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Abstract
Essential tremor manifests predominantly as a tremor of the upper limbs. One therapy
option is high-frequency deep brain stimulation, which continuously delivers
electrical stimulation to the ventral intermediate nucleus of the thalamus at about
130 Hz. Constant stimulation can lead to side effects, it is therefore desirable to find
ways to stimulate less while maintaining clinical efficacy. One strategy, phase-locked
deep brain stimulation, consists of stimulating according to the phase of the tremor.
To advance methods to optimise deep brain stimulation while providing insights into
tremor circuits, we ask the question: can the effects of phase-locked stimulation be
accounted for by a canonical Wilson–Cowan model? We first analyse patient data, and
identify in half of the datasets significant dependence of the effects of stimulation on
the phase at which stimulation is provided. The full nonlinear Wilson–Cowan model is
fitted to datasets identified as statistically significant, and we show that in each case
the model can fit to the dynamics of patient tremor as well as to the phase response
curve. The vast majority of top fits are stable foci. The model provides satisfactory
prediction of how patient tremor will react to phase-locked stimulation by predicting
patient amplitude response curves although they were not explicitly fitted. We also
approximate response curves of the significant datasets by providing analytical results
for the linearisation of a stable focus model, a simplification of the Wilson–Cowan
model in the stable focus regime. We report that the nonlinear Wilson–Cowan model
is able to describe response to stimulation more precisely than the linearisation.

Keywords: Deep brain stimulation; Essential tremor; Phase-locked stimulation;
Phase response curve; Amplitude response curve; Wilson Cowan model; Focus model

1 Introduction
Essential tremor (ET) is the most common movement disorder, affecting 0.9% of the pop-
ulation [1]. It predominantly manifests as a tremor of the upper limbs, and can severely
affect daily-life. When medications are ineffective or not tolerated, thalamic deep brain
stimulation (DBS) is a well-established therapy option. Clinically available DBS contin-
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uously delivers high-frequency (about 130 Hz) electrical stimulation to deep structures
within the brain via an electrode connected to a pulse generator implanted in the chest.
There is no agreement in the research community on the mechanisms of action of high-
frequency DBS [2], but it is believed there is room for improvement in terms of efficacy,
decrease in power usage, avoidance of habituation, and most importantly reduction of side
effects [3]. Reported side effects of high-frequency thalamic DBS include speech impair-
ment, gait disorders, and abnormal dermal sensations [4].

Because side effects are the main clinical bottleneck, improving high-frequency DBS
generally means stimulating less by closing the loop on a signal related to motor symp-
toms, while maintaining clinical efficacy. One example of closed-loop DBS is adaptive
DBS, whereby stimulation is triggered in Parkinson’s disease (PD) patients when patho-
logical neural oscillation amplitude in the beta band is higher than a threshold. Compared
to high-frequency DBS, it has been shown to improve motor performance, and reduce
speech side effects in humans [5–7]. Another example is phase-dependent stimulation,
which has been investigated in a computational model of PD [8], and in PD patients [9, 10].

Phase-locked DBS has recently been studied as a new therapy for ET [11]. Hand tremor is
recorded, and the reduction in stimulation comes from stimulating with a burst of pulses
according to the phase of tremor, only once per period of the tremor rather than con-
tinuously. In some patients, the strategy only requires half the energy delivered by high-
frequency DBS for the same effect. Optimising phase-locked DBS requires a detailed un-
derstanding of the phase-dependence of the response across patients. However, data col-
lection from phase-locked stimulation experiments has been restricted so far to small
datasets because patients fatigue quickly. While direct analysis of the data has proven
insightful [11], modelling phase-locked stimulation would allow predictions to be made
from analytic and computational studies regarding the phase-dependence of the response
to stimulation, and would open the door to supplement scarcely available patient data with
synthetic data. The ability to easily generate large amounts of synthetic data could come
in handy to help devise and test control algorithms. It could also be useful when trying to
predict an effect that, because of noise in recordings, can only be deciphered when a large
number of trials is available.

