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Abstract 

Neural correlates of external variables provide potential internal codes that guide an 

animal’s behaviour. Notably, first-order features of neural activity, such as single-neuron 

firing rates, have been implicated in encoding information. However, the extent to which 

higher-order features, such as multi-neuron coactivity, play primary roles in encoding 

information or secondary roles in supporting single-neuron codes remains unclear. Here 

we show that millisecond-timescale coactivity amongst hippocampal CA1 neurons 

encodes short-lived behavioural contingencies. This contingency discrimination was 

unrelated to the tuning of individual neurons but instead an emergent property of their 

short-timescale coactivity. Contingency discriminating patterns were reactivated offline 

after learning and their reinstatement predicted trial-by-trial memory performance. 

Moreover, optogenetic suppression of inputs from the upstream CA3 region selectively 

during learning impaired coactivity-based contingency information in CA1 and 

subsequent dynamic memory retrieval. These findings identify short-timescale coactivity 

as a primary feature of neural firing that encodes behaviourally-relevant variables and 

supports memory retrieval.  

 

Main 

What features of neural activity does the brain use to encode information about the external 

world? Ample evidence suggests that the firing rates1,2 and temporal tuning properties3,4 of 

individual neurons show robust correlations with external variables. These first-order features 

of neural activity could serve as neural codes that are read by downstream structures to 

subsequently guide behaviour5. In addition, advances in in vivo multi-unit recordings have 

allowed further appreciation for the role of neuronal population dynamics in supporting internal 

representations6–8. The timescale at which population activity is organized may be critical. In 

particular, coincidental spiking at the timescale of a neuron’s membrane time constant (~10-

30 ms for cortical neurons9) effectively drives downstream receiver neurons5,10, can be parsed 

within network oscillations that pace firing of neuronal populations5, and can be rapidly 

stabilized through spike-timing-dependent plasticity (STDP)11,12. Indeed, millisecond-

timescale coactivity is a hallmark of some neural codes13–15. Such short-timescale coactivity 

organises the firing of neurons with related tuning to external variables, giving rise to robust, 

population-based representations that are congruent with those of their participating 

neurons14,16,17. Moreover, millisecond timescale coactivity could also play a primary role in 

encoding information. That is, groups of neurons may encode a variable as a function of their 

joint activity regardless of whether, individually, each neuron is tuned to this variable. While 

this type of emergent, coactivity-based coding has been described for physically well-defined 
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variables such as specific sensory inputs and actions18–20, its possible cognitive function has 

not been explored.  

 

Given the potential for rapid stabilization and retrieval of neural codes based on millisecond-

timescale coactivity, such codes may support behavioural performance when animals must 

rapidly learn and flexibly retrieve salient information – a process we refer to here as “dynamic 

memory”. Converging evidence suggests a prominent role of the hippocampus for such rapid 

and flexible learning21–23, supporting models that frame the hippocampus as a fast learning 

system24. Moreover, neural activity in the hippocampus is organized into temporally precise 

coactivity patterns15,22,25. We therefore hypothesized that millisecond-timescale coactivity 

patterns in the hippocampus serve a primary role in encoding behaviourally-relevant 

information supporting dynamic memory. To test this hypothesis, we developed a one-day, 

two-contingency discrimination task that we combined with multi-unit recording of 

hippocampal CA1 neurons and causal optogenetic manipulation of intra-hippocampal 

synapses. Our findings demonstrate a role for emergent coactivity-based representations in 

encoding contingency information and supporting dynamic memory retrieval.  

 

Results 

Mice learn and dynamically retrieve two new behavioural contingencies every day 

We first established a one-day behavioural paradigm that recruits dynamic memory (Fig. 1). 

Mice were initially pre-trained to collect a transiently available (5-second) drop of sucrose from 

a liquid dispenser after the presentation of an auditory cue (pre-training phase 1; Extended Data 

Fig. 1). Subsequently, animals experienced a novel learning enclosure every day, which was 

defined by a new spatial topology, two new sets of wall-mounted LED-displays and two newly 

positioned dispensers (pre-training phase 2; Extended Data Fig. 1). In this learning enclosure, 

animals encountered the following rule: immediately after tone presentation, one dispenser 

delivers a drop of sucrose solution whereas the other simultaneously delivers a bitter (quinine) 

solution; both drops are transiently available. Importantly, the dispenser-solution pairing was 

contingent on which of the two sets of LED cues is illuminated concurrently with the tone (Fig. 

1a,b). When animals reached an average of 80% performance in this pre-training phase, we 

then started the training phase, which included three stages every day (Fig. 1c). In the first 

stage, animals explored the new learning enclosure in two sessions, each with one of the two 

LED sets continuously illuminated but without tone presentation or drop delivery, as well as 

another exploration session in a control (task-unrelated) enclosure (“Exploration” stage; Fig. 

1c and Extended Data Fig. 2a). In the second stage, animals learned to associate each LED set 

with the tone-triggered delivery of a selective drop outcome at each dispenser over four 

sessions alternating between active LEDs (“Learning” stage; Fig. 1c). We refer to these 

associations as LED-defined behavioural “contingencies” (X and Y; Fig. 1a), with animals 

learning two new contingencies every day (extended Data Fig. 2b). During learning, mice 

rapidly developed a successful approach response to the correct (sucrose) dispenser over the 

incorrect (quinine) dispenser in each contingency (Fig. 1d,e and Extended Data Fig. 2b). In the 

final stage conducted at the end of each day (one hour after the end of learning), memory for 

the newly-learned contingencies was tested in a probe session where the tone was presented 

without drop delivery while pseudo-randomly switching between the two LED sets (“Probe” 

stage; Fig. 1c). In these probe trials, mice continued to identify the correct dispenser (Fig. 1f 

and Extended Data Fig. 2c). Memory performance on a given day was unrelated to that on the 

previous day (Extended Data Fig. 3a) and held when averaging across all probe performances 

for each individual mouse (Extended Data Fig. 3b). Furthermore, while animals made more 

mistakes on the first probe trial following a switch in LEDs compared to the other trials 

(Extended Data Fig. 3c), there was no deterioration of performance as the probe session 



3 
 

progressed (Extended Data Fig. 3d). Thus, mice successfully learned to discriminate two new 

behavioural contingencies each day and flexibly retrieved a memory of this discrimination, 

providing a paradigm to study the neural substrates of dynamic memory.  

 

Emergent millisecond-timescale coactivity discrimination of behavioural contingencies 

To investigate whether an emergent coactivity code develops in our task, we monitored 

hippocampal CA1 neuronal ensembles during training days. We first trained a Bayesian 

classifier to decode the prevailing contingency on a trial-by-trial basis from both average firing 

rates of principal neurons and short-timescale (25-ms) pairwise temporal correlations between 

neuronal spike trains. Shuffling temporal correlations across trials, while preserving trial-by-

trial average firing rates, significantly impaired decoding of ongoing contingency (Fig. 2a; 

Extended data Fig. 4a). Moreover, contingency information in temporal correlations alone was 

drastically impaired when shifting spikes to destroy short-timescale coactivity while 

maintaining correlations due to slow fluctuations of population firing rate in each trial (Fig. 

2b). Short-timescale correlations also had significant explained variance for task contingencies 

(Fig. 2c). These results indicated the presence of contingency-related information in short-

timescale coactivity beyond the information in single-neuron firing rates.  

 

To investigate the task relevance of contingency-related coactivity, we isolated coactivity 

patterns nested within 25-ms time-windows26 separately in each contingency within the 

learning enclosure. We represented each pattern by a weight vector containing the contribution 

of each neuron to the coactivity underpinning that pattern (Fig. 2d). These coactivity patterns 

differed from those extracted in the control enclosure (Fig. 2e,f), showing their spatial context-

selective expression. In addition, some learning enclosure patterns discriminated the two 

contingencies, being selective to either X or Y (Fig. 2e,f; Extended data Fig. 4b; orange). To 

investigate the functional significance of such patterns, we compared them to a matched group 

of learning enclosure patterns with high between-contingency similarity (Fig. 2e,f Extended 

Data Fig. 4b; blue). We refer to these as contingency-discriminating and contingency-invariant 

coactivity patterns, respectively. Neurons that contributed the most to a given pattern are 

henceforth referred to as “members” of that pattern (see Methods).  

 

We confirmed that members of the same contingency discriminating, but not invariant, pattern 

were more correlated in one contingency than the other (Fig. 3a). Importantly however, 

members of contingency-discriminating patterns were not individually contingency selective 

(Fig. 3b; Extended Data Fig. 4c), regardless of the membership threshold used (Extended Data 

Fig. 4d,e); and are hence separable from previously reported contextually modulated neurons27–

29. Moreover, such coactivity-based contingency discrimination was not explained by 

differences in temporal firing properties of individual member neurons between contingencies 

(Fig. 3c-e). Furthermore, contingency-discriminating pattern members were not tuned to goal 

locations (Fig. 3f,g) and hence did not report trajectories to goal locations30. We also noted no 

differences in the participation of neurons along the transverse axis of the CA1 to contingency-

discriminating and invariant patterns (52.1% and 48.2% of pattern member neurons found in 

proximal and distal CA1, respectively; Fisher’s exact test: odds ratio=1.17; P=0.55), no 

segregation by hemisphere (Extended Data Fig. 4f) and no differences in the participation of 

neurons from the deep or superficial CA1 pyramidal sublayer to contingency-discriminating 

compared to contingency-invariant patterns (39.9% and 28.4% of pattern member neurons, 

respectively; Fisher’s exact test: odds ratio=1.44; P=0.20). However, we observed a trend 

towards contingency-discriminating coactivity pattern members firing at earlier theta phases 

compared to members of contingency invariant patterns (Extended data Fig. 4g). Overall, these 
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findings identify an emergent, short-timescale neural coactivity-based discrimination of 

behavioural contingencies in the hippocampal CA1. 

 

We next asked whether contingency-discriminating coactivity patterns relate to contingency 

learning. When we tracked the strength of each pattern (Fig. 2d) over time, we found that 

contingency-invariant patterns began increasing in strength during the initial exploration of the 

new learning enclosure on each day, before animals experienced task contingencies; their 

strength further increased and subsequently plateaued during learning (Fig. 4a; Extended data 

Fig. 5a,b). Conversely, contingency-discriminating coactivity was more stable during 

exploration but markedly increased during contingency learning (Fig. 4a; Extended data Fig. 

5a,b). Pattern strengthening during learning reflected increased temporal correlations between 

members’ activity rather than changes in their average firing rates (Extended data Fig. 5c,d). 

Furthermore, the cofiring of contingency-invariant pattern members increased during sharp-

wave/ripples in post- compared to pre-exploration sleep, and increased again in the sleep 

session after learning, while contingency-discriminating pattern members only increased their 

sharp-wave/ripple cofiring after contingency learning (Fig. 4b,c). Thus, the distinction between 

contingency-invariant and contingency-discriminating pattern members was not equivalent to 

the difference between the previously described “rigid” and “plastic” cells31. Moreover, our 

findings did not simply reflect representations of rewarded/aversive locations27 since pattern 

strength was calculated outside dispenser locations, nor were they a simple reflection of the 

animal’s differential behaviour across the two contingencies (i.e. heading towards a given 

dispenser; Extended Data Fig 5e). Importantly, the reinstatement of contingency-

discriminating patterns during memory retrieval predicted trial-by-trial performance; these 

patterns were stronger before correct, compared to incorrect, behavioural responses to tone 

presentation (Fig. 4d; Extended Data Fig. 5f). This contingency-selective and performance-

related reinstatement of CA1 coactivity was not associated with a firing rate bias of member 

neurons nor animal running speed (Extended Data Fig. 5g,h), and was notably absent when 

animals performed at chance (i.e., when correct and incorrect trials were equivalent; Extended 

Data Fig. 5i). In contrast, the strength of contingency-invariant patterns was not related to trial-

by-trial memory performance (Fig. 4d). Moreover, while there was contingency-related 

information in longer (1-second) timescale coactivity (Extended Data Fig. 5j), the 

reinstatement of second-timescale contingency-discriminating coactivity during the probe 

session did not predict memory performance (Extended Data Fig. 5k). These findings show 

that CA1 neuronal spiking is gradually organised during learning to form millisecond-

timescale coactivity patterns representing newly-learned contingencies, which are 

subsequently reinstated on a trial-by-trial basis during dynamic memory retrieval. 

