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By investigating the topology of neuronal coactivity, we found that mnemonic 

information spans multiple operational axes in the mouse hippocampus network. High 

activity principal cells form the core of each memory along a first axis, segregating 

spatial contexts and novelty. Low activity cells join coactivity motifs across behavioural 

events and enable their crosstalk along two other axes. This reveals an organizational 

principle for continuous integration and interaction of hippocampal memories. 

 

Assimilating new knowledge without corrupting acquired memories is critical. However, 

learning and memory interact: prior knowledge can proactively influence ongoing learning, 

and new information can retroactively modify pre-existing memories. The hippocampus is a 

brain region supporting memory1, yet the network-level operations that continuously 

incorporate new experiences, segregating them as discrete traces while enabling their 

interaction, are unknown. The discovery that hippocampal principal cells are tuned to the 

animal’s position and surrounding cues provides an important mechanistic foundation for the 

role of the hippocampus in memory, with each environment recruiting a discrete combination 

of neurons expressing a map-like representation of that space1,2. While this suggests how the 

hippocampus disentangles the spatial contexts of different memories, these representations 

further involve the fine-grained temporal coordination of neuronal spiking3,4. Notably, sets of 

jointly-active neurons organize motifs of coactivity (co-firing patterns), some of which 

underpin spatially-selective assemblies5. Here, we hypothesize that an adaptive topological 

reorganization of coactivity motifs enables embedding of new memory items in the 

hippocampal network.  

 

We monitored dorsal CA1 (dCA1) ensembles from mice exploring a familiar environment 

before and after associating a novel environment with reward (sucrose), using a 1-day 

conditioned place preference (CPP) task (Fig. 1a and Extended Data Fig. 1a). Each day, 

mice first explored the familiar enclosure (exposure). Next, we identified the preference of 

each mouse for one of the two novel compartments connected by a bridge to form the CPP 

enclosure that day (pre-test). We subsequently removed that bridge in conditioning sessions 

where each mouse explored its non-preferred compartment baited with drops of a sucrose 

solution (+Suc.); and then the preferred compartment with drops of water (+Wat.). One hour 

after the last conditioning session, we re-inserted the bridge and tested CPP memory (CPP 

test; Extended Data Fig. 1b). To assess the effect of new CPP memory on prior 

representations, we finished each recording day by re-exposing mice to the familiar enclosure 

(re-exposure). 

 

On each day we recorded neuronal spiking throughout the six CPP task sessions (Fig. 1a; 

n=1,083 total principal cells; 63.7±33.2 principal cells per day; 17 days from 7 mice). Using 
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the spike trains recorded during active exploration (i.e. excluding immobility epochs and 

sharp-wave/ripples), we computed weighted graphs6,7 to explore the firing relationships 

between sets of coactive neurons in each task session (Fig. 1b-e; n=102 graphs; 260,058 

co-firing pairs). In these co-firing graphs, each node represents one cell; the edge linking any 

two nodes represents the coactivity of that cell pair, with a weight computed as the Pearson 

correlation coefficient between their spike trains. For each graph, this procedure yielded an 

adjacency matrix of pairwise co-firing coefficients, with dimensions equal to the number of 

nodes (Fig. 1c and Extended Data Fig. 1c). 

 

We observed that co-firing graphs include more triads of coactive nodes during CPP learning 

(Fig. 1f; Clustering coefficient), showing that associating a novel place with reward changes 

the coactivation structure of the network. Concomitantly, the average geodesic path length, 

calculated as the mean shortest path between any two nodes, decreases (Fig. 1f; Geodesic 

path length), indicating greater functional connectivity between sets of coactive neurons. By 

calculating for each node, the summed weight of all its edges in the adjacency matrix, we also 

found that the average single-neuron cumulative co-firing increases (Fig. 1f; Co-firing 

strength), reporting heightened firing associations among neurons during CPP learning. 

Similar topological deviations from the co-firing network featuring the familiar context 

during exposure occurred during exploration of a novel context (without reward), 

spontaneous preference for a novel place and reward experience in an otherwise familiar 

context (without CPP) (Extended Data Fig. 2), suggesting a general mechanism for 

integrating new information. Importantly however, these topological deviations did not reset 

during re-exposure one hour after CPP (Fig. 1f) while they did in the other tasks (Extended 

Data Fig. 2). These sustained changes following CPP neither reflected differences in 

exploration nor simple fluctuations in co-firing (Extended Data Fig. 3). Thus, the mnemonic 

operation of updating a recently-encountered place with reward caused an enduring 

topological reorganisation (“hysteresis”) in the coactivity structure of the network. 

 

We next asked whether the topological hysteresis caused by CPP on the co-firing motifs 

expressed in the familiar enclosure (Fig. 1f) affected its spatial representation. By computing 

the firing maps of individual neurons in each task session (Fig. 2a), we found that both 

single-neuron and population-level maps featuring exposure reorganized in the CPP 

enclosure to then largely re-emerge during re-exposure (Extended Data Fig. 4a,b). Yet, 

despite their reinstatement during re-exposure after CPP, familiar maps seemed edited 

beyond mere fluctuations in neuronal activity (Extended Data Fig. 4c-g). 

 

These results indicate that new CPP memory re-structured the prior representation of the 

familiar environment. To discern the effect of this cross-talk, we analysed the transformation 

of co-firing graphs within the “network activity space”. We computed the topological 

distances separating graphs across the six CPP task-sessions (Fig. 1a), using the Riemannian 

Log-Euclidean metric. For the co-firing adjacency matrix of each session, this procedure 

yielded a vector of distances to the adjacency matrices of the other sessions recorded that day 

(n=6 task-session pairwise distance vectors, together forming one 6x6 matrix each day; Fig. 

2b and Extended Data Fig. 5a). Principal components analysis of the distance matrices 

revealed three axes explaining ~80% of the variance between co-firing graphs across CPP 

task-sessions (Fig. 2c-e; see also Extended Data Fig. 5b-e). Along the first principal 

component, the co-firing patterns of a given session overlapped with those of the other 

sessions in the same environment but not across (Fig. 2c-e), thus discriminating the familiar 

enclosure from the novel CPP apparatus and reporting the hippocampal remapping between 

these contexts (Extended Data Fig. 4a-d). Coactivity along the next two components 
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disentangled the distinct behavioural experiences within each enclosure. Namely, the four 

CPP sessions on the second axis and the sessions before from those after reward on the third 

axis, notably separating exposure and re-exposure to the familiar enclosure and thus reporting 

the topological hysteresis following CPP (Fig. 1f). These results held when considering 

separately the two CPP compartments during pre-test and test (Extended Data Fig. 5f,g). 

Across CPP task-sessions, co-firing motifs therefore spanned different directions of the 

network activity space, segregating spatial contexts while discretizing events within them. 

Likewise, multiple axes explained hippocampal co-firing in the other tasks (Extended Data 

Fig. 5h-j) as a general principle to organise information in the network. 

 

Recent findings suggest that the heterogeneity of the principal cell population, marked by the 

skewed (log-normal) distribution of firing rates, is central to the network operations 

underlying hippocampal function8–16. We thus identified principal cells in the top and bottom 

quartiles of the firing rate distribution during the exposure session (Fig. 3a) to examine the 

contribution of these two subpopulations to co-firing graphs. High and low-rate principal 

cells were biased towards deep and superficial pyramidal sublayers, respectively (Extended 

Data Fig. 6)8,13,15. We noted that low – but not high – activity cells discharged more bursts of 

spikes (spike packets with inter-spike intervals within 6ms) during re-exposure compared to 

exposure (Fig. 3b and Extended Data Fig. 7a,b), sustaining increased firing rate one hour 

after CPP (Extended Data Fig. 7c). These enduring activity changes were not observed in 

the other tasks (Extended Data Figs. 7d-i). Moreover, low activity cells with higher bursting 

during re-exposure showed increased spatial coherence and information content (Extended 

Data Fig. 8). Remarkably, these cells initially had the lowest place-field coherence during 

exposure and became spatially informative following CPP learning (Extended Data Fig. 9). 

In addition, low activity cells with the most spatially tuned activity during exposure also 

showed increased spatial information during re-exposure, without altered burst spiking 

(Extended Data Fig. 9). These results suggested that the cross-talk between the new CPP 

memory and the prior familiar representation involved the heightened network contribution 

of low activity cells following their recruitment during CPP learning. Indeed, the low – but 

not high – activity subpopulation exhibited sustained topological changes throughout CPP 

sessions (Extended Data Fig. 10a), explaining whole-network hysteresis during re-exposure 

(Fig. 1f). Moreover, reward-related firing modulation of low activity cells from pre-test to 

sucrose conditioning in the CPP enclosure predicted changes in co-firing from exposure to re-

exposure in the familiar enclosure (Extended Data Fig. 10b,c), constituting another instance 

of the impact of reward on hippocampal activity13,17. 