Tremulous hand movements are believed to be closely related to thalamic activity
[12, 13], and it is believed that ET originates in the cerebellar–thalamic–cortical path-
way [14]. However, detailed knowledge of how ET comes about is missing, which makes
simple, canonical models natural candidates to study ET. Recently, phase-locked DBS was
studied using Kuramoto phase oscillators which do not model interacting neural popula-
tions with distinct properties [15]. In the present work, we focus on a neural mass model,
the Wilson–Cowan (WC) model, whose architecture can be mapped onto neural pop-
ulations thought to be involved in the generation of ET, and allows for strong coupling
between the populations. Additionally, stimulation can be delivered in the model to the
most common stimulation site for ET, the ventral intermediate nucleus (VIM). The model
describes the firing rates of an excitatory and an inhibitory population, and only has a few
parameters, which makes it less prone to overfitting and significantly easier to constrain
than more detailed models. The WC model has been shown to be adept at describing
beta oscillations in PD [16, 17]. Moreover, the work presented in [18] provides evidence
that the effects of high-frequency DBS for ET in a WC model are similar to the descrip-
tion given by conductance-based models. While the WC model has been used to design
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closed-loop strategies for PD [19, 20], whether a firing-rate model such as the WC can
model the effects of phase-locked DBS has not been approached in the literature. Based
on strong assumptions, Polina et al. reduced a WC model to a one-dimensional ordinary
differential equation and looked at periodic forcing, but not in the context of DBS, and
without attending to dependence on the phase of stimulation [21]. The present work will
focus on reproducing the phase-dependent effects of phase-locked DBS measured in hu-
man data with a WC model.

Stimulation changes the phase and the amplitude of tremor and the dependence of
these changes on the phase of stimulation can be quantified by the phase response curve
(PRC, in this study change in tremor phase as a function of tremor phase) and the am-
plitude response curve (ARC, in this study change in tremor amplitude as a function of
tremor phase). The ARC directly measures the change in tremor, hence the change in pa-
tient handicap, but both the ARC and the PRC are important to understand the effects
of phase-locked DBS and potentially optimise the stimulation pattern. In mathematical
neuroscience, PRCs and ARCs have been defined differently, mostly in the context of limit
cycle models concerned with asymptotic response to infinitesimal perturbations; see for
example [22–27]. In patients, DBS stimulation is not infinitesimal, and tremor data is very
variable so stimulation happens in transient states. Therefore rather than considering an
asymptotic description of the changes in phase and amplitude, we will be focussing on a
close variant of the experimental response curve measurement methodology applied to
blocks of stimulation in [11], which we will hereafter refer to as the “block method”. It
provides a finite time response to a finite perturbation and relies on the changes in the
Hilbert phase and amplitude of the tremor signal following blocks of phase-locked stimu-
lation (more details in Sect. 2.1). The only exception to this will be in analytical derivations
(Sect. 4), where a first order measurement of the response curves (i.e. measurement at the
end of the stimulation period) will be used for tractability, as a simplified first approach to
the model. For coherence with the experimental response curve measurement method-
ology, the notion of phase and amplitude used throughout will be the Hilbert phase and
amplitude or approximately equivalent. It should also be noted that we are considering
population response curves and not single neuron response curves. The vast majority of
best performing WC models in reproducing patient data are found in this work to give rise
to stable foci, where tremor dynamics is being reproduced by adding noise to the system,
so we restrict our analytical considerations to stable foci.

