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Abstract
Objective.While brain stimulation therapies such as deep brain stimulation for Parkinson’s disease
(PD) can be effective, they have yet to reach their full potential across neurological disorders.
Entraining neuronal rhythms using rhythmic brain stimulation has been suggested as a new
therapeutic mechanism to restore neurotypical behaviour in conditions such as chronic pain,
depression, and Alzheimer’s disease. However, theoretical and experimental evidence indicate that
brain stimulation can also entrain neuronal rhythms at sub- and super-harmonics, far from the
stimulation frequency. Crucially, these counterintuitive effects could be harmful to patients, for
example by triggering debilitating involuntary movements in PD. We therefore seek a principled
approach to selectively promote rhythms close to the stimulation frequency, while avoiding
potential harmful effects by preventing entrainment at sub- and super-harmonics. Approach. Our
open-loop approach to selective entrainment, dithered stimulation, consists in adding white noise
to the stimulation period.Main results.We theoretically establish the ability of dithered stimulation
to selectively entrain a given brain rhythm, and verify its efficacy in simulations of uncoupled
neural oscillators, and networks of coupled neural oscillators. Furthermore, we show that dithered
stimulation can be implemented in neurostimulators with limited capabilities by toggling within a
finite set of stimulation frequencies. Significance. Likely implementable across a variety of existing
brain stimulation devices, dithering-based selective entrainment has potential to enable new brain
stimulation therapies, as well as new neuroscientific research exploiting its ability to modulate
higher-order entrainment.

1. Introduction

In humans, neuronal rhythms can be entrained
non-invasively using periodic stimuli such as aud-
itory stimulation [1, 2], visual stimulation [3–6],
or transcranial stimulation [7–12]. A neural rhythm
is entrained to the stimulation frequency when the
frequency of the rhythm adjusts to match the fre-
quency of stimulation. Animal studies demonstrate
that transcranial electrical stimulation can reliably
entrain individual cortical neurons [13, 14], and can
even entrain neurons in the hippocampus and the
basal ganglia [15]. Additionally, rhythmic sensory

stimulation in humans provides evidence for the
entrainment of neural oscillators by stimulation over
a simple sequence of evoked responses [2, 4]. Deep
brain stimulation (DBS), which invasively delivers
electrical stimulation to deep targets in the brain,
was also shown to entrain basal ganglia neurons in
humans [16].

In line with this evidence, entraining neuronal
rhythms using brain stimulation has been suggested
as a new therapeutic mechanism to restore neur-
otypical behaviour. Entraining individual alpha
rhythms (8–12 Hz) using transcranial stimula-
tion shows promise in patients with depression
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[11, 17] and chronic pain [18]. Gamma frequency
(30–100 Hz) entrainment attenuates pathology asso-
ciated with Alzheimer’s disease and improves hip-
pocampal function in mice [19, 20]. It was recently
shown that gamma entrainment may also favour-
ably influence cognitive function as well as biomark-
ers of Alzheimer’s-disease-associated degeneration
in humans [21]. In patients with Parkinson’s disease
(PD), low-frequency switching ofDBS between hemi-
spheres entrains stepping, and could in principle be
used to ameliorate gait impairment [22]. Transcranial
alternating current stimulation at gamma frequency
improves movement velocity in PD patients [23],
likely by entraining the prokinetic gamma rhythm.

However, neuronal rhythms far from the stimula-
tion frequency can also be inadvertently entrained by
periodic brain stimulation, which, crucially, may lead
to harmful effects. In patients with PD, finely-tuned
gamma oscillations [24] can be entrained at half the
frequency of DBS (see figure 1(A)), which may be
linked to debilitating involuntary movements known
as dyskinesia [25–27]. In a study involving a canine
with epilepsy, the frequency of DBS was chosen to
avoid sub-harmonic entrainment of rhythms associ-
ated with epileptic seizures [28]. Furthermore, sens-
ory stimulation using visual flashes at 10 Hz can
lead to super-harmonic entrainment [3], andwas also
reported to cause undesirable side effects as high-
lighted in a recent commentary [29]. In spite of this,
to date no stimulation pattern has been designed
to entrain a given rhythm while ensuring that other
rhythms are not entrained by stimulation.

Synchronisation theory predicts that rhythms
that are close to sub- and super-harmonics of
the stimulation frequency may be entrained by
stimulation [30]. Neural oscillators can be assumed
to have a natural frequency at which they tend to
oscillate. Under certain conditions, and if stimula-
tion is strong enough, the oscillation frequency can be
shifted to the stimulation frequency or its harmonics
(more details in section 2.1). In neural networks, the
possibility of sub- and super-harmonic entrainment
has been corroborated by computational models [27,
31–35]. The frequency locking behaviour of a rhythm
to external stimulation is characterised by its rotation
number, which corresponds to the average number
of cycles achieved by the rhythm between two peri-
odic stimulation pulses. When the rotation number
is rational, i.e. of the form p:q with p and q coprime
integers, the rhythm is entrained by stimulation
(see examples in figures 1(B1)–(B4)). Synchronisa-
tion regions in the stimulation frequency/amplitude
space form characteristic patterns called Arnold
tongues [36] (see examples in figure 1(C1)). Arnold
tongues at all possible integer ratios are predicted for
non-linear systems close to Hopf bifurcations [37].
However, among higher-order entrainment ratios
(p:q with p> 1 and q> 1), only the most stable ones
(low p and q) are likely to be observed in real neural

systems. In keeping with this, experimental evidence
of higher-order entrainment to brain stimulation is so
far limited to the most stable higher-order ratios such
as 1:2, 2:1, 3:1, and 4:1 [3, 25, 26, 38].

To promote a target physiological rhythm using
brain stimulation while avoiding harmful effects, it
would therefore be desirable to entrain the target
neuronal rhythm while ensuring that other rhythms
are not entrained by stimulation. We call such a
strategy ‘selective entrainment’. In this study, we pro-
pose a simple method to achieve selective entrain-
ment, which we call ‘dithered stimulation’. This
method is open-loop, and consists in introducing
noise in the stimulation period.We present a theoret-
ical basis for the efficacy of dithered stimulation, and
confirm its effectiveness in computational models
representing uncoupled neural oscillators, and popu-
lations of coupled neural oscillators. Additionally, we
describe how our dithering approach could be imple-
mented in existing neurostimulators.