 

We finally evaluated the contribution of high and low activity subpopulations to network co-

firing motifs, leveraging the Riemannian Log-Euclidean framework (Fig. 2b-e). Co-firing 

solely involving high activity cells segregated the two task enclosures at the onset of pre-test 

(Fig. 3c and Extended Data Fig. 10d). Coactivity motifs including low activity cells did not 

distinguish familiar exposure and novel CPP pre-test (Fig. 3c and Extended Data Fig. 10d). 

Rather, this subpopulation integrated co-firing patterns as mice experienced each task event, 

staying engaged thereafter during re-exposure where their contribution to network motifs 

reached that of high activity cells. Accordingly, in the CPP task the high and low activity 

cells contributed more to the first and third co-firing network axis, respectively; while their 

combination explained more the second axis (Fig. 3d). Moreover, the topological changes 

affecting the co-firing structure of the network during active exploration were associated with 

changes in sharp-wave/ripple co-firing of low activity cells during awake rest (Extended 

Data Fig. 10e,f), in line with recent work showing that these two subpopulations exhibit 

distinct sharp-wave/ripple response12,18. 
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In conclusion, by exploring the hippocampal network activity space from a graph-theoretical 

perspective, we show that new associative memories (place-reward) restructure the neural 

patterns representing prior memory for an unrelated environment. During this transformation 

of the hippocampal co-firing structure, high activity cells organize motifs that rapidly 

discriminate spatial contexts, robust to perturbation by subsequent experience. This 

contribution might instantiate a spatio-contextual backbone for memory schemas19,20. Low 

activity cells integrate coactivity motifs on-demand, throughout behavioural events. Their 

heightened engagement continues after new place-reward learning and across contexts, 

affecting the network representation of an otherwise familiar environment. This effect could 

involve low-rate principal cell plasticity12 leveraged by high computational load or neuro-

modulatory processes when novel contextual information and reward experience are related 

in memory. The newly-acquired topology of the hippocampal firing output, shaped by past 

inputs, may not be permanent, perhaps slowly returning to a baseline configuration as 

memories consolidate to other cortical circuits. The observed hysteresis could represent a 

network response protecting existing memories from catastrophic interference by adjusting 

the co-firing structure of learnt associations or forming redundant ones. This could also 

reflect retroactive encoding of recent experience, juxtaposing the current spatial reference 

frame with those encountered before. Together, these findings support the view of a division 

in computational labour within the log-normally distributed principal cell population for the 

hippocampal discretization of memories of space and events, allowing adaptive insertion and 

interaction of new information within a larger network of prior knowledge. 
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Figures 

 

 
 

Figure 1. New CPP memory reorganizes pre-existing hippocampal co-firing topology. 

(a) CPP task layout. Each day, mice explored the same familiar enclosure before and after a 

4-session CPP task. Mouse trajectory in each session from one day is shown below the 

schematic of in-use enclosures. Numbers indicate place preference scores for pre-test and 

test, as the time in sucrose-paired compartment (+Suc.) minus that in water-paired 

compartment (+Wat.) over the sum. During CPP test, the mouse successfully changed its 

initial preference for the sucrose-paired compartment, as indicated by the positive score. (b) 

Example raster plot showing the spike trains of 68 simultaneously-recorded dCA1 principal 

cells (one cell per row) for the day shown in (a). For clarity, a 20-second sample is shown. (c) 

The corresponding adjacency matrix of the pairwise correlation coefficients measuring 

principal cells’ co-firing. (d) The corresponding co-firing graph. Each node represents one 

cell. Each edge represents the co-firing association of one cell pair, color-coded according to 

their correlation’s sign and width proportional to the edge’s absolute value. (e) Example 

adjacency matrices (top-row) and corresponding neuronal motifs (bottom-row) extracted 

from the graph shown in (d) to visualize some co-firing changes across sessions. (f) Changes 

in topological clustering (top), geodesic path length (middle) and single-neuron cumulative 

co-firing strength (bottom) of co-firing graphs. For each measure, the entire dataset is 

presented using a Cumming estimation plot to visualize the effect size; each upper panel 

shows the distribution of raw data points (each point represents one cell) for each color-coded 

session (with the gapped lines on the right as mean (gap) ± SD (vertical ends) for each 

session); each lower panel displays the difference between a given session and the exposure, 

computed from 5,000 bootstrapped resamples and with difference-axis origin aligned to the 

median of the exposure distribution. For each task-session: black-dot, median; black-ticks, 

99% confidence interval; filled-curve: sampling-error distribution. 
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Figure 2. Mnemonic information spans multiple network co-firing axes. 

(a) Example firing maps across CPP task-sessions (one cell per row; numbers indicate peak 

rate). (b) Average matrix of the topological distances separating the co-firing graphs across 

the six CPP task-sessions. (c-e) Principal Components (PCs) Analysis applied to matrices of 

topological distances unfolded multiple axes explaining across-session variance in co-firing. 

(c) Weight vectors representing the contribution of individual sessions to the variance in 

topological distances along the first three PCs. (d) Projection of the topological distances 

between co-firing motifs onto the first three PCs. Each data point represents one (color-

coded) session of a given mouse day. (e) Same topological distances projected on the PC1 

versus PC2 (left) and PC3 (right) planes. Note the segregation of co-firing motifs along PC1 

for sessions in familiar versus CPP enclosures; for the four CPP sessions along PC2; and for 

exposure/re-exposure sessions along PC3. 
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Figure 3. High and low activity cells contribute differentially to network co-firing axes. 

(a) Firing rate (log-normal) distribution of principal cells during exposure. The highest and 

lowest quartiles formed the high and low activity subpopulations, respectively. (b) Example 

spike trains of a low and a high activity cell during exposure and re-exposure. Two raster 

plots shown for each cell (60-s rows; vertical ticks representing spike times) during exposure 

(top) and re-exposure (bottom). For clarity, the first 5-min of each session is represented. (c) 

Matrices of topological distances separating co-firing graphs across sessions, for low-low, 

low-high and high-high activity cell pairs. (d) Cumming estimation plots showing the 

contribution of low-low, low-high and high-high activity cell pairs to co-firing variance along 

the first three axes of the CPP network. Top: each data point represents the variance 

explained by a given co-firing motif along one axis for one day. Bottom: for each axis, the 

co-firing motif with the strongest contribution (color-coded dashed line) is compared with the 

other two motifs’ contribution. Black-dot, mean difference; black-ticks, 99% confidence 

interval; filled-curve: sampling-error distribution. 
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Methods 

Animals. These experiments used adult male C57BL/6J mice (Charles River Laboratories, 

UK) or transgenic heterozygous CamKIIa-Cre mice (Jackson Laboratories; CamKIIa-Cre 

B6.Cg-Tg(Camk2a-cre)T29-1Stl/J, stock number 005359, RRID: IMSR_JAX:005359; 

maintained on a C57BL/6J background). Mice were housed with their littermates until the 

surgical procedure with free access to food and water in a room with a 12/12h light/dark 

cycle, 19–23°C ambient temperature and 40–70% humidity. All mice held in IVC's, with 

wooden chew stick and nestlets. Mice were 4-7 months old at the time of testing. 

Experimental procedures performed on mice in accordance with the Animals (Scientific 

Procedures) Act, 1986 (United Kingdom), with final ethical review by the Animals in 

Science Regulation Unit of the UK Home Office.  

 

Surgical procedure. Mice were implanted with a microdrive during a surgical procedure 

performed under deep anaesthesia using isoflurane (0.5–2 %) and oxygen (2 l/min), with 

analgesia (0.1 mg/kg vetergesic) provided before and after surgery. Microdrives contained 

10–12 tetrodes, targeting the stratum pyramidale of the dorsal CA1 hippocampus 21. Tetrodes 

were constructed by twisting together four insulated tungsten wires (12 µm diameter, 

California Fine Wire) and heating them to fuse them into a single bundle. Each tetrode was 

attached to a M1.0 screw to enable their independent movement. The drive was implanted 

under stereotaxic control in reference to bregma21. Tetrodes were initially implanted above 

the CA1 pyramidal layer and their exposed parts were covered with paraffin wax. The drive 

was then secured to the skull using dental cement and stainless-steel anchor screws inserted 

into the skull. Two of the anchor screws, both above the cerebellum, were attached to a 50 

µm tungsten wire (California Fine Wire) and served as ground. Tetrode placement was 

confirmed by the electrophysiological profile of the local field potentials in the hippocampal 

ripple frequency band and anatomical electrode tracks 21,22. In one mouse, a single-shank 

silicon probe (Neuronexus, model A1x32-5mm-25-177-H32_21mm) was implanted 

following the same surgical procedure to span the somato-dendritic axis of dCA1 principal 

cells and establish the laminar profile of the sharp-wave/ripples (SWRs) detected in the local 

field potentials. These silicon probe recordings allowed estimating the position (depth) of 

individual tetrode-recorded principal cell soma (Extended Data Fig. 6). 

