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Novelty detection, also known as familiarity discrimination or recogni-
tion memory, refers to the ability to distinguish whether a stimulus has
been seen before. It has been hypothesized that novelty detection can nat-
urally arise within networks that store memory or learn efficient neural
representation because these networks already store information on fa-
miliar stimuli. However, existing computational models supporting this
idea have yet to reproduce the high capacity of human recognition mem-
ory, leaving the hypothesis in question. This article demonstrates that
predictive coding, an established model previously shown to effectively
support representation learning and memory, can also naturally discrim-
inate novelty with high capacity. The predictive coding model includes
neurons encoding prediction errors, andwe show that these neurons pro-
duce higher activity for novel stimuli, so that the novelty can be decoded
from their activity. Additionally, hierarchical predictive coding networks
detect novelty at different levels of abstraction within the hierarchy,
from low-level sensory features like arrangements of pixels to high-level
semantic features like object identities. Overall, based on predictive cod-
ing, this article establishes a unified framework that brings together nov-
elty detection, associative memory, and representation learning, demon-
strating that a singlemodel can capture these various cognitive functions.

1 Introduction

Humans have an incredible capacity to detect novel stimuli. A classical
study shows that human participants can view 10,000 images and still be
able to correctly identify the familiar image in a pair of novel and previously
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1374 T. Ed Li, M. Tang, and R. Bogacz

seen stimuli with 83% accuracy (Standing, 1973). This astounding capac-
ity for novelty detection (ND), also known as familiarity discrimination or
recognition memory, is vital for guiding exible intelligent behavior, such
as optimal exploration (Wang et al., 2024).

ND relies on brain regions that are also involved in memory and percep-
tion, such as hippocampus, perirhinal, and inferotemporal cortex (Brown&
Aggleton, 2001). Within these regions repetition suppression neurons have
been observed that are most active when presented with novel stimuli and
gradually decline in activity through repeated exposure (Xiang & Brown,
1998; Meyer & Rust, 2018). While their existence is well documented (Rolls
et al., 2004; Suzuki, 1999; Brown & Aggleton, 2001; Viskontas et al., 2006),
how and why these novelty responses arise remains elusive.

Many computational models of ND have been proposed.We summarize
the two main approaches to ND here, and compare them in more detail
in section 4. The rst approach is developing models specialized for ND
(Bogacz et al., 1999, 2001). One of these models, the anti-Hebbian model
(Bogacz & Brown, 2003a), has been shown to replicate the capacity seen
in human recognition memory when presented with input patterns with a
correlation structure observed in visual stimuli (Androulidakis et al., 2008;
Kazanovich & Borisyuk, 2021; Read et al., 2024). The other approach sug-
gests that ND does not need dedicated circuits because it can naturally arise
within networks that store memory or learn efcient neural representation,
as these networks already contain information about the familiar stimuli
(Li et al., 1993; Norman & O’Reilly, 2003; Sohal & Hasselmo, 2000). Using
existing circuits for ND would reduce brain size and energy requirements
and hence is likely to be favored by evolution. However, published mod-
els combining ND with representation learning do not have high capacity
when the input patterns have a biologically realistic correlation structure
(Bogacz & Brown, 2003b). Thus, although the hypothesis that ND naturally
arises in networks performing other functions is very appealing, the exis-
tence of such a combined model that discriminates novelty of correlated
patterns with high capacity has not yet been established.

This article demonstrates that high-capacity ND naturally arises in pre-
dictive coding networks (PCNs), which have previously been shown to ef-
fectively learn representations of sensory stimuli (Rao & Ballard, 1999) and
support associative memory (AM) (Salvatori et al., 2021). An important
feature of PCNs is that they rely on local synaptic plasticity rules, where
the weight modication depends only on the activities of presynaptic and
postsynaptic neurons. PCNs include prediction error neurons that compute
the difference between the activity of a particular neuron and a prediction
based on the activity of other neurons.We demonstrate that these error neu-
rons have higher activity for novel stimuli and gradually decline to zero as
the stimuli are repeated, paralleling the repetition suppression seen in cor-
tical regions underlying ND. We also show that the novelty signal decoded
from the prediction error neurons can be used to discriminate the novelty of
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Novelty Detection via Predictive Coding 1375

natural imageswith a capacity similar to that seen in human experiments. In
particular, we show that PCNs are robust to pixel correlation, unlike some
of the earlier NDmodels that perform poorly in images with correlated pix-
els. To explain this robustness to correlation, we performed a mathematical
analysis of a tractable version of PCN, called recurrent PCN (rPCN; Tang
et al., 2023), revealing that rPCN employs a linear transformation of the
covariance structure of inputs that facilitates the discrimination between
familiar and novel stimuli. We also explore hierarchical PCN (hPCN; Sal-
vatori et al., 2021) in ND tasks and discover that hPCN performs ND for
features at varying abstraction levels. Specically, while the sensory layer
of an hPCN can detect the novelty of pixel arrangement, its higher layers
can detect the novelty of the abstract object in the image by forming latent
representations.

Overall, ND through predictive coding brings several previous hypothe-
ses about the relationship betweenND and other functions like AM (Bussey
et al., 2005) and representation learning (Li et al., 1993; Buckley & Gaffan,
1998; Murray & Bussey, 1999; Bussey & Saksida, 2002) to fruition by pro-
viding both a proof of concept and a concrete computational framework to
test hypotheses on ND and related functions. To our knowledge, no pre-
vious computational models have achieved this while maintaining other
properties of PCNs such as local learning rules and high capacity. Ourmod-
els can explain many existing experimental phenomena, including the ex-
istence of novelty neurons across the visual processing hierarchy and ND’s
much larger capacity compared to AM. They thus produce falsiable pre-
dictions for further experiments and provide a computational framework
to ground discussions on the precise relationships of ND, AM, and repre-
sentation learning.

2 Models

In this work, we follow an energy-based approach to modeling ND tasks.
As its name suggests, an energy-basedmodel adjusts its parameters to min-
imize an energy function when exposed to a pattern, thereby “learning” or
“memorizing” it. Then, after training, the energy value of the model eval-
uated at the query indicates its familiarity—with a lower value signaling
familiarity and vice versa, and thus aligning with repetition suppression
seen in the brain (see Figure 1). Previous work (Bogacz et al., 1999; Greve
et al., 2009) has applied this approach to a Hopeld Network (HN; Hop-
eld, 1982), a recurrent neural network model for AM, and showed that it
successfully performs ND for binary patterns. Here, we extend this energy-
based approach to PCNs (Friston, 2005; Tang et al., 2023) and as bench-
marks, to the modern continuous Hopeld network (MCHN; Ramsauer
et al., 2021). We also apply the same approach to autoencoder (AE) and
variational autoencoder (VAE; Kingma & Welling, 2013), which is known
to perform well in novelty detection tasks (An & Cho, 2015). Intuitively,
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1376 T. Ed Li, M. Tang, and R. Bogacz

Figure 1: An illustration of the general energy-based approach to ND. During
training, an energy-based model modies its weights or parameters to memo-
rize a pattern, which may become a local minimum in the altered energy land-
scape; this later allows us to simply use the energy value of a pattern as a novelty
signal for the memorized pattern or similar patterns in a local neighborhood.
For simplicity, the space of possible images is represented in a single dimension
on the x-axis.

energy-based models learn a stimulus by adjusting its weights to minimize
the energy (loss) function on that stimulus, which measures the “surprisal”
(Clark, 2013) of that stimulus to the model. Thus, after training, a famil-
iar stimulus should, on average, have a lower energy or surprisal for the
model’s learned weights.