Starting with the data, the narrative will be guided by the following questions. How
do patient responses to phase-locked deep brain stimulation depend on phase? How do
patient phase and amplitude response curves relate to one other? Can patient response
curves and their relationship be described analytically in a simple linear model? Can we
model patient tremor and better model response to phase-locked deep brain stimulation
with a nonlinear WC model? The main contributions of this work are as follows. We first
focus on the data and analyse patient response curves, identify a subset of datasets pass-
ing appropriate statistical tests, and characterise the relationship between PRC and ARC
in these patients (Sect. 2). Following the introduction of our biologically motivated WC
model (Sect. 3), we derive approximate analytical expressions that delineate the response
to stimulation of a 2D dynamical system described by a linearised focus, with the goals
of better understanding the constraints built in the model and of providing a first level of
description of the data (Sect. 4). The derived response curves are close to sinusoidal, and
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a relationship between them is found, revealing similarities in shape and phase shift with
patients who have statistically significant PRCs and ARCs. We then show that for these
patients, the WC model can be fitted to the data and can reproduce the dependence of the
effects of stimulation on the phase of stimulation. The model is fitted to the PRC and can
reasonably predict the ARC, and notably what is approximately the best phase to stimulate
(Sect. 5). We then proceed to compare the relationship between response curves in the lin-
earised and the full model and conclude that nonlinearity is important to better reproduce
the relationship found in patients (Sect. 6). Finally a discussion is provided (Sect. 7).

2 Patient response curves and their phase relationship
In order to assess phase-dependence of the effects of DBS in patients, we extract PRCs and
ARCs from patient’s tremor data, provide a statistical analysis of the response curves, and
analyse their phase relationship when applicable. This data characterisation will inform
our modelling approaches of the next sections, and we also introduce relevant concepts.

2.1 Analysis method
We extract response curves from tremor acceleration data presented in [11]. The exper-
imental paradigm in [11] is as follows. ET patients are fitted with an accelerometer to
record their tremor acceleration, and DBS locked to the phase of tremor acceleration is
provided in blocks of 5 s to the VIM of the thalamus, with 1 s without stimulation between
blocks. An example of one such block of stimulation is shown in Fig. 1 in light blue, with
the 1 s period without stimulation before the block highlighted in light orange (reference
period). Each block targets a stimulation phase randomly selected out of 12 tremor phases
(e.g. 120 degrees for the block shown in Fig. 1). Stimulation is delivered once per period
at the target phase, in the form of a burst of four to six pulses at high frequency (130 Hz
or higher). Details of the pulses making up a burst can be seen in the zoomed-in insert
in Fig. 1. Tremor frequency being around 5 Hz and stimulation blocks lasting 5 s, there
are about 25 bursts of stimulation at the same target phase per stimulation block. There
are about 10 trials available per phase bin so about 120 stimulation blocks per patient (12
phase bins times around 10 trials per phase). The method described in [11] to obtain a
patient’s response curves was specifically developed for this type of data, and we closely
follow it and provide additional statistical analysis of the phase-dependence. We refer to
our version of the method as the “block method” and denote the response curves obtained
by bPRC and bARC, “b” standing for block. More specifically, we define the bPRC and the
bARC according to the following procedure.

The dominant axis tremor acceleration recordings are bandpass-filtered (4 Hz band en-
compassing the patient tremor frequency content) and z-scored. The filter used is a Butter-
worth second order filter, which provides a maximally flat response in the passband [28].
Because this study focuses on phase, we perform zero-phase filtering by applying our fil-
ter in the forward and backward directions to avoid phase distortions. Since the resulting
signal is narrow-band, the instantaneous phase φ(t) and amplitude env(t) are obtained as
the Hilbert phase and amplitude (also called Hilbert envelope) of the processed tremor
acceleration. The Hilbert phase and amplitude are given by the phase and the modulus
of the analytic signal, respectively. The analytic signal is complex valued, and its real part
is the signal (here processed tremor acceleration), while its imaginary part is the Hilbert
transform of the signal. In short, we have sig(t) +H(sig(t)) = env(t)eiφ(t), where sig(t) is the
processed tremor acceleration and H denotes the Hilbert transform.
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Figure 1 Example showing the block method applied to a block of stimulation with a target stimulation
phase of 120 degrees. The three panels have the same horizontal axis. The reference period without
stimulation before the block is highlighted in light orange, and the stimulation block itself in light blue. The
filtered tremor is shown in blue in the upper panel. Stimulation triggers are shown in black in the lower panel.
The 25 bursts of stimulation are each composed of a number of individual pulses at high frequency as shown
in the zoomed-in insert. As shown in the middle panel, the change in phase �φi due to the block of
stimulation is obtained by comparing at the end of the block the actual Hilbert phase to a linear phase
obtained by a straight line fit to the phase evolution 1 s before the block (reference period). The change in
amplitude is given by the difference between the means envstimi and envrefi (top panel). Both the phase and
amplitude responses are later normalised by the number of pulses in the block (not shown here)

