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Abstract 

Exaggerated bursts of activity at frequencies in the low beta band are a well-established 

phenomenon in the subthalamic nucleus (STN) of patients with Parkinson’s disease. 

However, such activity is only moderately correlated with motor impairment. Here we test 

the hypothesis that beta bursts are just one of several dynamic states in the STN local field 

potential (LFP) in Parkinson’s disease, and that together these different states predict motor 

impairment with high fidelity.   

LFPs were recorded in 32 patients (64 hemispheres) undergoing deep brain stimulation 

surgery targeting the STN. Recordings were performed following overnight withdrawal of 

anti-parkinsonian medication, and after administration of levodopa. LFPs were analysed 

using Hidden Markov Modelling to identify transient spectral states with frequencies under 

40Hz. Findings in the low beta frequency band were similar to those previously reported; 

levodopa reduced occurrence rate and duration of low beta states, and the greater the 

reductions, the greater the improvement in motor impairment. However, additional LFP 

states were distinguished in the theta, alpha and high beta bands, and these behaved in an 

opposite manner. They were increased in occurrence rate and duration by levodopa, and the 

greater the increases, the greater the improvement in motor impairment. In addition, levodopa 
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favoured the transition of low beta states to other spectral states.  When all LFP states and 

corresponding features were considered in a multivariate model it was possible to predict 

50% of the variance in patients’ hemibody impairment OFF medication, and in the change in 

hemibody impairment following levodopa. This only improved slightly if signal amplitude or 

gamma band features were also included in the multivariate model. In addition, it compares 

with a prediction of only 16% of the variance when using beta bursts alone.  We conclude 

that multiple spectral states in the STN LFP have a bearing on motor impairment, and that 

levodopa-induced shifts in the balance between these states can predict clinical change with 

high fidelity. This is important in suggesting that some states might be upregulated to 

improve parkinsonism and in suggesting how LFP feedback can be made more informative in 

closed-loop deep brain stimulation systems. 
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Introduction  

 

Parkinson’s disease (PD) is a neurodegenerative condition involving degeneration of 

dopaminergic neurons in the substantia nigra of the midbrain and characterised by the 

cardinal symptoms of bradykinesia, rigidity and tremor. Symptomatology is partially 

reversed by the dopamine prodrug, levodopa, but more advanced disease may necessitate 

deep brain stimulation (DBS). This therapy involves the chronic electrical stimulation of key 

targets in the basal ganglia, like the subthalamic nucleus (STN), that have been functionally 

compromised by the effects of dopaminergic denervation.1 The effectiveness of DBS has 

increased interest in the nature of activity in the neural circuits modulated by stimulation. 

Pathological synchronisation in the beta (~ 20Hz) frequency band has emerged as a key 

abnormality in PD linked to motor impairment.2 In particular, the reduction in mean beta 

power in the local field potential (LFP) recorded in the STN after administration of levodopa 

or during DBS is positively correlated with the attendant improvement of motor 

impairment.3-11  

 

More recently, it has been stressed that beta activity consists of transient bursts in PD and that 

burst characteristics like rate and duration may correlate more strongly with motor 

impairment than mean beta power.12-15 The link between STN beta power, and particularly 

beta bursts, and motor impairment has prompted consideration of this signal as a feedback 

marker suitable for the closed-loop control of DBS. Closed-loop control may potentially be at 

least as effective as conventional, continuous DBS, and in acute studies incurs fewer 

stimulation-induced side effects, such as speech impairment and dyskinesias.16-21 
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However, in the correlative studies cited above, beta power, or even beta bursting, is only 

moderately indicative of the severity of motor impairment. So what of other oscillatory 

activities in the STN LFP? Broadly the STN LFP can be divided into lower frequency 

activities in the theta, alpha, low beta and high beta bands and higher frequency activities 

such as finely tuned gamma,22-24 and high frequency oscillations.7,9,25 Higher frequency 

activities have lower amplitude in the STN, and are therefore challenging to track with the 

ultra-low power electronics needed for chronic DBS systems (see, for example, Figure 2 in 

López-Azcárate et al7). Moreover, two key higher frequency activities, the finely tuned 

gamma band feature and high frequency oscillations, are also frequently absent. 7,26,27 Lower 

frequency activities, on the other hand, are more consistent, of greater amplitude, and more 

easily tracked by chronically implanted bidirectional DBS systems. However, although 

registerable, with the exception of low beta activity, their relationship to motor impairment 

has hitherto been obscure. 

 

Here, we use Hidden Markov Modelling (HMM) to objectively detect different types of LFP 

states in the theta (4-7 Hz), alpha (8–12 Hz), low beta (13–21 Hz) and high beta (22-35 Hz) 

frequency.28,29  When a given state visits lasts more than one oscillation cycle this may be 

considered a burst. We define how LFP states are modulated by dopaminergic therapy and 

how changes in state characteristics predict changes in parkinsonian motor impairment. In so 

doing we demonstrate that motor impairment is predicted not only by the predilection for 

episodes of low beta synchronisation, but also by the rate of occurrence and the nature of 

state visits in the theta, alpha, and high beta frequency bands. Together these different states 

compete to determine motor impairment with high fidelity in patients with PD. 
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Materials and Methods  

Subjects and surgery  

We investigated spectral states in the STN LFP before and after administration of levodopa in 

32 patients (64 hemispheres) with advanced PD undergoing DBS surgery targeting the STN. 

