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Abstract
Objective. Deep brain stimulation is a treatment for medically refractory essential tremor. To
improve the therapy, closed-loop approaches are designed to deliver stimulation according to the
system’s state, which is constantly monitored by recording a pathological signal associated with
symptoms (e.g. brain signal or limb tremor). Since the space of possible closed-loop stimulation
strategies is vast and cannot be fully explored experimentally, how to stimulate according to the
state should be informed by modeling. A typical modeling goal is to design a stimulation strategy
that aims to maximally reduce the Hilbert amplitude of the pathological signal in order to
minimize symptoms. Isostables provide a notion of amplitude related to convergence time to the
attractor, which can be beneficial in model-based control problems. However, how isostable and
Hilbert amplitudes compare when optimizing the amplitude response to stimulation in models
constrained by data is unknown. Approach.We formulate a simple closed-loop stimulation strategy
based on models previously fitted to phase-locked deep brain stimulation data from essential
tremor patients. We compare the performance of this strategy in suppressing oscillatory power
when based on Hilbert amplitude and when based on isostable amplitude. We also compare
performance to phase-locked stimulation and open-loop high-frequency stimulation.Main results.
For our closed-loop phase space stimulation strategy, stimulation based on isostable amplitude is
significantly more effective than stimulation based on Hilbert amplitude when amplitude field
computation time is limited to minutes. Performance is similar when there are no constraints,
however constraints on computation time are expected in clinical applications. Even when
computation time is limited to minutes, closed-loop phase space stimulation based on isostable
amplitude is advantageous compared to phase-locked stimulation, and is more efficient than
high-frequency stimulation. Significance. Our results suggest a potential benefit to using isostable
amplitude more broadly for model-based optimization of stimulation in neurological disorders.

1. Introduction

Essential tremor (ET) is a neurological disorder
believed to originate from aberrant neural synchrony
in the cerebellar-thalamic-cortical pathway [1]. ET
is characterized by a tremor of the upper limbs,
and tremulous hand movements are coherent with
thalamic activity [2–4]. When medications are inef-
fective or not tolerated, high-frequency deep brain

stimulation (DBS) of the thalamus is an effective ther-
apy [5–7]. In its clinically available version,DBSdeliv-
ers pulses of electrical stimulation at about 130Hz via
electrodes implemented deep into the brain. Repor-
ted side effects of high-frequency (HF) thalamic
DBS include speech impairment, gait disorders, and
abnormal dermal sensations [8].

Such side-effects due to HF stimulation, the
inability to adapt stimulation to symptom severity,
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frequent battery replacement surgeries, as well as
habituation in some patients (diminishing stimula-
tion efficacy [9]) are some of the key limitations of
HF DBS in ET. New closed-loop DBS strategies have
therefore been explored to stimulate less while pre-
serving or even improving clinical efficacy. Examples
of closed-loop strategies include phase-locked DBS,
where stimulation is delivered according to the phase
of pathological oscillations [10, 11], and adaptive
DBS, where stimulation is triggered based on the
amplitude of pathological oscillations [12–17]. There
is no consensus on how to stimulate to best minimize
aberrant synchrony, and experimental testing is lim-
ited because patients fatigue quickly.

Among model-based control approaches in neur-
ological disorders and in particular in movement
disorders, strategies based on the phase depend-
ence of the response to stimulation, strategies based
on optimal control, and strategies based on feed-
back control have been particularly influential. Phase
dependence of the response to stimulation has been
utilized both at the individual oscillator level and at
the population level. The knowledge of individual
oscillator phase response is used in [18–20] to design
stimuli aiming at desynchronizing coupled oscillat-
ors. At the neural population level, a strategy consist-
ing in providing bursts of stimulation phase-locked to
the phase of population activity was suggested in [21].
Recently, a Bayesian adaptive dual control algorithm
was designed to learn how to best stimulate according
to the phase and power of recorded oscillatory activ-
ity [22]. Optimal control has been used to steer neural
systems to a particular target set, such as the phaseless
set of a coupled oscillator model [23], or a target set
determined through bifurcation analysis of a neuron
model [24]. Some feedback control strategies in neur-
ological diseases have relied on the online estima-
tion of a model [14, 25, 26]. Model predictive control
has been applied to Parkinson’s disease (PD) using
an extended autoregressive model [27], and various
forms of delayed feedback have also been investigated
[28, 29]. Further review can be found for instance
in [30, 31].

Modeling studies such as [20, 32] have been car-
ried out to provide insights on how to effectively
reduce the Hilbert amplitude of the pathological sig-
nal with stimulation in ET. The Hilbert amplitude
is one of the most commonly used measures of
instantaneous amplitude in neurophysiological data
[10, 11, 33–36]. It is defined as the modulus of the
analytic signal, and gives the amplitude of the envel-
ope of narrow-band signals.

On the other hand, the notion of isostables,
which define an amplitude coordinate, has been
applied with great success to control the state
of various systems. Trajectories starting on the
same isostable approach the attractor synchronously
(isostables define a set of coordinates with codimen-
sion one associated with the decaying eigenvalues of

an attractor [37]). Isostables have been defined both
for limit cycle dynamics [38, 39] and fixed point
(FP) dynamics [37], and have been applied to con-
trol problems in both cases. Outside of neuroscience,
examples include stopping cardiac alternans [40],
controlling non-linear flows [41], and optimal con-
vergence to a stable FP [42]. In [43], a stimulation
strategy is designed based on isostable reduction to
desynchronize coupled neurons modeling patholo-
gical synchronization in PD. Besides isostables, meth-
ods to define control strategies based on the off-
line analysis of phase space have been suggested for
instance in [44, 45].

How isostable and Hilbert amplitudes compare
when optimizing the amplitude response to stimula-
tion inmodels constrained by data is unknown. Since
isostable amplitude delineates convergence time to
the attractor, it provides information on the long-
term behavior of the system, which may by useful
in model-based studies of DBS. In this work, using
models fitted in [32] to phase-locked stimulation data
fromET patients [10], we ask the question ‘Can phase
space stimulation based on isostable amplitude be
advantageous compared to phase space stimulation
based onHilbert amplitude, and compared to simpler
stimulation strategies?’ Because of the transient char-
acter of tremor, the deterministic part of best model
fits from [32] gave rise to stable foci.We will therefore
consider isostable amplitude of stable foci [37].

On the basis of stimulation strategies benefit-
ing from the knowledge of phase space amplitude
fields, we show that stimulation based on isostable
amplitude can be beneficial compared to stimulation
based on Hilbert amplitude when computation time
is limited to minutes. We also compare the perform-
ance of stimulation based on isostable amplitude to
phase-locked stimulation and HF stimulation. Our
results open opportunities for model-based optimiz-
ation of stimulation in neurological disorders where
stimulation aims at minimizing the amplitude of an
output.

2. Methods

To compare phase space stimulation strategies, we
consider previously fitted models, and their isostable
and Hilbert amplitude fields. We also implement
phase-locked stimulation and HF stimulation as
references.