2. Results

Our approach to selective entrainment, dithered
stimulation, rests on the fact that entrainment is the
most stable around the stimulation frequency. In
other words, 1:1 entrainment is generally more stable
than p:q entrainment for p> 1 and q> 1. Because
the 1:1 tongue is generally larger, small changes in
oscillator frequency do not affect the 1:1 Arnold
tongue much, while higher-order Arnold tongues
are less stable to perturbations. This is also true
for small changes in stimulation frequency. There-
fore, introducing variations in the stimulation fre-
quency should perturb frequency locking more for
higher-order tongues than for 1:1 entrainment. This
is the basis of our dithering approach to selective
entrainment, which consists in its simplest form in
adding white noise to the stimulation period, as illus-
trated in figure 1(D2). Open loop stimulation pat-
terns with irregular pulse timings have been investig-
ated for other purposes [39–43]. Here, we consider an
open loop stimulation pattern where the time inter-
val between stimulation pulses always changes and
is given by (1+ z)/fs, where f s is the base stimula-
tion frequency, and z is a normal random number
sampled from N

(
0, ζ2

)
for each stimulation inter-

val. We call the standard deviation ζ ‘dithering level’.
Past a certain dithering level, only the 1:1 Arnold
tongue remains (figure 1(C2)), which ensures that
only neuronal rhythms of frequency close to the stim-
ulation frequency are entrained. By adjusting f s to the
target rhythm to entrain, selective entrainment can
therefore be achieved using dithered stimulation. We
next provide theoretical and computational demon-
strations of the efficacy of the method. Specifically,
we will first consider a simple model of uncoupled
neural oscillators (the sine circle map) for which it
is possible to analytically approximate the width of
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Figure 1. Selective entrainment of brain rhythms using dithered stimulation. When stimulation is perfectly periodic as depicted
in (D1) ( f s denotes the stimulation frequency), neural oscillators may be entrained at the stimulation frequency but also at sub-
and super-harmonics of the stimulation frequency. Corresponding entrainment regions (Arnold tongues) are represented in (C1)
for uncoupled neural oscillators modelled using the sine circle map (described in section 2.1). Stimulation is provided at 130 Hz
(red dashed line), with stimulation amplitude shown on the vertical axis, and the natural frequency of oscillators on the
horizontal axis. Entrainment is observed when the rotation number (colour scale in (C)) is an integer ratio (only regions of
frequency-locking determined as described in section 4.2 are shown). Entrainment at various rotation numbers is illustrated in
(B1)–(B4). As an example, DBS in PD patients can entrain cortical gamma oscillations at half the stimulation frequency, which
corresponds to 1:2 entrainment ((A), adapted from [25] with no permission required). With dithering, stimulation is not
perfectly periodic (D2), and past a certain dithering level (level of noise in the stimulation period), only the 1:1 Arnold tongue
subsists (green tongue in (C2)).

Arnold tongues. We will then show that the conclu-
sions generalize to a more complex model often used
to describe neural oscillations (the Kuramotomodel).

2.1. Selective entrainment can be achieved by
dithered stimulation in models of uncoupled
neural oscillators
Since brain oscillations can be sustained in the brain
across a wide range of frequencies, we consider neural
oscillators at all frequencies from very low frequen-
cies to 300 Hz, and model the effect of stimulation
on all these frequencies. Our approach is general and
conservative given that only some of these frequencies
will naturally be present in a neural circuit of interest.
In keeping with the phase oscillator literature, we call
the frequency of a neural oscillator in the absence of
stimulation and coupling its natural frequency.

The sine circle map is the simplest model describ-
ing the influence of periodic stimulation on a single
neural oscillator, and can be used to provide a theor-
etical basis for the efficacy of dithered stimulation as
a selective entrainment strategy. The model maps the
phase of an oscillator right before stimulation pulse n

(denoted θn) to the phase of the oscillator right before
stimulation pulse n+ 1 (denoted θn+1). The map can
be written as

θn+1 = θn + 2π
f0
fs
+ I sinθn = F(θn), (1)

where f 0 is the oscillator natural frequency, f s the
stimulation frequency, and I the stimulation mag-
nitude. Entrainment can arise because a stimulusmay
advance or delay the phase of an oscillator depend-
ing on the phase at which it is applied. This concept
is captured by the phase response curve (PRC) of
the oscillator, which describes the change in phase of
the oscillator as a function of the stimulation phase.
The PRC of the sine circle map is a simple sinus-
oid (Z(θ) = sinθ). Since brain oscillations can mani-
fest across a wide range of frequencies, we consider
a population of uncoupled neural oscillators mod-
elled by equation (1) where f 0 corresponds to the
natural frequency axis in figure 1(C1). For perfectly
periodic stimulation, Arnold tongues are observed in
figure 1(C1) at all possible entrainment ratios (rota-
tion number obtained as detailed in section 4.2 in

3
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Figure 2. Frequency locking plateaux disappear at lower dithering levels for higher-order entrainment than for 1:1 entrainment.
Rotation number in the sine circle map as a function of oscillator frequency, for fs = 130 Hz, and I= 1. Solid lines correspond to
perfectly periodic stimulation, while dashed/dotted lines correspond to dithered stimulation with increasing dithering levels.
While a large part of the 1:1 frequency locking plateau is preserved for all dithering levels shown (C), plateaux for 1:2 (B), 3:2 (D),
and 2:1 (E) frequency locking have disappeared at ζ= 0.09. Panels (B)–(E) are zoomed-in versions of panel (A). For each
dithering level, the rotation number is averaged over 10 repeats, with 104 stimulation pulses per repeat.

theMethods section).When representing the rotation
number as a function of natural frequency, frequency
locking corresponds to plateaux where the rotation
number takes a constant integer ratio across a range of
natural frequencies as illustrated in figure 2 for ζ = 0,
(only ratios with low p and q are easily discernible).