Patients had an average age of 58.5 years (range 34 to 79 years) and an average disease duration 

of 11.7 years (range 5 to 18 years). Twelve were female (Supplementary Table). All patients 

were diagnosed with PD according to the Queen Square Brain Bank criteria.30 The mean of the 

part III of the Unified Parkinson's Disease Rating Scale (UPDRS) score off medication was 

37.9 (range 15-72) whilst the mean score on medication was 14.4 (range 3 to 30). The DBS 

electrodes were model 3389 (Medtronic) with four platinum–iridium cylindrical surfaces of 

1.27 mm diameter, 1.5 mm length, and 2 mm center-to-center separation. The contacts were 

numbered 0 (lowermost) to 3 (uppermost). Correct placement of the DBS electrodes was 

confirmed by intraoperative microelectrode recordings in 18 patients and by postoperative 

imaging in all patients. All experimental procedures had received prior approval from the local 

research ethics committee in accordance with the standards set by the Declaration of Helsinki, 

and patients gave their written informed consent.  

 

Experiment and recordings 

DBS electrodes were temporarily externalized, prior to connection to the implantable pulse 

generator. LFP recordings were performed with the patient quietly seated with their eyes 

open following overnight withdrawal of antiparkinsonian medication and were repeated 

before and after administration of levodopa (see below) 3–7 days after lead implantation. In 

18 patients LFPs were recorded on-line from adjacent bipolar contact pairs (01, 12, 23) to 

limit volume conduction.31 These LFP signals were amplified and filtered at 1–250 Hz using 

a custom-made, high-impedance amplifier (which had at its front end input stage the INA 128 
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instrumentation amplifier, Texas Instruments) and recorded through a 1401 analogue/digital 

converter (Cambridge Electronic Design) onto a computer using Spike2 software (Cambridge 

Electronic Design). Signals were sampled at either 625 Hz, 1 kHz, or 2.4 kHz. Fourteen 

patients were recorded using the EEG system integrated in a CTF 275-channel 

magnetoencephalograhy scanner (CTF/VSM MedTech, Vancouver, Canada). Their signals 

were filtered 1-600 Hz and sampled at 2.4 kHz. Four LFP channels were recorded on each 

side, referenced to a cephalic reference. When LFP recordings were not recorded directly 

bipolarly, they were converted off-line to a bipolar montage between adjacent contacts (three 

bipolar channels per side) to limit the effects of volume conduction.  

 

Clinical assessment 

Patients were evaluated using the UPDRS part III after omitting all dopaminergic medication 

overnight and after administration of at least 200 mg of levodopa, with the exception of case 

11 who received 100mg of levodopa. Clinical evaluation was performed at the same time as 

LFP recordings, except for 14 patients in whom it was performed up to 3 months pre-

operatively. Changes in motor impairment with levodopa was calculated using hemibody 

scores for bradykinesia-rigidity (sum of UPDRS motor score sub-items 22–26 including 

finger taps, open and close hand movements, rapid alternating pronation and supination hand 

movements, and leg movements) and tremor (sum of UPDRS motor score sub-items 20-21 

for arm and leg), either in combination or separately, contralateral to the recording site. The 

clinical improvement was defined as the percentage of the reduced UPDRS hemibody score 

in ON condition compared with OFF condition. 

 

Signal processing and determination of bursts 
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Figure 1 and Supplementary Figure 1 illustrate the processing steps involved in extracting 

various LFP states and ascribing them to the theta, alpha, low beta and high beta bands, or to a 

background state if no dominant peak existed. After visual signal inspection and artefact 

detection and rejection using Spike2 Software (CED, Cambridge, UK) and OSL (OHBA 

Software Library; Oxford Centre for Human Brain Activity (OHBA), University of Oxford, 

Oxford, UK; https://ohba-analysis.github.io/osl-docs/), data were imported into Matlab 

(version R 2019b; MathWorks, Natick, MA), where all further signal processing steps took 

place. Signal durations ranged from 127.9 s to 639.9 s with a mean signal duration of 392.4 ± 

(standard deviation) 111.9 s for both the OFF and the ON conditions (data duration Off and 

ON medication was matched in each subject). 

 

The bipolar contact pair with the highest beta power in the average of the OFF and ON drug 

conditions was selected for further analysis based on the presumption that this contact pair was 

most likely to pick up from the dorsolateral ‘motor’ STN.6,32,33 The signals recorded in each 

medication condition from each hemisphere were bandpass filtered at 2-48 Hz, resampled at 

100 Hz and z-normalized on a per session basis to facilitate comparison across different 

recording systems and to minimise the effects of targeting variance. All processed LFPs were 

then concatenated into one vector representing the selected contact pair from all medication 

conditions and hemispheres.  The concatenated signal was then fed to TDE-HMM model which 

was compared against a percentile thresholding model.  

 

Time-Delay Embedded Hidden Markov Model for Burst Detection 

 

A principled way to detect bursts is to use Hidden Markov Models (HMMs). This can 

overcome many limitations of standard threshold-based approaches to burst detection, such as 
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an over-dependence on the choice of arbitrary thresholds.28 The approach used here, i.e. time-

delay embedded HMM, is also able to concurrently detect different types of bursts, each with 

distinct spectral content, without the need to predefine frequency bands of interest. 

 

In general, HMMs assume that a time series can be described using a hidden sequence of a 

finite number of states,28,29,34 This assumes that at each time point only one state is active 

(‘visited’); although, as probabilistic Bayesian inference is used here, a probability of being 

active is assigned to each state at each time point. The HMM then assumes that the data 

observed in each state are drawn from a probabilistic observation model, i.e. a probability 

distribution, where the distribution parameters are different for each state.  