2.1. Wilson–Cowanmodels fitted to ET patient
data
We rely on neural mass models previously fitted in
[32] to tremor data from ET patients receiving phase-
locked DBS [10]. In the latter study, a brief burst
of stimulation was delivered to the thalamus once
per tremor oscillation cycle, locked to the phase of
tremor recorded from an accelerometer fitted to each
patient (the data are available online [46]). In this
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Figure 1. Fitting WC models to phase-locked DBS tremor data from ET patients. The WC model can describe populations
thought to be involved in the generation of ET (A). Arrows denote excitatory connections or inputs, whereas circles denote
inhibitory connections. The VIM is the target of DBS and also receives an input from the deep cerebellar nuclei (DCN). The
self-excitatory loop of the VIM, as well as the excitatory connection from VIM to nRT are via cortex. Data and fitted model bARCs
for patient 5 are shown in panel (B) (patient numbers refer to [10]). Filtered tremor acceleration data (C) and fitted model output
(D) are also shown for patient 5. All four panels have been adapted from [32] under the creative commons CC BY 4.0 licence.

section, we review the results of [32] relevant to the
present study. The neural masses considered are two-
dimensional non-linear Wilson–Cowan (WC) mod-
els [47] with Gaussian white noise. The WC model
depicts the interactions of a population of excitat-
ory neurons, whose activity is denoted by E, and a
population of inhibitory neurons, whose activity is
denoted by I. The model can be mapped onto struc-
tures believed to be implicated in the generation of
ET as shown in figure 1, panel (A). The ventral inter-
mediate nucleus (VIM) of the thalamus is represen-
ted by the excitatory population, while the reticular
nucleus (nRT) is represented by the inhibitory popu-
lation. Their activities are given by the stochastic dif-
ferential equations

{
dE= 1

ν

(
−E+ f(ηE +wEEE−wIEI)

)
dt+ ζ dWE,

dI= 1
ν

(
−I+ f(ηI +wEIE)

)
dt+ ζ dWI,

(1)

with wPR the weight of the projection from popula-
tion ‘P’ to population ‘R’, ηP the constant input to
population ‘P’, and ν a time constant (assumed to be
the same for both populations). We denote by WE

andW I Wiener processes, and ζ is the noise standard
deviation. As in [48], the function f is the sigmoid
function

f(x) =
1

1+ e−β(x−1)
,

parametrized by a steepness parameterβ. In our (E, I)
model, E is the key variable for two reasons. First,
DBS for ET is most commonly delivered to the VIM,
and we model stimulation by an increase δE in the
activity of the corresponding population (E). Second,
since the coherence between ventral thalamic activity
and wrist flexor electromyographic recordings is high
[2–4], we use E to model the tremor signal.

We consider in the present study the best fits to
the three ET patient datasets shown to have statistic-
ally significant phase and amplitude response curves
in [32], namely patient 1, patient 5, and patient 6.
Other patients were not fitted to in our previous
study as their phase-dependent response to stimu-
lation was not statistically significant and was con-
sidered to be dominated by noise. The fitting pro-
cedure in our previous study subjected models to
the same phase-locked stimulation paradigm used
in experimental data (see [32] for more details).
The fits were based on features representing tremor
dynamics (example of data and model tremor sig-
nals shown in panels (C) and (D) of figure 1), and
the block phase response curve (bPRC, defined in
[32]). In addition to other model parameters, the
stimulation magnitude was fitted to best reproduce
these features. Here, we denote fitted stimulation

3
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Figure 2. Isostables as sets of points with the same
asymptotic convergence. The animation corresponding to
this figure is available in the online version of this article.
Trajectories starting on the same isostable are represented
by dots of the same color and cross subsequent isostables at
the same time. Isostables are depicted by black contours.
This example shows the WC fit to patient 1. The state X
corresponds to (E, I).

magnitudes by δE0 and provide the fitted stimulation
magnitude values from our previous study in table A
in the supplementary material (available online at
stacks.iop.org/JNE/18/046023/mmedia). As reported
in [32], the fitted models are able to reproduce
the data block amplitude response curves (bARCs,
defined in [32], example in figure 1, panel (B)),
without having been fit to the amplitude responses,
showing that the phase-dependence of the system
response to stimulation has been captured by the

models. As mentioned earlier, the deterministic part
of the three fitted models give rise to stable foci.

2.2. Isostable amplitude of stable foci in 2D
To introduce isostable amplitude, we summarize the
concept of isostables for stable FPs presented in [37].
On an intuitive level, the isostables of a stable FP can
be defined as sets of points with the same asymptotic
convergence to the FP, i.e. sets of points approaching
the FP synchronously [37]. This is illustrated in the
animation provided in the online version of figure 2,
where trajectories starting on the same isostable reach
subsequent isostables at the same time. In what fol-
lows, we denote vectors in bold to distinguish scalars
and vectors more easily. To provide a precise defini-
tion of isostables, let us consider a dynamical system

Ẋ= F(X), (2)

where X ∈ R2 for our purposes (see [37] for defin-
itions in Rn), and the vector field F is analytic. The
flow induced by equation (2) is denoted Φt(X). We
assume that F has a stable FP which we denote X∗,
with a basin of attraction B(X∗). We further assume
that the Jacobian J of F at X∗ has complex conjug-
ate eigenvalues λ± = σ± iω with σ < 0. We denote
by v1 = a− ib and v2 the right normalized eigen-
vectors associated with λ+ and λ−, respectively. The
isostable Iτ is defined in [37] when the leading eigen-
value is not real as the one-dimensional manifold

Iτ =

{
X ∈ B(X∗)|∃θ ∈ [0,2π) s.t.

lim
t→+∞

e−σt
∥∥∥Φt(X)−X∗ −<

[
v1e

i(ωt+θ)
]
eσ(t+τ)

∥∥∥= 0

}
, (3)

where <(z) is the real part of z. In equation (3),
Φt(X)−X∗ is the vector from the FP to the end
point at time t of a trajectory with initial condition
X. The vector <

[
v1ei(ωt+θ)

]
eσ(t+τ) represents the

asymptotic behavior at time t shared by trajectories
with initial conditions on the isostable Iτ . These vec-
tors both converge to 0. The distance in equation (3)
is therefore scaled by the increasing function of time
e−σt to make the limit meaningful. For X ∈ Iτ , the
isostable coordinate of X is given by r(X) = eστ [37],
and we call r(X) isostable amplitude. To provide fur-
ther intuition, r(X) is twice the modulus of the first
coordinate of Z in the C2 basis (v1,v2), where Z is
the initial condition of a trajectory sharing the same
asymptotic evolution as Φt(x), but evolving accord-
ing to the linearized dynamics Ż= JZ.