2.1.1. Theoretical justification of dithering stimulation
as a selective entrainment strategy
To demonstrate analytically that dithered stimula-
tion destabilizes the most prominent higher-order
entrainment ratios more than 1:1 entrainment, we
introduce dithered stimulation in the sine circle
map. The sine circle map with dithered stimulation
becomes the stochastic map

θn+1 = θn + 2π
f0
fs
(1+ zn)+ I sinθn

= F(θn)+ 2π
f0
fs
zn, (2)

where the stimulation period Ts = 1/fs is multiplied
by (1+ zn) to model dithered stimulation, with zn
normal random numbers sampled from N

(
0, ζ2

)
,

and ζ the dithering level.
We build on ideas presented in [44] to show

that, as more dithering is introduced in equation (2),
the relative decrease in width of the most prom-
inent higher-order Arnold tongues is greater than

that of the 1:1 tongue. The most prominent higher-
order tongues are of the form p:1 with p> 1 (super-
harmonic entrainment), and (2p− 1):2 with p⩾ 1.
In figure 1(C1), these correspond to the 2:1 tongue,
and to the 1:2 and 3:2 tongues, respectively. We
denote by ∆f p:q(I, ζ) the range of oscillator natural
frequencies that can be entrained by the p:q tongue
with dithered stimulation of amplitude I and dither-
ing level ζ , i.e. the width of the tongue at that stim-
ulation amplitude and dithering level. Approximate
expressions for∆f p:1(I, ζ), p⩾ 1 and∆f (2p−1):2(I, ζ),
p⩾ 1 are derived in section 4.1 in theMethods section
assuming ζ ≪ 1 and I≪ 1. Neglecting small high
order I terms in equation (7) in section 4.1, the width
of p:1 tongues (p⩾ 1) with dithered stimulation rel-
ative to the width of the same tongues with perfectly
periodic stimulation can be obtained as

∆f p:1(I, ζ)

∆f p:1(I,0)
≈ 1− n2σπ

2p2

2
ζ2, (3)

where nσ quantifies the number of standard devi-
ations of the jump distribution beyond which tem-
porary escapes of the basin of attraction of the peri-
odic orbit are considered to not significantly affect
the locking behaviour (see section 4.1 in the Meth-
ods section for more details). The value of nσ is taken
to be the same across tongues. Similarly, neglecting
high order I terms in equation (10) in section 4.1,
the width of (2p− 1):2 tongues (p⩾ 1) with dithered

4
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Figure 3. Arnold tongues disappear at lower dithering levels for higher order entrainment than for 1:1 entrainment in uncoupled
neural oscillators. (A): Frequency locking regions in the oscillator frequency/stimulation amplitude space. Only regions of
frequency-locking (determined as presented in section 4.2), known as Arnold tongues, are shown in colour. The colour scale
represents the rotation number. Dithering level increases from top to bottom, and theoretical tongue boundaries (equations (6)
and (9)) are shown by black dashed lines. The frequency corresponding to the mean stimulation period is indicated by a red
dashed line. An animation with finer steps in dithering levels is provided as supplementary material (jneacbc4asupp2.mp4, see
Video S.1 for caption in the supplementary information). (B): Showing theoretical tongue width normalised by its value for
perfectly periodic stimulation, plotted against dithering level, for three stimulation amplitudes. The dependence on stimulation
amplitude is very slight. (C): Comparing tongue width obtained from theory and simulations, as a function of dithering level, for
three stimulation amplitudes. (D): Comparing tongue width obtained from theory and simulations, as a function of stimulation
amplitude, for three dithering levels. In all panels showing data from simulations, for each natural frequency, stimulation
amplitude, and dithering value, the rotation number is averaged over 10 repeats, with 104 stimulation pulses per repeat. In panels
(B)–(D), theoretical tongue widths refer to equations (7) and (10).

stimulation relative to the width of the same tongues
with perfectly periodic stimulation is

∆f (2p−1):2(I, ζ)

∆f (2p−1):2(I,0)
≈ 1− n2σπ

2 (2p− 1)2 ζ2. (4)

It follows that the relative decrease of the most prom-
inent higher-order tongues (any p> 1 in equation (3)
and any p⩾1 in equation (4)) with increasing dither-
ing levels is always greater than for the 1:1 tongue
(p= 1 in equation (3)). This result is valid for any
stimulation frequency and underlies the efficacy of
dithered stimulation for selective entrainment.

2.1.2. Validation using simulations of uncoupled
neural oscillators
To confirm that there exists a dithering level at which
the 1:1 tongue displays a broad frequency locking
region while other tongues have disappeared, we
simulate the sine circle map with dithered stimula-
tion (equation (2)) for increasing noise levels. As an

example, we set the base stimulation frequency to
fs = 130 Hz, which corresponds to the frequency of
clinically available DBS. As ζ is increased, frequency
locking plateaux in figure 2 disappear faster for higher
order entrainment than for 1:1 entrainment. Signific-
ant 1:1 frequency locking is still possible for a dither-
ing level ζ = 0.09 as indicated by the large dashed
line plateau in figure 2(C), but no 1:2, 3:2, or 2:1
frequency locking is possible (figures 2(B), (D) and
(E)). Similarly, higher order Arnold tongues become
narrower faster than the 1:1 tongue as ζ is increased
(figures 3(A1)–(A4)). For ζ = 0.009, the 1:1 tongue
can still entrain neural oscillators with natural fre-
quencies in the vicinity of the stimulation frequency,
while other tongues have disappeared (figure 3(A4)).

Simulations of the sine circle map with dithered
stimulation also validate our theoretical results.
More specifically, equations (6) and (9) (Meth-
ods section) describing tongue boundaries in the
presence of dithered stimulation (dashed lines in
figures 3(A1)–(A4)) approximately match tongue
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boundaries obtained directly from simulations. Addi-
tionally, figure 3(B) is consistent with the faster
relative decrease in width of higher order tongues
compared to the 1:1 tongue as the dithering level
is increased, and tongue width measurements from
simulations approximately match theoretical values
from equations (7) and (10) (Methods section) as
shown in figures 3(C) and (D). We also confirm
that our theoretical results hold for p:1 tongues and
(2p− 1):2 tongues for larger values of p in figures S.1
and S.2 in the supplementary information. As pre-
dicted, these tongues disappear for even lower dither-
ing levels than the tongues in figure 3. In figures 3,
S.1, and S.2, theoretical results were based on nσ = 4,
i.e. frequency-locking was considered to occur when
at least 99.99% of locking cycles do not escape the
periodic orbit. This was found to robustly correspond
to frequency-locking plateaux in figure 2 across noise
levels.