 

Distinct spatial tuning of contingency-discriminating and invariant coactivity patterns 

During exploration of a novel environment, CA1 neurons with overlapping place fields can 

form spatially tuned coactivity patterns,17,32. To investigate the spatial tuning of coactivity 

patterns during contingency learning, we computed for each detected pattern the spatial map 

corresponding to the time-course of its activation strength, as well as the individual firing rate 

maps of each of its member neurons. Contingency-discriminating coactivity was markedly less 

spatially coherent than contingency-invariant coactivity (Fig. 5a-d and Extended Data Fig. 6). 

This was concomitant with the less spatially coherent firing of contingency-discriminating 

pattern members relative to their contingency-invariant counterparts (Extended Data Fig. 7a,b), 

with contingency-discriminating members also exhibiting a trend towards more place fields 

within a given session compared to contingency-invariant members (Extended Data Fig. 7c). 

Moreover, while members of a given contingency-invariant pattern had overlapping firing 

fields, members of a given contingency-discriminating pattern were markedly less spatially 
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correlated (Fig. 5a,b,e; Extended Data Fig. 6). This weaker spatial overlap was observed 

regardless of the membership threshold used (Extended Data Fig. 7d,e) and was robust to 

differences in temporal correlation amongst members’ spike trains (Extended Data Fig. 7f). In 

addition, while contingency-invariant coactivity was spatially biased towards the place fields 

of their member neurons, this bias was significantly weaker for contingency-discriminating 

patterns (Extended Data Fig. 7g,h). This finding was corroborated by a separate analysis 

showing lower place field similarity of neuron pairs with high explained variance for 

contingency compared to neuron pairs with low explained variance (Extended Data Fig. 7i). 

Finally, we found no evidence that contingency discrimination by a given coactivity pattern 

reflects contingency-gated spatial remapping of its member neurons. In fact, the spatial map of 

an individual member of either pattern type was on average more similar across sessions of 

different contingencies than sessions of the same contingency (Fig. 5f,g; Extended Data Fig. 

7j), even when matching the spatial coherence of contingency-discriminating pattern members 

to that of contingency-invariant counterparts (Extended Data Fig. 7k). Moreover, members of 

the same contingency-discriminating pattern were as spatially correlated with each other across 

sessions of their preferred contingency as they were across sessions of opposite contingency 

(Extended Data Fig. 7l). Overall, these findings show that contingency-invariant coactivity 

provides robust place representations by binding spatially congruent neurons. In contrast, 

contingency-discriminating patterns stitch together neurons irrespective of their spatially 

correlated activity, giving rise to spatially discontiguous coactivity consistent with a 

specialization in representing ongoing behavioural contingency. 

 

CA3L→CA1 inputs are necessary for contingency discriminating coactivity and dynamic 

memory retrieval 

Finally, to address the functional role of contingency-discriminating coactivity, we sought to 

identify and manipulate a neural pathway necessary for their formation. CA1 coactivity could 

rely on synaptic inputs from the recurrently-connected upstream hippocampal CA3 area33,34, 

and recent work suggests a critical mnemonic role of left CA3 (CA3L) inputs to CA135,36. 

Accordingly, we transduced CA3L pyramidal neurons of Grik4-Cre mice with the yellow light-

driven proton pump Archaerhodopsin-3.0 (Fig. 6a,b); bilateral implantation of tetrodes and 

optic fibres further allowed simultaneous monitoring of, and light delivery to, CA1 ensembles. 

Light delivery targeting CA3L axons in CA1 during learning markedly reduced the power of 

theta-nested slow-gamma, but not mid-gamma, oscillations in CA1 (Fig. 6c; Extended Data 

Fig. 8a-c), consistent with the suggestion that CA1 slow-gamma oscillations report incoming 

CA3 inputs37,38. While suppressing CA3L→CA1 inputs preserved both the organisation of CA1 

neurons into coactivity patterns during learning, and the reinstatement of such patterns during 

memory retrieval (Extended Data Fig. 8d,e), this intervention altered the information content 

of CA1 coactivity. Firstly, the distribution of between-contingency pattern similarity and 

pattern strength ratio was shifted towards contingency-invariance (Fig. 6d,e; Extended Data 

Fig. 8f, Extended Data Fig. 9). Secondly, this manipulation reduced the explained variance for 

contingencies in short-timescale pairwise correlations (Extended Data Fig. 8g). Thirdly, 

Bayesian decoding of contingency using such short-timescale coactivity was markedly 

impaired with CA3L→CA1 input suppression (Extended Data Fig. 8h). At the behavioural 

level, suppressing CA3L→CA1 inputs selectively during learning had no effect on ongoing 

performance (Extended Data Fig. 8i) but reduced memory performance to chance levels in the 

subsequent probe test one hour after, during which there was no input suppression (Fig. 6f). 

This latent memory impairment was seen when mice had to flexibly retrieve two contingencies 

(Fig. 6f; Extended Data Fig. 8j-l), but not when retrieving only one contingency (Extended 

Data Fig. 8m). Moreover, flexible memory retrieval of the two contingencies was preserved 

after suppressing right CA3 inputs to CA1 (Extended Data Fig. 8n-u). Together, these findings 
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show that short-timescale CA1 coactivity-based contingency-information necessitates CA3L 

inputs and is required for dynamic retrieval of two-contingency memory. 

 

Discussion 

In this study, we report a coactivity-based hippocampal code for dynamic memory retrieval of 

short-lived behavioural contingencies. Encoding information as an emergent property of 

coactivity amongst multiple neurons (Extended Data Figure 10a) allows effective 

discrimination of newly encountered contingencies every day, without committing individual 

neurons to represent such short-lived cognitive variables. The emergent nature of this code 

points to short-timescale coactivity as a primary feature of neural activity that is used to encode 

information and guide cognition, rather than only playing secondary roles, such as organizing 

or stabilizing single neuron rate-based codes. In particular, our findings show that millisecond-

timescale coactivity is highly suited for mnemonic processing of short-lived information: it is 

rapidly formed and readily reinstated to support flexible memory retrieval. Millisecond-

timescale neural coactivity may preferentially exhibit spike-timing dependent plasticity 

(STDP)11,12,39 to rapidly stabilize the code in memory. In contrast, while second-timescale 

coactivity contained contingency information in our task, its reinstatement during dynamic 

memory retrieval was not predictive of trial-by-trial performance. Second-timescale coactivity 

may exhibit slower plasticity, and hence be more suited for stable representation of long-lived 

contingencies. 

 

Our findings also provide new insights into the role of correlated neural activity in guiding 

contextual behaviour. Spatial remapping, where patterns of spatial correlations between 

hippocampal principal cells disambiguate distinct spatial contexts, has been proposed as a 

neural basis for contextual learning23. In this study we observe that contingency discriminating 

coactivity is not a reflection of spatial remapping. Instead, our findings are consistent with the 

view that spatial remapping may be a specific instance of a more general phenomenon of 

“temporal remapping”, in which the short-timescale temporal correlation structure of neurons 

differs across distinct contexts23. Indeed, in tasks where animals must disambiguate different 

spatial reference frames, millisecond timescale coactivity is a robust correlate of moment-by-

moment behavioural discrimination of different contexts, both in networks that show spatial 

remapping22 and those that do not25. This is also consistent with a reader-centric view of neural 

codes5, since downstream reader/actuator neurons can detect temporal, but not spatial, 

correlations amongst their input neurons. Notably, one prediction from this coding scheme is 

that downstream receiver neurons “read” the incoming information, represented as an emergent 

property of the collective activity of multiple neurons, by disambiguating the relevant patterns 

of millisecond input coincidence from the myriad of other inputs they receive5. Such decoding 

may be implemented by a “reader” network40, or even a single “reader” neuron41 (see also 

Extended Data Fig. 10b). 

 

Our findings further establish that, to “write” a millisecond coactivity code for learned 

contingencies in memory, CA3L→CA1 inputs are necessary. Whether this is related to 

lateralisation in information content, processing and/or plasticity35,42 of CA3→CA1 inputs 

remains to be investigated. Nevertheless, we show that distinct types of coactivity patterns 

show qualitatively distinct functional plasticity. While contingency-invariant patterns develop 

during exploration and are reactivated in sharp-wave/ripples during offline (sleep/rest) periods 

following spatial exploration, contingency-discriminating patterns show robust increases in 

strength during learning and are reactivated offline in sharp-wave/ripples after contingency 

learning. Thus, both invariant and discriminating patterns show a signature of previously 

described “plastic” cells31, albeit in different behavioural stages. This is consistent with a 



7 
 

division of labour amongst hippocampal coactivity patterns, with contingency-invariant 

patterns reflecting unsupervised learning about the spatial structure of the environment, and 

contingency-discriminating patterns supporting flexible memory-guided behaviour. 

Altogether, our findings open new perspectives for future empirical and modelling studies to 

elucidate mechanisms for writing and reading coactivity-based information and to relate coding 

schemes across multiple timescales of population activity. 

 

How can the code be written and read? 

The hippocampus is embedded in a wider network of cortical and subcortical structures that 

may mediate or modulate the formation of the emergent coactivity code we describe here 

(writing) and its subsequent use by downstream neurons (reading) to select contingency-

specific behaviour. Below we outline hypotheses about possible mechanisms for both writing 

and reading processes. 

 

We show a necessity of CA3L-CA1 inputs during learning for the expression of an emergent 

coactivity code for short-lived behavioural contingencies, which opens a window into the 

generative mechanisms at play. Left hemisphere originating CA3 inputs in mice exhibit more 

robust long-term plasticity35,42, including STDP42, and are preferentially involved in long-term 

memory compared to right CA3 inputs35,36. Such a difference in plasticity may provide part of 

the mechanism by which contingency-discriminating patterns are strengthened during learning. 

The dynamic memory task we assess here necessitates the rapid acquisition and stabilization 

of contingency information (within 30 trials in each contingency across ~3 hours) as well as its 

rapid and flexible retrieval in the memory probe test (1 hour after learning, with frequent, 

pseudorandom switches in contingency). Such rapid mnemonic processing may be 

preferentially coded by short-timescale coactivity, since STDP mechanisms are more likely to 

rapidly stabilize neuronal co-firing within short (10s of ms) compared to that within longer (1s) 

windows11,12,39. Indeed, we show that short (25ms) but not longer (1s) timescale coactivity is 

reinstated to predict performance (Fig. 4d; Extended data Fig. 5k). However, it is also possible 

that other plasticity mechanisms are at play (including non-synaptic ones). While STDP might 

stabilize millisecond timescale coactivity patterns, what processes generate such contingency-

discriminating coactivity in the first place? Neurons in the dentate gyrus, two synapses 

upstream of the CA1, have been implicated in pattern separation processes that may be 

necessary for contextual behaviour43 and can do so through differences in millisecond-

timescale coactivity25. Moreover, there is evidence for a left dominance in the expression of 

the activity marker cFos in the dentate gyrus during novel object exploration44. Importantly, 

while CA3 neurons in one hemisphere send commissural projections to the contralateral 

hemisphere33, the two hemispheres seem to retain functional differences in their projections to 

CA135,42 which we target directly. Such lateralization could in part result from a developmental 

lateralization of factors involved in activity and plasticity45, which may be robust to any 

potential synchronizing effects of commissural projections. It is plausible therefore that a 

combination of lateralized processing of contextual information, starting as early as the pattern 

separation circuits of the dentate gyrus, and lateralized plasticity at CA3-CA1 synapses 

contribute to the formation and stabilization of emergent contingency discriminating patterns 

in the CA1, respectively. Given that contingency discriminating patterns emerge during 

learning rather than spatial exploration (Fig. 4a), their formation is not simply a reflection of 

sensory differences between the two LED displays (which are also distinct during exploration 

sessions X0 and Y0) but instead relates to the different reward contingencies the animal must 

learn to discriminate. Indeed, recent evidence suggests that neural discrimination of distinct 

spatial contexts in the CA1, but not dentate gyrus, is related to behavioural discrimination of 

these contexts46, suggesting an additional gating of behaviourally relevant environmental 
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differences between the dentate gyrus and CA1. How such behavioural contingency 

information is conveyed to the CA1 is currently unclear and may involve direct inputs from 

the prefrontal cortex47. The finding described here, that an emergent coactivity code in 

hippocampal CA1 is necessary for dynamic retrieval of contingency-discrimination, will 

motivate subsequent empirical and modelling studies that elucidate the cross-circuit 

interactions involved in generating such functional coactivity. 