Formally, assume a total of N, d-dimensional patterns (x(1), x(2),
. . . , x(N)) that are independent and identically generated from a certain
probability distribution. During the training phase, patterns to be memo-
rized (which form the columns of the data matrix X ∈ Rd×N) are fed to the
model one by one, modifying the weights or parameters to reduce the en-
ergy. Then, in the testing phase, a single d-dimensional query pattern q is
provided to the network, and performing ND requires only reading out the
value of the energy function, which indicates the familiarity of the query.
This is a general approach that applies to any energy-based model. Even
for models that do not use weights explicitly (such as MCHN), the energy
landscape changes during training, as shown in Figure 1.

2.1 Predictive Coding Networks for ND. The general idea of a predic-
tive coding model is that the brain constantly tries to predict the incoming
input it receives using the generative model it has learned. The model
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Novelty Detection via Predictive Coding 1377

Figure 2: Recurrent predictive coding network (rPCN). The illustration is sim-
plied to d = 2 dimensions. During training, the activity of input neurons x =
(x1, . . . , xd ) is xed to the values of the image, and the parameters change ac-
cording to the learning rules in equations 2.1 and 2.3. Note that the connections
from error εi to value neurons xi are not used in ND but are included in the g-
ure because they are useful for memory retrieval that rPCN can perform (Tang
et al., 2023).

compares the input with the prediction by calculating their difference. This
difference is encoded in the activity of the error neurons (Rao & Ballard,
1999) (or in dendrites in alternative architectures; Mikulasch et al., 2023),
but we do not consider them in this article for simplicity). The algorithmic
goal of PCNs is to minimize the activities of these prediction error neurons
(Clark, 2013; Bogacz, 2017) by modifying neural activities and synaptic
strengths. In this work, we investigate PCNs where the predictions are
generated by either recurrent or hierarchical connections.

2.1.1 Recurrent Predictive Coding Network. The recurrent PCN (rPCN) is a
single-layer neural network model inspired by the recurrent connections of
the hippocampus and was originally designed to perform AM tasks (Tang
et al., 2023). We study ND in rPCN in the rst part of section 2, because
rPCNs are simpler thanmultilayer PCNs (Rao & Ballard, 1999) and are thus
analytically tractable.

To illustrate the model, consider a simple two-dimensional rPCN shown
in Figure 2. When trying to predict the incoming input in value neurons
(e.g., level of activity in x1), rPCN employs the activity of other neurons
scaled by off-diagonal elements of the recurrent weight matrix W (e.g.,
W12x2) and a top-down component (e.g., a bias input ν1). Then the corre-
sponding prediction error is ε1 := x1 −W12x2 − ν1 and can be computed by
error neurons receiving the connections shown in Figure 2. Note that Fig-
ure 2 shows only the connections corresponding to the off-diagonal ele-
ments of matrix W , that is, connections between xi and ε j =i, because the
diagonal elements ofW are constrained to be 0. The connections between xi
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1378 T. Ed Li, M. Tang, and R. Bogacz

and εi in Figure 2 provide the information on the activity of value neurons
to the error neurons, so they are xed to have a weight of 1.

During the training phase, rPCN modies its synaptic weights W and
ν to minimize the total squared prediction errors εi. This algorithmic goal
corresponds to the minimization of the following energy function,

ErPCN(x,W, ν) = 1
2
ε22 :=

1
2
x −Wx − ν22, s.t. diag(W ) = 0, (2.1)

whereW is the weight matrix implicitly encoding covariance and ν is the
bias vector (Tang et al., 2023). The optimization is subject to the constraint
thatW has zero diagonal to prevent the trivial solutionW = I (correspond-
ing to the absence of inhibitory connections from xi to εi in Figure 2). The
diagonal elements ofW will stay equal to zero throughout training. rPCN
updates its parameters W and ν with gradient descent by calculating the
gradient of ErPCN based on the training images {x(i)}Ni=1,

ν = −α
∂ErPCN(x(i),W, ν)

∂ν
= αε(i) (2.2)

W = −α
∂ErPCN(x(i),W, ν)

∂W
= α


x(i)ε(i)

diag=0
, (2.3)

where ε(i) := x(i) −Wx(i) − ν is the prediction error of the ith training im-
age and (·)diag=0 denotes that the diagonal elements are enforced to remain
at 0, and α is the learning rate parameter. In numerical simulations, rPCN
can also be trained efciently using the batch version of these learning rules.
At the testing phase for a query image q, rPCN initializes the activity to q;
then it evaluates the energy function on q as the novelty signal:

ErPCN(q) = 1
2
q −Wq − ν22. (2.4)

Notice that the weight update rules are Hebbian and require only local
computations. For instance, sinceν1 = αε1 andW12 = αx2ε1, the learning
rules for ν andW are both a product of their respective pre- andpostsynaptic
activities (see Figure 2). The energy can be evaluated by summing up the
transformed (squared) activities of error neurons, following mechanisms
such as those discussed in Carandini et al. (2005).

2.1.2 Hierarchical Predictive CodingNetwork. Most existingmodels forND
have been proposed to account for the detection of novel pixel values of pro-
vided inputs. For example, if a model is trained on an image of a Siamese
cat, an image with only a few pixel values changed from the original image
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Novelty Detection via Predictive Coding 1379

Figure 3: Hierarchical PCN (hPCN). A two-dimensional, L-layer hPCN model
from Salvatori et al. (2021). Layer 0 is the sensory layer where input patterns
enter the model.

will be detected as novel by classical NDmodels, even though the semantic
meaning that is, a Siamese cat, is not changed by altering these few pixels.
By contrast, the more exible detection of semantic or abstract novelty is
closer to the one that animals employ daily to guide behaviors like explo-
ration (Wang et al., 2024).

Hierarchical predictive coding is natural for this purpose as it detects fea-
tures of increasing abstraction levels across the hierarchy, mirroring the role
performed by the ventral visual stream and the visual cortex (Rao&Ballard,
1999; Bussey & Saksida, 2002). Therefore, we investigate ND in hierarchical
PCN (hPCN) (Salvatori et al., 2021) illustrated in Figure 3. In hPCN, neu-
rons in layer l are denoted as vector xl , and its value is compared against
the top-down prediction from the neurons in l + 1 (i.e., xl+1) transformed
by weightsWl+1 to produce a corresponding error signal εl dened as

εl =

xl −Wl+1 f (xl+1) if 0 ≤ l < L
xl − ν if l = L

(2.5)

where f is an element-wise nonlinear function and ν is a vector of bias pa-
rameters present only in the top-most layer. The optimization goal of hPCN
is then to minimize the sum of squares of all energy units,

EhPCN =
L∑

l=1

El
hPCN := 1

2

L∑

l=1

εl22, (2.6)

where El
hPCN denotes the energy (or half of the sum of squared errors) at

layer l. During training, x0 is xed at the input tomemorize, and the activity
of value neurons in hPCN is modied according to

ẋl ∝ −∂EhPCN
∂xl

= −εl + f (xl )  (Wl )εl−1, (2.7)

D
o
w
n
loa
de
d
from

http
://direct.m

it.ed
u/n
eco/a

rticle-pd
f/37

/8/1
37
3/2
53
17
38
/ne
co
_a
_0
17
69
.pd
fby

R
a
m
on
a
M
a
rcha

nd
on
05
A
u
gu
st20

25



1380 T. Ed Li, M. Tang, and R. Bogacz

where denotes the element-wise product and f  the derivative of the non-
linear function. We do not experiment with the number of inference steps
for the dynamics ẋl but use large enough quantities to ensure the conver-
gence of xl . When the activities of x converge, the weights are thenmodied
according to

