By
considering long time periods, this approach was also relatively robust
to systematic fluctuations in beta activity and burst probability within
one rotatory movement cycle (lasting ~50 ms) that have been reported
in the gait cycle (Fischer et al., 2018) and during repetitive index finger
to thumb taps (Androulidakis et al., 2008).

3. Results

3.1. Behavioural results of change in movement over time

After artefact removal, the analysed movement time was
89.13 ± 1.5 s (29.7 ± 0.4 s for each of the three movement blocks)
and rest time 91.8 ± 4.4 s per subject (drawn from the three corre-
sponding rest blocks). Patients performed rotatory movements with a
mean frequency of 1.7 ± 0.2 Hz and a mean speed of 240.7 ± 22.4

degrees/s. Three movement blocks were performed. For analysis, each
block was subdivided in three equally long time windows (9.9 ± 0.1 s
per time window) to assess the change of behaviour and oscillatory
activity over time. A linear mixed-effects regression model (with aver-
aged movement velocity in a given time window as the dependent
variable, time windows as independent variables, random intercepts for
different subjects and fixed slope between time window and movement
velocity) demonstrated a significant relationship between averaged
velocity and time window within blocks as well as across blocks
(n= 12, estimate of fixed slope across blocks = −0.27, P = .006; es-
timate of fixed slope across windows within blocks = −0.24, P= .01,
BIC = 100.87) without significant interaction between time windows
and blocks (P= .2). Although the averaged velocity decreased from the
first to the last block, the change in velocity within 10 s was similar
both across windows within a movement block and across movement
blocks (block: P= .1; window: P= .7). Summing up, these results
confirm a decrease in velocity (sequence effect) over 30 s on a group
level, with the slope of this velocity decrease being relatively uniform
over time. An example of the performance of a single block is shown in
Fig. 1B and the group data across and within blocks are summarised in
Fig. 1C.

3.2. Power spectra at rest and during movement

When averaging beta band power separately for rest and movement
periods, both low (13–20 Hz) and high beta (20–35 Hz) power were
suppressed during movement (low beta: rest = 1.42 ± 0.2% total
power, mov = 1.16 ± 0.2%, Pmovrest = 0.02; high beta:
rest = 0.86 ± 0.2%, mov = 0.55 ± 0.15%, Pmovrest = 0.005; Fig. 2A,
B). After z-scoring the low and high beta bands separately over the
entire recording, mean power was assessed across the three windows
comprising the blocks of movement. In the low beta band, the power
suppression was significant in the first and last window but did not
reach significance in the second window (rest = 0.1 ± 0.04; W1/W2/
W3: mov = −0.155 ± 0.08/−0.0465 ± 0.07/−0.09 ± 0.06,
Pmovrest = 0.01/0.9/0.03; Fig. 2C and Supplementary Fig. 2). In the
high beta band, the power suppression persisted across all time win-
dows (rest = 0.17 ± 0.06; W1/W2/W3: mov = −0.17 ± 0.02/
−0.13 ± 0.09/−0.22 ± 0.07, Pmovrest = 0.01/0.02/0.003; Fig. 2D).