Although a range of dithering levels that suppress
the 1:2 tongue while still preserving the 1:1 tongue
were found (figure 3(A4)), we note that the 1:2 tongue
is the hardest higher-order tongue to destabilize (see
figures 3(B2) and (C2)). The fact that 1:2 entrainment
was the first type of higher-order entrainment repor-
ted in patients with PD treated with DBS [25, 26] is
in line with these predictions.

We showed that the efficacy of dithered stim-
ulation as a selective entrainment strategy is sup-
ported by theory, and confirmed by simulations of
uncoupled neural oscillators. However brain signals
such as local field potentials can be better described by
networks of coupled oscillators representing coupled
neurons or coupled micro-circuits [45–47]. Thus, we
next test dithered stimulation in this more realistic
setting.

2.2. Selective entrainment can be achieved by
dithering in populations of coupled neural
oscillators
In order to test dithered stimulation as a selective
entrainment strategy in a more realistic setting, we
simulate populations of coupled neural oscillators
using the Kuramotomodel [48]. For each natural fre-
quency f 0 in the frequency range of interest, we con-
sider a population of M= 100 phase oscillators with
homogeneous coupling, natural frequencies distrib-
uted around f 0, and the PRC of a standard Hodgkin-
Huxley neuron [49, 50] (see figure S.8(B1) in the
supplementary information). The coupling func-
tion corresponding to electrotonic coupling between
Hodgkin-Huxley neurons derived in [51] is more
realistic than the standard sinusoidal coupling of
the Kuramoto model, but leads to less varied sub-
and super-harmonic entrainment ratios. We there-
fore present results with sinusoidal coupling, but veri-
fied that dithered stimulation is still effective when
the coupling between neural oscillators is based on
the Hodgkin-Huxley electrotonic coupling function

(see figures S.3 and S.4 in the supplementary inform-
ation). Full details on the model can be found in
section 4.3 in the Methods section. As opposed to the
sine circle map, the Kuramotomodel is a continuous-
time model. Thus, we are also able to use more
realistic, square stimulation pulses with a temporal
extent, and a negative component for charge balance
(see sections 4.3 and S.8(B2) in the supplementary
information).

As shown in figure 4, dithered stimulation is an
effective selective entrainment strategy in populations
of coupled neural oscillators. For perfectly periodic
stimulation at 130 Hz, populations of coupled neural
oscillators can be entrained at the stimulation fre-
quency (1:1 entrainment), but also at higher-order
entrainment ratios for certain natural frequencies
and stimulation amplitudes (figure 4(A1)). Details on
how entrainment metrics presented in figure 4 are
obtained can be found in section 4.2 in the Meth-
ods section. In the natural frequency range con-
sidered, the only higher-order tongues with non-
zero widths are the 1:2, 3:2, and 2:1 tongues, which
were identified as the most prominent higher-order
tongues in section 2.1. As the dithering level ζ is
increased, these higher-order tongues fade, while the
1:1 tongue is mostly preserved (figures 4(A1)–(A4)).
For ζ = 0.15, 1:1 entrainment ismaintained for a large
range of natural frequencies and stimulation amp-
litudes, while higher order entrainment has vanished
(figure 4(A4)). This is confirmed by measuring the
width of Arnold tongues as a function of stimulation
amplitude (figure 4(B4)).

The variation in the mean instantaneous fre-
quency of the Kuramoto populations with respect to
f 0 also supports this conclusion. For ζ = 0.15, the
mean instantaneous frequency is constant in the 1:1
tongue, signalling frequency-locking to the stimula-
tion frequency, while a non-zero frequency gradient
along f 0 is observed elsewhere, indicated the absence
of frequency-locking (figure 4(C4)). This was not the
case for the perfectly periodic case, where regions
of constant mean instantaneous frequency can be
seen to approximately match the 1:2, 3:2, and 2:1
tongues (figure 4(C1)). Further validation is provided
in figure S.5 (supplementary information) based on
the phase locking value (PLV), which was used to
assess 1:1 synchronisation for example in [6, 52] (see
section A in the supplementary information for more
details).

2.3. Dithering can be implemented by toggling
within a finite set of stimulation frequencies
To ensure that dithered stimulation can be implemen-
ted in a broad range of existing neurostimulators, we
consider different ways of toggling within a finite set
of stimulation frequencies as approximations of white
noise based dithered stimulation. Let us consider a set
of n stimulation frequencies Sn = {fs,1, fs,2, . . . , fs,n},
such that {1/fs,1,1/fs,2, . . . ,1/fs,n} are symmetrically
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Figure 4. Arnold tongues disappear at lower dithering levels for higher-order entrainment than for 1:1 entrainment in
populations of coupled neural oscillators. Dithering level (ζ) increases from the top row to the bottom row. (A): Frequency
locking regions in the natural frequency/stimulation amplitude space. Only regions of frequency-locking (determined as
presented in section 4.2), are shown in colour. The colour scale represents the rotation number. (B): Arnold tongue width as a
function of stimulation amplitude. (C): Mean instantaneous frequency (represented by the colour scale) in the natural
frequency/stimulation amplitude space. In (A) and (C), for each natural frequency, stimulation amplitude, and dithering value,
the rotation number or mean instantaneous frequency are averaged over 5 repeats, with 400 stimulation pulses per repeat. The
frequency corresponding to the mean stimulation period is indicated by a red dashed line.

distributed around 1/fs, where f s is the base stimu-
lation frequency. The simplest way of approximating
white noise based dithered stimulation is to randomly
select a stimulation frequency from the set Sn for each
stimulation period. This random cycling approach is
illustrated in figure 5(A). If the neurostimulator is
unable to generate random numbers, deterministic
cycling can be implemented by toggling from one
stimulation frequency in the set to the next (i.e. from
fs,i to fs,i+1 for i = {1, ..,n− 1}, and from fs,n to fs,1)
at each stimulation period (figure 5(B)). If the device
is unable to toggle between frequencies at each stim-
ulation period, toggling can be slower and take place
only after Nr stimulation periods at the same stim-
ulation frequency. This slow deterministic cycling is
shown for Nr = 2 in figure 5(C).