Wl = −α
∂EhPCN
∂Wl

= αεl−1 f (xl ); ν = −α
∂EhPCN

∂ν
= αεL. (2.8)

After training, we test how well hPCN can perform ND. During such
testing, x0 is xed to the query q, the model performs inference following
equation 2.7 again until convergence, and then the layer-wise energy values
El
hPCN (instead of the total energy EhPCN) at all layers l = 0, . . . , L are evalu-

ated. The key idea for multilevel ND is that since εl22 serves as a novelty
signal for the feature detected by value neuron xl , El

hPCN can serve as a nov-
elty signal for features collectively learned by layer l. Therefore, different
layers can signal different levels of novelty by learning features of different
abstraction levels and encoding their novelty by layer-wise energy func-
tions. Importantly, learning (see equation 2.8) in hPCNs is also Hebbian,
and inference dynamics in the model only require local information. In this
work, we also imposed local connectivity constraints between early layers
of our hPCNmodel to mimic the limited receptive elds that neurons in the
early processing hierarchy tend to have (details in section 3).

2.2 Benchmarking ND Models. To put the results of simulations of
PCNs into context, we compare their capacity for ND with HNs and AEs.
HN is a classical energy-based model for AM (Hopeld, 1982), which has
also been shown to demonstrate the capacity of ND by measuring the de-
gree of familiarity via its energy function after training (Bogacz et al., 1999).
It has an energy function

EHN(q,X) = −
N∑

i=1


qx(i)

2
. (2.9)

This energy can also be rewritten in terms of the covariance matrix of
patterns :

EHN(q,X) = −qXXq ∝ −qq = −q(
1
2 )

1
2q = −

1
2q22 (2.10)

Although the original HNs were proposed for binary patterns, they
have been also generalized to continuous patterns (Hopeld, 1984; Scellier
& Bengio, 2017). In this work, we extend energy-based ND to MCHN
(Ramsauer et al., 2021), a modication of the original HN that performs
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Novelty Detection via Predictive Coding 1381

AM effectively for images with continuous (rather than binary) pixel
values. MCHN has the following energy function:

EMCHN(q,X) = − log


N∑

i=1

exp

qx(i)




+ 1
2
q22. (2.11)

Past research has proposed biologically plausible implementations for
MCHN (Krotov & Hopeld, 2021). Note that the energy values in equa-
tions 2.9 and 2.11 are both functions of the training set (X). They differ
from energies of rPCN (equation 2.4) and hPCN (equations 2.5 and 2.6),
which are functions of the model weights after training (W). As such, equa-
tions 2.9 and 2.11 allow us to skip training of HNs and to evaluate the en-
ergy (novelty signal) directly from the training set (given query q). Thus, it
is important to note that due to this direct energy evaluation, the HN and
MCHN are given a tiny advantage in terms of performance, as they do not
require gradient-based training of any weights, which may introduce noise
to PCNs.

Additionally, we benchmark our results against AE and VAE (Kingma &
Welling, 2013), which are commonly used for ND tasks (An & Cho, 2015).
Intuitively, AE and VAE are similar to energy-based models: after training,
the novelty or familiarity of the query determines the reconstruction error,
which can be considered as the energy level for these models. Importantly,
earlier work has shown that AEs are also capable of memory tasks (Rad-
hakrishnan et al., 2020).

3 Results

3.1 Predictive Coding Replicates Repetition Suppression. We rst
investigate whether the activities of error neurons in PCNs will exhibit
repetition suppression upon multiple exposures to the same stimulus.
We trained both an rPCN and an hPCN with two hidden layers of 256
neurons on an image from the Tiny ImageNet (Deng et al., 2009) data set
and recorded the mean of squared error neuron activities as well as the
distribution of the absolute activities across the error neuron populations.
The results are shown in Figure 4. It is not surprising that the overall
activities of error neurons reproduce repetition suppression, as PCNs are
iteratively trained tominimize prediction errors. Importantly, however, this
result suggests a possible mechanism underlying repetition suppression
signaling novelty in the cortex, which stems from the minimization of local
prediction errors or energies. It is also worth mentioning that we do not
constrain the error neurons to be nonnegative in our models. However,
it has been suggested that positive and negative prediction errors are en-
coded by separate groups of neurons in the cortex, signaling novel stimuli
that are stronger or weaker than predicted (Keller & Mrsic-Flogel, 2018).
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1382 T. Ed Li, M. Tang, and R. Bogacz

Figure 4: Activities of error neurons throughout training. (A) Evolution of total
energy (left) and distribution of absolute error neuron activities throughout the
training of an rPCN on one image from Tiny ImageNet, with a learning rate of
α = 0.0003. (B) Same as panel Abut for an hPCNwith two hidden layers, with a
learning rate of α = 0.0003. In the violin plots, the middle horizontal bars indi-
cate the median values across error neurons in the network obtained from a sin-
gle simulation, while vertical black lines show the full range of values from the
same simulation. In the plots showing energy over training, the semitranspar-
ent shaded regions around the curves indicate the standard deviation around
the mean calculated over ve simulations (with different initial weights).

In such an architecture, the energy can be simply read out as a sum of
nonlinearly transformed (squared) activity of the prediction error neurons.

3.2 Comparison of ND Capacities. Here, we demonstrate that rPCNs
can discriminate familiarity for a large number of stimuli and canmatch the
experimentally observed capacity of human recognition memory (Stand-
ing, 1973). We compare ND capacity in rPCN and control models (HN,
MCHN, AE, and VAE) using three data sets: 500-dimensional images with
pixels generated randomly from gaussian distribution, analogous images
with correlated pixels (with a 0.4 covariance between any two pixels), and
64 × 64 images from the Tiny ImageNet data set (Deng et al., 2009). We say
a data set has correlated pixels if its feature-by-feature covariance matrix is
nondiagonal. We include pixel correlation as a benchmark since past work
has found that correlated pixels often pose challenges to ND algorithms
(Bogacz & Brown, 2003b). Moreover, robustness to data with this property
is important since natural images have highly correlated pixel values (in
a natural image, if a pixel is dark, then pixels close to it tend to be dark
as well). Additionally, the activity of pairs of neurons representing stimuli
in higher visual areas (e.g., the perirhinal cortex) was also observed to be
correlated across trials on which different stimuli were presented (Erickson
et al., 2000).

For rPCN, AE, and VAE, the model is rst trained on a certain num-
ber of patterns or images until the energy or loss function converges to a
stable value. Then, for a query q, the energy function (see equation 2.4)
or reconstruction error is calculated to evaluate the novelty of q. For HN
and MCHN, since effectively there is no training phase of the model,
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Novelty Detection via Predictive Coding 1383

Figure 5: Comparing the performances of rPCN,HNs, andAEs on various data
sets. Top row: Error probability as a function of the number of training samples.
An error probability of 0.5 corresponds to a baseline level equivalent to guess-
ing. The rst two columns are produced with input dimension d = 500. For the
last column, d = 4096 for (grayscale) Tiny ImageNet (Deng et al., 2009). All error
calculations are obtained over ve simulated networks, matching the number
of human participants in the study by Standing (1973). The variability (1 stan-
dard deviation) around the mean is illustrated using semitransparent shaded
regions. In cases where the shaded region is not visible, as is the case of rPCN,
the variability is negligible. Bottom row: Number of patterns retained in mem-
ory as a function of the number of training samples. The insets plot the models
whose performances fall toward -∞ on a log-log scale on the y-axis.

equations 2.9 and 2.11 are directly used to evaluate the performance. To
ensure a fair comparison, we used AE and VAE with one hidden layer of
a particular size, such that the numbers of parameters in these models are
approximately the same as in rPCN. Detailed experimental setups, includ-
ing the calculation of error probabilities and number of model parameters,
are provided in appendixes B and F.