3.3. Movement-related modulation of beta burst properties

Beta burst properties at rest and during movement are summarised
in Fig. 2E and F. Low beta bursts were present in all subjects during
movement for 18.7 ± 3% of the total movement time (50 ± 7 bursts
per subject, 16 ± 8 per block, 5 ± 0.8 per window) while high beta
bursts were detected in 9/12 subjects during movement for 13 ± 3% of
the total movement time (55.9 ± 7 bursts per subject, 17.5 ± 11 per
block, 5.8 ± 1.1 per window). The 3/12 subjects without high beta
bursting during movement showed no significant differences in peak
velocity (HBeta Bursts Negative: 1.5 ± 0.18 a.u., HBeta Bursts Posi-
tive: 1.8 ± 0.21 a.u., P= .11) or change in velocity over time (HBeta
Bursts Negative: −0.2 ± 0.15 a.u., HBeta Bursts Positive:–0.1 ±
0.26 a.u., P= .45). In both beta sub-bands, bursts occurred less fre-
quently (low beta burst rate: rest = 0.7 ± 0.1 Hz, mov = 0.6 ±
0.3 Hz, P = .05; high beta burst rate: rest = 0.9 ± 0.1 Hz,
mov = 0.5 ± 0.5 Hz, P= .008) and were shorter in duration (low beta
burst dur: rest = 340 ± 62 ms, mov = 287 ± 86 ms, P= .04; high
beta burst dur: rest = 278 ± 35 ms mov = 230 ± 51 ms, P = .02)
during movement than at rest. In the low beta band, burst amplitude
was also significantly smaller during movement when compared to rest
(low beta burst amplitude: rest = 68 ± 22 a.u., mov = 43 ± 21 a.u.,
P= .02). This was not the case for high beta bursting (high beta burst
amplitude: rest = 49 ± 16 a.u., mov = 38 ± 27 a.u., P= .25). The
proportion of short bursts (≤300 ms) was increased during movement
compared to an increased proportion of longer bursts (≥600 ms) at rest
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(see Fig. 2E and Supplementary Table 1).
Above we confirmed a decrease in velocity (sequence effect) over

30 s, but showed that the slope of this decrease in velocity was rela-
tively constant over time. Similarly, mean burst amplitude, duration
and rate, did not vary systematically with block order or time window
indicating that beta bursting during movement was also relatively un-
affected by the time within a given subject. This was shown by a linear
mixed-effects regression model with a random intercept and fixed slope
between subjects and mean burst duration, amplitude or rate as the
dependent variable and movement block and time window within block
as independent variables, separately for each beta frequency sub-band.
The burst rate and the mean burst amplitude and duration were sig-
nificant predictors of the averaged beta power within time windows
(low beta: PRate < 0.001; PAmp < 0.001; PDur = 0.01; high beta:
PRate < 0.001; PAmp < 0.001; PDur = 0.025). Burst rate was the most
important predictor (low beta: coefficients estimate for burst
rate = 0.63, coefficients estimate for z-scored burst amplitude = 0.003,
coefficients estimate for burst duration = 0.0004; high beta: coeffi-
cients estimate for burst rate = 0.37, coefficients estimate for z-scored
burst amplitude = 0.003, coefficients estimate for burst dura-
tion = 0.0004).

3.4. Correlation between decrement in movement velocity and beta bursting

Linear mixed effects regression models were used to assess the re-
lationship between change in velocity and mean power or bursting in
one or other of the beta sub-bands. Separate models were applied to
data averaged within 3 (~10s) or 6 (~5 s) time windows. Model results
are summarised in Table 2 and an example movement trace with cor-
responding low beta band activity is shown in Fig. 3A and B. More time
spent in low beta bursts was associated with a drop in movement ve-
locity in the respective window both when averaging within 3 (~10 s
duration) and 6 (~5 s duration) time windows. This was shown by the
negative slope estimates in the significant linear mixed effects regres-
sion models that assessed the relationship between change in velocity
and bursting in the low beta sub-band (Table 2) and can be visually
perceived when trials are sorted across subjects by the decrease in peak
velocity over time (Fig. 3C). Considering only percentage time in low
beta bursts as predictor explained 25% of the variance in velocity
change in subjects (r= 0.498, r2 = 0.248, P < .0001). Fig. 3D shows
the correlation between the decrease in peak velocity over 10 s from all
subjects as predicted by our statistical model and the observed decrease