 

Recording procedure. After at least one-week post-operative recovery, mice were handled 

for 3-4 days and then daily familiarized to the experimental paradigm, including connection 

to the electrophysiological recording system and exploration of a circular-walled open-field 

enclosure (42 cm diameter; the familiar enclosure). Mice were food restricted (to ~90% body 

weight) and the various experimental conditions were randomly allocated across mice and 

recording days. 

The 1-day CPP task included four sessions: pre-test, place conditioning to sucrose 

(+Suc.), to water (+Wat.) and test23. The enclosure consisted of two square-walled (46 cm × 

46 cm × 38 cm) compartments with distinct inside building block configurations on each day. 

A bridge (8 cm length, 7 cm width) connected the two compartments during pre-test and CPP 

test. A linear locomotion assistant (Imetronic, Pessac, France) held the recording cable while 

sensing its movement using infrared light beam detectors, allowing the connected animal to 

move freely within and across compartments. During pre-test, mice explored the entire CPP 

enclosure for 15min and their baseline (spontaneous) preference for one of the two 

compartments was determined. Next, the bridge was removed for the conditioning sessions, 

and mice explored their non-preferred compartment containing drops of 20% sucrose diluted 

in water (2x10min sessions, 10x10μl drops per session). Next, mice explored their preferred 

compartment containing drops of water (2x10min sessions, 10x10μl drops per session). One 
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hour later, CPP memory was assessed by allowing the mice to explore the entire apparatus for 

15min (CPP test). We calculated a place preference score for each mouse during both pre-test 

and test sessions as the difference between the time spent in the compartment paired with 

sucrose minus that paired with water during conditioning over their sum. On the morning of 

each recording day, the local field potential (LFP) signals obtained from each tetrode was 

used to guide its optimal positioning within the dCA1 pyramidal layer in search of multi-unit 

spiking activity 21. Tetrodes were left in position for ~1.5-2h before recordings started. On 

each day, ensemble recordings were performed continuously while mice explored the familiar 

circular-walled enclosure before and after (“exposure” and “re-exposure”; 15 minutes each) 

the CPP task. Mice were subjected to a novel CPP enclosure on each recording day (i.e., 

novel spatial configurations and wall cue cards). 

Three other behavioural tasks had a 6-session layout similar to that of the CPP task, in 

order to evaluate whether the topological deviations observed during CPP reflected a general 

network response for integrating new information. In these three tasks, each day contained 6 

sessions that matched the timeline of the CPP task. Mice explored the familiar enclosure 

before (exposure) and one hour after (re-exposure) either: (i) four sessions of spatial 

exploration in a novel enclosure without reward (the “Novel context only” task; Extended 

Data Fig. 2a), (ii) four sessions testing spontaneous preference for one of two novel 

enclosures, without reward (the “Spontaneous Place Preference” task; Extended Data Fig. 

2c), or (iii) four sessions of spatial exploration in a second familiar enclosure with sucrose 

reward and water provided in the second and third session, respectively (the “Familiar 

context with reward” condition; Extended Data Fig. 2f), as in the CPP task (Fig. 1a). A fifth 

task further allowed testing whether network topological deviations occurred during repeated 

exploration of a familiar enclosure (the “Familiar context only” task; four exploration 

sessions in the same familiar enclosure on each day; Extended Data Fig. 2h). 

On each recording day, mice were returned to their homecage between task sessions, 

having access to water and food while the experimenter prepared the open-field arena for the 

next session. Data collection could not be performed blind to the conditions of the 

experiments since the experimenter had to be aware as to which condition they had to expose 

each mouse on a given day (which behavioural task) and on a given session (which open-

field arena). At the end of each day, tetrodes were raised to avoid possible mechanical 

damage overnight. 

 

Multichannel data acquisition and position tracking. The extracellular signals from the 

electrodes were amplified, multiplexed, and digitized using a single integrated circuit located 

on the head of the animal (RHD2164, Intan Technologies; gain x1000). The amplified and 

filtered (0.09Hz to 7.60kHz) electrophysiological signals were digitized at 20kHz and saved 

to disk along with the synchronization signals from the position tracking. To track the 

location of the animal, three LED clusters were attached to the electrode casing and captured 

at 25 frames per second by an overhead colour camera.  

 

Spike detection and unit isolation. For the offline detection of spikes, the recorded signals 

were first band-pass filtered (800 Hz to 5 kHz). Spikes were then detected based on the 

power (root-mean-square) of the filtered signal calculated in 0.2-ms sliding windows. 

Detected spikes of the individual electrodes were combined per tetrode. To isolate spikes 

belonging to the same neuron, spike waveforms were first up-sampled to 40 kHz and aligned 

to their maximal trough 24. Principal component analysis was applied to these waveforms 

±0.5 ms from the trough to extract the first three or four principal components per channel, 

such that each individual spike was represented by 12 waveform parameters. An automatic 

clustering program (KlustaKwik, http://klusta-team.github.io) was run on this principal 

http://klusta-team.github.io/
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component space and the resulting clusters were manually recombined and further isolated 

based on cloud shape in the principal component space, cross-channels spike waveforms, 

auto-correlation histograms and cross-correlation histograms25,26. All sessions recorded on the 

same day were concatenated and clustered together. Each cluster used for further analysis 

showed throughout the entire recording day stable cross-channels spike waveforms, a clear 

refractory period in its auto-correlation histogram, well-defined cluster boundaries and an 

absence of refractory period in its cross-correlation histograms with the other clusters. 

Hippocampal principal cells were identified by the shape of their auto-correlation histogram, 

their firing rate and their spike waveform24. We further used an automated clustering pipeline 

using Kilosort (https://github.com/cortex-lab/KiloSort)27 via the SpikeForest sorting 

framework (https://github.com/flatironinstitute/spikeforest)28. To apply KiloSort to data 

acquired using tetrodes, the algorithm restricted templates to channels within a given tetrode 

bundle, while masking all other recording channels. The resulting clusters were manually 

curated to check all clusters and remove spurious units using metrics derived from the 

waveforms and spike times, and then verified by the operator. This procedure was cross-

validated using several datasets and verified against manual curation, by computing 

confusion matrices to validate that clusters obtained automatically were also obtained with 

the previous method. 

In total, this study includes n=3,483 principal cells from 63 recordings days: n=1,083 

principal cells in the “Conditioned Place Preference” task (63.7±33.2 principal cells per day; 

17 CPP 6-session days from 7 mice; 5 CamKIIa-Cre and 2 C57BL/6J; yielding 102 graphs; 

260,058 co-firing pairs), n=585 principal cells in the “Novel context only” task (45.0±13.7 

principal cells per day; 13 “Novel only” 6-session days from 5 mice; 3 CamKIIa-Cre and 2 

C57BL/6J; yielding 78 graphs; 28,192 co-firing pairs), n=640 principal cells in the 

“Spontaneous Place Preference” task (49.2±17.5 principal cells per day; 13 SPP 6-session 

days from 6 mice; 3 CamKIIa-Cre and 3 C57BL/6J; yielding 78 graphs; 34,838 co-firing 

pairs), n=517 principal cells in the “Familiar context with reward” task (57.4±12.2 principal 

cells per day; 9 “Familiar with reward” 6-session days from 3 mice; 2 CamKIIa-Cre and 1 

C57BL/6J; yielding 54 graphs; 30,512 co-firing pairs) and n=658 principal cells in the 

“Familiar context only” task (59.3±15.8 principal cells per day; 11 “Familial only” 4-session 

days from 3 mice; 2 CamKIIa-Cre and 1 C57BL/6J; yielding 44 graphs; 40,744 co-firing 

pairs). 

 

Sharp-wave/ripples (SWRs). Local field potentials (LFPs) of each pyramidal CA1 channel 

(for tetrode recordings) or recording site (for linear silicon probe recordings) were subtracted 

by the mean across all channels/sites (common average reference). These re-referenced 

signals were then filtered for the ripple band (110 to 250 Hz; 4th order Butterworth filter) and 

their envelopes (instantaneous amplitudes) were computed by means of the Hilbert transform. 

The peaks (local maxima) of the ripple band envelope signals above a threshold (5 times the 

median of the envelope values of that channel) were regarded as candidate events. Further, 

the onset and offset of each event were determined as the time points at which the ripple 

envelope decayed below half of the detection threshold. Candidate events passing the 

following criteria were determined as SWR events: (i) ripple band power in the event channel 

was at least 2 times the ripple band power in the common average reference (to eliminate 

common high frequency noise); (ii) an event had at least four ripple cycles (to eliminate 

events that were too brief); (iii) ripple band power was at least 2 times higher than the supra-

ripple band defined as 200-500 Hz (to eliminate high frequency noise, not spectrally compact 

at the ripple band, such as spike leakage artefacts). We classified tetrodes as being in the deep 

or superficial sublayer of the CA1 pyramidal layer based on the mean peak amplitude of 

detected SWRs (Extended Data Fig. 6). Positive values indicated that the tetrode was in the 

https://github.com/cortex-lab/KiloSort
https://github.com/flatironinstitute/spikeforest
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deep sublayer (i.e. closest to stratum oriens) while negative values indicated tetrode was in 

the superficial sublayer (i.e. closest to stratum radiatum)8,15,29. SWRs were also used as time 

bins to calculate SWR firing response of low and high activity cells (Extended Data Fig. 