Figure 5 compares the performance of all models with the experimen-
tally observed performance of humans in discriminating familiarity of nat-
ural images (Standing, 1973). The rst row displays the average error prob-
ability as a function of the number of presented patterns or stimuli, and the
second row shows the number of patterns retained in memory (dened by
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1384 T. Ed Li, M. Tang, and R. Bogacz

Standing, 1973, and described in appendix B). With both axes logarithmic,
the plots reveal a power-law relationship observed for human participants
(Standing, 1973). In the left-most column, pixels are uncorrelated and all
models have similar, decent accuracy. However, when features become cor-
related in the middle column, rPCN keeps a similar level of performance.
By contrast, the error of all other models greatly increases, approaching
chance-level performance for a larger number of patterns. We then investi-
gated if the observed effect of pattern correlation generalizes to real-world
images, which tend to have correlated pixels, especially among pixels that
are spatially proximate to each other. This is indeed what testing on the
Tiny ImageNet reveals in the last column of Figure 5: HN and MCHN per-
form poorly even for a small number of stored patterns. Note that the per-
formance of HN and MCHN is poor despite being given an advantage in
performance, which comes from directly evaluating the energy functions
without gradient-based training that is necessary for rPCNs. The trend is
similar for VAE too: although the capacity is high in the uncorrelated case,
it reduces when the data have a correlated structure. It is noteworthy that
the performance of AE is better than that of VAE. This is explained by the
sampling step added in VAE during training and testing compared to AE:
although sampling the hidden state from a gaussian distribution helps to
make the hidden space more regular, it makes the reconstructed output a
less faithful reconstruction of the original input, thus inating the variabil-
ity in reconstruction error and compromising the ND accuracy. By contrast,
rPCN achieves ND accuracy matching those of human participants (Stand-
ing, 1973), while it has been shown analytically that many past Hebbian
models also fail to achieve such capacity evenwith the same number of neu-
rons as the entorhinal cortex (Androulidakis et al., 2008; Bogacz & Brown,
2003b). We have also tested the capacity and the effect of the batch size of
rPCN in appendix C.

3.3 Novelty as a Distance in an Embedded Space. To provide an un-
derstanding forwhy rPCNs can effectively detect novelty for correlated pat-
terns while HNs cannot, we show that they can both be considered as mea-
suring the Euclidean distance between a query and the mean of the train-
ing data, but on different linearly transformed planes. Formally, when the
stored patternsX havemean x̄, there exists a parameterized class of distance
of the form

d2L,X(q) := c(q − x̄)LL(q − x̄) = cL(q − x̄)22. (3.1)

which can be seen as the squared Euclidean distance from the q to x̄ in the
space transformed by a d × d matrix L and multiplied by a scalar constant
c. In other words, using HN for ND can be seen as constructing a measure
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Novelty Detection via Predictive Coding 1385

of distance between q and x̄, because by equation 2.10, its energy can be
written in the following form:

EHN(q,X) = −LHNq22 with LHN = 
1
2 . (3.2)

where patterns are assumed to be centered around 0 and  is the covari-
ance matrix of patterns. On the other hand, for rPCN the following theorem
holds:
Theorem 1 (rPCN performsmetric learning for ND).When the learning of rPCN
has converged and a query q is supplied at the testing phase, we have

ErPCN(q,X) = LrPCNq22 with LrPCN = diagMat(1  diag(−1))−1.

(3.3)

Here,  is the covariance matrix of the memorized patterns,  is the
Hadamard (element-wise) division, 1 denotes the 1-vector, diag extracts the
diagonal elements of a matrix and converts them into a d-dimensional vec-
tor, and diagMat converts a vector into a diagonal matrix. The proof uses
Lagrange multipliers and can be found in appendix A. Combined, equa-
tions 3.2 and 3.3 show that both HN and rPCN can be seen as learning a
metric from data using the covariance matrix .

We then investigate the exact transformation LHN and LrPCN perform on
the training data and the query, by visualizing a simple two-dimensional ex-
ample. Figure 6 visualizes these transformations for training patterns (gray
dots) randomly drawn from a two-dimensional multivariate gaussian dis-
tribution with a positive correlation. The correlationmakes ND challenging
since a typical familiar point (purple) and a typical novel point (orange)
may be equally away from the mean (0 here, the black dot in Figure 6) by
Euclidean distance. Figure 6B illustrates that HN rst transforms all points
from Figure 6A by LHN = 

1
2 , and then measures the negative distance to

the mean 0 (note the inverted contour color scale). Because of the negative
sign, the farther the distance (away from the mean), the more familiar is
the query. Although this appears to address the particular problem of in-
distinguishable purple and orange dots, it will classify the closest dots to
the origin as the most novel. Figure 6C shows that rPCN also transforms all
points from Figure 6A, but by a different matrix. There, without the nega-
tive sign, the farther the distance (away from the mean), the more novel is
the query. Importantly, the transformation alters the covariance structure of
the data cloud (i.e., pulling the orange dot away from the origin), making
it easy to measure familiarity by the distance between the query and the
origin.

Note that apart from the rPCN discussed here, there is another recurrent
variant of PCN, called explicit rPCN (Friston, 2003; Tang et al., 2023) as it
explicitly encodes the covariance matrix into its recurrent connections. We
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1386 T. Ed Li, M. Tang, and R. Bogacz

Figure 6: Visualizing the transformations of different ND models on two-
dimensional gaussian data. The data cloud is generated from a correlated gaus-
sian distribution where the two pixel values have a covariance of 0.7. In each
panel, the space is colored according to the energy value shown in the corre-
sponding bar at the bottom. The energy value of a query pattern q in panel A
is squared 2-norm (i.e., q22), while the energy functions of the corresponding
models (HN and rPCN) are used in panels B and C. The energy function of
each panel can be seen as a transformed squared 2-norm, each by a different
transformation (A: identity matrix I2; B: LHN from equation 3.2; C: LrPCN from
equation 3.3). Note that the direction of novelty is inverted in panel B because
of the negative sign in equation 3.2.

show in appendix D that explicit rPCN can also be considered as learning
a distance in an embedded space where the query q is whitened, which re-
sults in an optimal measurement of distance. However, as discussed in ear-
lier works (Tang et al., 2023), the recurrent weights in explicit rPCN cannot
be stably and plausibly learned, making that model less relevant to describ-
ing reliable ND in the brain.

It is also worth noting that adjustments can be applied to HN to deal
with correlation in the data set. For example, from equation 3.2, it can be
seen that applying an additional transformation by −1 whitens q since
(−1LHN )−1LHN = I, implying −1LHN is a whitening matrix for q. As
thewhiteningmatrix is nonunique, other similar adjustments like Cholesky
decomposition and the pseudo-inverse rule can be applied to the weights
(Hertz et al., 1991). All such adjustments involve computing weights using
global information and are thus nonlocal. Although a local, iterative ap-
proximation scheme for the pseudo-inverse rule exists (Diederich & Opper,
1987), it does require extra computation not included in the HN model.