in peak velocity over 10 s. It was consistent with the results of linear
regression applied to each subject separately, which showed that the
regression slope was −2.2 ± 0.96 (mean ± SE) when averaged across
patients. The regression slope was negative in 10 out of the 12 subjects
(Fig. 4 for individual scatter plots), with a significant negative corre-
lation in 2/12 subjects. When considering all measurements of change
in velocity and time in burst within and across subjects as independent,
the negative correlation was highly significant (R = –0.31, P= .004),
see Fig. 4A. Simple models with percentage time in higher frequency
beta bursts, averaged low beta power or decrease in low beta power as
fixed effects were not significant. When averaged low beta power,
change in low beta power or percentage time in higher frequency beta
bursts were considered as a predictor in addition to percentage time in
low beta bursts, the model performance deteriorated, although per-
centage time in low beta bursts remained a significant predictor.
Likewise, the model prediction remained significant but deteriorated in
performance when increasing the beta band width (13–22 Hz,
13–24 Hz, 13–26 Hz, 13–28 Hz), changing the beta burst threshold
(55th, 65th, 85th percentile) or normalizing to the rest period prior to
the first movement block instead of the entire recording time (Supple-
mentary Table 2). All significant models remained so after transforming
model inputs to a normal distribution. Summing up, time spent in low,
but not high, beta bursts correlated with a decrease in velocity, and this
correlation was regardless of the mean beta power or change in beta
power in the same windows.

4. Discussion

We investigated the temporal dynamics of subthalamic beta activity
during continuously performed alternating movements in PD patients
withdrawn from their regular medication. We demonstrate that distinct
bursts of low beta activity that cross resting beta thresholds occur
during motor performance even when patients were instructed to carry
out movements as fast as possible. Movement velocity progressively
decreased within blocks of continued movement, reflecting the se-
quence effect, which is a core feature of bradykinesia in PD. The
amount of time spent above the low beta burst threshold as defined at
rest was a significant predictor of the decrease in movement velocity,
whereas averaged low beta power or change in low beta power were
not. The relation to the decrease in velocity was specific for low beta
bursts and not present for high beta bursts. Time spent in low beta
bursts explained 25% of the variance in peak velocity change.

4.1. Beta bursts during movement

Neurons in the motor network are known to synchronize in the beta
band (13–35 Hz) within and across brain areas involved in motor pro-
cessing (Oswal et al., 2016; Neumann et al., 2015; Litvak et al., 2011b;
Engel & Fries, 2010; Baker et al., 1997; Deffains et al., 2016; Khanna &
Carmena, 2017; Murthy & Fetz, 1996; Lipski et al., 2017; Kühn et al.,
2005). The beta band synchronization tends to occur transiently, in
beta bursts (Tinkhauser et al., 2017b; Leventhal et al., 2012; Shin et al.,
2017; Lofredi et al., 2018a; Sherman et al., 2016; Feingold et al., 2015),
and most likely reflects a state of low likelihood for imminent change in
the sensorimotor set (Engel & Fries, 2010; Gilbertson, 2005). The
probability that beta bursts are longer and higher in amplitude is in-
creased in untreated PD patients compared to patients treated with
levodopa (Tinkhauser et al., 2017b) or DBS (Tinkhauser et al., 2017a).
As such, it is presumed that beta bursting is exaggerated in untreated
PD (Deffains et al., 2018), and that this is related to motor impairment.
The latter is supported by the correlation between the shift to longer,
larger bursts at rest and bradykinesia-rigidity scores (Tinkhauser et al.,
2017a; Tinkhauser et al., 2017b). Indeed, even when patients' motor
state is normalized as far as possible through treatment with levodopa,
the presence of beta bursts in a time-limited window before movement
onset still reduces the peak velocity of isolated ballistic movements

Table 2
Change in movement velocity as dependent variable in all tested models.