10e,f). 

 

Weighted graphs of neuronal co-firing. We constructed weighted graphs that represent the 

spike relationships between dCA1 principal cells recorded in a given task session, calculating 

for that session the set of pairwise Pearson correlation coefficients between all pairs of spike 

trains. These co-firing graphs were computed using time bins during active exploratory 

behavior (with speed>2 cm.s-1), discarding periods of immobility and further excluding 

sharp-wave/ripples (SWRs) in each task session. The recorded neurons (and their co-firing 

associations) are therefore the nodes (and their edges) in the co-firing graph of each task 

event. We described each graph by its adjacency matrix, A, as an N x N square matrix: 

 

𝐴 = (

𝑤00 ⋯ 𝑤0𝑁

⋮ ⋱ ⋮
𝑤𝑁0 ⋯ 𝑤𝑁𝑁

) 

 

where N is the number of nodes in the graph; and each element, 𝑤𝑖𝑗, is a continuous weight 

value that defines the edge (i.e., the co-firing coefficient) between two nodes i and j. To 

compute each co-firing association value we used a bin-less approach by convolving the 

spike trains of i and j with a Gaussian kernel (SD=40ms) and then calculating their 

correlation coefficient r (thus, -1  r  1). As a result, A is symmetric, 𝑤𝑖𝑗 = 𝑤𝑗𝑖, and the 

graph is undirected.  

 

Clustering coefficient. We computed a clustering coefficient to characterize the local 

synchronization of network activity by quantifying the number of three-node motifs. In each 

graph, for any neuron i, we obtained its clustering coefficient 𝐶𝑖 using the formula proposed 

by Onnela et al. to quantify the strength of each triad30–32: 

 

𝐶𝑖 =
∑ (�̂�𝑖𝑗�̂�𝑖𝑞�̂�𝑗𝑞)

1
3⁄

𝑗𝑞

𝑘𝑖(𝑘𝑖 − 1)
 

 

where j and q are neighbors of neuron i, all edge weights are normalized by the maximum 

edge weight in the network  �̂� = 𝑤
𝑚𝑎𝑥(𝑤)⁄  , and ki is the degree of neuron i, which in these 

weighted graphs with no self-connection is equal to the number of neurons minus one. Note 

that this formula accounts for negative edges, yielding a negative value when there is an odd 

number due to the negative edges in the triad; it is positive otherwise. 

 

Geodesic path length. We measured the geodesic (i.e., shortest) path length to estimate the 

coordination efficacy between the activity of any two nodes in the graph. In a binary graph, 

this would represent the smallest number of edges connecting two nodes. Here, we embedded 

each weighted graph in a lattice and defined the length between two nodes i and j as:  𝑙𝑖𝑗 =
1

𝑤𝑖𝑗
⁄  , discarding all negative edges. We then identified the shortest path length between any 

two nodes in the graph using the Floyd-Warshall algorithm33–35. 

 

Single-neuron cumulative co-firing strength. We defined the single-neuron cumulative co-

firing strength as the total pairwise activity correlation strength of a given node in a weighted 
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graph. As a reference, the strength in a weighted graph can be compared to the degree in a 

binary graph, which accounts for the number of the node’s neighbours. Here, the strength 𝑆𝑖 

of a node i is the sum of all the weights 𝑤𝑖𝑗 of the edges projected from that node: 

𝑆𝑖 = ∑ 𝑤𝑖𝑗

𝑁

𝑗=0

 

 

where N is the number of neurons j that node i projects to. 

 

Spatial rate map analyses. We divided the horizontal plane of the recording enclosures into 

spatial bins of approximately 2×2 cm to generate the spike count map (number of spikes fired 

in each bin) for each neuron and the occupancy map (time spent by the animal in each spatial 

bin) in each task session. All maps were then smoothed by convolution with a two-

dimensional Gaussian kernel having a standard deviation equal to two bin widths. Finally, 

spatial rate maps were generated by normalizing the smoothed spike count maps by the 

smoothed occupancy map.  

The single-neuron map similarity was calculated by the 2D Pearson correlation 

coefficient between the place maps of a given neuron across two task sessions. Here, this task 

session pairwise measure compares for each neuron the spatial relationship between its place 

map in the exposure session and that computed for another task session. For the pre-test and 

test sessions, two place maps were extracted (one per arena) and the single-neuron map 

similarity was obtained taking the maximum similarity value between either of the two CPP 

sessions’ maps and that of the exposure session. 

The population map similarity5,36,37 compares the spatial relationships of the set of 

place maps computed for one task session with those from another task session. Here, this 

task session pairwise measure represents the extent to which sets of cells that fired in similar 

regions of space (that is, overlapping place fields) during the exposure session still fire 

together in similar regions of space later during another task session. For this measure, we 

used cells with a spatial coherence value (see below) above 0.2 during the exposure session. 

The population map similarity was calculated by first computing the place field similarity 

(PFS) value for each cell pair during the exposure session as the Pearson correlation 

coefficient from the direct binwise comparisons between the spatial rate maps of the two 

cells, limited to valid bins (occupancy greater than zero). This procedure yields a vector 

storing the PFS values for all cell pairs during the exposure session. We repeated this 

procedure to obtain the PFS vectors of the other task sessions. Finally, the population map 

similarity between two task sessions was calculated as the Pearson correlation coefficient 

between the PFS vector of the exposure session versus the PFS vector of the chosen 

comparison session. 

 

Spatial coherence. To measure the spatial coherence (i.e. the similarity of a cell’s firing rate 

over spatial bins), we computed a boxcar-averaged version of its unsmoothed spatial rate 

map, with each bin replaced by the arithmetic mean of itself and its eight adjacent 

neighbours. The smoothed spatial rate map was then correlated to its unsmoothed version to 

yield a Pearson correlation value38. 

 

Spatial mutual information. To estimate the amount of spatial information conveyed by the 

spike train of a given cell, we used the mutual information measure I(R;S): 
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𝐼(𝐑; 𝐒) = 〈∑ 𝑝(𝑟|𝑠)log2

𝑝(𝑟|𝑠)

𝑝(𝑟)
𝑟∈𝑹

〉𝑺 

 

where S is the discrete random variable formed by the set of the animal’s spatial locations s, 

and R is the discrete random variable formed by the set of possible spike count responses r 
39–41. This was corrected for estimation bias by subtracting an analytical estimate of the bias42. 

 

Across-graph topological distance analyses. Co-firing graphs have symmetric and positive 

semi-definite adjacency matrices since their elements are computed using the Pearson 

correlation coefficient between pairs of spike-trains. Thus, their topologies lie on a 

Riemannian manifold43 and the distance between them is most accurately measured by the 

geodesic distance between them44. Accordingly, we employed the log-Euclidean metric45 to 

compute the topological distance between constellations of co-firing patterns for pairs of task 

session graphs. From a Euclidean norm on symmetric matrices ‖∙‖, the distance 𝐷𝐿𝐸 between 

two matrices is given by: 

 

𝐷𝐿𝐸(𝐴1, 𝐴2) = ‖log(𝐴1) − log(𝐴2)‖ 

 

where 𝐴1 and 𝐴𝟐 are the two adjacency matrices to be compared and log(∙) is the matrix 

logarithm, the inverse of the matrix exponential defined as:  exp(𝐴) = ∑ 𝐴𝑘 𝑘!⁄∞
𝑘=0  

This procedure projects the adjacency matrices to a flat (zero curvature) Riemannian 

space, allowing applying Euclidean computations. This way, we obtained for each task 

session s (from exposure to re-exposure) a vector of six topological distances 𝐷𝑠 separating 

the co-firing graph of that session to the co-firing graph of each of the other five task 

sessions, as well as to itself (by adding one SD of white noise to avoid exact 0 results). We 

normalized each of these vectors by their maximum distance value, to compare them across 

days. We thus obtained a 6 x 6 matrix of the topological distances between the co-firing 

graphs of the six task sessions for each recording day.  

Principal Components Analysis (PCA) was used as a dimensionality reduction 

method to visualize the topological distances separating all co-firing graphs in the activity 

space of the hippocampal network. To do so, we stacked all topological distances vectors in a 

6 x N matrix, where N is the total number of co-firing graphs (N=n_d x n_s, one graph per 

task session, n_s, per recording day, n_d). We next used PCA on the recordings with more 

than 40 principal cells to obtain the set of principal components that indicate trajectories in 

the network activity space along which co-firing graphs evolved from exposure to re-

exposure task sessions. We then projected the first principal components that explained 80% 

of the variance in co-firing patterns onto the topological distances separating the co-firing 

graphs of all recordings from a given task. Independent Component Analysis (ICA) and 

Multidimensional Scaling (MDS) were also used as additional methods for such a 

visualization. 