3.4 hPCN Detects Novelty on Multiple Levels of Abstraction. In this
section, we distinguish detecting sensory novelty from detecting semantic
novelty. The former is the type of ND that has been addressed so far in
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Novelty Detection via Predictive Coding 1387

Figure 7: Comparison of sensory and semantic novelty detection in a simplied
training regime.

this article—depending on past occurrences, labeling entire images as novel
or familiar accordingly based on the individual pixel values. It is also the
type of ND that the overwhelming majority of ND literature focuses on.
Semantic novelty involves the extraction of abstract features. In the example
of the MNIST data set, one such abstract feature is the numerical digit of an
image.

To illustrate their differences, consider the simplied training regimes
shown in Figure 7, where a model is trained on one particular image of the
digit 4 only as shown on the left. For sensory (pixel) novelty, the same im-
age of 4 should have a low novelty, but a different image of 4 has a higher
novelty value due to its slightly different pixel composition. An image of 5
thus has an even higher value of novelty as its pixel composition deviates
further from the image of 4 used in the training. On the other hand, for se-
mantic novelty, both images of 4 have a low novelty value since they both
share the same (semantic) feature of 4, with the image of 5 having a high
novelty value as before. For animals, the ability to detect novelty for vari-
ous semantic features is arguably even more important; thus a biologically
plausible computational mechanism for such ability is of great interest to
neuroscience.

To show how hPCN provides a potential solution, recall that, similar
to rPCN, the overall energy function of hPCN in equation 2.5 will be
minimized for patterns in the training set (familiar patterns). However, in
hPCN, an error neuron on a particular layer l, say εli , will signal layer-wise
novelty of the features represented by the corresponding value neuron xli
at this layer. For example, at the sensory layer, the error neuron can detect
how novel the query at a particular pixel is, whereas at higher layers,
the error neurons can detect ‘how novel an abstract feature of the query
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1388 T. Ed Li, M. Tang, and R. Bogacz

Figure 8: Layer 0 is the sensory layer where input patterns enter the model
(i.e., xed to image value during training and testing), with each neuron corre-
sponding to a unique pixel. Layer 0 has size 28 × 28matching the size ofMNIST
images, layer 1 has size 20 × 20, and layer 2 has size 20 × 10. We restrict each
neuron in layer 1 to be connected to a 9 × 9 patch of neurons in layer 0. Insets
to the right of layers 1 and 2 are examples of a feature learned by a value neu-
ron at that layer, respectively. Note that the model used for Figure 9B is slightly
different in that layer 0 is fully connected with layer 1.

is. Thus, using layer-wise, rather than the overall energy function, can
potentially help the detection of novel abstract features.

To test this, we trained three-layer hPCNs on N = 100 images of dif-
ferent digit 4s from the MNIST data set. The model architecture is shown
in Figure 8, where we restrict each (value) neuron in layer 1 to be locally
connected with only a 9 × 9 subset of (error) neurons in layer 0 to mimic
the anatomy of the early visual areas. After training, we test the trained
models on four separate sets of queries: (1) the images of 4 that the model
was trained on, or ‘familiar 4’s; (2) N images of 4 unseen in the training set,
or ‘novel 4s’ since they are novel to that particular model; (3) N images of
‘5’s; (4) and N images of 9s. Testing is done by xing layer 0 to these test
images and performing inference to minimize the overall energy function
in the model until convergence (see equation 2.7). The results are shown
in Figure 9, where panels A and B show the results of the locally/fully
connected hPCNs, respectively. The left three columns of Figure 9 show the
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Novelty Detection via Predictive Coding 1389

Figure 9: Detecting novelty for features at varying abstraction levels using dif-
ferent layers of error neurons in hPCN. All models are trained on N = 100 im-
ages of the digit 4. (A) Results using locally connected hPCN. (B) Results using
fully connected hPCN. Left three columns: Violin plots of the distribution of
layer-wise energy values εl22 given the four different query sets. Right-most
column: d separability score between the empirical distributions in the violin
plots. For the violin plots, the middle horizontal bars indicate the median val-
ues across prediction error neurons within a network from a single simulation,
while vertical black lines show the full range of values from the same simula-
tion. For the d score bars, the variability (1 standard deviation) around themean
is calculated over ve simulations (with different initial weights) and illustrated
using black error bars.

distributions (across N samples) of energy values εl22 in all three layers
given the different sets of queries after convergence, and the right-most
column shows a quantitativemetric, d, whichmeasures the separability be-
tween pairs of these distributions (Grant et al., 2016). It is important to note
that at a particular layer, whether d between familiar digit 4 and novel digit
4 should be lower depends on the goal of the model. If the goal is to pri-
oritize semantic (digit) novelty (i.e., ‘does the query image depict the same
digit as images in my training set?”), then the separability score should be
lower. But if the goal of the model is to detect sensory (pixel) novelty (i.e.,
“Even if they are all depicting the same digit, is the query image the same
image of the digit 4 as the ones I have seen during training?”), then a higher
d score would be more sensible. Both goals are important in a natural en-
vironment. Our model (hPCN) achieves both in the energy distributions of
different layers: as seen in Figure 9, while the d value is around 2 between
familiar and novel digit 4 for layer 0, but close to 0 on the topmost layer.

From Figure 9A, it can be observed that in all layers, the novel digit 5’s
have high energy values, whereas the energy difference between familiar
and novel digit 4’s decreases as the layer number increases and the energy

D
o
w
n
loa
de
d
from

http
://direct.m

it.ed
u/n
eco/a

rticle-pd
f/37

/8/1
37
3/2
53
17
38
/ne
co
_a
_0
17
69
.pd
fby

R
a
m
on
a
M
a
rcha

nd
on
05
A
u
gu
st20

25



1390 T. Ed Li, M. Tang, and R. Bogacz

distributions become similar at the top-most layer. This is conrmed by
the d separability, suggesting that hPCN is able to detect semantic novelty
higher in its hierarchy. It can be seen from Figure 9B that without the locally
connected layer 1, the hPCN can still detect semantic novelty at its highest
layer, although in layer 1, the energy difference between novel digits 4 and
5 is more signicant. This is explained by the fact that the local connections
forced the hPCN to extract local features, such as edges, in its layer 1, which
is shared between all MNIST digits, resulting in the low layer-wise separa-
bility in Figure 9A. This can be seen in Figure 8, where the insets show the
learned layer-wise features: layer 1 learns a local edge detector while layer
2 learns an average of digit 4’s.

We can also see that the results for digit 9’s follow the same pattern across
layers as those for 5s, although 9’s are represented more similarly across all
layers to 4’s in both models. This is to be expected as digit 9s have pixel
and edge compositions more similar to digit 4’s, resulting in the almost
identical energy distributions in the fully connected model. Interestingly,
compared to the d separability between novel and familiar 4’s, the sepa-
rability between novel 4’s and novel 9’s in the locally connected hPCN is
higher than that in the fully connected one. In the plot, this corresponds
to the fact that green bars are higher than blue bars in the rst two layer
of panel A but suggesting a possible role that the inductive bias of local
connections plays in differentiating similar patterns. Additionally, despite
the more similar representations between digit 4’s and 9’s in layers 0 and
1, these two digits are represented more differently at the highest level in
both models, which demonstrates the representation learning capability of
hPCNs. In appendix C,we also experimentwith other digits to demonstrate
the generalizability of our results here.