Given a large enough set of stimulation frequen-
cies, these toggling approaches can achieve selective
entrainment in populations of coupled neural oscil-
lators. For simplicity, the distribution of stimulation

periods we pick in this analysis is uniform, and the
frequency sets used are plotted on the left of figure 6
(red diamonds, see section C in the supplementary
information for numerical values). We note that to
get a uniform distribution of periods, the frequency
distribution has to be skewed. With only three stim-
ulation frequencies, both random and deterministic
cycling fail to realize selective entrainment (first and
second rows of figure 6). With a set of seven stim-
ulation frequencies, higher-order tongues have van-
ished with both random and deterministic cycling
(figures 6(A3), (B3) and (A4), (B4)). Fine structures
are still visible at high frequency for deterministic
cycling when plotting the mean instantaneous net-
work frequency in the natural frequency/stimulation
amplitude space (figure 6(C4)). This is much less
the case with this frequency set for random cycling
(figure 6(C4)), making random cycling preferable for
a set of seven stimulation frequencies. However, with
a set of 13 stimulation frequencies, this is no longer
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Figure 5. Pulse trains approximating noise based dithered stimulation by toggling within a finite set of stimulation frequencies.
(A): Random cycling, where a stimulation frequency is selected at random for each stimulation period from a finite set of
frequencies. (B): Deterministic cycling, where stimulation frequency switch to the next frequency in the set at each stimulation
period. (C): Slow deterministic cycling, where toggling is slower and takes place only after Nr consecutive stimulation periods at
the same stimulation frequency (Nr = 2 in this example). Exemplar, short stimulation pulses are shown in red, but these
approaches can be used for any waveform. Panels (B) and (C) present two full cycles of the corresponding deterministic patterns.

an issue for deterministic cycling (second-to-last row
of figure 6), and even slow deterministic cycling with
Nr = 3 is effective (last row of figure 6). These res-
ults are confirmed by PLV analysis in figure S.6 in the
supplementary information. We show in the supple-
mentary information that the number of repeats Nr

can be increased up to 15 before some 1:2 synchron-
isation slowly re-emerges (figure S.7(D)). This cor-
responds to switching frequency every 81 ms to every
150ms depending on the current value of the stimula-
tion frequency (in the range used of 100 to 185.7 Hz).
We also note that the range of stimulation frequen-
cies used in the last two rows of figure 6 corresponds
to ζ = 0.17 (obtained as the standard deviation of the
uniform distribution of periods divided by the mean
period), which is comparable to the dithering level
used in figure 4 (ζ = 0.15).

In populations of coupled neural oscillators, ran-
dom cycling can achieve selective entrainment with
the fewest number of stimulation frequencies. Nev-
ertheless, for devices with more limited capabilities,
deterministic cycling and even slowdeterministic cyc-
ling are effective when a broader set of stimulation
frequencies is used.

3. Discussion

While entraining neural rhythms at the stimulation
frequency is a promising therapy for neurological dis-
orders, brain rhythms in different frequency bands
can also be inadvertently entrained at sub- and super-
harmonics of the stimulation frequency. In this study,

we proposed a method to selectively entrain a given
neural rhythm at the stimulation frequency, while
minimising any sub- or super-harmonic entrainment
that might occur in other frequency bands. Our
method, which we call dithered stimulation, con-
sists in slightly varying the stimulation period using
white noise. We justified theoretically the efficacy
of dithered stimulation as a selective entrainment
strategy for any stimulation frequency. This was done
by demonstrating analytically that the most promin-
ent higher-order Arnold tongues shrink faster than
the 1:1 Arnold tongue as the level of noise is increased
in amodel of uncoupled neural oscillators. The ability
of dithered stimulation to selectively entrain a given
rhythm was confirmed by simulations, and validated
inmore realistic populationmodels of coupled neural
oscillators. Additionally, we showed that dithered
stimulation can be implemented in neurostimulators
with limited capabilities by toggling within a finite set
of stimulation frequencies, even if toggling happens
on a slower time scale than the stimulation period.

3.1. Limitations
The theoretical proof provided in section 2.1.1 is
limited to the most prominent families of higher-
order Arnold tongues (p:1 tongues for p> 1 and
(2p− 1):2 tongues for p⩾ 1), and to sinusoidal
PRCs. Alternative theoretical investigations of the
stochastic sine circle map have lead to approxima-
tions of the probability density of phases [53, 54] but
are not directly applicable, and it is unclear whether
these approaches could yield more general analytical
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Figure 6. Selective entrainment can be achieved in populations of coupled neural oscillators by toggling within a finite set of
stimulation frequencies. Each row corresponds to a particular type of pulse train, as indicated on the left side of the figure. For
slow deterministic cycling (last row), Nr = 3. (A): Frequency locking regions in the natural frequency/stimulation amplitude
space. Only regions of frequency-locking (determined as presented in section 4.2), are shown in colour. The colour scale
represents the rotation number. (B): Arnold tongue width as a function of stimulation amplitude. (C): Mean instantaneous
frequency (represented by the colour scale) in the natural frequency/stimulation amplitude space. In (A) and (C), for each natural
frequency, stimulation amplitude, and dithering value, the rotation number or mean instantaneous frequency are averaged over 5
repeats, with 400 stimulation pulses per repeat. The frequency corresponding to the mean stimulation period is indicated by a red
dashed line. The stimulation frequencies used are plotted as red diamonds on the left of the figure (numerical values are given in
section C in the supplementary information).

results. Nevertheless, our simulations show that
higher-order tongues not belonging to the tongue
families we theoretically considered vanish evenmore
quickly with increasing dithering (see figures 3(A)
and S.1 in the supplementary information). Addi-
tionally, section 2.2 demonstrates that dithered stim-
ulation can be effective for non-sinusoidal PRCs, such
as the PRC of the standard Hodgkin-Huxley neuron
model (figure S.8(B1) in the supplementary inform-
ation), as well as when the amplitude of stimula-
tion is not small. In general, neural oscillators and

micro-circuits are expected to have a PRC with a
dominant first harmonic [50, 55, 56], and our the-
oretical results should approximately hold.