Of note, there was a possibility that using the Pearson correlation to evaluate distances 

between each pair of co-firing matrices could alter the eigenvalues and the positive semi-

definiteness of the co-firing matrices. Since the eigenvalues are the basis for computing 

geodesic distances, the Pearson correlation coefficient could distort the similarity evaluation 

between co-firing matrices44. Yet, we additionally applied the Pearson correlation coefficient 

to measure the relationships between co-firing matrices across CPP task sessions: the first 

three PCs extracted this way corresponded to those revealed by the Riemannian log-

Euclidean distance metric (Extended Data Fig. 5d,e), notably showing that the co-firing 

network axes reported in this study are not mere outputs of a specific analysis method. 
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Bursting index. For the spike train of each neuron, we defined spike bursts as transient 

packets of spikes with inter-spike intervals less than 6ms 46,47. We used the inter-spike 

interval 𝑡 versus inter-spike interval 𝑡 + 1 plot to identify the first, mid and last spikes of each 

burst candidate. The bursting index was then defined by the ratio of bursting spikes out of all 

the spikes fired by the neuron. 

 

High and low activity cells contribution to network co-firing patterns. For each task 

session s, we quantified the contributions 𝐶𝐺
𝑠 of the high and low activity sub-networks G to 

network-level co-firing patterns by computing the Euclidean distance 𝑅𝐺
𝑠  between the six-

dimensional topological distance vector representing the entire network 𝐷𝑠 and those 

representing the two sub-networks 𝐷𝐺
𝑠  (see section above): 

 

𝑅𝐺
𝑠  = Euclidean(𝐷𝑠, 𝐷𝐺

𝑠) ;      𝐶𝐺
𝑠  =  1 − 𝑅𝐺

𝑠  

 

Data and statistical analyses. Data were analysed in Python 3.6 and using the packages 

DABEST v0.3.048, scikit-learn v0.23.249, NetworkX v2.450, pyentropy v0.5.051, Numpy 

v1.18.1, Scipy v1.4.1, Matplotlib v3.1.2, Pandas v0.25.3 and Seaborn v0.11.0. All statistical 

tests related to a symmetric distribution were performed two-sided using Gardner-Altman 

plots (to compare 2 groups) and Cumming plots (for more groups) from the Data Analysis 

with Bootstrap-coupled ESTimation (DABEST) framework48. These DABEST plots allow 

visualizing the effect size by plotting the data as the mean or median difference between one 

of the groups (the left-most group of each plot, used as group-reference) and the other groups 

(to the right, along the x-axis of each plot). For each estimation plot: (i) the upper panel 

shows the distribution of raw data points for the entire dataset, superimposed on bar-plots 

reporting group mean±SEM, unless stated otherwise; and (ii) the lower panel displays the 

difference between a given group and the (left-most) group-reference, computed from 5,000 

bootstrapped resamples and with difference-axis origin aligned to the mean or the median of 

the group-reference distribution. For each estimation plot: black-dot, mean (for normal 

distributions) or median (for skewed distributions) as indicated; black-ticks, 95% or 99% 

confidence interval as indicated; filled-curve: bootstrapped sampling-error distribution. Data 

distributions were assumed to be normal but this was not formally tested. We also used the t-

test to compare two conditions; the Wald test for assessing the significance of regression 

lines; and the Kolmogorov–Smirnov test for comparing probability distributions. No 

statistical methods were used to pre-determine sample sizes but our sample sizes are similar 

to those reported in previous publications (e.g., 5,8,10,12,13,15–19). Neural and behavioural data 

analyses were conducted in an identical way regardless of the identity of the experimental 

condition from which the data were collected, with the investigator blind to group allocation 

during data collection and/or analysis. See also the corresponding Life Sciences Reporting 

Summary. 

 

Code availability: The software used for data acquisition and analysis are available using the 

web links mentioned in the methods. 

 

Data availability: The data that support the findings of this study are available from the 

corresponding author upon reasonable request. 
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Supplementary figures 

 

 

 
 

Extended Data Fig. 1. Behavioural performance and hippocampal co-firing graphs in 

the CPP task. 

(a) Additional example trajectories for four mice. Each day (one day per row), mice explored 

the same (circular-walled) familiar enclosure before (exposure) and after (re-exposure) a 

1-day 4-session CPP task (Fig 1a). The CPP apparatus was formed by two novel 

compartments on each day. Numbers indicate place preference scores for pre-test and CPP 

test sessions, as the time in sucrose-paired compartment (+Suc.) minus that in water-paired 

compartment (+Wat.) divided by the sum. (b) Place preference scores. A negative score 

indicates that mice spent less time in the compartment paired with sucrose during 

conditioning. Note that during CPP test, mice successfully changed their preference for the 

compartment recently paired with sucrose, as indicated by the positive score. Scores are 

presented using a Gardner-Altman estimation plot to visualise the effect size. The left panel 

shows the distribution of raw data points for the pre-test and test sessions. The right panel 

displays the difference between CPP test and pre-test, computed from 5,000 bootstrapped 

resamples and with difference-axis origin aligned to the mean of the pre-test session 

distribution. Black-dot, mean difference; black-ticks, 99% confidence interval; gray-filled-

curve: sampling-error distribution. (c) The adjacency matrices (top row) of the pairwise 

correlation coefficients measuring principal cells’ co-firing for days shown in (a), with the 

corresponding co-firing graphs (bottom row). Each node represents one principal cell. Each 

edge represents the co-firing association of one cell pair, color-coded according to their 

correlation’s sign and width proportional to the edge’s absolute value. 
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Extended Data Fig. 2. Graph topology during exploration of a novel enclosure, 

spontaneous novel place preference and exploration of a familiar enclosure with or 

without reward. 

(a,b) “Novel context only” task. Behavioural protocol (a) and topology of hippocampal co-

firing graphs (b) for unrewarded exploration of a novel enclosure (n=585 total principal cells; 

45.0±13.7 principal cells per day; 13 days from 5 mice yielding n=78 graphs; 28,192 co-

firing pairs). Each day, mice explored the familiar enclosure before (exposure) and after (re-

exposure) exploring a novel enclosure over four sessions, without sucrose reward. The 

session timeline matches that of the CPP task. (a) An example mouse trajectory for each 

session is shown for one day below the schematic of in-use enclosures. Additional examples 

shown below for two other days (one day per row). (b) The topological changes in clustering 

(top), geodesic path length (middle) and single-neuron cumulative co-firing strength (bottom) 

of co-firing graphs. For each measure, the entire “Novel context only” dataset is presented 

using a Cumming estimation plot to visualize the effect size. Each upper panel shows the 

distribution of raw data points (one point represents one principal cell) for each color-coded 

session (with the gapped lines on the right as mean (gap) ± SD (vertical ends) for each 

session). Each lower panel displays the difference between a given session and exposure, 

computed from 5,000 bootstrapped resamples and with difference-axis origin aligned to the 

median of the exposure distribution. For each session: black-dot, median; black-ticks, 99% 

confidence interval; filled-curve: sampling-error distribution. Note that exploring a novel 

context causes topological deviations from the co-firing graph that had featured exposure, 

indicating that the hippocampal network “learns” about the novel spatial layout. These 

deviations no longer occurred during re-exposure. (c-e) “Spontaneous Place Preference” 

(SPP) task. Behavioural protocol (c) and performance (d) along with the graph topology (e) 

(n=640 total principal cells; 49.2±17.5 principal cells per day; 13 days from 6 mice yielding 

n=78 graphs; 34,838 co firing pairs). Each day, mice explored the familiar arena before 

(exposure) and after (re-exposure) exploring a CPP-like apparatus formed by two novel 

compartments (Nov 1 and Nov 2) connected with a bridge (pre-test). Having identified the 

preference of each mouse for one of the two novel compartments, the bridge was next 

removed; each mouse explored its non-preferred compartment, and then its preferred 

compartment, as in the CPP task but without sucrose nor water. One hour after, the bridge 

was re-inserted to test place preference (SPP test). The session timeline matches that of the 

CPP task. (c) Example mouse trajectories as in (a). Numbers indicate place preference scores 

for pre-test and SPP test, as the time in the non-preferred compartment minus that in the 

preferred compartment over the sum. Note that mice did not changed their preference, as 

indicated by the negative scores. (d) Scores presented using a Gardner-Altman estimation 

plot (as in Extended Data Fig. 1b). Note that co-firing topology also deviates during SPP 

sessions from that featuring exposure. Topological deviations no longer marked re-exposure. 