4 Discussion

4.1 Relationship to Other Models of Novelty Detection. Table 1 com-
pares various ND models in the literature with respect to multiple desired
criteria. Asmentioned in section 1, one approach toND is designing special-
ized models for this task. One example of this approach is the anti-Hebbian
model (Bogacz & Brown, 2003a), which employs anti-Hebbian learning that
weakens connections between layers in response to repeated exposure to
the same stimuli (so it uses local learning rules). This model achieves high
capacity even when patterns are correlated (Androulidakis et al., 2008).
Recently, Kazanovich and Borisyuk (2021) and Read et al. (2024) have ex-
tended the anti-Hebbian model and bridged the gap between testing ND
on binary patterns (i.e., each pixel value can be either 0 or 1) and natural
images. In their experiments, the input to their anti-Hebbian ND model is
not the image itself (as is the case in all of our experiments), but rather the
features processed and detected by a deep convolutional network, which is
pretrained with backpropagation, a biologically implausible learning rule.
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1392 T. Ed Li, M. Tang, and R. Bogacz

With thismodel, Kazanovich and Borisyuk (2021) replicated the experimen-
tal observation that human subjects perform better for ND tasks on natu-
ral images compared to procedurally generated abstract images (Bellhouse-
King & Standing, 2007). Another interesting work (Tyulmankov et al., 2022)
demonstrated that if meta-parameters of learning rules are trained to op-
timize ND, the resulting learning rules correspond to those in the anti-
Hebbian model, providing another indication of its efciency. However,
anti-Hebbian models have the limitation of being dedicated just to ND so
they do not contribute to representation learning and AM.

The other approachmentioned in section 1 is designingmodels that com-
bine ND with other functions. Examples include HN, as well as models
combining ND with learning representation (Norman & O’Reilly, 2003; So-
hal & Hasselmo, 2000). Particularly, recognizing the close relationships be-
tween the hippocampus and neocortex, the neural network model devel-
oped by Norman & O’Reilly (2003) for ND aims to disentangle the hip-
pocampal and neocortical contributions. In comparison, Sohal & Hasselmo
(2000) more specically target the repetition suppression behaviors in the
inferotemporal cortex. However, these combined models do not have high
capacity when input patterns are correlated (Bogacz & Brown, 2003b). To
illustrate that it is theoretically possible to effectively detect novelty in a
network that learns representation, Lulham et al. (2011) showed that neu-
ral networks implementing the Infomax algorithm (Bell & Sejnowski, 1995)
have a large capacity for ND and robustness to correlated inputs. However,
these networks are trained with nonlocal learning rules, which greatly lim-
its their biological plausibility.

A different approach to modeling recognition memory was taken by
Cowell et al. (2006) who developed a connectionist model including mul-
tiple levels of hierarchy. They assumed that ND can be judged based on
representations on different levels of hierarchy and employed the model to
explain the data on the effect of lesions of the perirhinal cortex on recogni-
tionmemory.However, thismodelwas not designed to have a high capacity
for ND, and its capacity has not been tested.

A signicant difference that distinguishes our approach from other com-
putational models of ND is its generality. Instead of proposing a dedicated
model for ND, we demonstrate in this work that existing predictive coding
neural networks for AM or representation learning can perform robust (i.e.,
for imageswith correlated pixels) and general (i.e., for sensory and semantic
features)NDwhilemaintaining a high capacity evenwith highly structured
natural images. This provides an account of a more generalized notion of
ND closer to the exible cognition that humans are capable of (Bussey &
Saksida, 2002) and a functional explanation for the roles of neurons with
repetition suppression throughout the ventral visual stream.

4.2 Relationship to the Predictive Coding Literature. In sections 3.2
and 3.3, we report the ND performance of rPCN. The rPCNmodel we used
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Novelty Detection via Predictive Coding 1393

(Tang et al., 2023) is an implicit variant of the original, explicit formulation
in Friston (2003, 2005), with naming convention coming from whether the
variant represents the covariance matrix implicitly or explicitly.

Themodel we used in section 3.4 is slightlymodied from Salvatori et al.
(2021) by adding local connectivity constraints between layers 0 and 1. Sal-
vatori et al. (2021) demonstrated the ability of hPCN to perform a variety of
AM tasks. However, the energy-based approach to ND we adopted in this
article is general and can potentially be applied to any energy-basedmodel.
In particular, a natural application of our approach is to a temporal predic-
tive coding network (tPCN), which is a multilayer rPCN with a temporal
dimension that has been shown to memorize videos and sequences of im-
ages (Tang et al., 2024; Millidge et al., 2024). In this case, one way to detect
novelty for sequences is to use, for example, a running average of certain er-
ror neurons’ activities across time steps. Coincidentally, many studies have
shown a similar functional and anatomical overlap between ND for tem-
poral order and other types of ND (see Warburton & Brown, 2015, for a
review). Extending our current approach to tPCN can thus potentially ll
this gap.

More generally, we predict the energy-based approach to generalize very
naturally to any predictive coding models that have error neurons in their
formulation. One exible class of suchmodels is proposed in Salvatori et al.
(2022), where the authors formulated predictive codingmodels on arbitrary
graph topologies.

4.3 Relationship to Experimental Evidence. It has been suggested that
the exact roles that the perirhinal cortex and hippocampus play in ND have
partial overlaps (Brown & Aggleton, 2001). In particular, while lesion stud-
ies show that the perirhinal cortex plays a key role in ND for individual
objects (Zola-Morgan et al., 1989; Meunier et al., 1993, 1996), hippocam-
pal lesions only mildly affect this ability (Honey et al., 1998). Hippocam-
pus damage has a greater effect when it comes to ND for the arrangement
of individual objects (Gaffan & Parker, 1996) or novel pairing of individu-
ally familiar items (Aggleton & Brown, 1999) rather than individual objects
themselves. The pattern is that although different brain areas can be spe-
cialized in detecting one type of novelty, it also detects other types to some
extent. This incomplete differentiation of functional roles is exactly what
our results in Figure 9 demonstrated—here, even though layer 2 is highly
specialized in detecting semantic novelty, it also detects (pixel-level) sen-
sory novelty better than chance (i.e., a d separability of 0).

4.4 Relationship toAnomaly andOut-of-DistributionDetection. One
key assumption we made in Figure 6 for ND is that both familiar and
novel patterns are samples from the same probability distribution. Data in
the real world, however, likely come from a multitude of probability dis-
tributions. When novel patterns can potentially be drawn from distinct,
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1394 T. Ed Li, M. Tang, and R. Bogacz

often unknown distributions, the task of distinguishing such novel pat-
terns is known as out-of-distribution (OOD) detection or anomaly detection
Samariya & Thakkar, 2023; Ghamry et al., 2024; for a survey and their exact
relationship, see Yang et al., 2024).

We note that hPCN can be seen as performing OOD detection: for ex-
ample, in the setting of Figure 9Awhere the model is trained on images of
digit 4, the top layer would label an image of digit 5 (an outlier from the
training set) with a high energy while assigning a low value to unseen im-
ages of digit 4 (which is just novel). Moreover, machine learning anomaly
detection tasks and data sets such as MVTecAD (Bergmann et al., 2019) and
various tasks involving CIFAR-10 (Krizhevsky et al., 2012) require the de-
tection of more subtle features beyond the simple, sensory (pixel-level) fea-
tures that past ND computational models exclusively detect novelty for.
Together with other desirable features such as local learning rules, PCNs
can be considered as both a putative model of brain circuits and as a ma-
chine learning algorithm to efciently solve ND-related tasks. Recent work
has greatly improved the scalability of the predictive coding algorithm in
training architectures such as convolutional networks, which provides an
interesting future direction for applying PCNs to OOD detection of these
larger scale data sets (Pinchetti et al., 2024).