We obtain isostable amplitude in this work using
a simple and efficient computation method available
for FPs when the eigenvalue corresponding to the
slowest direction is not real. This method is presen-
ted in Proposition 2 (ii) in [37], and we lay out how
it is applied here. Isostable coordinates are computed
using

r(X)≈
e−σnT

√
[(g1 ◦ΦnT)(X)]

2
+ [(g2 ◦ΦnT)(X)]

2

|〈∇g1(X∗),a〉|
,

(4)

where n ∈ N is chosen such that n� 1 while avoid-
ing numerical instability, 〈·, ·〉 is the standard com-
plex inner product, T= 2π

ω , and g1 : R2 7→ R and

4
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g2 : R2 7→ R are functions called observables. We
define these observables as

g1 =
〈
X−X∗,

[
b2
−b1

]〉
, g2 = 〈X−X∗, [ a2

−a1 ]〉 ,

where a= [ a1a2 ] and b=
[
b1
b2

]
. These definitions sat-

isfy the three requirements on g1 and g2 of Propos-
ition 2 (ii) in [37]. Similarly to Laplace averages, this
method permits us to compute isostable coordinates
in the entire basin of attraction of the FP, but is less
prone to numerical instability.

2.3. Obtaining Hilbert amplitude fields
Because the control goal is to reduce the Hilbert amp-
litude of the tremor, we use stimulation based on
Hilbert amplitude fields as a basis to compare the
performance of stimulation based on isostable amp-
litude fields. Hilbert amplitude fields can directly pre-
dict the instantaneous impact of a given stimula-
tion pulse in phase space on the Hilbert amplitude
of the tremor. We obtain Hilbert amplitude fields
through averaging of numerical simulations (integ-
ration time step is 1 ms). Specifically, we randomly
draw 2000 initial positions in the phase space region
of interest. From these initial positions, we simulate
the stochastic model (with the baseline noise level
fitted to data) for 1000 periods. From each traject-
ory, we obtain the Hilbert amplitude of the E com-
ponent as |Ẽ(t)+ iH(Ẽ(t))|, where Ẽ is the centered
E component, and H denotes the Hilbert trans-
form. We clip 0.5% of the trajectories and the Hil-
bert amplitude time series at both ends to remove
edge effects. To reduce the effect of noise, we lightly
smooth the trajectories and Hilbert amplitude time
series (moving average spanning four integration
time steps). The (E, I) region of interest is discretized
into 0.001× 0.001 unit bins (0.001× 0.0002 units for
patient 5 whose I range is notably narrower). For each
point in each trajectory, the corresponding space bin
is found, and the associated Hilbert amplitude value
is added to the bin. The Hilbert amplitude field over
the region of interest is finally obtained by averaging
Hilbert amplitude values within space bins.

To investigate differences between isostable and
Hilbert amplitude based stimulation, we use twoways
of centering the E component to obtain Ẽ, resulting
in two sets of Hilbert amplitude fields. The first way
is to center E by removing its mean, which is what
is commonly done to obtain Hilbert amplitude. This
results in what we call a ‘mean-centered Hilbert amp-
litude field’. The second way is to center E by using
information from phase space and removing E* (the
first coordinate of the FP). This results in what we call
a ‘FP-centered Hilbert amplitude field’.

2.4. Phase-locked stimulation and high-frequency
stimulation
The additional information used in stimulation
strategies based on amplitude fields (introduced in

section 3.3) is expected to translate into increased per-
formance compared to simpler stimulation strategies
such as phase-locked stimulation. Thus we imple-
ment phase-locked stimulation as a comparison
for the phase space stimulation strategy presented
in section 3.3. The zero-crossing phase was used
in [10] to investigate phase-locked stimulation in ET
patients. We therefore provide phase-locked stimula-
tion during model integration according to the zero-
crossing phase which we estimate as in [32] (see
appendix 7 therein). Briefly, we set the zero-crossing
phase to zero when positive zero-crossings are detec-
ted. Between zero-crossings, we evolve the phase lin-
early based on a frequency determined as the inverse
of the duration of the previous period. Given a selec-
ted target phase for stimulation, one pulse of stimula-
tion is delivered as soon as the target phase is reached.
In case the target phase has not yet been reached
and the next positive zero-crossing is detected, it is
assumed that the phase has been underestimated and
stimulation is provided right then. To maximize the
benefits of phase-locked stimulation, the best target
phase for phase-locked stimulation is estimated from
simulations consisting of 5000 s of stimulation at
one of twelve phase bins (same number of bins as in
[10]). The phase bin resulting in the largest decrease
in the power of the pathological oscillations is taken
as the target phase. This process is repeated for each
patient model and each stimulation magnitude stud-
ied in section 3.4. For each condition, the stimulation
magnitude is matched to what is used in phase space
stimulation.

We also compare the energy delivered by HF
stimulation and by our amplitude-based phase space
strategies for the same clinical effect. HF stimulation
is implemented by providing stimulation pulses at
130 Hz in an open-loop fashion. Using optimization
(specifically the generalized pattern search algorithm
[49, 50]), we determine the stimulation pulse mag-
nitude required by HF stimulation to attain the effic-
acy of the best performing phase space stimulation
strategy (within ±1%). This procedure is performed
for each case presented in section 3.4, and six tri-
als of 5000 s of HF stimulation are generated at each
optimization step.

While HF DBS has been previously investigated
in deterministic WC models in the limit cycle regime
[51, 52], its mechanism of action in our stable fixed-
point stochasticWCmodel is different. Stimulation at
130 Hz is fast enough compared to intrinsic dynam-
ics that HF stimulation is similar in the model to
stimulation provided continuously (with an appro-
priately reduced stimulation magnitude to maintain
the total energy delivered). Thus the effect of HF
stimulation can be illustrated by increasing the rate
of change of the E population activity (originally
given by equation (1)) by a constant. This modifies
the vector field, and in our patient models, the vec-
tor field with HF stimulation results in trajectories
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Figure 3. Isostable and mean-centered Hilbert amplitude fields (full estimates) for the three WC patient fits. Each column
corresponds to a patient fit. Isostable amplitude fields are presented in the top row, and mean-centered Hilbert amplitude fields in
the bottom row. Colour scales are matched on a patient basis. For the WC model, the state X corresponds to (E, I), where E is the
activity of the excitatory population, and I the activity of the inhibitory population.

of lower E amplitude when stimulation is strong
enough.

3. Results

We suggest a closed-loop stimulation strategy relying
on phase space amplitude fields and compare the per-
formance of this strategy when the amplitude field
used portrays isostable amplitude to when it depicts
Hilbert amplitude. In both cases, the goal of the stim-
ulation strategy is to reduce as much as possible the
power of pathological oscillations.