Obtaining the change in phase (bPRC) For each block (we index blocks by the subscript i),
a straight line ̂φref

i (t) is fitted to the evolution of the Hilbert phase φi(t) during the 1 s period
without stimulation before the block (reference period; see middle panel in Fig. 1). The
change in phase �φi due to block i is given by the difference between the actual Hilbert
phase at the end of the block and the phase of the fitted reference line evaluated at the end
of the block (see middle panel in Fig. 1), i.e.

�φi = φi
(

tend
i

)

– ̂φref
i

(

tend
i

)

, (1)

where tend
i is the time of the end of block i. This phase response is divided by the number

of pulses in blocks npulses (on the basis of four pulses per burst for patient 4R and 4L, and
six pulses per burst for the rest), which gives an average response for one pulse. The tar-
get phase at which stimulation is supposed to occur is known for each block, but phase
tracking not being perfect, the actual Hilbert phase at which stimulation occurred is de-
termined for each burst of stimulation as the circular mean of the Hilbert phase during
the burst (unlike in the original study [11] where target phase is directly used). We take
the circular mean of these burst angles for a given block as the actual mean phase of stim-
ulation for the block, and denote it Φstim

i for block i. These values are then binned into
12 phases bins, and the change in phase is averaged within bins to obtain the bPRC. Put
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another way,

bPRC
(

Φbin
j

)

=
1

npulsesnbinj

∑

Φstim
i ∈binj

�φi, (2)

where Φbin
j is the center phase of bin j, and nbinj is the number of blocks with Φstim

i falling
in binj.

Obtaining the change in amplitude (bARC) For each block i, the change in amplitude
�envi is given by the difference between the mean of the Hilbert amplitude during the
last second of the block envstim

i and the mean of the Hilbert amplitude during the one
second without stimulation before the block envref

i (see top panel in Fig. 1):

�envi = envstim
i – envref

i . (3)

Similarly to the change in phase, this amplitude response is divided by the number of
pulses in the block, and averaged across blocks in the same phase bin to obtain the bARC.
Explicitly, we have

bARC
(

Φbin
j

)

=
1

npulsesnbinj

∑

Φstim
i ∈binj

�envi. (4)

Measuring response curves significance and PRC-ARC phase shift In order to identify
significant patient’s response curves, we performed two statistical analyses. First, bPRCs
and bARCs were tested for a main effect of phase by means of a Kruskal–Wallis ANOVA
(12 phase bins) to differentiate patients’ response curves that may be dominated by noise
(which could be due to a lack of phase-dependent response or our inability to measure
it, possibly because of an insufficient amount of data). Second, since we are expecting
response curves to have a dominant first harmonic, the cosine model y = c1 + |c2| cos(x +
c3) was fitted to patients’ phase and amplitude response curves. We assessed via F-tests
whether the cosine model was better at describing the data than a horizontal line at the
mean (y = c1, where c1 is the mean change in phase or the mean change in amplitude).
Including the less specific ANOVA test allows for more generality, as we do not wish to
exclude patients with significant, but non-sinusoidal response curves. On the other hand,
the cosine test is more likely to detect phase-dependent effects of stimulation in patients
which indeed have sinusoidal response curves. We therefore define the following criterion
for selection of a patient for further study in the rest of the manuscript.

Significance criterion Having both bPRC and bARC deemed significant under FDR con-
trol (see below) by at least one of the two tests—ANOVA test for a main effect of phase or
cosine model F-test.

In both cases, we address the multiple testing problem by controlling the false discovery
rate (FDR) at 5%, which guarantees that the expectation of the number of false positives
over the total number of positives is less than 5%. Because of the high number of rejections
of the null hypotheses compared to the number of tests (5 out of 12 for the ANOVA, 6 out
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of 12 for the F-test; see Table 1), the total number of tests is a very poor estimator of the
number of true null hypotheses, which is needed when controlling the FDR. Instead, we
used a better estimator m̂0 of the number of true null hypothesis given by Story et al. [29],
and applied an FDR control procedure based on this estimator (adaptive linear step-up
procedure, reviewed in [30]).