4.5 Experimental Predictions. Our PCN model predicts that the neu-
rons showing higher responses to novel stimuli should correspond to error
neurons in PCN. Recently, more evidence for the existence of error neurons
in early visual areas such as V2 (Huang et al., 2018) has emerged, and it has
been observed that they have distinct genetic markers, paving way to new
methods to identify them (O’Toole et al., 2023; Jordan & Keller, 2023). This
opens up new experimental avenues for identifying novelty neurons as er-
ror neurons. It is noteworthy that this prediction is particularly robust to
imprecise measurement because there is no need to consider ne-grained
details at the level of individual neurons and how they encode information.
All it needs is a sum or average activity across one layer afforded by current
cell imaging (e.g., photometry).

To our knowledge, the literature on ND or recognition memory or fa-
miliarity discrimination thus far has focused on sensory (pixel) novelty
as dened in Figure 7. Thus, this work suggests an interesting question:
How does the brain computationally detect novelty for features of various
abstraction levels, and what are the corresponding neural correlates? Our
hPCN results predict that neurons with repetition suppression across the
brain hierarchy could take on the functional roles of error neurons in differ-
ent layers of hPCN and thus hierarchically detect ND at different levels of
abstraction while being part of the same circuit.

Whether AM and ND are separable processes in the brain has been a
consistent debate (Yonelinas, 2002; Yonelinas et al., 2010). Past literature
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Novelty Detection via Predictive Coding 1395

has considered the functional difference between the hippocampus and
perirhinal cortex as evidence to favor the dual-process theory (Brown &
Aggleton, 2001). At least part of the difculty causing the debate is the lack
of clear denitions of separable processes. We showed that in PCNs, the
same computational model can perform both AM (Salvatori et al., 2021;
Tang et al., 2023) and ND. This by no means provides a clear resolution to
the debate, but our effort nevertheless provides some concrete grounding
to think about their complex relationship.

5 Conclusion

This article adds support to the hypothesis that predictive coding is a gen-
eral principle of information processing in the cortex, because in addition
to representation learning and AM, PCNs can also perform ND. Further-
more, we demonstrated that PCNs performmore robustly in ND tasks than
alternative models, especially when the patterns have correlated structure
present in real-world images, and our hierarchical model enables exible
ND for features of various abstraction levels. Moreover, we have shown
analytically that this superior performance results from the covariance en-
coded in the recurrent weights of rPCN, stretching the query according to
the correlation structure of training data before determining its novelty.
Overall, our work combines recent advances in energy-based models for
AMwith experimental observation in neuroscience, which leads us to a bi-
ologically plausible, effective, and general computational mechanism un-
derlying the discrimination of novel and familiar stimuli in the brain and
articial neural networks.

Appendix A: Proof of Theorem 1

Note that the training phase of rPCN can be seen as a constrained optimiza-
tion problem: by equation 2.1, without loss of generality, assuming zero bias
(ν = 0), we have

min
W

1
2
X − XW2F s.t. diag(W ) = 0, (A.1)

where for simplicity of notation,W in the appendix is the transpose ofW
used in the main text. Then we can equivalently write the constraints into
the Lagrangian

L(W, λ) = 1
2
X − XW2F + λdiag(W ), (A.2)
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1396 T. Ed Li, M. Tang, and R. Bogacz

where λ = (λ1, . . . , λd ) is a vector of Lagrangian multipliers. Taking gradi-
ent with respect toW yields that

∂L
∂W

= ∂

∂W

(
1
2
Tr(XX − XXW −WXX +WXXW ) + λdiag(W )

)

= − ∂

∂W
1
2
Tr(WXX) + ∂

∂W
1
2
Tr(WXXW ) + diagMat(λ)

= XX(W − I) + diagMat(λ). (A.3)

Similarly, taking gradient with respect to λ yields

∂L
∂λ

= diag(W ). (A.4)

Setting the gradient ∂L
∂W to 0 yields

Ŵ = I − −1diagMat(λ). (A.5)

By substituting Ŵ into equation A.4 and setting it to 0, we get

λ̂ = 1  diag(−1), (A.6)

where  is the element-wise division. Finally, by substituting λ̂ back into
equation A.5, we get the expression of the optimalW :

Ŵ = I − −1diagMat(1  diag(−1)). (A.7)

It can also be veried that (Ŵ, λ̂) is indeed the global minimum by substi-
tuting it in equation A.1.

Now, to express rPCN as performingmetric learning in the form of equa-
tion 3.1, note that

ErPCN(q,W ) ∝ (I − Ŵ )q22 = diagMat(1  diag(−1))−1q22

which concludes the proof. §

Appendix B: Details on the Experimental Procedure

To compare the model performances in Figure 5, we

1. Draw N independent and identically distributed samples from the
underlying data distribution as stored patterns as the training set for
the model.
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Novelty Detection via Predictive Coding 1397

2. DrawNmore independent and identically distributed samples from
the underlying data distribution as novel patterns, each time mak-
ing sure the samples are different from any of the N stored patterns
through rejection sampling—rejecting until the sample drawn satis-
es this requirement.

3. Feed a pair of patterns—one seen, one unseen—into the model
as queries (i.e., keep the weights, W , constant) and evaluate each
model’s energy value on these two patterns. Amodel’s judgment on
this pair is correct if its energy value for the novel pattern is higher,
and vice versa.

4. Repeat this step for all N seen-unseen pairs and calculate the error
rate of a model as the number of incorrect judgments divided by N.

In particular, we calculate the number of patterns retainedNretained for the
bottom row of Figure 5 as

Nretained = (1 − 2Perror)N, (B.1)

following Standing (1973), where Perror ∈ [0, 1] is the error rate.

Appendix C: Capacity and Effect of Batch Sizes

To further explore the capacity of rPCN,we simulated rPCNswith different
numbers of neurons (which are tied to the data dimension and the number
of parameters) on uncorrelated gaussian data. The result is shown in Fig-
ure 10. Formally, the capacity is dened as

C(d) = max

{
n

∣∣∣∣
1
S

S∑

s=1

p(d)n,s ≤ 0.05

}
, (C.1)

where we chose pmax = 0.05, S = 5 is the number of seeds, and pn,s repre-
sents the error probability for the sth seed of sample size n. While numer-
ically evaluating C(d), we sequentially computed the average error proba-
bility for values of n from a geometric sequence 2

k
2 for k = 1, 2, . . ., until the

error probability exceeded 0.05.
To investigate the effect of batch sizes on rPCNperformance, we conduct

an experiment on rPCNwith a training set ofN = 10,000 gaussian patterns.
For ve different batch sizes, 1, 10, 100, 1000, 10,000, we plot the resulting
error probabilities in Figure 11 following the experiment procedures in ap-
pendix B. It is noteworthy that the best performance is between the smallest
(1) or the largest (N = 10, 000). For all the experiments involving PCN in
this article, we have set the batch size to beN for simplicity. Thus, Figure 11
suggests that the capacity of rPCN shown in Figure 10 is a lower bound
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1398 T. Ed Li, M. Tang, and R. Bogacz

Figure 10: Capacity of rPCN. To determine capacity for each network with size
d, the capacity C(d) is determined by identifying the largest sample size from a
sequence of sample sizes {n} such that the average error probability across S = 5
seeds does not exceed threshold probability pmax = 0.05. Note that the parame-
ter count for each data dimension d is d2. Results are obtained on uncorrelated
gaussian data.