3.1. Full estimates of amplitude fields
Reliable estimates of isostable amplitude fields for the
three WC patient fits (figure 3, panels (A1), (B1),
and (C1)) were obtained using equation (4) and an
explicit Runge–Kutta (4,5) method to integrate tra-
jectories. Isostable amplitude fields are given for the
deterministic version of the fitted models (i.e. with
ζ = 0). As n is increased, convergence of isostable
coordinates happens before numerical instability sets
in (this was not the case with the first order Euler’s
method). We used n= 80 for patient 1, n= 60 for
patient 5, and n= 120 for patient 6. For these val-
ues, r has converged and there is no trace of numer-
ical instability. Since the fitted models reproduce
the particular tremor dynamics and phase-dependent
response to phase-locked DBS of each individual
patient [32], differences in amplitude fields between
subjects should reflect patient specificities.

Hilbert amplitude fields are estimated as
described in section 2.3 for the three WC patient fits.
Mean-centered Hilbert amplitude fields (figure 3,
panels (A2), (B2), and (C2)) are strikingly similar in
shape to isostable amplitude fields. While isostable
amplitude can easily be computed anywhere in the

basin of attraction of the FP, Hilbert amplitude could
not be determined in white zones in panels (A2),
(B2) and (C2) of figure 3. FP-centered Hilbert amp-
litude fields (figure A in the supplementary material)
are very similar to mean-centered Hilbert amplitude
fields. We call the computationally intensive, high
quality estimates of isostable and Hilbert amplitude
fields presented in this section ‘full estimates’.

3.2. Quick estimates of amplitude fields
The high quality estimates of amplitude fields
obtained in the previous section require up to ten
hours of computation time for Hilbert amplitude
fields, and on the order of one hour of computa-
tion time for isostable amplitude fields (using no
more than four threads in both cases). It is of prac-
tical interest to obtain quicker estimates of amplitude
fields, and to compare the performance of isostable
and Hilbert amplitude fields requiring similar com-
putational time. Indeed, amplitude fieldsmay need to
be updated often in clinical practice. We obtain quick
estimates of isostable amplitude fields by relaxing the
convergence requirement of the isostable field. This
enables us to use the faster Euler’s method to integ-
rate trajectories. We select on a patient basis n (see
equation (4)) as well as the time step to lower compu-
tation time as much as possible while avoiding major
artefacts in the isostable amplitude field. We then
approximately match on a patient basis the computa-
tion time taken to compute Hilbert amplitude fields
by reducing the number of simulations and num-
ber of periods per simulations (the Euler–Maruyama
method is already used). Single threaded computa-
tion times range from 19 to 454 s and are detailed in
table B in the supplementary material together with
the parameters used. The resulting amplitude fields

6
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Figure 4. Instantaneous amplitude response fields for full estimates of asymptotic amplitude (Γ∞
0 , panels (A1), (B1) and (C1))

and full estimates of mean-centered Hilbert amplitude (ΓH
0 , panels (A2), (B2), and (C2)) are shown for the three fitted WC

models for δX=
[
δE0
0

]
(δE0 are previously fitted stimulation magnitudes). White zones signify missing values. Negative values of

the response fields (in blue) signify a decrease in amplitude (beneficial stimulation), positive values (in yellow to red) signify an
increase in amplitude. Color scales are matched on a patient basis. Panel D illustrates the k− 1 step ahead discount factor αi,k at
time ti, for various values of the discounting parameter b. Time tn1 corresponds to the predicted end of the current period.

are similar to full estimates (see figure B in the sup-
plementary material). However the scale of isostable
amplitude fields is not the same since the conver-
gence requirement has been relaxed. Hilbert amp-
litude fields are noisier, with more missing values.

3.3. A phase space stimulation strategy drawing on
amplitude fields
We describe a stimulation strategy that uses inform-
ation from state space amplitude fields to decide
whether it is more beneficial to stimulate now or at
a later time of the ongoing period.

3.3.1. Instantaneous and augmented response fields
The starting point is a phase space amplitude field
Ω(X) (we will be using isostable or Hilbert amp-
litude fields shown in figure 3, as well as in figures A
and B in supplementary material). From there, we
define the corresponding ‘instantaneous amplitude
response field’ Γ0(X) = Ω(X+ δX)−Ω(X), where
δX is the stimulation vector. Instantaneous amplitude
response fields for isostable amplitude (Γ∞

0 ) and
mean-centered Hilbert amplitude (ΓH

0 ) are presen-
ted in figure 4, panels (A)–(C). Zones where stimula-
tion is beneficial correspond to negative values of the
response fields (decrease in amplitude) and are shown

7
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Figure 5. Instantaneous amplitude response fields for quick estimates of asymptotic amplitude (Γ∞
0 , panels (A1), (B1) and (C1))

and quick estimates of mean-centered Hilbert amplitude (ΓH
0 , panels (A2), (B2), and (C2)) are shown for the three fitted WC

models for δX=
[
δE0
0

]
(δE0 are previously fitted stimulation magnitudes). White zones signify missing values. Negative values of

the response fields (in blue) signify a decrease in amplitude (beneficial stimulation), positive values (in yellow to red) signify an
increase in amplitude. Color scales are only matched for patient 1 as field values are too different for other patients.

in blue (the darker the blue, the greater the mag-
nitude of the change in amplitude). Conversely, zones
where stimulation is not beneficial correspond to pos-
itive values of the response fields (increase in amp-
litude) and are indicated with a colorscale from yel-
low to red. Instantaneous amplitude response fields
for FP-centered Hilbert amplitude (which we denote
ΓH∗

0 ) are very similar to ΓH
0 (see figure C in the

supplementary material). Instantaneous amplitude
response fields from quick estimates of Hilbert amp-
litude fields are more noisy (mean-centered Hilbert
amplitude in the bottom row of figure 5, and FP-
centered Hilbert amplitude in figure D in the sup-
plementary material). Although quick estimates of
isostable amplitude fields do not exhibit visible arte-
facts (top row of figure B in the supplementarymater-
ial), patterns that were not present in figure 4 are seen
in the instantaneous response fields corresponding to
quick estimates of isostable amplitude fields. These
patterns include deformations of constant field value
contours (contrast the rightmost part of figure 4(A1)
and of figure 5(A1)), as well as ripples organized in a
concentric fashion (compare figures 4(C1)–5(C1)).

In what we call an ‘augmented instantaneous
amplitude response field’ Γ(X, t), we embed the val-
ues of Γ0 on deterministic trajectories starting at X
from t= 0 to t=T. The information will be used
to inform the decision to stimulate or not at X. We
are considering the (E, I) phase space, and the range
of interest of E and I are discretized into NE and
N I values, respectively. Algorithm 1 describes how
we obtain Γ from Γ0 in discretized space and time.
Stimulation is only beneficial when the amplitude
response is negative (decrease in pathological signal
amplitude, tremor amplitude). Positive values of the
instantaneous amplitude response field are therefore

Algorithm 1. ObtainΓ

for (i, j) in {1, . . . ,NE}×{1, . . . ,NI} do
simulate trajectories (E(tk), I(tk))k∈{1,...,u}

with t1 = 0, tu =T, E(t1) = Ei, and I(t1) = Ij.
for k in {1,…, u} do
find (p,q) ∈ {1, . . . ,NE}×{1, . . . ,NI} s.t.
(Ep, Iq) is the closest to (E(tk), I(tk))
if Γ0(p,q)< 0 and Γ0(p,q)⩽ Γ0(i, j) then
Γ(i, j,k)← Γ0(p,q)

else
Γ(i, j,k)← 0

end if
end for

end for

of no interest to provide beneficial stimulation and
are logged in Γ as zeros.