Additionally, in datasets where both bPRC and bARC are significant according to the
cosine F-test, the relationship between bPRC and bARC is quantified by the shift in phase
between the cosine model fits to the bPRC and the bARC. In these datasets, the PRC-ARC
shift between the bPRC and bARC is calculated as

φPRC – φARC ≡ cPRC
3 – cARC

3 (mod 2π ), (5)

with φPRC – φARC ∈ [0, 2π ). Calculating a PRC-ARC shift in other cases is not meaningful.
The PRC-ARC phase shift is an important quantity. Indeed, for PRCs and ARCs with a
dominant first harmonic (close to sine curves), the ARC will be close to a scaled version of
the PRC shifted in phase. The extent of the shift is given by the PRC-ARC phase shift. In
other words, the minimum of the ARC (best phase to stimulate) will be at the minimum of
the PRC plus the PRC-ARC shift. The shift highlights the difference in the phases of max-
imum sensitivity of the system in terms of its phase response and in terms of its amplitude
response. As we will see later, the PRC-ARC shift will be a key differentiator between the
nonlinear WC model and its linearisation in terms of their ability to describe the effects
of phase-locked stimulation seen in data.

2.2 Results of the analysis
Analysing six datasets from the five patients included in [31] (datasets 4R and 4L are for
the right and left upper limbs of the same patient) shows that half of the datasets satisfy
our significance criterion. bPRCs and bARCs obtained are shown in Supplementary Fig. 1
in Appendix I, and results of the statistical tests are presented in Table 1. Based on the
significance criterion defined in the previous section, patients 1, 5 and 6 are selected for
further study, as both their bPRCs and their bARCs are found to be significant by the cosine

Table 1 P-values of both statistical tests performed on patients’ response curves: Kruskal–Wallis
ANOVAs testing a main effect for phase in patients’ response curves (third column), and cosine
model F-tests (fourth column). P-values in bold are deemed significant with FDR control at the 5%
level (separate FDR analyses per test type, m̂0 ≈ 8.42 for the ANOVAs and m̂0 ≈ 7.37 for the F-tests).
Double stars indicate datasets satisfying our significance criterion as defined in Sect. 2.1

Patient Type ANOVA p-value F-test p-value

1 ** bPRC 0.0113 0.00993
bARC 0.1733 0.0365

3 bPRC 0.1097 0.448
bARC 0.1591 0.500

4R bPRC 0.3463 0.581
bARC 0.2064 0.057

4L bPRC 0.2895 0.352
bARC 0.0077 0.200

5 ** bPRC 4.925e–04 0.00906
bARC 4.012e–06 0.00142

6 ** bPRC 4.815e–04 0.0122
bARC 0.0527 0.0341
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Figure 2 PRC-ARC shift in patients. Only showing
patients with significant cosine model F-test for bPRC
and bARC under FDR control. The calculated PRC-ARC
shifts are in [π2 ,π ]

F-test under FDR control. We note that patient 5 also has both his response curves deemed
significant by the ANOVA test under FDR control. Datasets 3, 4R and 4L do not satisfy our
selection criterion. In other words, for both tests, an effect of stimulation phase could not
be found in at least one of their response curves (in most cases for both response curves, as
seen in Table 1). In Fig. 2, the PRC-ARC shift φPRC – φARC is plotted for patients for whom
the cosine model was deemed significant in describing both their bPRC and bARC (which
happens to be the same subset as patients satisfying our significance criterion). Figure 2
shows that the PRC-ARC shift in significant datasets is in [ π

2 ,π ], patients 5 and 6 being
quite close to π

2 .