 

How is the hippocampal coactivity code for contingencies decoded by downstream neurons in 

executive and motor areas to elicit appropriate behaviours in each contingency? Cortical 

neurons have membrane time constants in the range of 10-30ms9 meaning that convergent input 

from neurons coactive at the 25-ms timescale we investigate here can exhibit effective temporal 

summation in the downstream (“reader”) neuron’s dendrites and contribute to its spiking. 

Moreover, coincident synaptic activation within this time-window is consistent with the 

initiation of active, voltage-gated conductances in dendrites, which allows their supra-linear 

summation48. This may also serve as a mechanism for disambiguating different patterns of 

coactivity by a single reader neuron, where inputs that are preferentially spatially clustered on 

individual dendrites will be more likely to elicit such non-linearities than more dispersed 

inputs49, even when the mean synaptic weights of such inputs are indistinguishable (Extended 

Data Figure 10b). This would allow selective reading of emergent coactivity, as readers would 

not disambiguate the firing of individual members of contingency discriminating coactivity 

patterns, only their synchronous activity. Other single-neuron and network-based coactivity 

reading mechanisms have also been suggested40,41. For all of these cases, the fast (10s of ms) 

nature of this code should allow rapid processing of contingency information supporting rapid 

behavioural responses in dynamically changing environments. These outlined candidate 

mechanisms by which emergent coactivity codes could be read by downstream circuits may be 

tested in future ex vivo, in vivo and in silico studies. 
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Figures 

 

 
 

Figure 1. Mice rapidly acquire and flexibly retrieve a one-day-two-contingency memory  

a) The two-learning-contingency layout. A tone signalled that both outcome dispensers 

deliver a liquid drop, the identity of which (sucrose versus quinine) depended on the active 

set of LEDs. b) Schematic of an example learning enclosure. c) The three-stage task 

structure. Tone-defined trials occurred in learning and probe sessions, with drop outcomes 

only delivered during learning. Sleep/rest sessions were recorded before and after exploration 

and after learning. d) Example animal paths during trials in contingency X and contingency Y 

(correct paths: black; incorrect paths: red), overlaid on the overall animal path (grey) for one 

learning session. Black and blue/red circles represent path starting and correct/incorrect 

ending points, respectively. e) Behavioural performance for contingency-defined correct 

dispensers during exploration and learning (n=71 days from 15 mice). For each learning trial, 

a score of 1 indicates that mice successfully identified the correct (sucrose-delivering) 

dispenser while a score of -1 indicates that mice opted for the incorrect (quinine-delivering) 

dispenser; behavioural performance is reported as the mean score per trial number across 

days across mice (see Methods). Since the correct dispenser in one contingency (e.g. X) was 

the incorrect dispenser in the other (e.g. Y), behavioural performance is shown with respect to 

the current contingency, with the y-axis ranging from 1 (correct Y) to 0 (chance) to 1 (correct 

X). f) Behavioural performance during memory probe test showing that animals identified the 

correct dispenser for a given contingency (mean performance: 0.12±0.04). Left: color-coded 

raw data points represent individual mice. Right: effect size for the difference against zero, 

computed from 1,000 bootstrapped resamples, with black-dot representing mean; black-ticks 
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representing 95% confidence interval; and filled-curve representing resampled mean 

difference distribution. 
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Figure 2. CA1 coactivity-based discrimination of task contingencies 

a) DABEST (Data Analysis with Bootstrap-coupled ESTimation) plot50 used to visualize the 

effect size of a Gaussian Naive Bayesian classifier decoding contingencies during learning 

using a combination of CA1 principal neuron firing rates and pairwise correlations. Top panel 

shows the raw data points for individual days (mean accuracy: actual=66.5±2.9%, shuffled 

correlations=55.1±1.7%, shuffled rates=62.0±2.5%, both shuffled=48.3±0.2%; N=23 days 

from 10 mice). Bottom panel shows the effect size for the difference with respect to the left 

most group (i.e., “Actual”), computed from 1,000 bootstrapped resamples: black-dot, paired 

mean difference; black-ticks, 95% confidence intervals; filled-curve, resampled paired mean 

difference distribution. DABEST plots used from here onwards (see Methods under 

“statistics”). b) Decoding accuracy using 25-ms correlations compared to that with spikes 

jittered to maintain correlations due to slow population dynamics but destroy short-timescale 

coactivity. Mean accuracy; Actual: 62.8±2.6%, Shifted spikes: 50.8±2.2%; N=23 recording 
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days. c) Explained variance for contingency using trial-by-trial pairwise correlations among 

all CA1 principal neurons compared to shuffled pairwise correlations. Mean explained 

variance; Actual: 0.028±0.000%, shuffled: 0.020±0.000%; N=19,852 neuron pairs. Wilcoxon 

test (two-sided): Z =96651960.0, P=0.02. d) Example CA1 coactivity patterns detected in one 

learning session. Each pattern is represented as a vector containing the contribution (weight) 

of each neuron’s spiking to the coactivity defining that pattern26. For each pattern, neurons 

with a weight above 2SD of the mean were referred to as members (color-coded). Shown is 

an example raster plot of the spike trains (top-left; one neuron per row) along with the 

coactivity strength of one (dark-blue) pattern over time (bottom-left) and the vectors (right) 

of other coexisting patterns. Projecting such vectors onto neuron spike trains allowed tracking 

the time-course of each pattern’s strength (e.g., bottom-left dark-blue time course of 

coactivity peaks for the left-most vector, with the member spiking shown in dark-blue on the 

raster plot above). e) Example similarity matrices of patterns detected in the learning 

enclosure with contingency Y, compared to patterns detected in sessions with the same 

(within-contingency; left) or the other (between-contingency; middle) contingency, or to 

patterns detected in the control enclosure (between-enclosure; right). f) Cosine similarity for 

contingency-discriminating and contingency-invariant patterns across conditions. 

Contingency-discriminating: within-contingency=0.60±0.02, between-

contingency=0.46±0.01, between-enclosure=0.37±0.02; Contingency-invariant: within-

contingency=0.80±0.02, between-contingency=0.87±0.01, between-enclosure=0.44±0.02.  
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Figure 3. Discrimination of task contingencies is an emergent property of neural 

coactivity 

a) Mean temporal correlations amongst members of a given contingency-invariant and 

contingency-discriminating patterns in the same contingency (i.e. the contingency in which 

the patterns were detected) and the opposite contingency. Mean Pearson correlation: 

Contingency-invariant members: same contingency: 0.100±0.005, opposite contingency: 

0.096±0.006; contingency-discriminating members: same contingency: 0.052±0.003, 

opposite contingency: 0.033±0.002. b) Mean firing rates of contingency-discriminating and 

contingency-invariant members. Contingency-discriminating: same-

contingency=2.06±0.14Hz, opposite-contingency=1.93±0.15Hz; Contingency-invariant: 

same-contingency=2.28±0.15Hz, opposite-contingency=2.31±0.15Hz. c) Inter-spike intervals 

of contingency-discriminating pattern members pattern member neurons in the same 

contingency and the opposite contingency (Two way repeated measures ANOVA: No main 

effect of contingency: F(1)=0.549, P=0.458, η2=8×10-6, Main effect of interval: F(98)=373.0, 

P=0.000, η2=0.520, No contingency:interval interaction: F(98)=0.738, P=0.976, η2=0.001), d) 

Z-scored firing rates during tone and drop delivery contingency-discriminating pattern 

members pattern member neurons in the same contingency and the opposite contingency 

(Two way repeated measures ANOVA: No main effect of contingency: F(1)=4.97×10-25, 

P=1.00, η2=1.19×10-29, Main effect of time: F(117)=14.4, P=2.52×10-269, η2=0.040, No 

contingency:time interaction: F(117)=0.92, P=0.716, η2=0.003) e) spike-phase coherence to 

theta oscillations of contingency-discriminating pattern member neurons is indistinguishable 

across contingencies (Mean coherence: same contingency: 0.186±0.007, opposite 

contingency: 0.188±0.007). Similarly, the theta-phase preference of contingency 

discriminating neuron firing is indistinguishable across contingencies (Mean theta-phase 

preference, with respect to theta peak; same contingency: 156±6°; opposite contingency: 

146±6°; Watson-Wheeler test: W(2)=0.44, P=0.801). f) Contingency-discriminating pattern 
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members firing rates (z-scored) are indistinguishable at correct and incorrect dispensers 

(Normalized mean: correct: -0.2±0.4, incorrect: -0.4±0.5) and g) not modulated by distance 

from goal location. Linear regression of rate against distance from sucrose dispenser: r=-0.02, 

P=0.41.  
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Figure 4. Contingency discriminating patterns develop with learning and predict probe 

performance 

a) Time-course of pattern strength. Contingency X-discriminating and Y-discriminating 

patterns were pooled, and the coactivity strength of each pattern was quantified in 

exploration/learning sessions of its preferred contingency. Dashed-lines represent mean 

pattern strength in control enclosure. Linear regression of strength against time during 

Exploration (contingency-invariant: r=0.17, P=4.22×10-6; contingency-discriminating: 

r=0.09, p=0.003) and Learning (contingency-invariant: r=0.15, P=2.17×10-8; contingency-

discriminating: r=0.19, P=1.80×10-17). Slopes of contingency-invariant patterns were steeper 

than those of contingency-discriminating patterns during exploration (slope=0.0036±0.0007 
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and 0.0019±0.0006 units/minute, respectively; Mann-Whitney U test (two-sided): U=1279.0, 

P=0.03) but not during learning (slope=0.0032±0.0009 and 0.0032±0.0005 units/minute, 

respectively; Mann-Whitney U test (two-sided): U=1441.0, P=0.21). Error bars represent 

standard error of the mean across patterns. b) Contingency-discriminating and contingency-

invariant pattern member correlations during SWRs in the sleep before and after exploration 

of the novel learning and c) before and after contingency learning. (Mean SWR correlation: 

contingency-invariant members: pre-exploration: 0.045±0.012, post-exploration (pre-

learning): 0.071±0.008, post-learning: 0.116±0.007; contingency-discriminating members: 

pre-exploration: 0.070±0.015, post-exploration (pre-learning): 0.045±0.006, post-learning: 

0.068±0.007) d) Mean pattern strength before animal’s choice during probe trials in sessions 

where animals performed above chance. Contingency-discriminating: correct=0.13±0.02, 

incorrect=0.08±0.02; contingency-invariant: correct=0.20±0.04, incorrect=0.19±0.04. 
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Figure 5. Contingency-discriminating CA1 coactivity is spatially discontiguous  

a,b) Example coactivity strength maps and corresponding firing rate maps of individual 

members for a contingency-invariant (a) and a concomitantly recorded contingency-

discriminating (b) pattern across all sessions. Note that the right-most member of the 

contingency-invariant pattern is also a member of the contingency-discriminating pattern. 