 

The variant of HMM used here is the Time-Delay Embedded Hidden Markov Model (TDE-

HMM). This uses a multivariate Gaussian distribution as the observation model, but, crucially, 

the HMM is inferred on a time-delay embedded version of the (z-normalised and concatenated) 

LFP data; i.e. copies of the LFP data, each shifted by different time lags which define the time 

window around the point of interest, are fed in concurrently as multiple data channels to the 

HMM inference. Each HMM state then captures periods of time that have distinct auto-

covariance, which translates into distinct spectral content. The net result is that the TDE-HMM 

models the data as a sequence of state visits, where each state can be interpreted as a transient 

spectral event of a certain type.28 Note that the TDE HMM approach is also able to identify the 

frequency of signal segments that are shorter than the period of the signal frequency.29 

 

Data analysis and statistics 
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States were estimated using the TDE-HMM model for 56 different combinations of state 

number K (5 to 18 states) and time lags L (3 to 15 lags). The time lag L determines the window 

duration so that a lag of 10 means that the window includes 10 data points either side of that 

representing the time under analysis. Longer windows allow better frequency resolution at the 

expense of temporal resolution (analogous to the time-frequency trade-off when choosing a 

basis set in wavelets). The state number K denotes the number of states to be detected. For 

every combination, TDE-HMM states were categorized by their predominant frequency 

content by cross-correlating the states’ time courses with the Hilbert envelopes of the theta, 

alpha, low beta and high beta frequency bands. Supplementary Figure 1 illustrates the process 

of ascribing HMM states to different frequency bands. If the most positive 2 correlations were 

either within low frequencies (theta and alpha) or high frequencies (low and high beta), then 

the corresponding state was assigned to the band with highest correlation. Otherwise states 

were assigned to “background” activity. More than one HMM state could be attributed to a 

given frequency band. The analysis of multiple different models allows consistent features to 

emerge, whilst transformation from HMM states to frequency bands was used to facilitate 

comparisons across different HMM models and their interpretation, especially with respect to 

existing literature.  

 

This assessment was repeated for the OFF and ON medication conditions. Various extracted 

measures of interest were extracted from the TDE-HMM models, and changes in them between 

the two medication conditions, were correlated with the contralateral UPDRS hemibody scores 

to investigate any link to Parkinsonian motor impairment. The extracted measures were: 

probability of transitioning between different states and within states (where a frequency band 

comprised several HMM states), fractional occupancy (referring to how much time the HMM 

spends in each state on average), life time (defined as the average duration per visit of each 
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state), interval time (defined as the average time between each state visit), and switching rate 

between states. Occurrence rate (how often a state gets visited over time) and relative number 

of visits were deduced from the life time measure as further features describing bursting 

dynamics. The occurrence rate and relative number of visits are related to the burst rate and 

relative burst rate reported with the thresholding technique and described below. Inherently, 

some of these different summary measures of the bursting dynamics are inter-related, e.g. a 

state with an increase in occurrence or burst rate will see a corresponding decrease in interval 

time if the probability of transitioning out of that state remains the same. As such, some of 

these measures if associated with motor impairment might overall tend to correlate with motor 

state with opposite polarity, such as the occurrence or burst rate in a given frequency band and 

the interval time. 

 

HMM method results were contrasted with those from the standard thresholding method of 

defining beta bursts, to allow comparison with relevant previous work.12,13,35,36 The one 

exception was that we did not apply an arbitrary minimum duration for bursts, so that results 

would parallel as closely as possible those of the HMM models. Different percentile amplitude 

thresholds (55-99th in steps of 2 percentiles) were used. For each percentile, the same 

amplitude threshold was applied on both medication conditions, where that was calculated by 

taking the mean of amplitude thresholds for both ON and OFF conditions.13 Measures 

equivalent to those extracted from the TDE-HMM were extracted, where possible, from the 

results of the different standard thresholding models and the results combined (Supplementary 

Figure 2). These features included bursting rate, relative number of bursts of different 

durations (<0.1 s, 0.1-0.2 s, ... , 0.8-0.9 s, >0.9 s) and the average burst duration or life time of 

states in the theta, alpha, low beta and high beta frequency bands.   
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Ridge regression was used to create parsimonious regression models given that the number of 

extracted features (i.e. regressors) could exceed the number of STN recordings.37-40 

Regression was performed on every single HMM model separately using the full set of 

features extracted before collapsing states into five bands (theta, alpha, low beta, high beta, 

and background). Ridge regression uses the equation below to estimate ridge coefficients,  �̂�𝛽:  

�̂�𝛽 = (𝑋𝑋𝑇𝑇𝑋𝑋 + 𝑘𝑘𝑘𝑘)−1 𝑋𝑋𝑇𝑇𝑦𝑦 

Where 𝑋𝑋 is the features matrix, 𝑦𝑦 is the predicted score, 𝑘𝑘 is the ridge parameter and 𝑘𝑘 is the 

identity matrix. Small, positive values of 𝑘𝑘 improve the conditioning of the problem and 

reduce the variance of the estimates. While biased, the reduced variance of ridge estimates 

often results in a smaller mean squared error when compared to least-squares estimates. The 

𝑘𝑘 parameter was set by varying the 𝑘𝑘 value in the model between -30 and 30, and the final 𝑘𝑘 

value chosen when model prediction power converged and stopped changing. To avoid 

overfitting, we performed leave-one-out cross-validation. Finally, to evaluate the results we 

used the previously described method to ascribe states defined in each HMM model to our 

chosen frequency bands so that we could then attribute the corresponding ridge coefficients 

to these frequency bands.  

 

Note that the TDE HMM approach is also able to identify the frequency of signal segments 

that are shorter than the period of the signal frequency.29 As the content of such short segments 

is statistically indistinguishable from that of longer segments we included both short and long 

state visits, but distinguished between the contributions of state visits of differing duration in 

the results. This limited the number of additional constraints on the data (no minimum 

duration), and we have included the results of simple thresholding without a minimum duration 

constraint for direct comparison.  
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Statistical analyses were performed using MATLAB (2019b, Mathworks, Natick, MA, USA) 

and SPSS (2019, IBM Corp., Armonk, NY, USA). The HMM and thresholding extracted 

features were tested with MATLAB Lilliefors test to check whether they were normally 

distributed. State feature and other distributions were tested against the null hypothesis using 

permutation testing.41 Where several permutation tests were applied to the same data sets these 

were then corrected for multiple comparisons using the false discovery rate (FDR) method. 