3 Implementation of the Wilson–Cowan model for essential tremor DBS
To model the experimental data described in the previous section, in particular the shape
of the response curves and the PRC-ARC shift, we use a WC model that describes the in-
teraction between an excitatory and an inhibitory population of neurons. Specifically, we
map a two-population WC model without delays as described in [32] onto the anatomy
of the thalamus (Fig. 3). The circuit we are about to describe is a good candidate, but
not the only biologically plausible mapping of an excitatory/inhibitory loop in the context
of tremor. In our candidate mapping, the VIM is modelled as an excitatory population,
connected to an inhibitory population of the thalamus, the reticular nucleus (nRT). We
model tremor by the activity of the excitatory population, and this is justified by the high
coherence between ventral thalamic activity and electromyographic recordings of the con-
tralateral wrist flexors [12, 13]. VIM and nRT are reciprocally connected (the excitatory
projections from VIM to nRT are via Cortex). The VIM receives a constant input from the
deep cerebellar nuclei (DCN) and is part of a self-excitatory loop via Cortex. nRT receives
a constant cortical input. We add Gaussian white noise to this two-population WC, and
the activity of the VIM, E, and the activity of the nRT, I , are described by the stochastic
differential equations

⎧

⎨

⎩

dE = F1(E, I) dt + ζ dWE ,

dI = F2(E, I) dt + ζ dWI ,
(6)

where dWE and dWI are Wiener processes, and ζ the noise standard deviation. We define

F1(E, I) =
1
τ

(

–E + f (θE + wEEE – wIEI)
)

,
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Figure 3 The WC model can describe the populations thought to be involved in the generation of ET. The
excitatory population E and the inhibitory population I model, respectively, the VIM and the nRT of the
thalamus. Arrows denote excitatory connections or inputs, whereas circles denote inhibitory connections. The
VIM is the target of DBS and also receives an input from the deep cerebellar nuclei (DCN). The self-excitatory
loop of the VIM, as well as the excitatory connection from VIM to nRT are via cortex

F2(E, I) =
1
τ

(

–I + f (θI + wEIE)
)

,

with wPR the weight of the projection from population “P” to population “R”, θP the con-
stant input to population “P”, and τ a time constant (assumed to be the same for both
populations). We use a sigmoid function,

f (x) =
1

1 + e–β(x–1) ,

parametrised by a steepness parameter β (same choice as in [32]). The VIM is the most
common target of DBS for ET, which is why we model stimulation as a direct increase
in E. Analytical expressions for response curves are out of reach for the full nonlinear
model, which is why we study next a linearisation of a deterministic stable focus model
to approximate the full model response and get a better understanding of the shape of its
phase response curves and their relationship. This will provide a first level of description
of the data.

4 Response curves and their relationship in a focus model
This section aims to provide a basis for understanding how the effects of stimulation on
phase and amplitude are coupled in the WC model, and for comparison with experimental
data. We therefore derive approximate analytic expressions for the first order phase and
amplitude responses to one pulse of stimulation in the linearisation of a 2D dynamical
system that is described by a (stable) focus. Such a linearisation can be applied to the
deterministic WC model given by Eq. (6) with ζ = 0 in the focus regime. We follow the
previous section in modelling the tremor signal as the first coordinate of the dynamical
system, and in providing stimulation pulses along the first dimension.

4.1 Linearisation of a focus
To distinguish scalars and vectors more easily, vectors will be denoted in bold. Let Ż = F(Z)
be a dynamical system, where Z ∈R

2 and F is differentiable. The Jacobian of F is

J =

[

∂F1
∂Z1

∂F1
∂Z2

∂F2
∂Z1

∂F2
∂Z2

]

. (7)
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Let Z∗ be a fixed point of F . If it is hyperbolic, the dynamics of X = Z–Z∗ are approximated
in the vicinity of the equilibrium X = 0 by the linear equation

Ẋ = J
(

Z∗)X, (8)

where J(Z∗) is the Jacobian evaluated at the fixed point. We will treat the case of Jaco-
bians having complex conjugate eigenvalues λ± = σ ± iω. In particular, we are interested
in stable hyperbolic foci, which imply σ < 0 and ω > 0. The WC model can operate in that
regime [32]. The nonhyperbolic case of the linearisation having purely imaginary complex
conjugate eigenvalues will also be described for didactic purposes, although it is of little
interest for patient fits. If k = a + ib is the right eigenvector associated with λ+, and K and
K ′ coefficients determined according to initial conditions, the general real valued solution
of (8) reads

X(t) =
{

K(a cosωt – b sinωt) + K ′(a sinωt + b cosωt)
}

eσ t . (9)

We will be using the following notations for the coordinates of the eigenvector:

k =

[

a1 + ib1

a2 + ib2

]

. (10)

Equation (9) and what follows are not valid in the case of real eigenvalues, which are of no
interest for our purposes (no rotation).