(f, g) “Familiar context with reward” task. Behavioural protocol (f) and graph topology (g) 

(n=517 total principal cells; 57.4±12.2 principal cells per day; 9 days from 3 mice yielding 

n=54 graphs; 30,512 co firing pairs). Each day, mice explored the first familiar arena before 

(exposure) and after (re-exposure) exploring a second familiar enclosure during four sessions. 

The timeline matches that of the CPP task. Drops of sucrose (+Suc.) and water (+Wat.) were 

provided during Fam 2b and Fam 2c sessions, respectively. Example mouse trajectories from 

three days (f) shown as in (a). (g) Similar to the unrewarded exploration of novel enclosures 

(b,e), co-firing graph topology deviated during exploration of the second familiar arena when 

paired with reward. These deviations no longer marked re-exposure to the first familiar 

enclosure. (h, i) “Familiar context only” task. Behavioural protocol (h) and network topology 

measured by co-firing strength (i) during exploration of a familiar enclosure without reward 

(n=658 total principal cells; 59.3±15.8 principal cells per day; 11 days from 3 mice yielding 



21 
 

n=44 graphs; 40,744 co firing pairs). Each day, mice explored a familiar enclosure (Fam 1 or 

Fam 2) over four sessions, to match the four sessions used between exposure and re-exposure 

in the other tasks (Fig. 1a and Extended Data Fig. 2a-g). (h) Example mouse trajectories 

shown as in (a). (i) Co-firing strength did not deviate during repeated familiar explorations. 

(j) Topological changes between exposure and re-exposure are compared across tasks. Note 

the sustained deviations (topological “hysteresis”) following CPP. 
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Extended Data Fig. 3. Topological changes between exposure and re-exposure in the 

CPP task do not relate to differences in spatial exploration or mere fluctuations in co-

firing. 

(a) Spatial occupancy during exposure and re-exposure for example CPP days from four mice 

(one mouse day per row; using examples shown in Extended Data Fig. 1). Shown for each 

day, from left to right: (i) animal’s trajectory for each familiar session, (ii) map of pixel-wise 

dwell time difference across the two sessions (for each pixel, the time spent in that pixel 

during exposure minus re-exposure), (iii) distribution of pixel-wise dwell time differences for 

all pixels covering the familiar enclosure, showing no significant difference of the mean from 

0 (all Ps>0.05), and (iv) corresponding Gardner-Altman estimation plot to visualize the effect 

size of the pixel-wise dwell time difference across the two sessions. For each Gardner-

Altman plot: left panels show the raw data points for exposure (grey) and re-exposure 

(green), with each point representing the dwell time in a given pixel; right panel: mean 

(black-dot), 95% confidence interval (black-ticks) and sampling-error distribution (filled-

curve) of the difference between re-exposure and exposure, computed from 5,000 

bootstrapped resamples and with the difference-axis (dashed-line) origin aligned to the mean 

of the exposure distribution. (b) Pixel-wise dwell time difference in spatial occupancy across 

the two sessions for all CPP days, as in (a). Average time difference distribution (left) not 

significantly different from 0 (1-sample t-test, p=0.53, t=0.62, df=1461; in sec per spatial bin: 

mean difference=0.05±0.08; 95% confidence interval=[0.106, -0.205]; interquartile 

range=[1.306, -0.870]), as also shown in the corresponding Gardner-Altman plot (right). (c) 

Cumming estimation plots showing the absolute number of pixels visited in each CPP task 

session (top; each dot representing one mouse CPP day) and the fraction of visited pixels in 

each enclosure (bottom). Note that the animal’s coverage was not significantly different 

between exposure and re-exposure. The higher number of pixels visited during pre-test and 

CPP test merely reflects the higher dimension of the whole-CPP apparatus. (d) Example time 

course of a mouse instantaneous speed during exposure (top) and re-exposure (bottom) in one 

CPP day. (e) Instantaneous speed across the six sessions for all CPP days (bar charts: 

mean±SEM; with each superimposed dot representing one mouse CPP day). No significant 

differences across sessions with respect to exposure (P values: pre-text=0.25; +Suc.=0.38; 

+Wat.=0.76; CPP test=0.82; Re-exposure=0.98; all 2-sample Kolmogorov-Smirnov tests). (f) 

Average speed across the six CPP task sessions (top) along with the total distance travelled 

(bottom; calculated for the first 15 min of each session). Note that the significant increased 

speed and distance travelled during pre-test (when the mouse is exposed for the first time to 

the novel CPP apparatus) do not translate in topological differences (Fig. 1f). These analyses 

(a-f) show that the topological hysteresis during re-exposure compared to exposure (Fig. 1f) 

does not reflect non-specific changes in spatial exploration. (g) Topology alterations of 

hippocampal graphs in re-exposure (Fig. 1f) do not reflect mere fluctuations in co-firing. To 

control for natural variations in co-firing graphs, we split both exposure and re-exposure in 

two sections (1 and 2) with equal duration of active exploration (speed>2cm/sec; exposure: 

6.89±0.13 versus 6.97±0.10 min; re-exposure: 6.99±0.30 versus 6.85±0.31 min, all Ps>0.05; 

Wilcoxon signed-rank test) and quantified topological changes across. As for all topological 

analyses, sharp-wave/ripples were excluded (though their occurrence did not differ between 

exposure and re-exposure; t=-1.55, p=0.14, paired t-test). For each measure: the top panel 

shows the raw data points for each (color-coded) section (with the gapped lines on the right 

as mean (gap) ± SD (vertical ends)); the bottom-left panel shows the difference between the 

bootstrapped distribution with respect to first section of exposure; the bottom-right panel 

shows the difference between the distribution of the second compared to the first section 

within each familiar session. Note that co-firing topology did not significantly change during 
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each individual familiar exploration. For each section: black-dot, median; black-ticks, 95% 

confidence interval; filled-curve: bootstrapped sampling-error distribution. 
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Extended Data Fig. 4. Familiar map-representations are largely reinstated during re-

exposure after CPP but include edits not explained by mere fluctuations. 

(a,b) Cumming estimation plots showing the effect size for changes in the similarity of both 

single-neuron (a) and population (b) spatial maps across CPP task sessions, with respect to 

(w.r.t.) exposure. For the single-neuron map similarity analysis (a), each data point represents 

the Pearson correlation using the firing rate of an individual neuron between the spatial bins 

of its map during exposure matched to those in a subsequent session. Note that single-neuron 

familiar maps are well reinstated during re-exposure following their reorganization during 
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CPP sessions. For the population-level map similarity analysis (b), each data point represents 

the extent to which on a given CPP day pairs of cells that jointly represented a location 

during exposure continued to show spatially overlapping firing fields in subsequent sessions. 

This indicates that the combination of cell pairs sharing place fields during exposure largely 

re-emerges during re-exposure after their re-organization in the CPP enclosure, consistent 

with the remapping of hippocampal maps across spatial contexts (e.g., Muller, R. U. & 

Kubie, J. L., J. Neurosci. 1987; Wilson, M. A. & McNaughton, B. L., Science 1993; Leutgeb, 

S. et al, Science 2004; Wills, T. J. et al, Science 2005; Colgin, L. L. et al, Trends in 

Neurosciences 2008). (c-g) The strength of familiar map reinstatement from exposure to re-

exposure was compared to non-specific fluctuations in firing activity over time. (c) With 

respect to the first section (half) of exposure, shown is the effect size for changes in single-

neuron map similarity during the second section of the exposure, the 4 CPP sessions and the 

two (first and second) sections of re-exposure. (d) Same as (c) but for the population map 

similarity. (e,f) To contrast the effect of CPP on familiar map reinstatement against within-

session variations in single-neuron (c) and population (d) map similarity, we compared the 

spatial correlation of hippocampal maps between exposure and re-exposure (Re-exposure 

across) with that between the two sections of the exposure (Exposure within) and of the re-

exposure (Re-exposure within). The across-session fluctuations were quantified by comparing 

maps of each of the two re-exposure half sections (computed as in (c,d)) with those of the two 

exposure half sections, taking the mean of the four resulting similarity scores. The within-

session fluctuations were obtained by comparing maps of the two sections of exposure or re-

exposure, as indicated. Note that both single-neuron (e) and population-level (f) map 

fluctuations are significantly smaller within an exploration session of the familiar enclosure 

than across, even though single-neuron map variations (e) within re-exposure are markedly 

larger than those within exposure before CPP. (g) In addition, the effect of CPP on familiar 

map reinstatement was compared to familiar map reinstatement between exposure and re-

exposure in the other tasks: unrewarded exploration of a novel enclosure (Novel only), 

spontaneous place preference for a novel place (SPP) and reward experience in another 

familiar enclosure (Familiar with reward). Altogether, these analyses show that while spatial 

maps expressed during re-exposure following CPP are strongly correlated with those initially 

seen during exposure before CPP (a,b), these reinstated maps nevertheless differ across these 

two sessions in the familiar enclosure of the CPP task more than changes expected from non-

specific fluctuations occurring within a given exploration of the familiar enclosure or those 

due to the temporal gap between exposure and re-exposure (c-g). These results indicate a 

crosstalk between the new CPP memory and the prior hippocampal representation of the 

familiar enclosure. Subsequent analyses in this study relate such a crosstalk to changes in 

firing activity of low rate principal cells (see Extended Data Figs. 7-10). For each Cumming 

estimation plot: black-dot, median or mean as indicated; black-ticks, 99% confidence 

interval; filled-curve: bootstrapped sampling-error distribution. 
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Extended Data Fig. 5. Visualizing directions of hippocampal graph transformations in 

the network co-firing space. 