While the sine circle map models individual
neural oscillators with no amplitude variable (only
a phase), the populations of coupled neural oscillat-
ors used in section 2.2 can reproduce brain signals at
the level of neural populations [45–47]. Simulations
presented in section 2.2 therefore strongly support the
efficacy of dithered stimulation in neural networks.
However, synaptic plasticity between coupled neural
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oscillators was not included because the many simu-
lations required to cover the natural frequency/stim-
ulation amplitude space would have been too compu-
tationally costly. Recent mean-field approximations
of coupled oscillator networks with spike-timing-
dependent plasticity [57] could be considered in
future work to reduce computational time.Moreover,
ourmodels describe single neural populations and do
not directly account for complicated network effects
(arising e.g. from the thalamo-cortical loop in the case
of DBS of the subthalamic nucleus). Ourmodels were
also not designed to reproduce the dynamic temporal
activity that can be evoked by stimulation (such as the
evoked resonant neural activity or ERNA in the case of
DBS of the subthalamic nucleus [58–60]). These lim-
itations should be carefully considered before trans-
lational clinical testing.

3.2. Implications and perspectives
To date, neurostimulators are programmed without
the awareness that rhythms close to integer ratios
of the stimulation frequency can be inadvertently
entrained. We recently proposed a therapy aimed at
reinforcing neurotypical rhythms in epilepsy while
being mindful of the potential entrainment effects
of stimulation on seizure frequencies [28]. How-
ever this was only done by inspection, and there
is a need for principled methods. For neurolo-
gical disorders where healthy rhythms, pathological
rhythms and/or rhythms leading to side-effects can
be identified, selective entrainment based on dither-
ing is poised to provide a robust way to reinforce
healthy rhythms while avoiding undesirable effects.
In case multiple target rhythms have to be select-
ively entrained, superimposing dithered stimulation
pulse trains with different base stimulation frequen-
cies could be investigated.

Compared to clinically available DBS, for
example, the only extra parameter for dithered stim-
ulation is the dithering level. We note that a higher
dithering level was required to achieve selective
entrainment in populations of coupled neural oscil-
lators than in uncoupled neural oscillators (ζ = 0.15
vs ζ = 0.09, cf figures 3 and 4). Variations in the
optimal dithering level is therefore expected depend-
ing on the target neural circuit, thus the dithering
level should be adjusted experimentally. Moreover,
DBS electrodes with multiple independently con-
trolled stimulation contacts are becoming available
[61, 62]. Providing dithered stimulation with differ-
ent noise realisations (or different cycling patterns,
if cycling through a set of stimulation frequencies)
at different spatial locations within a target neural
structure is likely to lower the dithering level required
to achieve selective entrainment.

Beyond avoiding potentially harmful side-effects
while promoting physiological rhythms, dithered
stimulation offers the unique ability tomodulate sub-
and super-harmonic entrainment while sustaining

1:1 entrainment by modulating the dithering level.
This could be used as a tool to causally probe the
link between sub- or super-harmonic entrainment
and behaviour, such as the relationship between
1:2 entrainment of cortical gamma oscillations and
dyskinesia [25, 26], or the hypothesis that 1:2 entrain-
ment of cortical gamma oscillations byDBS promotes
motor symptom alleviation [63].

3.3. Conclusion
Selective entrainment based on dithering has poten-
tial to enable new brain stimulation therapies where
there are physiological rhythms to reinforce and
pathological rhythms that should not be entrained,
as well as to enable new neuroscientific research. As a
simple open loop stimulation strategy, it is likely to be
implementable across a large variety of existing brain
stimulation devices.

4. Methods

In this section, we approximate analytically the width
of Arnold tongue families in the presence of dithered
stimulation, and provide methodological details per-
taining to entrainment metrics and to the simulation
of networks of coupled neural oscillators.

4.1. Theoretical basis for the efficacy of dithered
stimulation as a selective entrainment strategy
By deriving approximate expressions for the width of
the most prominent families of Arnold tongues as a
function of the dithering level, we propose a theoret-
ical basis for the efficacy of dithered stimulation as a
selective entrainment strategy.

4.1.1. Influence of dithered stimulation on p:1 Arnold
tongues
We consider cobweb plots to study the p:1 fre-
quency locking behaviour of the stochastic sine circle
map given by equation (2), for p⩾ 1. Similar one-
dimensional maps and cobweb analyses have recently
been used to study the clustering behaviour of neural
oscillators [43]. In the deterministic case, p:1 fre-
quency locking corresponds to the stable fixed point
of θn+1 = F(θn) and θn+1 = θn + 2pπ, i.e. when we
have p complete rotations of the oscillator for every
stimulation cycle. The cobweb plot representing θn+1

as a function of θn has one stable and one unstable
fixed points (see figure 7(A) for the 1:1 case and
figure 7(B) for the 2:1 case).

In the stochastic case, there will still be p:1 fre-
quency locking if it is highly unlikely for the phase
to escape the attraction ‘trap’ between the stable
and unstable fixed points in one random jump [44]
(i.e. after one iteration of the stochastic map). We
denote by h the size of the trap as indicated in
figures 7(A) and (B).