Data are presented in the form of modified box-and-whisker plots with a box from the first 

quartile to the third quartile, a vertical line drawn through the box at the median, and whiskers 

drawn up to the upper and lower extreme values (excluding outliers).  

 

Data availability 

 

The original data are available upon reasonable request to the corresponding authors. 

 

 

Results  

 

Medication-induced changes in STN LFP states 

Time delay embedded HMM (TDE-HMM) was run on the STN LFP data to identify a temporal 

sequence of states in each STN LFP channel, where each state can be interpreted as a transient 

spectral event of a certain type, including, but not limited to, beta bursts.28 Motor impairment 

in PD is partially reversible after oral treatment with the dopamine prodrug, levodopa. 

Accordingly, we began by determining which LFP states change following levodopa treatment 

before seeking correlations between these changes and the improvement in motor impairment. 
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Fifty-six TDE-HMM models of the STN LFP with different numbers of states (5-18) and time 

embedding lags (3-15) were separately tested ON and OFF medication.  

Initially, we focussed on activities with frequencies under 40Hz, as these are more consistently 

found and more readily registered with the ultra-low power amplifiers that are necessary in 

chronic recording systems that might, in the future, deliver closed-loop DBS. Identified LFP 

states with clear spectral peaks were then ascribed to the theta, alpha, low beta and high beta 

bands, or to a background state if no dominant peak existed (Supplementary Figure 1). 

Overall, following the dopamine prodrug levodopa,  LFP states in the low beta band became 

less common and relatively briefer, whereas those in the theta band, and to a lesser extent, 

alpha band became more common, and relatively longer in duration. Different TDE-HMM 

models could differ in the extent to which they identified levodopa induced changes in LFP 

states and in their ability to predict change in motor impairment. Accordingly, in the following 

we focus on results that have been collapsed across all 56 TDE-HMM models. 

The occurrence rate of LFP states (or burst rate, i.e. how often a state gets visited over time) 

significantly increased when ON compared to OFF levodopa for the state visits of the shortest 

duration in all frequency bands, except low and high beta (Figure 2). In contrast, the 

occurrence rate of LFP states decreased in the low beta band regardless of state duration ON 

compared to OFF levodopa. These changes could represent shifts from one spectral band state 

to another, or shifts to and from the background LFP state. This issue was addressed by 

considering state transition probabilities (Figure 3). Dopaminergic medication significantly 

drove subthalamic activity away from the low beta state to the theta, alpha, high beta and 

background states, in so far as these latter states were more likely to follow the low beta state 

than precede it on medication. In addition, high beta and background states were significantly 

driven into the theta and alpha states, and the alpha state further driven into the theta state by 

levodopa. 
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To better compare the present findings in the beta band with previously reported results of the 

standard thresholding technique, we also plotted the change in the relative rate of different 

durations of states (compared to the rate of all durations of states) within the beta frequency 

band with levodopa (Supplementary Figure 3). There was a significant increase in the relative 

rate of short duration low beta states and a decrease in the relative rate of longer duration low 

beta states ON levodopa. This is consistent with previous reports using the thresholding 

technique.13,15  

In addition, there were significant decreases in fractional occupancy and life time, and 

corresponding increases in state-interval time in the low beta band ON levodopa, and 

significant converse changes in the theta, and to a lesser extent, alpha and high beta bands 

(Figure 4). Changes in the background activity were small. 

 

Medication-induced changes in STN LFP states correlate with motor impairment 

The levodopa induced changes in low beta and theta-alpha states were also associated with 

opposing effects on motor impairment (Figure 5A). The change in the occurrence rate of the 

low beta states between ON versus OFF levodopa was significantly consistently positively 

correlated with the change in motor impairment with levodopa, so that decreases in the 

occurrence of low beta states were linked to improvements in motor impairment ON drug. 

Conversely, changes in the occurrence rates of theta and alpha band states were significantly 

consistently negatively correlated with change in motor impairment ON drug, so that increases 

in the frequency of theta and alpha states were linked to improvements in motor impairment 

ON drug. These contrasting effects were similar across states of different absolute durations, 

although the bivariate correlations themselves were relatively weak. 
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To better compare the present findings with previously reported results of standard 

thresholding in the beta band, we also estimated the correlation with the relative number of 

states in each frequency band (Figure 5B). As with the previous results, there was a reversal 

in correlation sign whereby the change in the relative occurrence rate of short duration low beta 

states negatively correlated with change in motor impairment and change in the relative 

occurrence rate of longer duration low beta states positively correlated with change in motor 

impairment, although the variance between different models was relatively large. Thus a 

relative increase in the occurrence rate of short duration beta states was linked to diminution 

in motor impairment ON medication, whereas a relative decrease in longer beta states was 

linked to less motor impairment ON drug. This is consistent with previous reports using the 

thresholding technique.13 The opposite pattern was seen in the theta state. A relative increase 

in the occurrence rate of short duration theta states was linked to greater motor impairment ON 

medication, but a relative increase in longer theta states was linked to less motor impairment 

ON drug. Smaller, less consistent effects were seen in the relative number of alpha states. 