(a) Computing the topological distances that separate co-firing graphs across the six task 

sessions. The co-firing graph of each task session was used to define a 6-dimensional vector 

of topological Riemannian Log-Euclidean distances to the other co-firing graphs obtained 

that day (e.g. here illustrated re-exposure versus exposure), including itself (see methods). 

For each 6-session task day, this procedure thus gives a 6 x 6 matrix of topological distances. 

All distance matrices were then stacked together to form a 6 x N matrix (with N the number 

of total graphs, i.e. N = 17 days x 6 sessions = 102) onto which we apply a dimensionality 

reduction technique (PCA, ICA or MDS). (b, c) Segregation of co-firing graphs using 

Independent Components Analysis (ICA; b) or Multidimensional Scaling (MDS; c). (b) ICA 

applied to the same matrices of topological distances used with PCA in the CPP dataset (Fig. 

2) as another dimensionality reduction method to visualize axes explaining across-session 

variance in co-firing motifs. Note that co-firing graphs computed for the exposure and the re-

exposure overlap on the first two independent components (IC) as they do along the first 

principal component (Fig. 2c-e); co-firing graphs are separated across the 4 CPP task events, 
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as they are along the second principal component (Fig. 2c-e). (c) MDS also applied to the 

same matrices of topological distances used with PCA in the CPP dataset (Fig. 2); this 

method preserves the six-dimensional distances between co-firing graphs and maps them 

onto a 2D plane. Note that the co-firing graphs computed for each task session of each CPP 

day are well separated, indicating the existence of multiple axes along which co-firing 

patterns change across CPP task events. (d, e) Here the Pearson correlation coefficient is used 

instead of the Riemannian Log-Euclidean distance to compute the topological distance 

between co-firing graphs across the six CPP task sessions. In (d) the average topological 

distance matrix (left) and its first three PCs (right) are shown. In (e) the segregation of the six 

CPP task sessions is shown using the PCs shown in (d). Note that for both the Riemannian 

Log-Euclidean distance (Fig. 2c-e) and the Pearson correlation coefficient (d,e) approaches, 

the PCA of the CPP dataset reveals that the variance in hippocampal co-firing segregated the 

familiar enclosure from the whole CPP test apparatus along PC1. Surprisingly, PC1 did not 

segregate the two compartments (Nov1 and Nov2) that formed the CPP apparatus on each 

day. This suggests that these compartments were treated together as one spatial continuum 

along PC1 because when the animal first encountered the CPP apparatus, these two 

compartments were equally novel and physically connected by the bridge during the pre-test. 

Therefore, a refined interpretation why along PC1 the two CPP compartments are clustered 

together (and different from the familiar enclosure) is that neuronal co-firing along this axis 

also accounts for spatial familiarity versus novelty. (f, g) PCA with the two compartments of 

the CPP apparatus considered separately during both pre-test (f) and CPP test (g) sessions. 

Here, we computed a co-firing graph using the spike trains associated with the visits of each 

CPP compartment during both test sessions, thus obtaining one co-firing graph per individual 

compartment (Nov1 versus Nov2) during each test session. Projecting the resulting four co-

firing graphs (two for pre-test and two for CPP test) onto the PCA axes obtained when 

considering the CPP apparatus as a whole entity (Fig. 2e) shows that PC2 segregates co-firing 

patterns related to each CPP compartment during test compared to pre-test. Likewise, PC2 

segregated the two CPP compartments when explored separately during the conditioning 

sessions where we removed the bridge (Fig. 2e). (h-j) The topological distance projections of 

the co-firing graphs from the other 6-session tasks. As for the CPP dataset, multiple PCs 

accounted for the variance in co-firing across the 6 sessions of each task. Note, however, that 

co-firing variance relates to the specifics of each task, and so is each set of PCs and their 

interpretation. For each task, we used the PCs explaining at least 80% of the total variance to 

project the co-firing graphs topological distance. The variance explained by these PCs is: 

“Novel context only” PC1=57%, PC2=19% and PC3=8%; “Spontaneous Place Preference” 

PC1=52%, PC2=18% and PC3=16%; “Familiar context with reward experience” PC1=69%, 

PC2=15%; and “CPP” PC1=48%, PC2=19% and PC3=14% (Fig. 2e). 

 



29 
 

 
 

Extended Data Fig. 6. High and low rate CA1 principal cells are skewed towards deep 

and superficial pyramidal sublayers, respectively. 

(a-d) For each CPP task day, we estimated the position (depth) of individual tetrode-recorded 

principal cell soma by leveraging silicon probe recordings with known spacing between the 

recording sites along a linear shank (25-μm steps). From these silicon probe recordings, we 

first computed the laminar profile of sharp-wave/ripples (SWRs) detected in the local field 

potentials (LFPs) along the radial axis of the dCA1 hippocampus (a). We used the peak of the 

corresponding depth profile of the ripple-band (110-250Hz) power to estimate the centre 

(middle) of the pyramidal (pyr.) layer (b; red cross). Using the average LFP waveform of the 

SWR events detected in these silicone probe recordings, we then established a SWR template 

where we reported the distance relative to the estimated centre of the pyramidal layer, 

knowing the precise distance between the recording sites on the linear shank (c). Next, we 
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computed the individual SWR profile of each tetrode for CPP recording days finishing with a 

sleep session, this way estimating the depth of each individual tetrode (and thus that of the 

somas of its recorded neurons) by positioning its SWR profile within the silicone probe SWR 

template (the ground-truth vertical depth; c). Shown in (d) are examples of single-tetrode 

SWR profiles and their estimated depth. (e) Left: the estimated depth of principal cells as a 

function of the average firing rate measured in the CPP task. Each data point represents one 

principal cell. Right: the same data plotted as a firing rate probability distribution per 

estimated depth. (f) Same data as in (e) but plotted as a ridge plot to better visualise the 

relation between firing rate of principal cells and depth of their recording tetrodes. Note that 

principal cells in the deep sublayer of the dCA1 pyramidal layer (closer to stratum oriens) 

show higher firing rates than those in the superficial sublayer (closer to stratum radiatum) 

(line of best fit: y=23.34log(x)-74.7; p=10-30; two-sided Wald Test). (g,h) The same analyses 

shown in (e,f) but performed for the bursting index. Note that principal cells of the deep 

dCA1 sublayer show higher spike bursting compared to those of the superficial sublayer (line 

of best fit: y=47.43log(x)-15.0; p=10-64; two-sided Wald Test). (i) Relative prevalence (left) 

and cumulative distribution (right) of low (blue) and high (red) rate principal cells along the 

dCA1 radial axis. Low and high activity cells are skewed towards superficial and deep dCA1 

pyramidal sublayers, respectively (p=0.016, Kolmogorov-Smirnov 2-sample test). 

 



31 
 

 
 



32 
 

Extended Data Fig. 7. Low activity principal cells show increased firing activity during 

re-exposure to the familiar enclosure following CPP learning. 

(a) Example spike trains of low and high activity cells during exposure and re-exposure to the 

familiar environment. For each of the eight example cells, shown are two raster plots (60-s 

rows; vertical ticks representing spike times) for exposure (upper plot) and re-exposure 

(lower plot). For clarity, only the first 5 min of each session are presented. Note the increased 

spike burst discharge by low activity cells during re-exposure compared to exposure. (b) 

Cumming estimation plot used to visualize for low (blue colours) and high (red colours) 

activity cells the effect size for changes in spike bursting between re-exposure and exposure. 