Maximum firing rate (in Hz) or maximum coactivity strength (AU) are shown above each 

firing rate map or pattern strength map, respectively. c) Principal neuron spike trains and 

coactivations along two animal’s paths (red and charcoal) for the contingency-invariant 
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(blue) and contingency-discriminating (orange) patterns shown in (a-b). Members are 

indicated by the colour-coded assembly weight-vectors and spike times in the raster plots 

(Note shared member is indicated in green). Line above each raster color-coded as in the path 

plots. d) Contingency-discriminating coactivity is less spatially coherent than that of 

contingency-invariant patterns (mean spatial coherence: contingency-invariant=0.64±0.02, 

contingency-discriminating=0.51±0.02). e) Contingency-discriminating member neuron 

firing fields are less spatially overlapping (mean spatial correlation: contingency-

invariant=0.57±0.02, contingency-discriminating=0.30±0.03). f,g) Spatial correlation of 

individual contingency-invariant (f) and contingency-discriminating (g) pattern members 

across sessions of the same (“within”) contingency or of opposite (“between”) contingencies 

(mean spatial correlation; contingency-invariant: within-contingency=0.64±0.01, between-

contingency=0.80±0.01; contingency-discriminating: within-contingency=0.49±0.02, 

between-contingency=0.61±0.02). 
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Figure 6. Contingency-discriminating CA1 coactivity requires CA3L inputs and 

supports dynamic memory retrieval 
a) CA3L→CA1 optogenetic suppression protocol. CA3L neurons were transduced with 

Archaerhodopsin 3.0 in Grik4-Cre mice (n=5) and their axonal projections in the CA1 

targeted bilaterally during learning with yellow 561nm-light delivery from implanted optic 

fibres; 12 tetrodes monitored CA1 neurons. b) Expression of Archaerhodopsin3.0-eYFP in 

the somata of CA3L neurons and their axons in CA1 bilaterally (top); DAPI-stained nuclei. 

Higher-magnification images of eYFP-expressing CA3 neurons (bottom-left) and their axons 

in the contralateral CA1 (bottom-right). Representative of images from 5 animals. Scale bars 

(top=100µm, bottom=10µm). Stratum: Or, Oriens; Pyr, Pyramidale; Rad, Radiatum; LM, 

Lacunosum Moleculare. c) Light delivery to Arch3.0-expressing CA3L axons reduced the 

power of theta-nested slow, but not mid, gamma oscillations in CA1 (Wilcoxon test (two-

sided): slow gamma: Z=8.0, P=9.78×10-8; mid gamma: Z =291.0, P=0.167). Inset: example 

raw trace showing two theta cycles nesting strong mid (~50-90Hz) and slow (~25-40Hz) 

gamma oscillations respectively; raw trace and theta component in black and magenta, 

respectively; scale bar=100ms. d) Example similarity matrices of patterns detected in the 

learning enclosure during CA3L→CA1 input suppression with contingency Y, compared to 

patterns detected in subsequent sessions with the same (within-contingency; left) or the other 

(between-contingency; middle) contingency, or to patterns detected in the control enclosure 

(between-enclosure; right).  e) CA3L→CA1 input suppression shifted the between-

contingency similarity of CA1 patterns towards contingency invariance; n=54 and 57 patterns 

detected in contingency X and contingency Y respectively on days with CA3L→CA1 input 

suppression (light ON days). Mean between-contingency cosine similarity: light 

OFF=0.65±0.01, light ON=0.74±0.01). f) CA3L→CA1 input suppression during learning 

impaired subsequent probe trial performance (mean performance: light OFF days=0.18±0.08, 

light ON days=-0.05±0.09). All error bars, mean±S.E.M except when used with Gardner-

Altman DABEST plots, where they represent mean difference (or paired mean; as indicated) 

±95% confidence intervals.    

 

 



23 
 

Methods 

Animals. These experiments used adult male C57BL/6J mice (n = 4; Charles River 

Laboratories) and transgenic hemizygous Grik4-Cre mice51 (n = 11; The Jackson Laboratories; 

C57BL/6-Tg(Grik4-cre)G32-4Stl/J, stock number 006474, RRID: IMSR_JAX:006474). 

Animals were pre-selected based on their propensity to cover a novel open field and to 

approach a sucrose-baited dispenser within this open field. Animals were housed with their 

littermates up until the start of the experiment, with free access to water in a dedicated housing 

facility with a 12/12 h light/dark cycle (lights on at 07:00h), 19–23°C ambient temperature and 

40–70% humidity. All mice held in IVC's, with wooden chew stick and nestlets. Food was 

available ad libitum before the experiments (see below), and water available ad libitum 

throughout. Mice were 4-7 months old at the time of testing. Experimental procedures 

performed on mice in accordance with the Animals (Scientific Procedures) Act, 1986 (United 

Kingdom), with final ethical review by the Animals in Science Regulation Unit of the UK 

Home Office. 

 

Surgical procedures. All surgical procedures were performed under deep anaesthesia using 

isoflurane (0.5-2%) and oxygen (2 l/min), with analgesia provided before (0.1 mg/kg 

vetergesic) and after (5 mg/kg metacam) surgery. For optogenetic manipulations, AAV5-EF1a-

DIO-Arch3.0-eYFP viral vector injections (2×500nl) were performed unilaterally in the dorsal 

CA3 on either the left or right hemispheres (CA3L: 5 animals or CA3R: 6 animals) of Grik4-

cre mice using stereotaxic coordinates (site 1: −1.7 mm anteroposterior, ±1.5 mm lateral and 

−2.1 mm ventral from bregma; site 2: −2.3 mm anteroposterior, ±2.3 mm lateral and −2.3 mm 

ventral from bregma). The viral vector was delivered at a rate of 100 nl.min−1 using a glass 

micropipette. For electrophysiological recordings, mice were subsequently implanted, 4-6 

weeks later, with a microdrive with 12-14 independently movable tetrodes (combined with two 

optic fibres for optogenetic manipulations; Doric Lenses) targeting the dorsal CA1 bilaterally52.  

 

Behaviour. After the recovery period of at least one week following surgical implantation, 

mice were familiarised daily to the experimental paradigm, including handling, connection to 

the recording system and exploration of various open fields. Mice were maintained at 90-95% 

of their free-feeding bodyweight. Animals explored every day the same (triangular) open-field 

(the “control enclosure”; equilateral triangle; 45-cm side) and a new open-field (45-cm outer 

width) wherein they were trained in the following three task phases. 

Pre-training phase 1 involved conditioning mice to collect transiently available drops of 15% 

sucrose solution from a single liquid dispenser following a ten-second tone (Extended Data 

Fig. 1). Sucrose was initially available for 20 seconds before the drop was automatically 

aspirated by the dispenser. Over multiple pre-training sessions, the drop availability was 

gradually reduced in 5-second intervals every time the mouse successfully collected sucrose 

three times consecutively, until a 5-second availability period was reached. To encourage full 

coverage across the open field, and discourage behavioural persistence at the sucrose dispenser, 

tones were only delivered after the mouse had moved away from the dispenser to explore the 

open field. This pre-training phase 1 continued until mice successfully obtained reward on 

more than 80% of trials, while uniformly exploring the open field; this typically required 5-7 

days. All mice actively covered the open-field enclosure and approached the dispenser upon 

tone presentation. 

Next, for pre-training phase 2, mice experienced two pairs of wall-mounted LED displays and 

two identical liquid dispensers in a novel spatial configuration of the learning enclosure each 

day (Extended Data Fig. 1). One dispenser delivered sucrose and the other quinine (0.02mM), 

with both drops simultaneously available for 5 seconds following a 10-second tone. The 

identity of the dispenser delivering sucrose versus quinine solution could be inferred from the 
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currently illuminated set of LEDs, but was not directly indicated by the LEDs e.g., Fig. 1b). 

The LEDs therefore defined a given task contingency (X or Y; Fig. 1a). On a given day of this 

phase 2 of pre-training, mice initially explored the control enclosure for one session (~15-20 

minutes), followed by the exploration of the new learning enclosure for two sessions with only 

one of the two different sets of LEDs being continuously illuminated in each exploration 

session. Mice were allowed to rest in a sleep box before and after having explored the enclosure 

(~20-minute each sleep/rest session). Subsequently, a total of 6 learning sessions (3 of each 

contingency; ~15-25 minutes per session) were conducted in a pseudorandom order (e.g., X-Y-

Y-X-Y-X), with 15 tone presentations (thus 15 trials; inter-trial interval of ~1-2 minutes) in each 

session. Sessions of the same contingency were never presented 3 times in a row. Sucrose and 

quinine were delivered simultaneously after 80% of tone presentations in each session, with 

the remaining 20% of tone presentations being non-reinforced (no sucrose nor quinine 

delivered). After at least 3 days (and up to 7 days) of pre-training phase 2, animals reached an 

average performance of at least 80% correct choices on a given day and thus were ready for 

the third phase: i.e. the training phase.  

All behavioural and electrophysiological data quantified in this study are from the training 

phase (Fig. 1c). Here, the procedure was identical to pre-training phase 2 except that: (i) only 

two learning sessions of each contingency were presented in alternation (Fig. 1c; X-Y-X-Y) in 

a novel configuration of the learning enclosure each day; and (ii) a memory probe session was 

carried out one hour after the final learning session of the day, with an intervening sleep session 

in between the last learning session and the probe. In this probe session, a total of 24 trials were 

presented under extinction (i.e., non-reinforced trials where neither sucrose nor quinine was 

delivered after the tone); 12 trials were presented in each LED-defined contingency, with 

pseudorandom transitions between the two sets of LEDs defining contingency X and Y while 

the animal was in the learning enclosure, and with the restriction that either 2 or 5 trials were 

delivered in succession while a given set of LEDs was active, before the LEDs were switched. 

The first probe trials for a given recording day were equally likely to be of contingency X or Y. 

Probe sessions lasted 30 minutes in total, with trials within a given contingency occurring at a 

rate of 1 trial per minute (with an additional minute delay between the last trial in one 

contingency and the first trial of another). Only probe sessions where animals covered at least 

50% of the enclosure and completed at least 4 trials (i.e. visited at least one dispenser for at 

least 4 trials) were included in probe analyses (48 out of 71 days satisfied this criteria). Note 

that animals were allowed to rest/sleep in the sleep box after every session although only three 

sessions were recorded: (i) Pre-exploration: sleep prior to first exploration session, (ii) Post-

exploration/pre-learning: sleep after last exploration session and (iii) Post-learning: sleep after 

last learning session (Figure 1c). 

In addition to these two-choice discrimination training days, mice also performed “One-

contingency training days” where we tested learning and memory retrieval of a single 

behavioural contingency (as opposed to two behavioural contingencies as described above). 

Here, the task structure was identical to that of training days but one dispenser always delivered 

sucrose and the other always delivered quinine regardless of the currently illuminated set of 

LED displays. 

To quantify behavioural performance during the learning stage in each training day, we first 

identified for each tone trial which dispenser the animal approached within the 5-second period 

of reward availability. To quantify behavioural performance during the probe stage, we 

identified for each tone trial which dispenser the animal preferred to visit (i.e., spent more time 

within 5-cm vicinity of the dispenser) during the period from tone onset to 10 seconds after 

tone offset (i.e. 20-second period). For both learning and probe stages, we next classified each 

tone trial as being correct or incorrect depending on whether the animal had opted for the 

sucrose-delivering or the quinine-delivering dispenser, respectively. We finally scored 
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behavioural performance during learning (e.g. Fig. 1e) and memory performance during probe 

(e.g. Fig. 1f) sessions by calculating the difference between the number of correct trials minus 

the number of incorrect trials, divided by the total number of completed trials. A score of 1 

thus indicates that mice always visited the correct (sucrose-delivering) dispenser while a score 

of -1 indicates that mice always visited the incorrect (quinine-delivering) dispenser. Note that 

during learning trials, since the correct dispenser in one contingency (e.g. X) was the incorrect 

dispenser in the other (e.g. Y), we display behavioural performance (e.g. Fig. 1e) with respect 

to the current contingency, with the y-axis ranging from 1 (correct Y) to 0 (chance) to 1 (correct 

X). A similar behavioural score was calculated for the exploration session (Fig. 1e) on the basis 

of the total number of visits to each dispenser (since there were no trials during exploration). 

In order to give equal weighting to trials in each contingency during the probe, the overall 

probe score for a given day was the mean of means for contingencies X and contingency Y 

(i.e. (mean score in Y trials + mean score in X trials)/2). Data collection could not be performed 

blind to the conditions of the experiments since the experimenter had to be aware as to which 

condition they had to expose each mouse on a given day (Light ON vs Light OFF) and on a 

given session (which open-field arena/session type). 