 

Medication-induced changes across STN LFP states predict motor impairment 

Changes in the absolute and relative occurrence rate of states in the different frequency bands 

were linked to frequency specific and often opposing changes in motor impairment. However, 

the bivariate correlations reported above and illustrated in Figure 5 are relatively modest in 

strength, and the statistics only confirm the consistency of the sign of frequency specific 

correlations using features from different HMM models. The potential importance of the 

correlations lies not only in the mechanistic insight afforded, but also in the potential for the 

different states and their features to provide comprehensive feedback about motor impairment 

for closed-loop control of DBS. The question therefore arises whether multivariate models that 
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include multiple features derived from multiple TDE-HMM states can lead to stronger 

predictions of motor impairment. To answer this we performed Ridge regression. The 

regression model derived from the TDE-HMM analysis was further contrasted with that 

derived from standard thresholding (Figure 6), using the same feature sets where possible. The 

median coefficient of determination across the 56 different TDE-HMM models was 0.52 (using 

leave-out one cross-validation), indicating that the multiple regression models explained just 

over 50% of the variance in the change in motor impairment following medication. This is a 

substantial effect and contrasts with the results across multiple thresholding models using the 

same data, with different threshold percentiles in the theta, alpha, low beta and high beta 

frequency bands (23 combinations; 55-99th percentiles). Here the median coefficient of 

determination was only 0.16.  

We also considered the contributions made to the regression model by states in the different 

frequency bands and their features (Supplementary Figure 4). The normalised regression 

coefficients for features in the low beta state and for those in the remaining spectral states 

tended to have opposing signs, in line with the contrasting effect of levodopa on these features 

and with the results of bivariate correlations between changes in these features and change in 

motor impairment with medication. 

The change in contralateral UPDRS Part III hemibody scores predicted above in Figure 6 

included both the change in bradykinesia-rigidity and tremor items. Results were similar if 

changes in tremor items were excluded (Supplementary Figure 5).  Conversely, prediction of 

change in contralateral hemibody tremor scores alone was weaker than prediction of change in 

bradykinesia-rigidity, although the narrower range of changes in tremor score may have 

contributed to this difference (Supplementary Figure 6). Still, ridge regression based on TDE-

HMM features was able to predict about 30% of the variance in the change in contralateral 

tremor scores. This was greater than the prediction of variance in the change in contralateral 
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tremor scores with thresholding models (Supplementary Figure 6). It was also greater than 

the prediction of tremor change using just bradykinesia-rigidity scores, which was 8%, 

suggesting that some LFP features were of additional benefit in predicting tremor variance. We 

also considered the contributions made to the regression model for tremor by states in the 

different frequency bands and their features (Supplementary Figure 7).  

 

Both low beta and other spectral states contribute to prediction of change in motor 

impairment with levodopa 

The normalised ridge regression coefficients reported in Supplementary Figure 4 suggested 

that STN LFP states at frequencies other than low beta also contributed to the prediction of 

change in motor impairment with levodopa, albeit their effect was opposite in sign to that of 

the corresponding features in the low beta state. Ridge regression creates parsimonious 

regression models that generalise well when doing prediction, even in the presence of 

collinearity between multiple regressors (such as the occurrence rate and relative burst rate 

which themselves were deduced from the life time measure).36 However in doing so the 

estimates of the normalised regression coefficients of the different inputs may be biased, even 

though they have a smaller variance than with ordinary least squares estimators. Estimates of 

the normalised regression coefficients should therefore be interpreted cautiously. With this in 

mind we sought further evidence that low beta and other frequency states both contributed to 

the prediction of change in contralateral hemibody UPDRS score upon treatment with 

levodopa. To this end we separated those features relating to the low beta state and those 

relating to the theta, alpha, high beta and background states, and performed ridge regression as 

before on these feature subsets. Figure 7 indicates that both were able to predict the change in 
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motor impairment with levodopa, although the respective coefficients of determination (r2) 

values were about half of those of the combined model (Figure 6A).   

Our core analysis considered data low-pass filtered at 45 Hz but did not include amplitude 

information features or gamma activity. Supplementary Figure 8 gives the results of 

including amplitude features in the ridge regression models illustrated in Figure 6. This 

addition increased the variance in change in motor impairment with levodopa explained by 

TDE-HMM models to 0.57 ± 0.06 (Supplementary Figure 8A, Left) and by thresholding 

models to 0.22 ± 0.12 (Supplementary Figure 8A, Right). In order to explore the possible 

additional contributions of gamma activity in predicting change in motor impairment with 

levodopa, we performed an additional TDE-HMM analysis of the same data now pass-band 

filtered over 55-95 Hz. This time we identified the states with time courses that best cross-

correlated with the Hilbert envelope of gamma power, where this was defined as 60-90Hz. The 

gamma band state features were then added to the ridge regression models illustrated in Figure 

8A. Adding gamma features increased variance explained by TDE-HMM models to 0.59 ± 

0.06 (Supplementary Figure 8B, Left) and by thresholding models to 0.23 ± 0.12 

(Supplementary Figure 8B, Right). The signs of the amplitude coefficients in the ridge 

regression model depended on the frequency band. A reduction in amplitude in the low beta 

band on medication was associated with a greater improvement in motor impairment on 

medication, whereas the opposite was seen in the remaining frequency bands.   The signs of 

the gamma coefficients in the ridge regression were opposite to those of corresponding low 

beta coefficients and similar in sign to those of the theta, alpha and high beta frequencies 

coefficients. 
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Multivariate correlations between STN LFP states and motor impairment OFF 

medication 

Next, we considered whether multivariate models that include multiple TDE-HMM states and 

their features based on LFPs recorded OFF dopaminergic medication were also able to give 

comprehensive prediction of the motor impairment across patients OFF medication (Figure 8). 

Again ridge regression based on TDE-HMM features performed very well, predicting about 

50% of the variance in contralateral combined bradykinesia-rigidity and tremor scores OFF 

medication (Figure 8), or contralateral bradykinesia-rigidity alone (Supplementary Figure 

9A), -much better than ridge regression based on thresholding models. The HMM states and 

features contributing to the regression models predicting contralateral UPDRS Part III 

hemibody scores OFF medication were very similar to those contributing to regression models 

predicting the change in contralateral UPDRS Part III hemibody scores with medication 

(compare Supplementary Figure 10 with Supplementary Figure 4). To highlight this 

Supplementary Figure 11 presents a scatter plot of all the median normalised regression 

coefficients from the two sets of models. These tend to lie on a diagonal, which suggests that 

the LFP features that predict motor impairment OFF medication are those that may be 

modulated by treatment with levodopa to achieve improvement in motor state. 