The random jump size (mod 2π) between stim-
ulation pulse n and n+ 1 is θn+1 − θn ≈ 2π ( f0/fs)zn
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Figure 7. Cobweb plots of the deterministic sine circle map for different frequency locking ratios. Cobweb plots used to study
frequency-locking in the deterministic sine circle map reveal the size of the trap (denoted by h, shortest distance between a stable
and an unstable fixed point) that can prevent dithered stimulation from breaking frequency locking. Stable fixed points are
identified by filled red circles, unstable fixed points by empty red circles. Parameters used are f0 = 125 Hz, I= 1 (A), f0 = 255 Hz,
I= 1 (B), f0 = 63 Hz, I= 1.5 (C), f0 = 193 Hz, I= 1.5 (D). In all panels, fs = 130 Hz.

since θn ≈ F(θn) mod 2π in the vicinity of the stable
fixed point. Therefore the jump size is approx-
imately distributed according to N

(
0,σ2

)
with

σ = 2π ( f0/fs)ζ , where ζ is the dithering level. We
consider that it is highly unlikely for the phase to clear
the trap if the trap size h is larger than nσ standard
deviations of the jump size distribution, with nσ ⩾ 3.
In [44], nσ = 3, but we will consider nσ ⩾ 3 for the
sake of generality. Therefore, frequency locking is lost
when

h= 2π( f0/fs)nσζ. (5)

The trap size h can be obtained by solving for the
positions of the stable and unstable fixed points of the
deterministic map, and selecting the shortest absolute
distance between the fixed points. We obtain for the
p:1 case

h=


π + 2arcsin

(
2π
I

[
f0
fs
− p

])
for f0

fs
< p,

π − 2arcsin
(
2π
I

[
f0
fs
− p

])
for f0

fs
> p.

Using this result and equation (5), we obtain the
p:1 tongue boundaries of the stochastic sine circle
map as

I( f0) =
±2π

(
f0
fs
− p

)
sin

(
π
[
f0
fs
nσζ − 1

2

]) . (6)

Under the assumption that the standard deviation
of the noise is small (ζ ≪ 1), the width of the p:1
tongue can be approximated. This requires finding
the function f +0 (I) demarcating the right boundary
of the tongue and the function f −0 (I) demarcating the
left boundary. At the right boundary of the tongue
(f +0 /fs > p), a Taylor expansion of the sine term in
equation (6) to second order in ζ gives the quadratic
equation

π2

2
n2σζ

2I

(
f +0
fs

)2

+ 2π
f +0
fs

− (2pπ + I) = 0,
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which, after a Taylor expansion to second order in ζ
of the square root of the quadratic equation discrim-
inant, yields

f +0 (I) = fs

(
p+

I

2π
− n2σζ

2

16π
I [2pπ+ I]2

)
.

Similarly, we find for the left boundary of the tongue

f −0 (I) = fs

(
p− I

2π
+

n2σζ
2

16π
I [2pπ− I]2

)
.

Thus, the width of p:1 Arnold tongues can be approx-
imated in the stochastic sine circle map as

∆f p:1(I) = f +0 (I)− f −0 (I)

= fs
I

π

(
1− n2σζ

2

8

[
4p2π2 + I2

])
. (7)

4.1.2. Influence of dithered stimulation on (2p− 1):2
Arnold tongues
In the sine circle map, Arnold tongues of order
(2p− 1):2, p⩾ 1, are the second largest after tongues
of order p:1 (figure 3(A1)). Their widths can be
approximated by adapting the derivation presented in
the previous section. In the deterministic case, (2p−
1):2 frequency locking is characterised by 2p− 1 com-
plete rotations of the oscillator for every two stim-
ulation cycles. Since two stimulation cycles are con-
sidered, (2p− 1):2 frequency locking corresponds to
stable fixed points of the map given by equation (1)
iterated twice, i.e. θn+2 = F(F(θn)), and θn+2 = θn +
2(2p− 1)π. The random jump size between stimula-
tion pulse n and n+ 2 is

θn+2 − θn = F

(
F(θn)+ 2π

f0
fs
zn

)
+ 2π

f0
fs
zn+1 − θn,

θn+2 − θn ≈ F(F(θn))+ 2π
f0
fs
zn (1+ IcosF(θn))

+ 2π
f0
fs
zn+1 − θn,

where we have used a Taylor expansion to first
order (assuming that ζ ≪ 1). Assuming I≪ 1,
and since θn ≈ F(F(θn)) mod 2π in the vicinity
of the stable fixed points, we have θn+2 − θn ≈
2π ( f0/fs)(zn + zn+1) mod 2π. Therefore the jump
size is approximately distributed according to
N

(
0,σ2

)
with σ = 2

√
2π ( f0/fs)ζ .

As before, the shortest trap size h is obtained by
solving for the position of the stable and unstable
fixed points of the deterministicmap (see figures 7(C)
and (D) for the 1:2 and 3:2 case, respectively). Iterat-
ing the deterministic map twice gives

θn+2 = θn + 4π
f0
fs
+ I

×
(
sinθn + sin

[
θn + 2π

f0
fs
+ I sinθn

])
.

If f 0 is close to the center of the (2p− 1):2 tongue,
δ = ( f0/fs)− (2p− 1)/2 is small. Assuming I≪ 1
and δ≪ I yields

θn+2 = θn + 4π
f0
fs
+ I

{
sinθn+

sin

(
θn + 2π

[
δ+

2p− 1

2

]
+ I sinθn

)}
,

θn+2 ≈ θn + 4π
f0
fs
− I2

2
sin(2θn) . (8)

Thus, when (2p− 1):2 frequency locking occurs,
there are four fixed points which satisfy

4π

(
f0
fs
− 2p− 1

2

)
− I2

2
sin(2θn)≈ 0.

We note that when using equation (8), since
the distances between each stable fixed point and
the nearest unstable fixed point are the same (see
figures 7(C) and (D)), it does not matter at which
stable fixed point locking occurs. The trap size h is
therefore obtained by selecting the shortest distance
between one of the stable fixed points and an unstable
fixed point. We have for the (2p− 1):2 case

h≈


π
2 + arcsin

(
8π
I2

[
f0
fs
− 2p−1

2

])
for f0

fs
< p,

π
2 − arcsin

(
8π
I2

[
f0
fs
− 2p−1

2

])
for f0

fs
> p.