Predictor Estimate of
slope

t-value P-value BIC

Relative time in low beta
bursts

3w −0.93 −2.9 .005 182.9
6w −0.39 −2.4 .02 243.3

Averaged low beta power 3w −0.37 −1,7 .09 184.9
6w −0.13 −1.5 .12 246.6

Change in low beta power 3w −0.03 −0.32 .7 190.85
6w 0.003 0.07 .94 248.9

Relative time in high beta
bursts

3w −0.019 −0.04 .96 190.9
6w −0.006 −0.02 .98 248.9

Relative time in low beta
bursts +
Averaged low beta power

3w −1.35 −1.25 .08 191.77
0.26 0.622 .53

Relative time in low beta
bursts +
Change in low beta power

6w −0.94 −2.8 .005 192.36
0.005 0.05 .53

Relative time in low beta
bursts +
Relative time in high beta
bursts

3w −1.17 −3.3 .001 190.1
0.72 1.6 .11

6w −0.5 −2.8 .004 251.6
0.35 1.6 .1

3w = three 10s windows; 6w = six 5 s windows. BIC = Bayesian information
criterion; P values in bold are significant after FDR.
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with the effect being further amplified by the amplitude of the burst
(Torrecillos et al., 2018). However, thus far the characteristics and
correlates of beta bursts in PD have not been described during the
continuous repetitive movements used to assess bradykinesia. One re-
cent study demonstrated that although beta power was suppressed
during continuously repeated movements, this suppression progres-
sively diminished over time in tandem with a progressive decrement in
the frequency and amplitude of movements (Steiner et al., 2017).

However, this study did not consider the moment-to-moment dynamics
of the beta power. We were able to confirm lower degrees of power
during movement. Critically though, we showed that beta bursts still
arose despite the overall beta suppression during movement. Bursts
occurring during continuous movements were decreased in duration,
amplitude and rate when compared to rest, despite being defined in the
same way during movement as at rest. Nevertheless, the time spent in
low beta bursts correlated with the decrease of movement velocity in

Fig. 3. Correlation between low beta bursting and decrease in peak velocity. (A) Example of the first 10 s (w1) in the first movement block (b1) from case 11 is
shown. The peak velocity trace (red line, first row) is an interpolation of peaks of movement velocity (black line, first row) to give a continuous estimation. Note that
in off-line analysis, the change in peak velocity within a given 10 s time window was assessed by averaging peak velocity over the first and last second (red shaded
area) and subtracting the two values (mean peak velocity in first second – mean peak velocity in last second, here: 434–308 degrees/s.; see white lines). In the second
row is shown the corresponding raw trace of the local field potential recording, filtered around the low beta band (13–20 Hz). The third row demonstrates the
fluctuations of the low beta amplitude after wavelet transform. The burst threshold of this subject is shown as dotted grey line and bursting activity (with a minimum
duration of 100 ms) is highlighted in light grey. Here, 34% of time is spent in low beta bursting, which is associated with an overall decrement across the whole 10s
window. (B) Same but now for a window with sparse bursting throughout (3%) and maintained peak velocity. Shown are the first 10 s (w1) in the third movement
bloc (b3) from case 9. (C) In red are labelled the two example cases when trials from all subjects (n= 108) are sorted by the change of peak velocity over 10 s of
continuous movement. (D) Correlation plot showing the decrease in peak velocity over 10 s from all subjects as predicted by our statistical model on the x-axis and
the original decrease in peak velocity over 10 s on the y-axis. Change in peak velocity over 10 s could be significantly (r = 0.498, P < .0001) predicted by time spent
in low beta bursts, explaining 25% of the variance in peak velocity change across patients. Shown values are normalized. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Correlation between change in velocity and time in burst within and across subjects. (A) Shown are all measurements of change in velocity and time spent in
low beta bursts within and across subjects as independent values. This shows a highly significant, negative correlation (R = –0.31, P= .004). (B) Shown are
individual scatter plots of the change in velocity over ~10 s (y-axis, negative values indicate a decrease in velocity over time) and the percentage time spent in low
beta bursting over the same ~10 s (x-axis). In 10/12 cases, there was a negative correlation (fitted regression line shown in red) between change in velocity and time
spent in low beta bursts that was individually significant in 2/10 cases. In case 10 there was a positive correlation and in case 2 beta bursting was detected only in 2/9
assessed time windows which limits interpretability. Across patients, the regression slope between change in velocity and low beta bursting was −2.2 ± 0.96
(mean ± SE). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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PD patients performing repetitive movements, and this correlation was
not simply explained by averaged beta power or change in beta power.
This is in line with prior studies highlighting the rate of cortical beta
bursts as a consistent predictor of behaviour in healthy animals (Shin
et al., 2017; Sherman et al., 2016).