 

In vivo ensemble recordings and light delivery. On the morning of each recording day, 

optimal positioning within the CA1 pyramidal layer was carried out using the local field 

potential (LFP) signals obtained from each tetrode52 in search of multi-unit spiking activity. 

Tetrodes were then left in position for ~1.5h before commencing recordings. Tetrodes were 

raised at the end of each recording day to avoid possible mechanical damage overnight. Optical 

interrogation was performed during learning using a diode-pumped solid-state laser (Laser 

2000, Ringstead) that delivers yellow light (561nm; ~18mW output power) to the optic fibres 

implanted bilaterally above the CA1 pyramidal cell layer in order to suppress CA3→CA1 

inputs in Arch3.0-expressing Grik4-Cre mice. Mice were accustomed to light delivery before 

training. During training, light was delivered for 3-minute periods, 5 times per learning session, 

with a 2-minute light OFF gap between each light delivery. Trials occurred during the light ON 

epochs, and at least 1 minute after the onset of each light pulse to allow sufficient time for 

axonal suppression36. Note that, for the quantification of behavioural effects of input 

suppression, we compared light ON days to light OFF days from the same animals to provide 

a within-subject control. 

 

Multichannel data acquisition. Amplification, multiplexing and digitisation of the signals 

from the electrodes was carried out using a single integrated circuit located on the head of the 

animal (RHD2164, Intan Technologies; gain x1000; 

http://intantech.com/products_RHD2000.html). The amplified and filtered (0.09Hz to 

7.60kHz) electrophysiological signals were digitised at 20kHz and saved to disk along with 

the synchronisation signals (transistor-transistor logic digital pulses) reporting the animal’s 

position tracking, laser activation, tone presentation, sucrose and quinine drop delivery, drop 

removal and LED display illumination. To track the location of the animal, three LED 

clusters were attached to the electrode casing and captured at 25 frames per second by an 

overhead colour camera. 

 

Spike detection and unit isolation. The electrophysiological signal was band-pass filtered 

(800Hz to 5kHz) and single extracellular discharges were detected through thresholding the 

RMS power spectrum using a 0.2ms sliding window. Detected spikes of the individual 

electrodes were combined for each tetrode. To isolate spikes which putatively belong to the 

same neuron, spike waveforms were first up-sampled to 40kHz and aligned to their maximal 

trough. Principal component analysis was applied to these waveforms ±0.5ms from the trough 

http://intantech.com/products_RHD2000.html
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to extract the first 3-4 principal components per channel, such that each individual spike was 

represented by 12 waveform parameters. An automatic clustering program (KlustaKwik 2.0, 

https://github.com/kwikteam/klustakwik2/) was run on this principal component space and the 

resulting clusters were manually recombined and further isolated based on cloud shape in the 

principal component space, cross-channel spike waveforms, auto-correlation and cross-

correlation histograms52. An automated clustering was further performed using Kilosort 1.053 

(https://github.com/cortex-lab/KiloSort) via the SpikeForest sorting framework54 

(https://github.com/flatironinstitute/spikeforest), with units then automatically curated using 

metrics derived from the waveforms and spike times, and verified by the operator. All sessions 

recorded on the same day were concatenated and clustered together. A cluster was only used 

for further analysis if it showed: stable cross-channel spike waveforms, a clear refractory period 

in its auto-correlation histogram, well-defined cluster boundaries and an absence of refractory 

period in its cross-correlation histograms with the other clusters. This study includes a total of 

1,124 CA1 principal neurons (853 in light OFF days and 271 in light ON days). Only principal 

neurons isolated on light OFF days were used in Figures 2 and 3 (and Extended Data figures 

4-7) while Figure 4 (and Extended Data figures 8 and 9) included analyses on all principal 

neurons. All data analysis (with the exception of sharp-wave/ripple analysis) was conducted 

during active locomotion periods (when the animal was running at a speed of at least 2 cm.s-

1). 

 

Neuronal pattern isolation and tracking. Firing patterns of co-active CA1 principal cells 

were detected using a statistical framework based on independent component analysis26. Spikes 

discharged by each neuron were counted in 25-ms (or 1000-ms where indicated) time bins and 

standardised (z-scored, i.e., the activity of each neuron was set to have null mean and unitary 

variance), to avoid an analytical bias toward neurons with higher firing rates. The neuronal 

population activity was represented by a matrix in which each element represents the z-scored 

spike count of a given neuron within a given time bin. We extracted coactivity patterns from 

this matrix in a two-step procedure. First, the number of significant co-activation patterns 

embedded within the neuronal population was estimated as the number of principal 

components of the activity matrix with variances above a threshold derived from an analytical 

probability function for uncorrelated data. Second, we applied independent component analysis 

to extract the coactivity patterns from projection of the data into the subspace spanned by the 

significant principal components (i.e., each coactivity pattern was captured by an independent 

component). Pattern detection was performed using active periods (speed > 2 cm.s-1) separately 

during the entire last session of contingency X, contingency Y (i.e. X2 and Y2) or the exploration 

session of the control enclosure as appropriate. On average, we detected one coactivity pattern 

for every 5.5±0.3 recorded neurons. To assess the enclosure- or contingency-specificity of 

coactivity patterns, we compared all patterns detected across enclosures or contingencies, 

respectively. This was carried out as follows: 

(1) We computed the cosine similarity between the weight vector representing a given pattern 

detected in one session (e.g., X2) and the weight vectors representing each individual pattern 

detected in another task session (e.g., Y2). By considering a pair of recording sessions this way, 

this procedure gives a matrix containing the cosine similarity values between each individual 

pattern detected in one session with each individual pattern detected in the other session. For 

each pattern, we thus identified its “maximum similarity” value with a pattern (i.e., “the best 

match”) of another session.  

(2) Using this procedure, we obtained three distributions of maximum similarity values for the 

patterns detected: (i) between two sessions of the same contingency in the learning enclosure 

(e.g., the “within-contingency” left matrix in Fig. 2e), (ii) between two sessions of opposing 

contingencies in the learning enclosure (e.g., the “between-contingency” middle matrix in Fig. 

https://github.com/cortex-lab/KiloSort
https://github.com/flatironinstitute/spikeforest
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2e), and (iii) between a given task contingency in the learning enclosure versus the patterns 

detected in the control enclosure (e.g., the “between-enclosure” right matrix in Fig. 2e).  

(3) We next defined contingency-discriminating patterns as patterns with between-contingency 

similarity values below the 90th percentile of the between-enclosure similarity distribution. 

(4) To investigate the properties of such contingency-discriminating patterns we compared 

them to a matched group of patterns detected in the same session but characterized with the 

highest between-contingency similarity values. In other words, we selected the n patterns with 

the highest between-contingency similarity scores (with n being the number of contingency-

discriminating patterns across all recordings). We therefore isolated n contingency-

discriminating patterns (with the lowest between-contingency similarity values) and n 

contingency-invariant patterns (with the highest within-contingency discriminating values) in 

each contingency. Note that the total number of contingency discriminating patterns before 

exclusions is 2n since there are two contingencies. Subsequently, all patterns that had a within-

session maximum similarity below the 90th percentile of the between-enclosure similarity 

distribution were excluded from further analysis.  

Since detected weight vectors were typically asymmetrical (Fig. 2d), the direction where 

weights were highest was assigned positive weights, and principal CA1 neurons whose weight 

was positive and exceeded 2 standard deviations from the mean were defined as pattern 

‘members’ (mean of 6.0±0.2% member neurons for each pattern from an average of 37.1±4.2 

neurons recorded per day). To assess the robustness of findings regarding member neurons 

isolated using this membership threshold, we further used a threshold of either 1 or 3 standard 

deviations (Extended Data Fig. 4d,e; Extended Data Fig. 7d,e). In total, the analyses shown in 

Figures 2 and 3 included 67 contingency-discriminating patterns (32 in contingency X and 35 

in contingency Y) and 152 member neurons (79 in contingency X and 73 in contingency Y), 

49 contingency-invariant patterns (104 member neurons); all patterns detected in light OFF 

(151 in contingency X and 155 in contingency Y) and light ON (56 in contingency X and 52 

in contingency Y) days were used in Figure 4. 

The activation strength A of each coactivity pattern at time t (e.g. Fig. 2d) was computed as:   

𝐴𝑡 = 𝑍𝑡
𝑇𝑃𝑍𝑡 

Where Zt is a population vector carrying the z-scored rate of each neuron at time t, P is the 

projection matrix (outer product) of the corresponding independent component, and T is the 

transpose operator. At is therefore the squared projection of Zt onto the component that 

represents the coactivity pattern. This projection represents the similarity between the 

independent component (representing all neurons recorded on that day) and the population 

rate at a given time bin of 25 ms (or 1000 ms for patterns tracked at this window). The main 

diagonal of P was set to zero before calculating At, in order to eliminate the contribution of 

single neurons to the coactivity pattern strength. The resulting value of At reflected 

expression strength of a particular coactivity pattern and was used in subsequent calculations 

of coactivity pattern emergence and spatial tuning. Therefore, the strength of a given pattern 

at any time point does not reflect only the small number of (“member”) neurons with the 

highest contribution to that pattern, but rather the entire weight vector representing all 

neurons. To determine whether pattern expression strength predicted memory probe 

performance, we calculated each pattern’s strength during the period of tone presentation but 

before the animal approached either dispenser, and averaged these values during theta cycles 

across epochs preceding correct or incorrect choices. The same calculation was performed for 

member neuron firing rates. Strength change across contingencies (Extended Data Fig. 8f) 

was calculated for each pattern as: (the difference between mean strength (same contingency) 

and mean strength (opposite contingency) normalised (divided) by mean strength (same 

contingency); where “same” contingency is the contingency in which a pattern was detected. 
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Significant co-activation events were defined as time points when co-activation strength was 

more than 2 standard deviations above the mean for the learning session in which the patterns 

were detected. Using this threshold, the mean coactivation rate was 0.54±0.02 Hz for 

contingency X and 0.52±0.02 Hz for contingency Y. This quantification was used in 

extended data figure 7g,h, and in example traces in figure 3 and extended data figure 9. For 

all other pattern analyses, we used the raw coactivity strength. 

 

Spatial maps. The recording arena was divided into bins of 1.5×1.5 cm to generate spike count 

maps (number of spikes fired in each bin) for each unit, or pattern strength map for each co-

activation pattern, and an occupancy map (time spent by the animal in each bin). Rates and 

occupancy were calculated only during active periods (i.e. speed > 2 cm.s-1) and bins visited 

less than a total of 5 times per session were excluded from subsequent analysis. All maps were 

then smoothed by convolution with a two-dimensional Gaussian kernel of s.d. equal to two bin 

widths. Finally, spatial rate maps were generated for each session individually by normalising 

the smoothed spike count maps by the smoothed occupancy map. Spatial coherence reflects 

the similarity of the firing rate in adjacent bins, and is the z-transform of the Pearson correlation 

(across all bins) between the rate in a bin and the smoothed rate of the same bin55. The same 

calculation was used on coactivity pattern strength to calculate pattern spatial coherence. 

Spatial correlation between maps of member neurons, or co-activation patterns, was calculated 

as the Pearson correlation coefficient from the direct comparison of the spatial bins between 

the smoothed place rate maps. This comparison was made between spatial maps of member 

neurons of the same patterns within the same session to assess the spatial similarity of members 

of the same coactivity patterns (e.g. Fig. 3e) or between maps of the same member neuron 

across sessions to assess any possible member neuron contingency-dependent remapping (e.g. 

Fig. 3f,g). To determine the degree to which pattern coactivations were biased by member 

firing fields, we calculated an infield coactivation score for each member as the spatial density 

of coactivations inside the member neuron’s firing field (spatial bins within 70% of the peak 

firing rate bin) minus the outside-the-field coactivation density divided by the sum of those two 

values. To match the spatial tuning of contingency-discriminating and contingency-invariant 

pattern members we used the 90th percentile of the contingency-invariant pattern member 

spatial coherence distribution as a threshold and only included contingency-discriminating 

pattern members with spatial coherence values above this threshold (Note that this was only 

done for Extended Data Fig. 7k). 