Boundaries for (2p− 1):2 tongues in the stochastic
sine circle map are obtained from the condition
h= nσσ, which translates to

I( f0) =

±
8π

[
f0
fs
− 2p−1

2

]
sin

{
π
[
2
√
2 f0
fs
nσζ − 1

2

]}
1/2

. (9)

As in the p:1 case, the width of (2p− 1):2 tongues
can be approximated by inverting equation (9) to find
the functions f +0 (I) at the right boundary, and f −0 (I)
at the left boundary. At the right boundary of the
tongue (f +0 /fs > (2p− 1)/2), a Taylor expansion of
the sine term in equation (9) to secondorder in ζ gives
the quadratic equation

4π2n2σζ
2I2

(
f +0
fs

)2

+ 8π
f +0
fs

−
(
4{2p− 1}π + I2

)
=0,

which, after a Taylor expansion to second order in ζ
of the square root of the quadratic equation discrim-
inant, yields

f +0 (I)= fs

(
2p− 1

2
+

I2

8π
− n2σζ

2

128π
I2
[
4{2p− 1}π+ I2

]2)
.

Similarly, we find for the left boundary of the tongue

f −0 (I)= fs

(
2p− 1

2
− I2

8π
+

n2σζ
2

128π
I2
[
4{2p− 1}π− I2

]2)
.
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Thus, the width of (2p− 1):2 Arnold tongues can be
approximated in the stochastic sine circle map as

∆f (2p−1):2(I) = f +0 (I)− f −0 (I)

= fs
I2

4π

(
1− n2σζ

2

16

[
16{2p− 1}2π2 + I4

])
.

(10)

4.2. Entrainment metrics used in simulations
We compute several entrainment metrics to charac-
terise the frequency locking behaviour of neural oscil-
lators in simulations. Our primary entrainment met-
ric, the rotation number R, is measured as

R=
ϕN −ϕ0
2πN

,

where N is large, and ϕn is specified depending
on the model considered. In simulations of the
sine circle map, we take ϕn = θn. In simulations
of the Kuramoto model, we use ϕn = ψ(tn) where
ψ(t) is the phase of the order parameter Z(t) (see
definitions in section 4.3), and tn is the time one
time step before stimulation pulse n. For refer-
ence, theoretical definitions of the rotation num-
ber in the presence of stochasticity are given in
[54, 64].

To detect frequency locking in the presence of
noise, the following criterion is used for both mod-
els. The system is considered to be entrained to stim-
ulation with a p:q rotation number if |R− p/q|< tol,
and |S(∂R/∂f0)|< tol ′, where S(∂R/∂f0) is the
smoothed partial derivative of the measured rota-
tion number with respect to f 0, and tol and tol

′

are tolerances on the rotation number and its
smoothed derivative, respectively. These conditions
correspond to plateaux in figure 2 where p:q fre-
quency locking occurs. For simulations of the sine
circle map, we take tol= 6.10−4, tol ′ = 1.10−2,
and ∂R/∂f0 is smoothed using locally weighted
scatterplot smoothing (LOWESS, based on a lin-
ear model) with a span of 0.058 Hz (4 samples).
For simulations in the Kuramoto model, we take
tol= 3.10−2, tol ′ = 2.10−2, and ∂R/∂f0 is smoothed
using LOWESS with a span of 0.64 Hz (4 samples).
These values take into account the different resol-
utions of the rotation number field for both mod-
els in the natural frequency/stimulation amplitude
space, simulation duration, and simulation repeats,
and were found to robustly detect frequency locking
plateaux.

For both models, the width of the p:q tongue
for a particular stimulation amplitude and dithering
level is simply measured in simulations as the sum
of the frequency width of the discretised bins in the
natural frequency/stimulation amplitude spacewhere
p:q entrainment is detected at this stimulation amp-
litude and dithering level.

Additionally, the mean instantaneous frequency
in the Kuramoto model is computed as

finst =

⟨
1

2π

dψ

dt

⟩
,

where ψ is the phase of the order parameter (defini-
tions in section 4.3), and ⟨.⟩ denotes the time average
over the duration of stimulation.

4.3. Simulating populations of coupled neural
oscillators
In order to test dithered stimulation in populations
of coupled neural oscillators, we simulate M= 100
coupled Kuramoto oscillators with noise and homo-
geneous coupling. The time evolution of the phaseφk

of the kth oscillator is described by the stochastic dif-
ferential equation

dφk=

[
ωk +

κ

M

M∑
l=1

sin(φk −φl)+ I(t)Z(φk)

]
dt+ ξdWk

(11)

where ωk is the intrinsic frequency of the kth oscil-
lator, κ is the coupling strength, I(t) is the stim-
ulation pulse train, Z is the oscillator PRC, ξ the
model noise standard deviation, and Wk are inde-
pendent Wiener processes. The order parameter of
the network readsZ(t) = ΣM

k=1e
iφk(t)/M= ρ(t)eiψ(t).

We simulate amore computationally efficient form of
equation (11), involving the modulus ρ and phase ψ
of the order parameter, and given by

dφk = [ωk +κρ sin(ψ −φk)+ I(t)Z(φk)]dt+ ξdWk.

We reproduce signals with dynamics similar to
neural oscillations in the absence of stimulation
by choosing κ= 350, ξ= 7.9, and sampling the
ωk’s from a Lorentzian distribution centered on
the frequency considered (f0/[2π]) and of width
20 Hz. Examples of output signals X (t) = ℜ(Z(t))
[45], where ℜ denotes the real part, are shown
in figure S.8(A) in the supplementary informa-
tion for two values of f 0. We take Z to be the
PRC of the standard Hodgkin-Huxley neuron model
[49, 50], see figure S.8(B1) in the supplementary
information.

In section 2.2, the dithered stimulation pulse
train I(t) is constructed with its stimulation period
changing at each stimulation period and given by
(1+ z)/fs, where fs = 130 Hz is the base stimula-
tion frequency, and z is a normal random number
sampled from N

(
0, ζ2

)
at each stimulation period.

In section 2.3, the stimulation pulse train is construc-
ted as described therein using a finite set of stimula-
tion frequencies. In both cases, contrary to the sine
circle map, we can consider square stimulation pulses
with a temporal extent, as shown in figure S.8(B2)
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in the supplementary information. The positive stim-
ulation pulse is taken to be 20% of the stimulation
period. To avoid harming the brain, charge balance is
also enforced, and a negative stimulation pulse occu-
pies the rest of the stimulation period. Themagnitude
of the positive component is chosen so that the time
integral of the stimulation waveform over a period is
zero. The model is forward simulated using a Euler-
Maruyama scheme with a time step of 10−4 s.
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