3.3.2. Phase space stimulation using amplitude fields
Based on an augmented instantaneous amplitude
response field of choice, the decision to stimulate or
not is made at eachmodel integration time step using
the current position in phase space (algorithm 2).
Stimulation is provided as a single pulse, atmaximum
once per period according to the scheme. We track
zero-crossings and estimate the zero-crossing phase
(as detailed in section 2.4). To prevent instability
when zero-crossing tracking fails, we enforce a
maximum stimulation frequency (corresponding to
Nlim time steps in algorithm 2) of 10 Hz, which is
roughly twice the tremor frequency. The benefit of
stimulating at later times of the ongoing period is
estimated by the values stored in Γ in the space bin
corresponding to the current position. The estim-
ated values are based on deterministic trajectories,
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Algorithm 2. Decide to stimulate at time step ti

if no stimulation for Nlim time steps and no stimulation
yet in current period then

find (p,q) ∈ {1, . . . ,NE}×{1, . . . ,NI} s.t. (Ep, Iq)
is the closest to (E(ti), I(ti))

if Γ(p,q,1)< 0 then
if predicted period end already reached then
stimulate

else
if Γ(p,q,1)< min

k∈{2,...,n1−i+1}
(αi,kΓ(p,q,k)) then

stimulate
end if

end if
end if

end if

whereas the model includes Gaussian white noise.
As a result, the actual benefit of waiting to stimu-
late is uncertain and will deviate from the average
(noiseless) trajectory prediction, while the benefit of
stimulating now is known exactly. Future estimates
must therefore be discounted. From time ti, we define
the k− 1 step ahead discount factor αi,k as

αi,k =

[
1

(ti+k−1 − tn0)
b
− 1

(tn1 − tn0)
b

]

×

[
1

(ti − tn0)
b
− 1

(tn1 − tn0)
b

]−1

, (5)

where b is the discounting parameter, n0 is the index
of the first time step of the current period, and n1 is
the index of the last time step of the current period.
As shown in panel (D) of figure 4, αi,k is one at ti (no
discounting of the present value), and zero at the pre-
dicted end of the current period. It is also apparent
that a larger b discounts more heavily future values.
In algorithm 2, discount factors are not used if the
end of the current period predicted by zero-crossing
phase has been reached before the next zero-crossing
is detected. In this case, stimulation is applied right
then if beneficial.

3.4. Performance of phase space stimulation based
on various amplitude fields
Using the three fitted patient models, we compare the
performance of algorithm 2 when based on isostable
amplitude, on mean-centered Hilbert amplitude, or
on FP-centered Hilbert amplitude under three scen-
arios. As a reference, the performance of phase-
locked stimulation (see section 2.4) is also repor-
ted for each scenario, and an efficiency comparison
with HF stimulation is provided. We consider the
cases of full estimates of the amplitude fields (see
section 3.1) and of quick estimates of the amplitude
fields (see section 3.2). We also investigate the influ-
ence of doubling the noise standard deviation ζ (for
full estimates only). Under each scenario, we apply

algorithm 2 based on Γ∞
0 , on ΓH

0 , or on ΓH∗

0 to
the three fitted models for various stimulation mag-
nitudes δE (given as multiples or fractions of δE0),
and for various values of the discounting parameter b.
Hilbert amplitude instantaneous response fields have
space bins with missing values (see for instance white
zones in figure 4, panels (A2), (B2), and (C2)). For fair
comparison, the corresponding space bins are emp-
tied in isostable amplitude instantaneous response
fields. For compatibility with algorithm 2, Γ0 is set
to zero in both cases for empty space bins, so that
stimulation cannot be triggered at these locations.
Smaller stimulationmagnitude ratios δE/δE0 are used
for patient 5 because of the comparatively small
size of the Hilbert amplitude field available for this
patient and the comparatively larger δE0 (see table A
in the supplementary material). To compare Hilbert
and isostable amplitude stimulation as well as phase-
locked stimulation, we measure stimulation efficacy
by integrating the power spectrum density (PSD) of
the E activity (whichmodels the tremor signal). Effic-
acy is averaged using 30 trials of 5000 s of stim-
ulation. Since repeated measures are performed on
each patient, linear mixed effect models with ran-
dom intercepts are used to assess statistical differences
between phase space methods while accounting for
within patient dependence. Specifically, we fit to each
scenario the model

power∼method ∗ stim ∗ b+(1|patient), (6)

where method, stim, and b are the factors corres-
ponding to the choice of amplitude field, the stim-
ulation magnitude ratio δE/δE0, and the discount-
ing parameter b, respectively. Following standard R
notation, ∗ indicates the inclusion of all main effects
and interactions between the factors, and (1|patient)
indicates a random intercept per patient. We eval-
uate the significance of fixed effects using F-tests
based on Satterthwaite’s method for denominator
degrees-of-freedom [53]. Where the method factor
is significant, post hoc comparisons between the
three phase space methods are performed using t-
tests with Bonferroni correction for robust multiple
comparisons.

3.4.1. Phase space stimulation based on full estimates
of amplitude fields
Comparison of phase space stimulation based on
amplitude field full estimates in figure 6 shows that
stimulation based on isostable amplitude is mostly
on par with stimulation based on Hilbert amplitude,
and that phase space methods can be more effect-
ive than phase-locked stimulation. Themethod factor
comparing phase space strategies was not signific-
ant overall in the corresponding mixed effect model
(p= 0.0605, see tableC in the supplementarymaterial
for more details). Post hoc comparisons were there-
fore not performed. The slight advantage of isostable
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Figure 6. Comparison of the efficacy of phase space stimulation strategies based on full estimates of amplitude fields. Isostable
amplitude fields correspond to darker blue bars, FP-centered Hilbert amplitude fields to lighter blue bars, and mean-centered
Hilbert amplitude fields to white bars. Each row corresponds to a WC patient fit. Results are shown for a range of stimulation
magnitude ratios δE/δE0 (increasing from left to right), and a range of discounting parameters b. The vertical axes represent
efficacy measured as the integral of the PSD of E (which models the tremor signal). A no stimulation reference is indicated by red
dashes, and phase-locked stimulation is indicated by orange dashes. Averages correspond to 30 trials of 5000 s of stimulation.
SEM error bars are shown in black for Hilbert and isostable based stimulation and as shading for no stimulation and phase-locked
stimulation.

amplitude for patients 5 and 6 for larger values of b
compared tomean-centeredHilbert amplitude seems
to be due to amore favorable centering of the isostable
amplitude field. Indeed, the difference disappears for
FP-centeredHilbert amplitude. Furthermore,we have
confirmed that the difference between ΓH

0 and ΓH∗

0

can be reproduced simply by shifting ΓH∗

0 along the E
dimension (see figure E in the supplementary mater-
ial). Despite similar performance under this scenario,
there are still non negligible differences between ΓH∗

0

andΓ∞
0 as evidenced by figure F in the supplementary

material. Additionally, we note that our phase space
stimulation strategies based on amplitude fields are
more effective than phase-locked stimulation for low
discounting parameters and high stimulation mag-
nitudes. To match the efficacy of stimulation based
on isostable amplitude at b=−5, open-loopHF stim-
ulation has to deliver from 6.4 times to 136 times
more energy to the thalamus (see round markers in
figure 7). This highlights the greater energy efficiency
of phase space stimulation based on amplitude fields

and its potential for a lower occurrence of side-effects
compared to HF stimulation.