 

Decoding. To quantify information in spike time correlations and firing rates of CA1 principal 

neurons we used a Gaussian naïve Bayesian classifier to decode contingency on a trial-by-trial 

basis (across all learning trials) from pair-wise Pearson correlations of two neurons’ spike trains 

and/or individual neuron firing rates. Uniform priors were used throughout. Since LED-defined 

contingencies were signalled to the animal throughout learning, we used activity across the 30-

second epochs preceding tone onset, the 10-second tone and the 5-second reward availability 

period to ensure sufficient spikes are used for decoding. We only considered neuronal activity 

when the animal was at least 10 cm away from both dispensers and during active locomotion 

(speed > 2 cm.s-1). Trials with less than 10 seconds satisfying these criteria were excluded from 

analysis. Decoding was carried out using either a combination of individual firing rates and 25-

ms pairwise temporal correlations (e.g. Fig. 2a), or pairwise correlations alone (using 25-ms 

bins, e.g. Fig. 2b; or 1000-ms bins, e.g. Extended Data Fig. 5j). Decoding accuracy was then 

compared to the mean accuracy of a null distribution, generated by randomly shuffling the 

contingency label across trials (i.e., X versus Y) 100 times. In addition, we assessed whether 

contingency information was present in temporal spike correlations beyond population firing 

rate in two ways. First, we shuffled 25-ms correlations relative to trial labels while keeping 
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features representing average firing rates aligned with trial labels and re-quantified decoding 

accuracy (Fig. 2a). Second, we compared decoding accuracy using only 25-ms pairwise 

correlations to that of using pairwise correlations between the same neurons but with spikes 

shifted randomly by a value between –1000 and 1000 ms before binning, to remove correlations 

due to short-timescale coincident activity but keep coactivity associated with slower changes 

in population activity (Fig. 2b). 

 

Explained Variance. For each pair of neurons, the explained variance for task contingency 

was calculated using a trial-by-trial Pearson correlations on activity binned using 25-ms bins 

as follows: 

𝐸𝑉 =  
𝑆𝑆𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑐𝑜𝑛𝑡𝑖𝑛𝑔𝑒𝑛𝑐𝑦 

𝑆𝑆𝑇𝑜𝑡𝑎𝑙
=  

nX(rX̅̅ ̅ − rXY̅̅ ̅̅ ̅)2  +  nY(rY̅̅ ̅ − rXY̅̅ ̅̅ ̅)2

∑ (𝑟𝑋𝑛 − 𝑟𝑋𝑌)̅̅ ̅̅ ̅̅ ̅2𝑛
𝑖=0 + ∑ (𝑟𝑌𝑛 − 𝑟𝑋𝑌̅̅ ̅̅ ̅)2𝑛

𝑖=0

 

where SS is the sum of squares, nX and nY are number of trials in contingency X and 

contingency Y respectively, rX, rY and rXY are temporal correlation values in X, Y and all trials 

respectively. 

We compared this EV value with the mean of a null distribution generated by shuffling the 

contingency labels (i.e., X versus Y) of trials. As for decoding, we used activity across the 30-

second epochs preceding tone onset, the 10-second tone and the 5-second reward availability 

window, only considering neuronal activity when the animal was at least 10 cm away from 

both dispensers and during active locomotion (speed > 2 cm.s-1). Trials with less than 10 

seconds satisfying these criteria were excluded from analysis. To assess the spatial congruence 

of high explained variance pairs, we calculated the spatial map correlation (see “Spatial maps” 

section above) of each pair in the upper 5th percentile of the EV distribution that was temporally 

positively correlated in at least one contingency. We used the maximum spatial correlation 

across both contingencies (e.g.. if neurons had more spatially correlated place fields in 

contingency X than in contingency Y, the value for contingency X was used). We compared 

such spatial correlation values to those from pairs of neurons in the lower 5th percentile (low 

explained variance pairs) that were positively temporally correlated in both contingencies 

(Extended Data Fig. 7i). 

 

LFP analyses. Raw local field potentials (LFPs) were down-sampled from 20kHz to 1250 Hz 

(order 8 Chebyshev type I filter was applied prior to decimation to avoid aliasing) and then 

decomposed using Empirical Mode Decomposition (EMD56; https://pypi.org/project/emd/). In 

order to avoid mode mixing, we used the mask sift EMD procedure57, with sinusoidal masks 

with the following frequencies: 350, 200, 70, 40, 30 and 7 Hz, which captured mid gamma, 

slow gamma and theta oscillations as isolated components. To determine individual theta 

cycles and theta phase, we first detected peaks and troughs of theta with absolute values higher 

than low-frequency component (sum of all components with main frequencies below the theta 

signal) envelope, then a theta cycle was defined by pairs of supra-threshold troughs separated 

at least by 71ms (∼14 Hz) and no more than 200ms (5 Hz) that surrounded a supra-threshold 

peak58. Theta phase was calculated by linear interpolating neighbouring theta troughs, zero 

crossings and peaks. For nested-gamma analysis (Fig. 4c, Extended Data Fig. 8a,b,r), 

instantaneous envelopes and frequencies were calculated by means of the normalised-Hilbert 

transform59. For the time course analysis shown in Fig. 4c and Extended Data Fig. 8r, we 

adopted a bootstrap procedure to keep the speed distribution of each time bin virtually equal58. 

For each experiment, we used 60 to 30-second pre-laser stimulus windows as a reference for 

speed distribution. More specifically, we calculated the histogram (linearly-spaced speed bins 

from 2 to 30 cm.s-1) of instantaneous speed values for each theta cycle within that reference 

window; then a bootstrap consisted of (1) subsampling theta cycles from that reference time 

window by randomly choosing 75% of the cycles in each speed bin (i.e., maintaining the 

https://pypi.org/project/emd/
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original speed histogram proportions); and (2) from all remaining time windows, for each theta 

cycle in the reference window we randomly chose a cycle with matched speed (no more than 

2.5% away from the reference cycle). One hundred such bootstraps were computed for each 

tetrode, then all tetrodes of each experiment were averaged. Figures show the mean across 

recording days.  

Sharp-wave/ripple (SWR) detection was carried out as follows. First, LFPs of each pyramidal 

CA1 channel were subtracted by the mean across all channels (common average reference). 

These re-referenced signals were then filtered for the ripple band (110 to 250 Hz; 4th order 

Butterworth filter) and their envelopes (instantaneous amplitudes) were computed by means of 

the Hilbert transform. The peaks (local maxima) of the ripple band envelope signals above a 

threshold (5 times the median of the envelope values of that channel) were regarded as 

candidate events. Further, the onset and offset of each event were determined as the time points 

at which the ripple envelope decayed below half of the detection threshold. Candidate events 

passing the following criteria were determined as SWR events: (1) ripple band power in the 

event channel was at least 2 times the ripple band power in the common average reference (to 

eliminate common high frequency noise); (2) an event had at least four ripple cycles (to 

eliminate events that were too brief); (3) ripple band power was at least 2 times higher than the 

supra-ripple band defined as 200-500 Hz (to eliminate high frequency noise, not spectrally 

compact at the ripple band, such as spike leakage artefacts). We classified tetrodes as either 

being in the deep or superficial sublayer of the CA1 pyramidal cell layer based on the mean 

peak amplitude of the SWR events across all sleep sessions. Positive values indicated that the 

tetrode was in the deep sublayer (i.e. closest to stratum oriens) while negative values indicated 

tetrode was located in the superficial sublayer (i.e. closest to stratum radiatum)60–62. To 

calculate pattern member firing correlations during sleep/rest SWRs, we used SWR events as 

activity bins and calculated the Pearson correlations between pairs of pattern members 

separately across each sleep session (i.e. separately for pre-exploration, pre-learning and post-

learning sleep sessions; only sessions where at least 200 SWR events were detected were 

included in this analysis). 

 

Anatomical and histological analysis. All mice were anaesthetised with pentobarbital 

following completion of the experiments and transcardially perfused with PBS followed by 4% 

PFA / 0.1% glutaraldehyde in PBS solution. Brains were extracted and kept in 4% PFA for at 

least 24 h before slicing. Coronal sections (50 μm thick) were then made and stored in PBS-

azide combined with DAPI to stain neuronal somata. All sections were mounted in Vectashield 

(Vector Laboratories, Cat. No. H-1000) and images of native eYFP fluorescence and DAPI 

fluorescence were captured with a LSM 880 (Zeiss) confocal microscope using ZEN software 

(Zeiss Black 2.3). 

 

Statistical analyses. Data were analyzed in Python 3.6 

(https://www.python.org/downloads/release/python-363/) and using the packages scikit-learn 

0.23.2, statsmodels 0.12.1, Numpy 1.18.1, Scipy 1.4.1, Matplotlib 3.1.2, Pandas 0.25.3 and 

Seaborn 0.11.0. Error bars, mean±S.E.M unless otherwise stated. Ns refer to recording days for 

behavioural preference figures and LFP analysis. For unit data, Ns refer to coactivity patterns, 

coactivity pattern members or all principal neurons as indicated. Where indicated, we also used 

mice as Ns for behavioural and unit data, with values averaged across days for a given mouse 

for behavioural data and across neurons/patterns for a given mouse for unit data. Data Analysis 

with Bootstrap-coupled ESTimation (DABEST) plots50 are used throughout the manuscript to 

visualise the effect size by plotting the data against a mean (or paired mean) difference between 

the left-most condition and one or more conditions on the right (right y-axis) and compare this 

difference against zero using 1,000 bootstrapped resamples: black-dot indicates mean 

https://www.python.org/downloads/release/python-363/
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difference or mean paired difference (as indicated in the right y-axis label) and black ticks 

depict error bars representing 95% confidence intervals, shaded area represents kernel density 

estimate for visualizing the resampled mean (or paired mean) difference distribution. All P 

values were calculated as specified in figure legends. For ANOVAs, type II sums of squares 

were used throughout, with degrees of freedom reported in parentheses after “F” (e.g. F(1)=…). 

Data distributions were assumed to be normal for ANOVAs but this was not formally tested. 

No statistical methods were used to pre-determine sample sizes but our sample sizes are similar 

to those reported in previous publications (e.g.,25,27,31,34,63). Neural and behavioural data 

analyses were conducted in an identical way regardless of the experimental condition from 

which the data were collected. See also the corresponding Life Sciences Reporting Summary. 

 

A total of 15 mice were used in this study: 5 animals injected with an Archaerhodopsin 

expressing construct in the left CA3 and 6 animals injected with the same construct in the right 

CA3. A further 4 mice did not receive CA3 injections. 

The behavioural data in figure 1 (and extended data figures 2 and 3) are from light OFF training 

days (termed light OFF days throughout) from all 15 animals used in this study (71 light OFF 

days). For behavioural quantification in figure 6 (and extended data figure 8) we used both 

light OFF and light ON days (separately as indicated) from 5 animals injected with an 

Archaerhodopsin expressing construct in the left CA3 (33 light OFF days and 20 light ON 

days) and 6 animals injected in the right CA3 for behavioural experiments (18 light OFF days 

and 23 light ON days). Mice were randomly assigned to left versus right CA3 injected groups. 

Light OFF and light ON days were pseudorandomized and interleaved for each animal 

(ensuring the first day of training was always Light OFF). A further 16 days of one-contingency 

learning were recorded (10 light OFF days and 6 light ON (CA3L-suppression) days; extended 

data figure 8m). 

Electrophysiological unit data in figures 2-5 (and extended Data figures 4-7) are from light 

OFF days from 10 animals (23 recording days); 4 (of the 5) left CA3 injected animals, 2 (of 

the 6) right CA3 injected animals and all 4 mice without CA3 injections. Electrophysiological 

unit data from light ON days from 4 (of the 5) left CA3 injected animals are used (8 recording 

days), and compared to all light off electrophysiological unit data, in figures 4 (and extended 

data figure 8 and 9). 