As before, prediction of contralateral hemibody tremor scores alone was weaker than 

prediction of bradykinesia-rigidity, but ridge regression based on TDE-HMM features was still 

able to predict about 30% of the variance in the contralateral tremor score OFF medication 

(Supplementary Figure 9B). 

To explore the effect of expanding the feature set for prediction of OFF medication 

contralateral UPDRS Part III hemibody scores, we included amplitude and gamma features in 

the ridge regression model. The result for adding amplitude information is illustrated in 
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Supplementary Figure 12 which demonstrates that the variance in contralateral combined 

bradykinesia-rigidity and tremor scores OFF medication explained by TDE-HMM models 

increased to 0.54 ± 0.05 (Supplementary Figure 12A, Left) and that explained by 

thresholding models increased to 0.18 ± 0.07 (Supplementary Figure 12A, Right). Adding 

gamma features to the model illustrated in Supplementary Figure 12A increased the variance 

explained by TDE-HMM models to 0.56 ± 0.06 (Supplementary Figure 12B, Left) and that 

explained by thresholding models to 0.18 ± 0.07 (Supplementary Figure 12B, Right). The 

signs of the amplitude coefficients depended on the frequency band as before and the signs of 

the gamma coefficients in the ridge regression were opposite to those of corresponding low 

beta coefficients. 

 

Discussion  

 

We have demonstrated that multiple spectral states in the STN LFP have a bearing on motor 

impairment in PD patients, and that levodopa modulates these states and shifts the balance 

between them in a way that predicts clinical change with high fidelity. Using group-level 

time-delay embedded Hidden Markov Modelling we showed that the preponderance, rate of 

occurrence and duration of LFP states in the low beta frequency range positively correlates 

with motor impairment in patients withdrawn from their antiparkinsonian medication. 

Levodopa reduced the preponderance (fractional occupancy), rate of occurrence and duration 

of low beta states, with this reduction correlating with the improvement in motor impairment. 

These observations are consistent with earlier reports using a standard thresholding approach 

to state or burst identification in PD patients, although these did not distinguish between the 

low and high beta band and only determined the relative numbers of states of a given 

duration, and hence could not unequivocally detect whether short or long duration beta bursts 
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were independently detrimental as measured by motor UPDRS score.12,13 The deleterious 

effects of the LFP states we identified were limited to the low beta band, in line with reports 

of correlations between averaged LFP power and motor impairment that are similarly limited 

to the low beta band,10,42 and studies that suggest that low and high frequency beta activities 

may be functionally distinct.32,43,44 

 

In addition, bivariate correlations and the normalised regression coefficients from ridge 

regression models suggested that STN LFP states at other frequencies (up to 40Hz) had 

opposing effects to the low beta state. Thus the preponderance, occurrence rate and duration 

of LFP states in the theta, alpha and high beta frequency ranges negatively correlated with 

motor impairment in patients withdrawn from their antiparkinsonian medication, and 

levodopa increased the preponderance, occurrence rate and duration of these states, with the 

increase correlating with the improvement in motor impairment. Changes in LFP state 

behaviour were biggest in the theta frequency band.  Although averaged power spectra of 

LFP need not faithfully mirror LFP state behaviour in the STN, there are past reports of theta, 

and to a lesser extent alpha, activity being increased by levodopa in PD.22,43,45-48 These are 

consistent with our observation that the occurrence rates, fractional occupancies and life 

times of theta and alpha states were significantly increased when ON compared to OFF 

levodopa for the state visits of the shortest duration. Moreover, a recent study also suggested 

that theta increases might oppose the effects of beta bursts, as theta increased as beta bursts 

became disorganised and attenuated.49 

 

The opposing effects of the low beta state and theta, alpha and high beta states were together 

able to account for just over 50% of the variance in patients’ hemibody impairment OFF 

medication, and in the change in hemibody impairment following ingestion of the dopamine 
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prodrug, levodopa. The features of the different states contributing to the regression model 

for hemibody UPDRS scores OFF medication were very similar to those contributing to the 

regression model predicting the change in contralateral hemibody scores with medication. 

This suggests that the LFP features that predict motor impairment OFF medication are those 

that are modulated by treatment with levodopa to achieve improvement in motor state. Hence 

these features, like the elements of the motor impairment which they predict, are modulated 

by the current status of dopaminergic activity. 

 

Our core analysis sought features of HMM states with a frequency of under 40 Hz that 

predicted motor impairment. However, we did not include amplitude information, and 

omitted the effects of gamma band activities. In a secondary analysis we therefore included 

these features in our ridge regression. Information on signal amplitude and inclusion of 

HMM states in the gamma band led to modest further increases in the prediction of motor 

impairment off medication and in the change in this with levodopa treatment. Perhaps the 

most parsimonious explanation for the modest effect of incorporating amplitude information 

is that the pattern of spectral states under 40Hz determines signal amplitude or vice versa. 

Thus adding features related to absolute amplitude did not greatly improve predictions. 

Gamma activity may have had modest impact because it is not a consistent feature in LFP 

recordings across patients, and, because the information contained within may be shared by 

reciprocal changes at lower frequencies.26,27 

 

Experimental considerations 

 

The HMM approach serves to define states on objective statistical grounds and does not 

necessitate the application of arbitrary filtering within a canonical frequency band or of 
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arbitrary thresholds. Indeed, the derived features were consistently more predictive of motor 

impairment than features drawn from simple, standard thresholding used for burst detection. 