3.4.2. Robustness to noise
Robustness to noise was evaluated by doubling the
noise standard deviation in patient models. PSDs
of model simulations for the three fitted patients
are shown in the baseline and increased noise con-
ditions in figure G in the supplementary material.
The main PSD peak width is substantially enlarged
in the increased noise condition, in particular for
patients 5 and 6. In this scenario using full estim-
ates of amplitude fields, the method factor of the
corresponding mixed effect model was significant
(p< 10−15, see table C in the supplementary mater-
ial for more details). Significance of post-hoc com-
parisons under Bonferroni correction is indicated by
black stars in figure 8. There is an overall reduction
in efficacy of all stimulation strategies compared to
the baseline noise condition (figure 6), including
for phase-locked stimulation. As before, phase space
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Figure 7. Comparison of the energy delivered to the thalamus for the same clinical effect by the best performing strategy based on
isostable amplitude and by HF stimulation. The vertical axis represents the ratio of the energy delivered by HF stimulation to the
energy delivered by phase space stimulation based on isostable amplitude (discounting parameter b=−5) for the same efficacy in
the model. Efficacy is measured as the integral of the PSD of E, which models the tremor signal, and the efficacy match between
stimulation types is within±1%. The horizontal axis represents the increasing stimulation magnitude ratios δE/δE0 used for
isostable stimulation. Each color corresponds to a WC patient fit, and each marker type to a comparison scenario (see
sections 3.4.1–3.4.3).

stimulation strategies based on amplitude fields are
more effective than phase-locked stimulation for
b=−5 in all the cases shown in figure 8 (although
the difference is small for the lowest stimulation
case in patient 1), and for a broader range of dis-
counting parameters at high stimulation magnitude.
Among phase space stimulation strategies, stimula-
tion based on isostable amplitude outperforms stim-
ulation based on Hilbert amplitude in a number of
cases (patient 5, and in most conditions investigated
for patient 6). However these differences are small,
and are even smaller or not favorable for patient 1.
When the noise standard deviation is larger, trajector-
ies cover more of phase space. Because Hilbert amp-
litude fields rely on averaging, zones closer to the
edges of Hilbert amplitude fields are noisier as tra-
jectories of large amplitude are more sparse. Isostable
amplitude fields are immune to this issue, which
may explain the slightly better robustness of isostable
based stimulation to an increase in the noise stand-
ard deviation. Despite the increased noise level, stim-
ulation based on amplitude fields is still more effi-
cient than open-loop HF stimulation. To match the
efficacy of stimulation based on isostable amplitude
at b=−5, open-loop HF stimulation has to deliver
from 4.5 times to 120 times more energy to the thal-
amus (see square markers in figure 7).

3.4.3. Phase space stimulation based on quick
estimates of amplitude fields
In clinical practice, full estimates of amplitude fields
are unlikely to be useful because of their compu-
tational cost (on the order of hours). The per-
formance of stimulation strategies based on quick

estimates of amplitude fields which can be com-
puted in minutes is compared in figure 5. In this
scenario, the method factor of the corresponding
mixed effect model was found significant (p< 10−15,
see table C in the supplementary material for more
details). Isostable amplitude based stimulation offers
a clearer advantage compared to Hilbert amplitude
based stimulation (see post-hoc comparison under
Bonferroni correction in figure 8) than in previous
scenarios. While instantaneous amplitude response
fields based on quick estimates of isostable amplitude
exhibit some artefacts (see top panels in figure 5),
these artefacts do not seem to notably affect the
performance of isostable based stimulation. In fact,
the efficacy of phase space stimulation based on
quick estimates of isostable amplitude and the effic-
acy of phase space stimulation based on full estim-
ates of the isostable amplitude are similar (com-
pare the darker blue bars in figures 6 and 9). In
contrast, the increased noise in instantaneous amp-
litude response fields based on quick estimates of
Hilbert amplitude (see bottom panels in figure 5, as
well as figure D in the supplementary material) is
responsible for the decreased performance of Hilbert
amplitude based stimulation. Even when isostable
amplitude fields are computed in minutes, isostable
amplitude based stimulation (and in fewer cases Hil-
bert amplitude based stimulation) is as before more
effective than phase-locked stimulation, in particu-
lar for low discounting values (with the exception of
patient 1 at the lowest stimulation level, where per-
formance is similar). Additionally, stimulation based
on isostable amplitude fields computed in minutes is
still more efficient than open-loop HF stimulation,
requiring from 6.6 times to 132 times less energy to
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Figure 8. Comparison of the efficacy of phase space stimulation strategies based on full estimates of amplitude fields when
doubling the noise intensity. Isostable amplitude fields correspond to darker blue bars, FP-centered Hilbert amplitude fields to
lighter blue bars, and mean-centered Hilbert amplitude fields to white bars. Each row corresponds to a WC patient fit. Results are
shown for a range of stimulation magnitude ratios δE/δE0 (increasing from left to right), and a range of discounting parameters b.
The vertical axes represent efficacy measured as the integral of the PSD of E (which models the tremor signal). A no stimulation
reference is indicated by red dashes, and phase-locked stimulation is indicated by orange dashes. Averages correspond to 30 trials
of 5000 s of stimulation. SEM error bars are shown in black for Hilbert and isostable based stimulation and as shading for no
stimulation and phase-locked stimulation. Black stars denote significant differences under Bonferroni correction.

be delivered to the thalamus (see triangular markers
in figure 7).

4. Discussion

In this study, we showed that phase space stimula-
tion based on isostable or Hilbert amplitude fields
can be more effective than phase-locked stimulation
and is more efficient than open-loop HF stimulation,
even when noise is increased from the baseline noise
level fitted to patients. Stimulation based on isostable
amplitude was in most cases on par with stimula-
tion based onHilbert amplitude, with slight favorable
differences accounted for by a more accurate center-
ing of isostable amplitude fields. The performance of
isostable amplitude based stimulation and its advant-
age over phase-locked stimulation and HF stimula-
tion was maintained when using quick estimates of
amplitude fields obtained in minutes, which is likely
to be a clinical requirement. In contrast, the per-
formance of stimulation based on quick estimates of

Hilbert amplitude fields significantly degraded due
to noisier estimates. This suggests that there might
be a benefit to using more broadly amplitude fields,
in particular isostable amplitude fields, for model-
based optimization of stimulation in neurological
disorders.