 

Code availability: The software used for data acquisition and analysis are available using the 

web links mentioned in the methods. 

  

Data availability: The data that support the findings of this study are available from the 

corresponding author upon request. 
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Extended Data Figures 

 

 
 

Extended Data Fig. 1. Schematics of pretraining protocol. 

Schematics of pretraining phases 1 (left) and 2 (right). a) Schematic of example learning 

enclosures. b) Learning in pretraining phase 1 involved associating a tone with delivery of 

sucrose from one dispenser. In pretraining phase 2, animals learned two new LED-tone-

outcome associations each day. c) In pretraining phase 1 animals initially explored the control 

enclosure and then experienced between 2-6 sessions of tone-defined trials. In pretraining 

phase 2, after exploring the control enclosure and the learning enclosure (with each LED set 

active in turn), tone-defined trials were presented in 6 learning sessions (3 in contingency X 

and 3 in contingency Y) that were pseudo-randomly ordered each day. No probe tests were 

carried out in either pretraining phase. 
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Extended Data Fig. 2. Examples of enclosure set ups and animal paths across task 

stages and recording days. 

Enclosure set ups across distinct behavioural days. Animal coverage represented in grey. a) 

Example coverage paths for pre-learning exploration of learning enclosures. b) Example 

animal paths during learning trials in contingency X and contingency Y. c) Example animal 

paths during probe trials in contingency X and contingency Y. Paths of the animal during 

trials (correct path: black; incorrect path: red) are overlaid onto overall coverage (grey) for a 

single learning session. Black circles represent path starting points; blue and red circles 

represent correct and incorrect end points, respectively. 
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Extended Data Fig. 3. Dynamics of memory performance. 

a) Lack of a relationship between performance on probe trials of a recording day and those of 

the previous day (Regression line shown in dark grey; light grey shaded area represents 95% 

confidence intervals). Linear regression of probe performance on day n against probe 

performance on day “n-1”: r=-0.155, P=0.413. b) Behavioural performance during memory 

probe test, per mouse. Here the memory performance for each individual mouse is averaged 

across days, with each data point showing average performance for a single mouse (mean 

performance=0.10±0.03).  c) Probe performance (per mouse) is weaker during the first trial 

following a switch in LED displays (switch trials; Mean performance: -0.07±0.11) compared 

to subsequent trials (non-switch trials; Mean performance: 0.16±0.04). d) Probe performance 

does not change systematically across probe trials and hence no further learning is observed 

during memory retrieval. Linear regression of performance against trial number r=0.030, 

P=0.442. 
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Extended Data Fig. 4. Within- and between-contingency properties of coactivity 

patterns and their member neurons. 

a) A Gaussian Naive Bayesian classifier was trained to decode contingencies using a 

combination of CA1 principal neuron firing rates and pairwise correlations. Shuffling rates, 

correlations or both impairs classifier performance. Data points represent individual mice. 

Mean accuracy; actual: 65.3±4.3%, shuffled correlations: 55.0±1.5%, shuffled rates: 

61.2±3.7%, both shuffled: 48.3±0.2%; N=10 mice. b) Cosine similarity of contingency-

discriminating and contingency-invariant patterns across conditions per mouse. Contingency-

discriminating: Within-contingency: 0.62±0.03, between-contingency: 0.47±0.02, between-

enclosure: 0.41±0.04; Contingency-invariant: Within-contingency: 0.82±0.02, between-

contingency: 0.87±0.01, between-enclosure: 0.49±0.06. Note that N=10 animals for 

contingency-invariant patterns but 9 animals for contingency-discriminating patterns as no 
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such patterns could be detected in one animal. c) Average firing rate of contingency-

discriminating and contingency-invariant member neurons per mouse. Contingency-

discriminating: Same contingency: 2.22±0.33Hz, opposite contingency: 2.09±0.33Hz; 

Contingency-invariant: Same contingency: 2.15±0.41Hz, opposite contingency: 

2.20±0.42Hz. N=9 animals for contingency discriminating and contingency invariant patterns 

as for one animal, none of the detected contingency-invariant patterns had “members” (i.e. 

neurons with a weight of more than 2 standard deviations above the pattern weight vector 

mean). Average firing rate of contingency-discriminating and contingency-invariant member 

neurons using d) 1 standard deviation (Contingency-discriminating: Same contingency: 

2.00±0.09Hz, opposite contingency: 1.95±0.09 Hz; Contingency-invariant: Same 

contingency: 2.38±0.11Hz, opposite contingency: 2.42±0.11Hz) or e) 3 standard deviations 

as weight thresholds for defining pattern members (Contingency-discriminating: Same 

contingency: 1.93±0.23 Hz, opposite contingency: 1.70±0.22 Hz; Contingency-invariant: 

Same contingency: 2.06±0.25Hz, opposite contingency: 1.93±0.21Hz). f) Proportion of 

principal neurons recorded from the CA1 on the left or the right hemisphere that are members 

of contingency-discriminating patterns (Mean proportion: left hemisphere: 0.104±0.017, right 

hemisphere: 0.087±0.015) or contingency-invariant patterns (Mean proportion: left 

hemisphere: 0.129±0.022, right hemisphere: 0.179±0.033). g) Contingency discriminating 

pattern members showed a trend towards a preference for earlier phases of theta cycles 

compared to contingency invariant pattern members (Mean theta-phase preference, with 

respect to theta peak; contingency-discriminating pattern members: 156±6°; contingency-

invariant pattern members: 174±5°; Watson-Wheeler test: W(2)=5.23, P=0.073). 
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Extended Data Fig. 5. Contingency discriminating and invariant coactivity patterns 

show distinct relationships to task phase and performance. 

a) Time-course of pattern strength changes with mice as Ns. Contingency X-discriminating 

and contingency Y-discriminating patterns were pooled and the strength of all patterns of a 

given type in its preferred contingency were averaged per mouse and the mean value 

quantified in exploration/learning sessions. Dashed lines represent mean pattern strength in 

Control enclosure. Linear regression of strength against time during Exploration 

(contingency-invariant: r=0.27, P=8.15×10-4; contingency-discriminating: r=0.20, P=0.02) 

and Learning (contingency-invariant: r=0.19, P=9.30×10-4; contingency-discriminating: 

r=0.21, P=4.92×10-4). Slopes of contingency invariant patterns showed a trend towards being 

higher than those of contingency discriminating patterns during exploration (slope= 

0.0041±0.0012 and 0.0025±0.0015 units/minute respectively; Mann Whitney U test (two-

sided): U=25.0, P=0.06) but not during learning (slope=0.0038±0.0015 and 0.0021±0.0007 

units/minute respectively; Mann Whitney U test (two-sided): U=36.0, P=0.24). N=10 animals 

for contingency invariant patterns but 9 animals for contingency discriminating patterns as no 

such patterns were detected in one animal. b) Increases in contingency-invariant and 

contingency-discriminating pattern strengths plotted as a function of learning trials. 

Contingency X-discriminating and Y-discriminating patterns were pooled, and the coactivity 
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strength of each pattern was quantified in learning trials of its preferred contingency. Linear 

regression of strength against trials (contingency-invariant: r=0.04, P=0.020; contingency-

discriminating: r=0.13, P=1.05×10-8). Shaded area represents variability (Standard error of 

the mean) across coactivity patterns. c) No changes in member neuron firing rates (z-scored) 

across learning trials. Linear regression of firing rate against trials (contingency-invariant: 

r=0.0016, P=0.94; contingency-discriminating: r=0.0022, P=0.94). Shaded area represents 

variability (Standard error of the mean) across coactivity pattern members.  d) Temporal 

correlations (Pearson r values) amongst each member neuron of a pattern and other members 

in the same pattern between exploration and learning (Mean Pearson correlation: 

Contingency-invariant members: exploration: 0.037 ± 0.004, learning: 0.098 ± 0.005; 

contingency-discriminating members: exploration: 0.019 ± 0.003, learning: 0.052 ± 0.003). e) 

Z-scored contingency discriminating pattern strength in the same contingency and the 

opposite contingency during tone and drop delivery. This is the point when animals’ 

behaviour is maximally different between contingencies, as animals head towards opposite 

dispensers (Figure 1e and Extended Data figure 2b). Despite this, the normalized time course 

of coactivity pattern strength was indistinguishable across contingencies (Two way repeated 

measures ANOVA: No main effect of contingency: F(1)=1.5×10-26, P=1.00, η2=9.39×10-31, 

Main effect of time: F(117)=3.41, P=7.61×10-32, η2= 0.025, No contingency:time interaction: 

F(117)=0.76, P=0.98, η2=0.006). f) Pattern strength before animal’s choice during probe 

trials, on days where overall probe performance was above chance, averaged per mouse. 

Contingency discriminating mean strength: correct: 0.14±0.04, incorrect: 0.09±0.05; 

contingency-invariant: correct: 0.23±0.08, incorrect: 0.23±0.09. N=7 animals for both 

contingency-discriminating and contingency-invariant patterns reflecting the number of 

animals with recording days in which: 1) units were recoded and isolated; 2) animals 

performed above chance in the probe; 3) coactivity patterns of the indicated type were 

detected. g) Contingency-discriminating pattern member firing rate is indistinguishable 

before correct vs incorrect probe trials on days where overall probe performance was above 

chance. Mean member rate: correct: 2.32±0.26Hz, incorrect: 2.15±0.26Hz. h) Mouse running 

speed before correct and incorrect trials. Mean speed: correct: 6.90±0.28cm.s-1, incorrect: 

6.58±0.43cm.s-1. i) Contingency-discriminating coactivity patterns are indistinguishable 

before correct trials compared to incorrect trials when animal’s overall probe performance is 

not above chance level. Mean strength: correct: 0.086±0.019, incorrect: 0.090±0.023. j) 

Decoding accuracy using 1000 ms pairwise correlations compared to shuffled controls. 

(Mean accuracy; Actual: 75.7±2.1%, shuffled: 48.8±0.2%; N=23 recording days). k) 

Contingency-discriminating coactivity patterns, detected across 1000ms windows, are not 

stronger before correct compared to incorrect choices on memory probe trials, on days where 

overall probe performance was above chance. Mean strength: correct: 0.017±0.006, incorrect: 

0.016±0.004. 
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Extended Data Fig. 6. Example pattern activation and member firing rate maps. 

Example pattern activation maps and corresponding place maps of pattern member neurons 

for a) a contingency-invariant and a concomitantly recorded b) contingency-discriminating 

coactivity pattern across all sessions. Note that the right most member of the contingency-

invariant pattern is also a member of the contingency-discriminating pattern. Further 

examples of coactivity pattern and strength maps and member rate maps for c) contingency 

invariant and d) contingency discriminating patterns. Maps are shown for the session in 

which these patterns were detected. Maximum firing rate (in Hz) or maximum coactivity 

strength (AU) are shown above each firing rate map or pattern strength map, respectively. 
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Extended Data Fig. 7. Spatial firing properties of coactivity pattern members. 