Figure 11: The effect of batch sizes on rPCN. All trials are trained onN− 10,000
images, with the error rates measured for different batch sizes holding other pa-
rameters identical except the learning rate, which is (1e− 5, 3e − 5, 1e − 4, 2e −
4, 3e − 4) for batch sizes (1, 10, 100, 1000, 10,000), respectively. The learning rate
is adjusted so that all models can reach a plateau in training loss after the same
number of epochs. The error bars indicate the variability (1 standard deviation)
around the mean calculated over ve simulations.
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Novelty Detection via Predictive Coding 1399

and further hyperparameter tuning could further improve performance in
all PCN experiments.

Appendix D: Explicit PCN and Relation to Out-of-Distribution
Detection

Explicit PCN (Friston, 2003) is another recurrent variant of PCNs that learns
and encodes the covariance explicitly as parameters. Specically, it encodes
the subjective estimates of mean μtrue and covariance true with μ and ,
respectively. To improve its estimate, the model minimizes the free energy,
which in this case is the negativemultivariate gaussian log-likelihood of the
input pattern given the subjective parameters:

EexpPCN(x; μ, ) := 1
2
log || + 1

2
(x − μ)−1(x − μ). (D.1)

Like the derivations for HNs, we can ignore any terms that do not depend
on the query q. Further, for simplicity, we also assumeμtrue is 0 and thatμ is
a perfect estimate of it. This allows us to rewrite equation D.1 as a function
of q and X:

EexpPCN(q,X) = 1
2
(q − μ)−1(q − μ)

∝ − 1
2 (q − μ)22

= − 1
2q22. (D.2)

This is exactly the Mahalanobis distance, a well-known optimal measure
for distance in a correlated distribution (Bellet et al., 2013), which effectively
whitens the data and enables a fair comparison of (transformed) Euclidean
distances.

Although the transformation performed by implicit PCN or rPCN (see
Figure 12C) is not optimal when the query patterns are drawn from the
same distribution that familiar patterns are sampled from, it can be more
robust for out-of-distribution (OOD) detection. Consider the eigendecom-
position of the covariance matrix; = VV. For Figure 12A, we have that
V = (v1, v2), where v1 and v2 are unit vectors pointing toward the direc-
tion of familiar (purple) dot and novel (orange) point. The robustness of
the implicit model to OOD detection can be seen by comparing the relative
scaling effects along the principal components of the covariance matrix ;
compared to exact whitening, implicit PCN is less punishing for variation
along the rst principal component andmore punishing for variation along
the second (last) principal component. Since it follows from the Courant-
Fischer theorem that samples from the distribution with the most varia-
tion along its rst principal component and least variation along its last
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1400 T. Ed Li, M. Tang, and R. Bogacz

Figure 12: Comparing the effects of implicit and explicit PCN. Note that
LexpPCN = − 1

2 as derived in equation D.2.

Figure 13: Results for locally connected hPCN (see Figure 8 for the exact archi-
tecture) trained on images of the digit 4 and tested on images of digits 4 and 1.
The error bars and distributions in violin plots follow the same convention as
in Figure 9.

principal component, a sample u outside data distribution is likely to have
larger projv2u := v2uv2

v2v2
and thus be classied as more novel/surprising by

implicit PCN.

Appendix E: hPCN Experiments for Different Digit Classes

In order to demonstrate the generalizability of results in Figure 9, we show
in this appendix additional experiments using different training and test
sets. In particular, the model illustrated in Figure 13 was trained on images
of the digit 4 and tested on images of digits 4 and 1. In Figure 14, all subplots
were obtained from the same model that was trained on an equal number
of images of digits 3, 4, and 8, and was tested on images of these digits as
well as digit 5. In Figure 15, all subplots were obtained from the samemodel
trained on all digits except 1, and tested on all digits including 1.

Results in Figures 13 to 15 follow the same pattern as in Figure 9, demon-
strating their generality. However, an exception is in layer 1 of the right
panel of Figure 14, where the local features of different images of the digit
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Novelty Detection via Predictive Coding 1401

Figure 14: Results for locally connected hPCN (see Figure 8 for the exact archi-
tecture) with a training set consisting of an equal number of the digits 3, 4, and
8 while being tested on images of these digits as well as the digit 5. The results
are organized by separability scores (d’) between different digits. The error bars
and distributions in violin plots follow the same convention as in Figure 9.

8 are so different from each other that there is a high separability between
familiar and novel 8. This is similarly observed in the bottom left panel of
Figure 15. Interestingly, despite it, the model correctly learns to distinguish
digit novelty, as shown in the layer 2 column of the same panels.

Another observation from Figure 15 is that the d score between the novel
and familiar digit 4’s given a training set consisting of all classes except 1 is
higher than that given a training set of only 4’s. This is an expected obser-
vation as our model, like any other energy-based models, will experience
more interference if the training data consist of more classes and examples.
However, the patterns of decreasing d higher in the network are consistent
with our earlier ndings, demonstrating the representation learning capa-
bility of hPCNs. In addition, the scales of d values may differ depending
on the exact composition of the training set. For instance, the rst blue bars
in Figures 9A, 14, and 15 have an average d value of around 2, 3, and 4,
respectively. One possibility that explains the shift is that there are more
images of the digit 4 in the training set of Figure 9 (100 samples) compared
to Figure 13 (33 samples) and Figure 15 (11 samples). As a result, any ran-
dom image of 4 is likely closer to its nearest neighbor in Figure 9, making
them more difcult to separate (and thus a lower d score). We also point
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1402 T. Ed Li, M. Tang, and R. Bogacz

Figure 15: Results for locally connected hPCN (see Figure 8 for the exact archi-
tecture) with a training set consisting of an equal number of images of the digits
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Novelty Detection via Predictive Coding 1403

Table 2: Hyperparameters When Training Predictive Coding Network Models.

Figure Model # Parameters
Learning

Rate # Epochs
Step
Size γ

5 rPCN 250,000/1,6777,216 3e-4 200 50 0.9
5 AE 250,750/16783360 1e-3 400 25 0.9
5 VAE 376250/25,176,064 1e-3 400 25 0.9
10 rPCN variable 8e-4 400 50 0.9
9A, 13, 14,
and 15

hPCN 112,600 2e-4 2000 N/A N/A

9B hPCN 393,800 8e-5 1500 N/A N/A
11 rPCN 250,000 variable 200 50 0.9

Notes: The Step Size and γ columns are arguments for the StepLR scheduler of Adam.
The batch size is 64 for both AEs and set to sample size/N for all other models. In the
rst three entries of the # Parameters column, the rst/second number corresponds to
the parameter counts in experiment setup in the rst two columns and last column of
Figure 5; they are different because the input sizes (number of pixel dimensions) of the
data sets are different. The parameter count for VAE in Figure 5 is higher as the ex-
tra parameters encode the (log-)variance and do not contribute to ND performances,
as explained in the main text. For implementation details, refer to autoencoder.py at
https://github.com/ltjed/novelty-detection-pc for details. For the “variable” entries,
see the captions of the corresponding gures for more detailed explanations.

out that this difference in scale dos not change the general trend that as we
go up in layers, familiar and novel digit 4’s become less and less separable
due to the specialization in sensory versus semantic features.

Appendix F: Hyperparameters

We trained all neural network models (i.e., PCNs and AEs) using the Adam
optimizer (Kingma & Ba, 2014). Table 2 provides the hyperparameters used
in our experiments,model details, and their correspondinggures. All com-
putations were performed on an NVIDIAGeForce RTX 4090 GPU. Code is
available at https://github.com/ltjed/novelty-detection-pc.
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