Upper panel: distributions of raw data points (each color-coded point represents one cell 

from the CPP task: n=272 low activity cells and 272 high activity cells) during exposure and 

re-exposure in light and dark colours, respectively; with the gapped lines on the right as mean 

(gap) ± SD (vertical ends) for a given subpopulation in a given session. Middle panel: the 

median (black-dot), 95% confidence interval (black-ticks) and sampling-error distribution 

(filled-curve) of the difference between (low or high activity) cells in a given session and the 

low activity cells in exposure, computed from 5,000 bias-corrected bootstrapped resamples 

and with the difference-axis (dashed-line) origin aligned to the median of low activity cells in 

exposure. Lower panel: similarly, compares the distribution in re-exposure to that in exposure 

within each subpopulation. Note that low, but not high, activity cells significantly discharge 

more bursts of spikes during re-exposure following CPP compared to exposure. The lack of 

increased bursting of the high activity cells during re-exposure compared to exposure does 

not reflect a ceiling effect given that the burst spiking distribution of this subpopulation had 

an inter-quartile range=0.07–0.18, a median=0.12 and a mean=0.15 throughout the CPP task 

sessions (see also the corresponding raw data points in Extended Data Fig. S9d and the 

coherence-percentiles' mean in Extended Data Fig. S9h), showing that this subpopulation 

could have discharged more bursts during re-exposure. (c) Cumming estimation plots to 

visualize the change in firing rate across CPP task sessions for the low (left panel) and the 

high (right panel) activity cell subpopulations. Note that firing rate of low activity cells 

increased during CPP sessions and stayed at higher values during re-exposure, not resetting to 

the values seen in exposure. (d-i) Bursting index (d-f) and firing rate (g-i) of high and low 

activity principal cells in the exposure and re-exposure to the familiar enclosure during the 

other tasks: exploration of a novel enclosure only (d,g), spontaneous place preference for a 

novel place (e,h) and exploration of another familiar enclosure with reward (f,i). Each (color-

coded) data point represents one cell (“Novel context only” task: n=214 low activity cells and 

128 high activity cells; “Spontaneous Place Preference” task: n=188 low activity cells and 

152 high activity cells; “Familiar context with reward experience” task: n=148 low activity 

cells and 96 high activity cells). All differences presented using Cumming estimation plots as 

in (b). Note that in these three other tasks, low activity cells did not show significant changes 

in burst spiking and firing rate during re-exposure compared to exposure. 
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Extended Data Fig. 8. Low activity cells with increased burst spiking following CPP 

exhibited stronger place field coherence and spatial information content. 

(a,b) Cumming estimation plots showing for low (blue colours) and high (red colours) 

activity cells the effect size in changes of place field coherence (a) and spatial mutual 

information (b) between exposure and re-exposure in the CPP task. The most burst spiking 

cells of both subpopulation (top 40% of bursting index distribution) in the re-exposure 

session are considered. Note that low, but not high, activity cells have significantly higher 

spatial coherence (a) and mutual information (b) during re-exposure after CPP. (c-h) 

Similarly, the place field coherence (c,e,g) and the spatial mutual information (d,f,h) of low 
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and high activity principal cells is shown for the other tasks including exposure and re-

exposure sessions. Low and high activity cells selected in the same way as in the CPP task 

dataset (a,b) to allow for comparison. For all Cumming estimation plots: black-dot, median 

(for skewed distributions) or mean (for normal distributions) as indicated; black-ticks, 95% 

confidence interval; filled-curve: bootstrapped sampling-error distribution. 
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Extended Data Fig. 9. Relation between spatial field coherence during exposure and 

subsequent changes in both burstiness and spatial information for low and high activity 

cells in the CPP task. 

(a,b) The spatial mutual information of low and high activity cells is plotted against their 

respective spatial coherence for each of the six CPP task sessions. Each data point represents 

one cell. Comparing with exposure, note the right-shift towards higher spatial information for 

a set of low activity cells during the CPP sessions, which then remained at higher values 

during re-exposure (a). (c,d) Similarly, the bursting index of low and high activity cells is 

plotted against their spatial coherence for each CPP task session. Also comparing with 

exposure, note the right-shift towards higher spike bursting in the distributions of low activity 

cells during CPP sessions, remaining higher during re-exposure (c). (e-h) For each of the six 

CPP task sessions, both low (e,f) and high (g,h) activity cell subpopulations were binned in 

20th-percentiles according to the spatial coherence of each cell’s place field during the 

exposure session. Then, the average spatial mutual information (e,g) and bursting index (f,h) 

were computed for each 20th-percentile bins across all task sessions. For clarity, the bins of 
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the re-exposure session marked with a white star (*) have significant changes in either 

measure (spatial information or bursting index) compared to the corresponding bins in the 

exposure session. Note that during re-exposure, low activity cells show significant increase in 

spatial information following CPP compared to exposure (e). This was not the case for high 

activity cells (g). Moreover, low activity cells with the least (0th–60th percentiles) spatial 

coherence during exposure increased their spike bursting during the CPP sessions and 

thereafter during re-exposure (f; with statistically different percentile bins marked with a 

white star compared to their corresponding bins in exposure). This was not seen for high 

activity cells (h). (i-l) Cumming estimation plots showing the effect size for changes in 

spatial information (i,k) and bursting index (j,l) for the low (i,j) and the high (k,l) activity cell 

subpopulations, binned as 20th-percentiles according to the spatial coherence of each cell’s 

place field during exposure. For further clarity, the black stars above the green filled-curves 

in re-exposure indicate significant changes compared to exposure. Note that across all 

percentile bins, low activity cells show significant increase in spatial information in re-

exposure compared to exposure (i). This was not seen for high activity cells (k). Moreover, 

low activity cells with the least (0th–60th percentiles) spatial coherence during exposure 

thereafter discharged more spike bursts during the CPP sessions and continued to exhibit 

significant higher burstiness during re-exposure compared to exposure (f,j; see stars). High 

activity cells maintained the same burstiness throughout all task sessions (h,l). For each 

Cumming estimation plot: black-dot, mean; black-ticks, 95% confidence interval; filled-

curve: bootstrapped sampling-error distribution. Altogether, these analyses show that CPP 

learning subsequently affected low activity cells during re-exposure to the familiar 

environment. Notably, these results show that the dCA1 network gained in spatial 

information content during re-exposure (compared to exposure) from both: (1) low activity 

cells that were already spatially tuned during exposure and then exhibited higher spatial 

informativeness following CPP (e,i), and (2) low activity cells that were not spatially tuned 

during exposure but were de-novo recruited during CPP, after which they stayed more active 

during re-exposure (f,j). These results are in line with the increase in spatial coherence 

observed for the most burst spiking of the low, but not high, activity cells during re-exposure 

compared to exposure (Extended Data Fig. 8a), and the gradual engagement of low activity 

cells in whole-network co-firing motifs (see Fig. 3c and Extended Data Fig. 10d). 
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Extended Data Fig. 10. High and low activity principal cells make distinct contributions 

to network co-firing motifs. 

(a) Cumming estimation plots showing CPP task-related changes in topological clustering 

(top), geodesic path length (middle) and single-neuron cumulative co-firing strength (bottom) 
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of co-firing graphs (with respect to exposure) for low and high activity cells. Black-dots, 

median; black-ticks, 99% confidence interval; filled-curve: sampling-error distribution. (b) 

Top, schematic showing the location of the containers for the sucrose and water drops in an 

example CPP enclosure. Bottom, distribution of firing rate changes (scores) between the 

+Suc and pre-test sessions for low and high activity cells (low activity cells: p=2.68x10-5, 

t=4.279, df=251; high activity cells: p=0.25, t=1.160, df=271; 1-sample t-tests against 0 

mean). For every cell that fired at least 100 spikes in either session, a score is obtained by 

taking the difference between its mean firing rate at the containers during +Suc and pre-test 

sessions, dividing by the sum. (c) The change in firing rate at the containers from pre-test to 

+Suc. session correlated with the change in co-firing strength from exposure to re-exposure 

for the low (regression line y=0.21x-0.11; p=0.018, Wald test) but not the high (regression 

line y=0.12x-0.23; p=0.51, Wald test) activity cells. Together with the topological deviations 

that feature the low activity cell co-firing graphs (a), this result supports the idea that during 

the mnemonic update of a newly encountered place with reward experience, a change in the 

firing activity of low activity cells allows a cross-talk between the new CPP memory and the 

prior representation of the familiar enclosure, as reported along PC3 (Fig. 3d). (d) 

Contribution of low and high activity cells to network co-firing motifs, as measured by the 

proximity between the high (right) and low (left) activity sub-networks to the whole network 

(i.e., containing the full distribution of all recorded neurons) in the topological distance space 

across the six CPP task events (w.r.t. low activity cells in exposure). Black-dot, median or 

mean as indicated; black-ticks, 99% confidence interval; filled-curve: sampling-error 

distribution. (e) For low and high activity cells, firing rate changes during sharp-wave/ripples 

(SWRs) detected in periods of immobility (speed<2cm/sec) of exposure and re-exposure 

sessions. For every cell, the change in SWR firing is measured as the difference between its 

mean firing rate during SWRs in the exposure and re-exposure sessions divided by the 

subpopulation’s average firing rate during SWRs of exposure. (f) Change in co-firing during 

SWRs between exposure and re-exposure for low-low, low-high and high-high activity cell 

pairs. SWR co-firing computed during SWRs detected in periods of immobility 

(speed<2cm/sec) of a given exploration session in the familiar enclosure. The change in co-

firing between re-exposure and exposure was then divided by the average subpopulation’s co-

firing. Note the increased SWR co-firing between low-low and low-high activity cells during 

the re-exposure session following CPP learning. 

 