Spatial coherence of contingency-invariant pattern members is higher than that of 

contingency-discriminating pattern members a) in the learning (Mean spatial coherence: 

contingency-invariant: 0.79±0.01, contingency-discriminating: 0.66±0.02) and b) in the 

control enclosures (Mean spatial coherence: contingency-invariant: 0.71±0.02, contingency-

discriminating: 0.60±0.02). c) Cumulative distribution of spatial firing field numbers for 

contingency-discriminating and contingency-invariant pattern members. (Mean field number: 

contingency-invariant: 1.59±0.07, contingency-discriminating: 1.79±0.09; Kolmogorov-

Smirnov test (two-sided): D=0.15, P=0.08. Member neuron firing fields are less spatially 

overlapping for contingency-discriminating than contingency-invariant patterns using d) 1 

standard deviation (Mean spatial correlation: contingency-invariant: 0.39±0.01, contingency-

discriminating: 0.17±0.01) or e) 3 standard deviations (Mean spatial correlation: contingency-
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invariant: 0.64±0.04, contingency-discriminating: 0.46±0.07) as weight thresholds for 

defining pattern members. f) Pairwise spatial correlations of contingency-discriminating 

pattern members are lower than those of contingency-invariant pattern members regardless of 

the degree of temporal correlation between the member neurons. Two-way ANOVA: main 

effect of pattern type (F(1)=27.0, P=3.87×10-7, η2=0.073) and temporal correlation (F(4)=9.3, 

P=4.12×10-7, η2=0.102). No pattern type: temporal correlation interaction (F(4)=1.7, P=0.14, 

η2=0.019). g) Example coverage traces (grey) with overlaid spiking activity (dots) of a 

member of a contingency-invariant (left) and a member of a contingency-discriminating 

(right) coactivity pattern. Spikes during a co-activation event of a given pattern are marked in 

blue (contingency-invariant) or orange (contingency-discriminating), while the remaining 

spikes are marked in dark green. Spatial firing field of the member neuron is indicated by 

light green shading. h) Infield versus outfield co-activation score for member neurons of 

contingency-invariant and contingency-discriminating patterns (Mean score: contingency-

invariant: 0.56±0.04, contingency-discriminating: 0.18±0.05). i) Pairwise spatial correlations 

of high explained variance and low explained variance principal cell pairs. Mean spatial 

correlation: High explained variance pairs (N=993): 0.134±0.010, low explained variance 

pairs (N=369): 0.204±0.014; Mann Whitney U test (two-sided): U=155648.0, P=9.69×10-6. j) 

Matrices showing mean spatial correlations of members of contingency invariant (left) and 

contingency-discriminating (right) patterns across all sessions. k) Spatial correlation of each 

contingency discriminating pattern member neuron across sessions of the same contingency 

or of opposite contingencies showing only member neurons with spatial coherence matching 

that of contingency-invariant pattern members (Mean spatial correlation: within-contingency 

0.58±0.02, between-contingency: 0.72±0.02). l) Spatial correlations between members of the 

same contingency-invariant (left) or contingency-discriminating (right) patterns across 

sessions. For both pattern types spatial correlations amongst pairs of neurons of the same 

coactivity patterns were higher during the learning stage than during the exploration stage 

further reflecting the development of these patterns with learning. Spatial correlations 

amongst members of the same contingency discriminating or those of contingency-invariant 

patterns were lowest in the control enclosure and the highest in the last learning sessions, 

confirming the enclosure-selectivity of hippocampal maps. Key to x-axis labels: first letter 

denotes contingency in which pattern was detected, subsequent letters denote session in 

which spatial maps of members were computed (e.g. X-Y2 are the spatial maps of members 

of coactivity patterns detected in contingency X, plotted in session Y2; i.e. second learning 

session of contingency Y). Mean spatial correlation: contingency-invariant: X-X2 & Y-Y2 

(pooled): 0.605±0.015, X-Y2 & Y-X2: 0.543±0.018, X-X1 & Y-Y1: 0.438±0.021, X-X0 & 

Y-Y0: 0.230±0.023, X-Control & Y-Control: 0.114±0.021; contingency-discriminating: X-

X2 & Y-Y2: 0.297±0.027, X-Y2 & Y-X2: 0.200±0.025, X-X1 & Y-Y1: 0.191±0.026, X-X0 

& Y-Y0: 0.086±0.023, X-Control & Y-Control: 0.023±0.024. 
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Extended Data Fig. 8. Behavioural and neural effects of silencing left or right 

hemisphere originating CA3-CA1 inputs. 
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a) Example LFP trace containing theta-nested mid and slow gamma oscillations (top; raw 

trace and theta component as black and magenta traces, respectively) along with its time-

frequency representation (bottom) b) Example of the selective effect of CA3L→CA1 input 

suppression on the slow but not the mid gamma oscillations. Shown are Hilbert-spectra as a 

function of ongoing theta phase for pre, during and post light delivery in a representative 

session (colours represent the same scale in all three panels). Theta cycles were subsampled 

to maintain instantaneous speed distributions across panels. c) Firing rate of CA1 principal 

neurons is increased by light delivery (Mean normalized (z-scored) firing rate: light OFF 

epochs: -0.011±0.002, light ON epochs (1 minute after light onset): 0.004±0.002; right, 

example raster plot during light ON period for one light ON epoch in a single recording day). 

d) The ratio of detected coactivity patterns to CA1 principal neurons is unaltered by 

CA3L→CA1 input suppression (Mean pattern-to-neuron ratio: Light OFF days: 0.20±0.01, 

Light ON days: 0.20±0.02). e) Reinstatement strength of all coactivity patterns is unaltered 

by CA3L→CA1 input suppression (Mean probe:learning pattern strength ratio: Light OFF: 

0.59±0.02, Light ON: 0.63±0.04). Results in panels e and d show that input suppression does 

not alter the overall organisation of CA1 neurons into coactivity patterns nor the cross-

session stability of such coactivity. f) The strength of coactivity patterns detected in the CA1 

under CA3L→CA1 input suppression is less sensitive to contingencies compared to light OFF 

days (Mean pattern strength change across contingencies: Light OFF days: 0.22±0.01, Light 

ON days: 0.15±0.02). g) Explained variance for contingency is higher in light OFF days 

compared to days with CA3L→CA1 input suppression. Mean normalised explained variance 

(standard deviations from mean): Light OFF days: 0.36±0.01 (N=19852 neuron pairs), Light 

ON days (N= 5696 neuron pairs): 0.10±0.02; Mann Whitney U test (two-sided): 

U=51962023.0, P=9.36×10-21. h) CA3L→CA1 input suppression impairs Gaussian naïve 

Bayesian decoding accuracy using short-timescale (25ms) correlations (Mean normalised 

decoding accuracy (standard deviations from mean): Light OFF days (N=23 days): 

1.80±0.33, Light ON days (N=8 days): 0.75±0.45). i) CA3L→CA1 input suppression does 

not impair performance during learning trials. Mean performance: Light OFF: 0.90±0.02 

(n=31 days), Light ON: 0.86±0.02 (n=20 days); Mann Whitney U test (two-sided): U=240.0, 

P=0.09. j) Comparison of mean probe performance on light OFF and light ON (CA3L→CA1 

input suppression) days averaged per animal. (Mean performance: Light OFF days: 

0.15±0.07, Light ON days: -0.02 ±0.08). Effect of CA3L→CA1 input suppression on 

performance on k) the first trial following a switch in LED displays (“switch” trials; Mean 

performance: Light OFF days: 0.18±0.17, Light ON days: -0.21±0.16) and on l) subsequent 

trials (“non-switch” trials: Light OFF days: 0.18±0.12, Light ON days: 0.01±0.11). m) 

Suppressing CA3L inputs to CA1 during learning does not impair memory performance in 

probe trials when each LED set signals the same contingency (same dispenser-sucrose and 

dispenser-quinine pairing) throughout all learning sessions (“One-contingency training days”; 

Mean performance: Light OFF days: 0.57±0.11, Light ON days: 0.54±0.14). n) Schematic of 

CA3R→CA1 optogenetic suppression protocol. CA3R neurons were transduced with 

Archaerhodopsin 3.0 in Grik4-Cre mice (n=6) and their axonal projections in the CA1 

targeted bilaterally during learning trials with yellow 561nm-light delivery from implanted 

optic fibres. CA3R→CA1 input suppression during learning of the two-contingency task does 

not impair performance in probe trials, when taking o) all (Mean performance: Light OFF: 

0.06±0.03, Light ON: 0.05±0.08), p) switch (Mean performance: Light OFF: -0.16±0.12, 

Light ON: -0.01±0.17) or q) non-switch trials (Mean performance: Light OFF: 0.12±0.05, 

Light ON: 0.17±0.09). r) Suppression of CA3R→CA1 input reduces the power of theta-

nested slow gamma oscillations to a similar extent as with CA3L→CA1 input suppression 

without affecting mid gamma oscillations. Two-way repeated measures ANOVA: Slow 

gamma: Main effect of light (F(1)=64.2, P>0.001, η2=0.592), no main effect of CA3 
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hemisphere (F(1)=0.571, P=0.457, η2=0.005) on normalised gamma power; Mid gamma: No 

main effect of light (F(1)=1.22, P=0.281, η2=0.029), no main effect of CA3 hemisphere 

(F=0.226, P=0.639, η2=0.005) on normalised gamma power.  s) SWR frequency increases 

with suppression of either CA3L→CA1 or CA3R→CA1 inputs (mean frequency: Light OFF 

days: 152±1Hz, Light ON days (left): 156±2Hz, Light ON days (right): 155±2Hz. t) Awake 

sharp-wave ripple (SWR) duration is reduced by suppression of either CA3L→CA1 or 

CA3R→CA1 inputs (mean duration: Light OFF days: 39±1ms, Light ON days (left): 35±1ms, 

Light ON days (right): 36±1ms). This reduction is therefore not sufficient to explain the 

selective impairment of memory performance after suppressing CA3L→CA1 but not 

CA3R→CA1 inputs. u) Incidence rates of awake SWRs during suppression of either 

CA3L→CA1 or CA3R→CA1 inputs (mean incidence rate: Light OFF days: 0.039±0.006Hz, 

Light ON (left) days: 0.059±0.012Hz, Light ON (right) days: 0.080±0.027 Hz). We did not 

observe a reduction in awake SWR incidence rates, unlike a previous study using bilateral 

silencing of CA3 neurons in rats63. Possible co-occurrence of SWR generating processes in 

the CA3 across hemispheres may explain why unilateral silencing does not impair the 

incidence rate of CA1 SWRs. Nevertheless, the reduction in SWR duration seen when 

silencing unilateral CA3 inputs from either hemisphere suggests that input from the CA3 on 

both hemispheres is needed for the full expression of a given CA1 SWR. 
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Extended Data Fig. 9. Example coactivation maps and raster plots of principal neuron 

activity with or without left CA3-CA1 silencing. 

Example coactivity patterns during a) light OFF and b) CA3L→CA1 input suppression (light 

ON) days across both learning contingencies (sessions X2 and Y2). Top of each panel depicts 

strength maps for several representative coactivity patterns, while below example 

coactivations for the left most pattern are shown in more detail. All coactivations (defined as 

coactivity strength above 2 standard deviation of mean strength in preferred contingency; 

displayed as coloured dots) are superimposed on coverage maps in each contingency (bottom 

left). Raster plots show the time-courses of neuronal firing (members color-coded orange or 

blue to denote contingency discriminating or contingency invariant pattern) and coactivation 

strengths for four separate paths (color-coded) across each contingency (bottom right) are 

plotted. 
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Extended Data Fig. 10. Schematic representation of emergent coactivity coding and a 

potential single-neuron reading mechanism. 



48 
 

a) Top: Schematics contrasting a hypothetical rate code(Adrian, 1926) (left) and emergent 

coactivity code (right) for disambiguating contingencies. Bottom: Emergent coactivity code 

for contingencies with temporal windows indicated by dashed rectangles aligned to spikes 

from neuron 1 (left) or neuron 4 (right) showing that neurons 1, 2 and 3 are more coactive for 

contingency Y while neurons 4, 5 and 6 are more coactive for contingency X. b) A 

hypothetical “reader” neuron can disambiguate distinct patterns of coactivity, for example by 

supralinear summation of one set of coactive inputs (e.g. from upstream neurons 1, 2 and 3), 

but only linear/sublinear summation of another (from upstream neurons 4, 5 and 6). Such 

non-linearities could result from the preferential activation of voltage-gated dendritic 

conductances, for example through clustering of synaptic inputs on dendritic branches(Stuart 

and Spruston, 2015). The membrane time-constant (~10-30 ms in forebrain pyramidal 

neurons(Koch et al., 1996)) constrains a reader neuron’s integration time-window, and hence 

this mechanism is particularly suited for short-timescale coactivity. Note that the converse 

may be true for another reader neuron, with inputs from neurons 4, 5, and 6 preferentially 

exhibiting supralinear summation and hence preferentially driving activity in this alternative 

neuron. Vm: membrane potential. 

 

 

 

 