However, the HMM will identify as many states as are defined in the model, and if one or 

more related states react in a particular way then the converse may be reflected in the 

remaining state features, where these are considered relative to other states. Yet this is 

unlikely to explain the reciprocal nature of low beta and non-low beta features, both in terms 

of their response to levodopa and their prediction of motor impairment. This is because 

multiple (5 to 18) states were prescribed and systematic differences between frequency bands 

other than low beta were identified. Thus the major reciprocal effects occurred in the theta 

band and the least were seen in the background activity. Moreover, had changes in the non-

low beta band been secondary to those in the low beta band, then we should not have seen 

additional predictive value from non-low beta band features; the ridge regression model with 

all features was able to predict much more of the variance in motor UPDRS than the model 

with just low beta band features. Finally, not all of the state features considered in this study 

were relative to other states. Life time, interval time and occurrence rate take absolute values, 

and yet were also reciprocal in nature in the low beta and non-low beta bands.  

 

A clear limitation of the HMM is that only one state is visited at any given time. Although 

this state will have the most evidence and can be considered dominant at that moment in 

time, our approach will miss independent subsidiary states that might overlap in time, as 

might come from other neural generators. 

 

By focussing on frequency bands (as a post-hoc analysis step performed after HMM state 

identification and feature prediction by ridge regression), we facilitated comparison with the 

existing literature, but this approach meant that multiple HMM states could get combined 
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together into a given frequency band, and we could therefore be overlooking detail available 

in the underlying states. For example, it is possible that different HMM states could be 

differentially affected by medication status (e.g. change in burst rate, interval rate etc.) and 

this detail get lost when states are combined into a single frequency band. In addition, the 

number of states to be classified by HMM has to be predefined, as does the number of lags 

utilised, although by collapsing the results across many realisations of the HMM, as here, we 

can identify robust features in the data. We should also note that the attribution of different 

HMM states to canonical frequency bands was not perfect, partly because the frequency 

ranges of these bands are somewhat arbitrary when applied to the basal ganglia and 

predominantly defined on the basis of cortical physiology.  

 

It is tempting to assume that theta, alpha and high beta states promote normal movement, but 

we did not assess the presence of levodopa-induced dyskinesias in our cohort and so it 

remains to be seen whether any of these LFP sates are linked to dyskinesias ON medication. 

Indeed, there is some evidence that excessive theta activity in dorsolateral motor STN might 

be related to dyskinesias.22,45,46 Gamma oscillations in the STN LFP have also been 

associated with dyskinesias on levodopa.22,46,50 Ultimately, it must be acknowledged that the 

link between different LFP states in the STN and motor impairment is correlational in nature, 

and further studies are needed to determine whether any of these LFP states are 

mechanistically involved in determining motor impairment. 

 

With respect to our clinical data it should be noted that we had a mix of motor UPDRS values 

determined at the time of the recording in some subjects and values determined up to three 

months pre-operatively in others. This may increases the variance in our clinical measure, as 

clinical impairment may have been greater in those assessed pre-operatively given that the 
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post-operative stun effect would have been absent. This may have potentially led us to under-

estimate the regression coefficients linking burst features to motor impairment. Finally, it 

should be noted that bursts can be defined by means other than the original thresholding 

method.12 It is possible that these newer methods might have led to increased regression 

coefficients estimates in the low beta band.15,51 However, the use of the original threshold 

method allowed us to more easily contrast our findings with those in the literature.12,13,35,36 

 

Implications for therapy 

 

The most immediate therapeutic significance of the present findings lies in the potential 

identification of a more informative feedback signal for closed-loop DBS than beta activity 

alone.52 When all LFP states and corresponding features were considered in a multivariate 

Ridge regression model it was possible to predict just over 50% of the variance in patients’ 

hemibody impairment. This is remarkable, and potentially valuable as feedback, regardless of 

whether the signals have mechanistic relevance. Moreover, although the strongest prediction 

was seen for bradykinesia and rigidity, tremor could also be predicted. The latter is not the 

case when beta power or bursts are considered alone.3,5,13,42 

 

However, several points need addressing before the tracking of the pattern of multiple LFP 

states can be used as feedback. First, it should be noted that LFP state correlations with motor 

impairment were shown across subjects rather than within subjects. However, recent studies 

relating beta bursts to trial-to-trial variations in motor performance make it possible that our 

findings will extrapolate to the individual.35,36,53 Second, until there is an online version of 

Hidden Markov Modelling, this technique will have to be limited to the off-line identification 

of the most informative states and state characteristics within a given subject, so that these 
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features can then be used to focus supervised machine learning techniques that can be applied 

on-line. 

 

Our findings are also important in suggesting that whilst some LFP states might be usefully 

downregulated for therapeutic benefit, others could potentially be upregulated to better mimic 

the effect of dopaminergic therapy and improve parkinsonism. Current conventional DBS 

serves to suppress low beta activity in the STN, but also potentially beneficial activities in 

other frequency bands.54 The present findings therefore further motivate closed-loop DBS as 

this is more selective in its suppression of LFP states when it is only triggered by beta 

bursts,12 and encourage the development of phase-locked stimulation techniques that can both 

selectively up and down regulate target brain states.55-57 
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Figures 

Figure 1: Data recorded during OFF (A) and ON (B) medications. First row is raw LFP 

of 1-second data sample, second row is the corresponding amplitude of the wavelet 

transform, third row is the corresponding HMM states posterior probability (with 8 states and 

11 lags). Fourth row are the spectra corresponding to the HMM states derived from the 

complete recording in all subjects. 
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Figure 2: Box-and-whisker plots of change (ON-OFF) in the rate of theta (4-7 Hz), alpha 

(8–12 Hz), low beta (13–21 Hz) and high beta (22-35 Hz) states identified by the 

combination of different HMM models. There are widespread changes in the burst rate of 

states between the OFF and ON medication condition, with these most marked for theta and 

low beta states. Each dot represents the median value across the 64 hemispheres in one HMM 

model (data from 56 different models are plotted). Statistics were derived after 

performing permutation testing and thereafter corrected for multiple comparisons using the 

false discovery rate (FDR) method. Data are presented in the form of modified box-and-

whisker plots with a box from the first quartile to the third quartile, a vertical line drawn 

through the box at the median, and whiskers drawn up to the upper and lower extreme values 