4.1. Isostable amplitude
Although isostables have been developed with model
reduction in mind [37–39], there are similarities
between isostable amplitude and Hilbert amplitude,
which is one of the preferred measures of synchrony
in neurophysiological data. Trajectories starting from
the same isostable converge synchronously to the
attractor, i.e. reach subsequent isostables at the same
time. In our (E, I) model, trajectories starting from
the same isostable share the same Hilbert amplitude
(true regardless of whether the Hilbert amplitude is
defined based on E or on I). This is reflected by
the fact that isostable and Hilbert amplitude fields
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Figure 9. Comparison of the efficacy of phase space stimulation strategies based on quick estimates of amplitude fields. Isostable
amplitude fields correspond to darker blue bars, FP-centered Hilbert amplitude fields to lighter blue bars, and mean-centered
Hilbert amplitude fields to white bars. Each row corresponds to a WC patient fit. Results are shown for a range of stimulation
magnitude ratios δE/δE0 (increasing from left to right), and a range of discounting parameters b. The vertical axes represent
efficacy measured as the integral of the PSD of E (which models the tremor signal). A no stimulation reference is indicated by red
dashes, and phase-locked stimulation is indicated by orange dashes. Averages correspond to 30 trials of 5000 s of stimulation.
SEM error bars are shown in black for Hilbert and isostable based stimulation and as shading for no stimulation and phase-locked
stimulation. Black stars denote significant differences under Bonferroni correction.

are strikingly similar (see figure 3). Although amp-
litude values and gradients are different, contours of
equal amplitude have very similar shapes. In R2, a
relationship between isostable and Hilbert amplitude
might be revealed by studying the approximation
of isostable coordinates given by equation (4). This
equation can be interpreted as the norm of a 2D vec-
tor, similarly to the Hilbert amplitude. The Hilbert
amplitude is indeed the norm of the vector formed by
the real and the imaginary parts of the analytic signal.

In dynamical systems, phase-amplitude reduc-
tions such as the isochron-isostable reduction are
augmentations of classical phase reductions, and vari-
ous techniques are available to define an amplitude
coordinate (see [54] for a review). In contrast with
methods based on isostable amplitude, the euclidean
distance to the attractor is used as an amplitude vari-
able in [55], and a transverse variable obtained from
parametrizing isochrons is used in [56]. These meth-
ods are applicable when the attractor is a limit cycle,

which is not the case in the present work. Benefits
of the isostable method chosen [37] include its com-
putational efficiency, and its truly global character.
Isotables can be computed everywhere in the basin
of attraction of the FP without limitations. The the-
ory behind isostables considers purely deterministic
dynamical systems, whereas the fitted WC models
employed in our study involve Gaussian white noise.
Theories have been developed to account for the effect
of noise in isochrons [57–59], but isostables are lag-
ging behind in this respect. However, isostable amp-
litude fields share similarities with Hilbert amplitude
fields which were obtained by averaging noisy traject-
ories. It therefore seems likely that isostable amplitude
contours would not change substantially were Gaus-
sian white noise explicitly accounted for.

Control strategies developed in [18–20] are based
on the knowledge of individual oscillator phase
response curves, likely challenging to obtain in
patients. In [21], phase synchronization of neural
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populations is directly considered. However the amp-
litude response of individual populations, which may
be of importance at the mesoscale level, is not taken
into account. Instead of considering phase synchron-
ization of oscillators, we directly focus on amplitude
response at the population level, which is more dir-
ectly related to symptoms.

4.2. Comparing phase space stimulation strategies
based on isostable and Hilbert amplitude
The closed-loop phase space stimulation strategy sug-
gested in section 3.3 produces overall similar results
when based on full estimates of isostable amplitude
and when based on full estimates of Hilbert amp-
litude. Minimizing isostable amplitude is minimizing
convergence time to the attractor. Knowledge of the
future evolution of the (deterministic) non-linear sys-
tem embedded in isostable coordinates may theoret-
ically provide an advantage in controlling the Hilbert
amplitude of the stochastic system. Instantaneous
response fields obtained from isostable amplitude are
in fact different from their Hilbert amplitude coun-
terparts, even when FP-centered Hilbert amplitude
is used (see figure F in the supplementary material).
However convergence time information captured by
isostable amplitude does not seem to directly translate
into major differences in performance with Hilbert
amplitude based stimulation in the two-dimensional
models studied (see figure 6). The benefit of using
isostable amplitude fields in two-dimensional mod-
els may reside instead in the ability to obtain quick
estimates of amplitude maps more reliably than with
Hilbert amplitude. This is reflected in the better relat-
ive performance of isostable amplitude based stimu-
lation in figure 9. However Hilbert amplitude based
stimulation is still competitive in some cases, such
as for low discounting parameter and high stimula-
tion for patients 5 and 6. It is worth emphasizing
that the resolution and coverage that can obtained for
isostable amplitude fields is to our best knowledge out
of reach for Hilbert amplitude fields. To obtain Hil-
bert amplitude fields, considering noisy trajectories
is necessary to explore more of phase space, which
drastically limits the resolution that can be obtained
for a given number of simulations. To level the playing
field for our comparison, isostable amplitude fields
were masked to match the coverage of Hilbert amp-
litude fields, and the same resolution was used for
both amplitude fields.

Differences in where stimulation is provided in
phase space based on isostable or Hilbert amplitude
fields are highlighted in figures H, I, and J in the sup-
plementary material. Stimulation based on isostable
amplitude tends to happen a little later in phase,
although this effect is diminished when comparing
isostable amplitude to FP-centered Hilbert amplitude
instead of mean-centered Hilbert amplitude (see for
instance panel (A) and (B) in figure I). Isostable amp-
litude based stimulation also tends to be more focal

in most cases. This may be due to the fact that Hilbert
amplitude fields are not as smooth (see figure 3) since
they are obtained by averaging stochastic trajectories.
For quick estimates, because stimulation maps based
on Hilbert amplitude are not as reliable as for full
estimates, stimulation is more likely to be delivered in
unfavorable phase space locations as seen in (C) pan-
els in figures H–J (supplementary material). Finally,
isostable andHilbert amplitude response fields do not
exhibit the same boundaries between regions where
stimulation is beneficial and regions where it is not.
This is particularly true in patients 5 and 6 (see for
instance figure 4, panels (A)–(C)).