4.2. Implications for adaptive DBS

Currently, DBS paradigms continuously apply high-frequency sti-
mulation, thereby suppressing subthalamic low beta activity (Oswal
et al., 2016). Because the latter correlates with improvement of motor
symptoms, subthalamic beta activity has emerged as a local feedback
parameter for adaptive DBS (Little et al., 2013). Acutely triggering DBS
only when a threshold of beta activity defined at rest is crossed has
proven to be similar or even superior to continuous DBS in controlled
conditions (Little et al., 2016a; Little et al., 2013; Little et al., 2016b).
However, it has been unclear how adaptive stimulation delivered at a
threshold defined at rest would be able to prevent bradykinesia when
average beta power drops below resting levels during movement
(Johnson et al., 2016). Our results reveal that beta burst events, al-
though diminished in probability, amplitude and duration, can still
surpass the threshold defined at rest and the time spent in such bursting
is linked to the sequence effect of bradykinesia. The situation may be
different during briefer movements. Here not all movements may ne-
cessarily be affected by beta bursts (Torrecillos et al., 2018). It is
tempting to speculate that the distribution of movement velocities that
includes normal speeds in patients with PD (Mazzoni et al., 2007) re-
flects the probabilistic nature of beta bursting during voluntary move-
ment.

4.3. Limitations of the study

Having discussed the significance of our findings, it is prudent to
address the limitations of this study. First, the correlation between low
beta bursting and the sequence effect during repetitive movements may
have been underestimated because intracerebral recordings were per-
formed in the days following DBS surgery. This period is associated
with a reduction in subthalamic beta activity and a temporary ameli-
oration of parkinsonian symptoms (Chen et al., 2006; Mann et al.,
2009). Second, studies in healthy control subjects performing repetitive
finger tapping (Rodrigues et al., 2009; Ling et al., 2012) suggest that
physiological fatigue also contributes to a progressive reduction in
movement velocity. If we assume that beta bursts are associated with
pathological and not physiological slowing, then overlapping fatigue
will also tend to underestimate the contribution of beta bursts to the
sequence effect. Third, we analysed the data from all studied subjects,
but it should be noted that four subjects were classified as tremor
dominant (see Table 1). This might have led to a weakening of the
association between low beta bursting and the sequence effect across
the group, although our correlative approach should have ameliorated
this problem. Fourth, our findings are correlative, and by themselves,
can only suggest and not prove that beta bursts may causally contribute
to the sequence effect of bradykinesia. Fifth, episodes of manual
freezing as defined as periods of zero velocity lasting one second or
more were only observed in 3 instances in 2 subjects. These were too
few to analyse, although we note that beta bursts have recently been
associated with gait freezing (Syrkin-Nikolau et al., 2017). Finally, al-
though not a confound, it is worth highlighting that the relevance of
beta bursts and their features may not necessarily be the same during
rest and during movement. Thus there may be time-limited periods of
vulnerability during movement (Torrecillos et al., 2018) and other tasks
(Khanna and Carmena, 2017) when even brief bursts are associated
with a disturbance of function.

5. Conclusion

Here we show that subthalamic beta bursts can be detected during
continuous movements in the dopamine-depleted state of PD patients.
Critically, we reveal a spectrally specific relationship between the
progressive decrement of movement velocity and the amount of
bursting activity in the low beta band in the STN. Although the duration
of beta bursts has been considered closely linked to motor impairment
at rest, the present and other findings suggest that even briefer bursts
can be deleterious when they occur during movement (Torrecillos et al.,
2018; Sherman et al., 2016; Khanna and Carmena, 2017; Chen et al.,
2006). These findings contribute to the understanding of the sequence
effect in bradykinesia as a motor symptom that is specific for Parkin-
son's disease. Moreover, they have a direct bearing on adaptive DBS
paradigms, and explain how a stimulation trigger defined at rest can
still be effective during voluntary movement despite the coincident
suppression of mean beta activity.
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