(excluding outliers). *: p<0.05, **:p<0.01, ***: p<0.001. 
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Figure 3: Box-and-whisker plots of medication-linked change in transition probability  

between various state bands (theta, alpha, low beta, high beta, and background) for 

different HMM models. Medication significantly drives activity away from the low beta 

state (shown as negative change) and into the theta and alpha states (shown as positive 

change). Changes in the high beta and background states are less marked, with the exception 

that transitions of the low beta state to the high beta and background states are increased by 

medication. Each dot represents the median value across the 64 hemispheres in one HMM 

model (data from 56 different models are plotted). Statistics were derived after 

performing permutation testing and thereafter corrected for multiple comparisons using the 

false discovery rate (FDR) method. Data are presented in the form of modified box-and-

whisker plots with a box from the first quartile to the third quartile, a vertical line drawn 

through the box at the median, and whiskers drawn up to the upper and lower extreme values 

(excluding outliers).*: p<0.05, **:p<0.01, ***: p<0.001. 
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Figure 4: Box-and-whisker plots of medication-induced change (ON-OFF medication) 

in fractional occupancy (A), life time (B) and interval time (C) for different HMM 

models. Low beta state is reduced ON medication for fractional occupancy and life time, and 

increased ON medication for interval time. Theta, alpha, and high beta states show the 

converse pattern. Each dot represents the median value across the 64 hemispheres in one 

HMM model (data from 56 different models are plotted). Statistics were derived after 

performing permutation testing and thereafter corrected for multiple comparisons using the 

false discovery rate (FDR) method. Data are presented in the form of modified box-and-

whisker plots with a box from the first quartile to the third quartile, a vertical line drawn 

through the box at the median, and whiskers drawn up to the upper and lower extreme values 

(excluding outliers). *: p<0.05, **:p<0.01, ***: p<0.001. 
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Figure 5: Correlation between medication-induced change (ON-OFF medication) in 

bursting and % change (ON-OFF medication) in contralateral hemibody UPDRS score 

including tremor items.  Correlations for change in rate of states (A) and relative burst 

number (B) are shown for theta, alpha, low beta, high beta and background states identified 

by 56 different HMM models. Increase in rate of theta and alpha states is coupled with 

contralateral hemibody UPDRS Part III score reductions ON medication across all state 

durations. However, this pattern is reversed for the relative number of the shortest alpha 

states. Increase in rate of the low beta state positively correlates with contralateral hemibody 

motor UPDRS Part III score reductions ON medication across all burst durations. However, 

this is only true of longer durations when it comes to change in relative state numbers in the 

low beta band. Results were corrected for multiple comparisons using false discovery 

rate (FDR) method. Median correlations ± SD are shown. *: p<0.05, **:p<0.01, ***: p<0.001 

and refer to whether the 56 bivariate correlations for each frequency band and state episode 

duration were significantly more positive or negative than zero following FDR correction. 
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Figure 6: LFP HMM state prediction of change in contralateral hemibody UPDRS 

score including tremor items upon treatment with levodopa. (A) Box-and-whisker plot of 

coefficient of determination (r2) between predicted and actual percentage improvement in 

contralateral hemibody UPDRS score including tremor items. Prediction was performed 

using ridge regression which utilized features extracted from different HMM models (left) 

and different percentile thresholding models across different frequency bands (right). Each 

dot represents data from one HMM model (n=56) on the left and one thresholding model 

(n=23; different threshold levels 55-99) on the right. ***: p<0.001. (B) Illustrative examples 

showing correlation between the mean predicted (across the 56 HMM and 23 thresholding 

models) and actual percentage improvement in contralateral hemibody bradykinesia-rigidity 

items of the UPDRS Part III. Prediction was performed using ridge regression which utilized 

multiple HMM state features (top) or multiple thresholded frequency-bands features 

(bottom). Each dot in B represents data from one hemisphere in one subject (n=64). Linear 

fits and 95% confidence limits are shown. Negative changes represent % reductions in 

UPDRS score after medication administration.  
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Figure 7: LFP HMM state prediction of change in contralateral hemibody UPDRS 

score upon treatment with levodopa using different feature sets. (A) Box-and-whisker 

plots of coefficients of determination (r2) between predicted and actual percentage 

improvement in contralateral hemibody UPDRS score including tremor items, estimated by 

ridge regression utilizing only low beta features (Left) and theta, alpha and high beta features 

(right) extracted from different HMM models. Each dot represents data from one HMM 

model (n=56). ***: p<0.001. (B) Illustrative example of single HMM model showing 

correlation between predicted and actual percentage improvement in contralateral hemibody 

UPDRS score including tremor items. Prediction was performed using ridge regression which 

utilized only low beta (top) or utilized theta, alpha and high beta features (bottom) from an 

8-state HMM model. Results of leave-out one cross-validation are presented for the two ridge 

regression models. Each dot in B represents data from one hemisphere in one subject (n=64). 

Linear fits and 95% confidence limits are shown. Negative changes represent % reductions in 

UPDRS score after medication administration.  
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Figure 8: Box-and-whisker plot of coefficient of determination (r2) between predicted 

and actual contralateral hemibody UPDRS score, including tremor items, OFF 

medication. Prediction was performed using ridge regression which utilized features 

extracted from different HMM models (left) and different percentile thresholding models 

based on LFPs recorded OFF medication (right). Each dot represents data from one HMM 

model (n=56) on the left and one thresholding model (n=23; one for each threshold applied 

across the four frequency bands) on the right. ***: p<0.001. 
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