4.3. Limitations of the study
An important limitation of this study is that because
only three cases with a statistically significant phase
response were available, our comparison is based
on these three cases only. Because of experimental
difficulties, patient recordings are short, and non-
significant patients might simply have required more
data. However essential tremor is an heterogeneous
disorder, and it might also be the case that cer-
tain patient subtypes respond better to phase-locked
stimulation. Nevertheless, the three patient models
studied are heterogeneous as shown by notably dif-
ferent amplitude fields from one patient to another
(figure 3), suggesting that phase space stimulation
based on amplitude fields may be applicable to vari-
ous patient subtypes.

While the WC model is useful to model DBS
in ET, it is worth discussing its limitations in the
context of the literature. The central origin of ET
is well established (see e.g. [1, 60, 61]). In particu-
lar, thalamic activity has been associated with activity
in peripheral muscles driving the tremor [2–4], and
some ET models are exclusively based on biophys-
ically detailed representations of thalamic neurons
[62, 63]. Other models include the broader cerebello-
thalamo-cortical network [51, 64, 65]. Since detailed
knowledge of the central mechanism of generation
of ET is not available, mean-field models are natural
candidates to study ET [20, 32, 51]. The WC model
used in this study is a heuristically derivedmean-field
model [47]. As such, it benefits from a low number of
parameters while retaining some level of description
of a microscopic biological reality. However, bursting
of thalamic neurons is not described by theWCmodel
and might play a role in ET [51]. Another limita-
tion is that ourWCmodel portrays a central feedback
loop, and does not account for the interaction of the
centrally generated component of ET with the mech-
anical stretch reflex, whose involvement may depend
on the disease state [66, 67]. The mesoscopic scale of
the WC model makes it particularly suited to be fit-
ted to mesoscopic data such as local field potential
recordings obtained from DBS electrodes, or tremor
recordings (as used in [32]). It is likely thatmore com-
plexmodels withmore parameters would overfit such
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data, and would be too computationally demanding
to fit in practice. Despite the limitations mentioned
above, the WC model has been shown to be adept
at reproducing the effects of high-frequency DBS in
ET [51] and PD [52], as well as the phase-dependent
effects of phase-locked DBS in ET in datasets with
statistically significant response curves [32]. Addi-
tionally, our phase space stimulation strategies based
on amplitude fields can be applied to more complex
models than the WC model. The isostable compu-
tation method described in section 2.2 is limited to
two-dimensional FP dynamics, but the method can
be extended to higher dimensions.

The requirement to fit a model to patient data
to provide stimulation in phase space adds complex-
ity. To inform stimulation using the Hilbert trans-
form without relying on models, data trajectories
could directly be portrayed in the (y,H(y)) space,
where y is the centered tremor signal. However,
in the case of ET, patients are asked to assume a
tremor provoking posture to measure the response
to phase-locked DBS [10]. Because patients fatigue
quickly, only short recordings can be obtained (on
the order of 10 min [46]). In these short datasets,
the dependence of phase-locked DBS effects on the
Hilbert phase of stimulation can be estimated in some
patients [10, 32] (12 phase bins). The dependence of
the effects of stimulation on the Hilbert amplitude
of the on-going tremor is more difficult to meas-
ure (three amplitude bins with large error bars in
[20]). An instantaneous amplitude response field in
the (y,H(y)) space detailed enough to optimize stim-
ulation is therefore out of reach. Moreover, providing
stimulation according to the Hilbert phase of tremor
alone is unlikely to bring optimal benefits.

An algorithm learning a target phase and a power
threshold online to stimulate according to phase and
power such as in [22] has many advantages, in par-
ticular its simplicity and model-free character. How-
ever, the response to stimulation is measured in [22]
on a short timescale, and the subtle effects of phase-
locked stimulation seen in patient data might there-
fore be overlooked. Moreover, stimulating accord-
ing to a target phase and a single power threshold
may be suboptimal compared to stimulation in phase
space based on amplitude fields, where the decision
to stimulate depends on the state, and predictions
about the future evolution of the state can be taken
into account. How the strategies would compare in
practice is however unclear, in particular in the light
of the greater complexity of phase space strategies
based on amplitude fields, which require model
fitting.

Given model parameters, a corresponding aug-
mented instantaneous amplitude response field
(defined in section 3.3.1), and the state, our phase
space stimulation strategy based on amplitude fields

can run very quickly (real time is likely to be achiev-
able). While the model state would need to be estim-
ated in near real time, we expect model paramet-
ers to change more slowly. Model parameters would
therefore be updated and the amplitude fields (and
corresponding response fields) computed on this
slower time scale, which may be on the order of
minutes. This is compatible with our results based
on quick estimates of amplitude fields (see table B
in the supplementary material for single threaded
computation time of quick estimates). Estimation of
model parameters and state may be achievable using
unscented Kalman filtering as done in [25] for a spa-
tially extended WC model. However the operational
practicality of phase space stimulation strategies
based on amplitude fields needs to be further
evaluated.

4.4. Future directions
Amplitude field based stimulation for neurological
disorders could be investigated further. In PD, motor
symptoms are correlated with increased subthalamic
nucleus (STN) beta band oscillatory power [68–72].
Excessive synchrony in PD has been explored with
isostables in a model of coupled neurons [43], but
not in a model constrained with experimental data.
The WC model can describe the feedback loop com-
posed of the STN and the globus pallidus pars
externa [73–76], which plays a role in PD excess-
ive beta synchrony. Similarly to what was done in
the present study, amplitude field based stimula-
tion could be applied to WC focus models fitted to
PD patients, and compared to simpler stimulation
strategies. Moreover, because isostables are related
to convergence properties of a system, isostable
amplitude could be provided as an additional fea-
ture to complement Hilbert amplitude when try-
ing to optimize stimulation with machine learning
approaches. Furthermore, isostable coordinates are at
present limited to situations where a model is avail-
able. Obtaining the Koopman operator from data is
being researched [77–79], which could make pos-
sible to recover isostables from data as there is a
strong connection between the Koopman operator
and isostables [37]. A method to directly obtain
isostables from data has very recently been sugges-
ted [80]. However it relies on limit cycle dynam-
ics, and it is also unknown whether the technique
could be robust to the large levels of noise seen in
neurophysiological data. Finally, convergence time
information embedded in isostable amplitude fields
may prove more profitable to control more com-
plex, higher dimensional models, such as mean-field
models of coupled populations of theta neurons [81,
82]. In higher dimensions, the computational advant-
age of isostable amplitude fields compared to Hilbert
amplitude fields should also be larger.
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5. Conclusion

Although isostable amplitude has been successfully
applied to control the state of various systems, it
has not been tested on patient models in the con-
text of optimizing DBS, and has not been compared
to standard definitions of amplitude. Using models
fitted to ET patient data, we showed that amplitude
field based phase space stimulation strategies may be
beneficial compared to phase-locked stimulation and
open-loop HF stimulation. Additionally, given lim-
ited computation time, phase space stimulation based
on isostable amplitude may be more effective than
phase space stimulation based on Hilbert amplitude.
Our study opens opportunities for model-based
control of pathological oscillations in neurological
disorders.
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