4.2 Phase definition
The notion of phase is central to phase-locked stimulation, and in this section we de-
fine phase in a way that is approximately equivalent to the Hilbert phase, which is com-
monly used in the analysis of experimental data, and is used in the other sections of this
manuscript. A typical signal only has one component, and the Hilbert transform provides
a convenient way of reconstructing a phase from a single component. Despite being a
protophase (see discussion section), the Hilbert phase is widely used to analyse experi-
mental data (see for instance [9, 11, 33–35]), and this is the reason why we choose in our
linearised system a phase definition approximately equivalent to it. We define a phase as
φ = ωt with a zero-phase point defined as the maximum of X1(t) (similarly to the Hilbert
phase), which is therefore on the nullcline of the first coordinate. This phase definition is
different from other common definitions such as the trajectory polar angle in the phase
plane of a 2D system, or isochronal (asymptotic) phase. We demonstrate next that it is very
close to the Hilbert phase of X1 for slow decay compared to the rotation (this condition
is verified in patient fits presented in Sect. 5.2; see Supplementary Table 2). It should be
noted that this is generally only true for the linearisation. As the Hilbert phase is also the
phase definition used in the other sections of this manuscript, the following proof ensures
consistency.

We now establish equivalence of our phase definition with the Hilbert phase of X1. Recall
that we denote the Hilbert transform by H. The Hilbert phase of X1 is given by

φHilbert = arctan
H(X1(t))

X1(t)
. (11)
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A first step is to calculate the Hilbert transform of the signal X1(t). The Hilbert transform is
a linear operator, and X1(t) is a linear combination of s(t)sc(t) and s(t)sn(t) with s(t) = eσ |t|,
sc(t) = cosωt, and sn(t) = sinωt (see Eq. (9)). We show in Appendix A that the Hilbert
transform H(s(t)sj(t)) can be approximated by s(t)H(sj(t)) for j = c, n. The Hilbert phase of
X1 is therefore given by

φHilbert = arctan
H(X1(t))

X1(t)
≈ arctan

√

α2 + β2 sin(ωt – arctan α
β

)
√

α2 + β2 sin(ωt + π
2 – arctan α

β
)
, (12)

where

α = K ′a1 – Kb1,

β = Ka1 + K ′b1.

Using trigonometric identities, we obtain

φHilbert ≈ ωt – arctan
α

β
. (13)

In our setting, trajectories start at t = 0 at the maximum of X1(t), and we have α
β

= – σ
ω

(immediate with the coefficients of the reference trajectory Kref and K ′
ref introduced

in Eq. (14) and given in Appendix B). Hence if ω � |σ |, Eq. (13) yields φHilbert ≈ ωt,
which matches with our definition of phase φ (including our choice of zero-phase ref-
erence).

4.3 Reference trajectory and stimulated trajectory
In order to calculate first order response curves for our phase definition, we will consider
a reference trajectory without stimulation, and a trajectory that underwent an instanta-
neous stimulation pulse δX1 at a stimulation phase φ0. The effects of stimulation on phase
and amplitude will be measured at the next maximum of X1 for both trajectories. We will
denote these hPRC(1) and hARC(1) as they are first order responses based on a phase defi-
nition approximately equivalent to the Hilbert phase. A sketch of the method is provided
in Fig. 4.

Expressions for the coefficients Kref and K ′
ref of the reference trajectory are derived in

Appendix B. We want to study the effects of stimulating at phase φ0. The point of stimu-
lation X1– at phase φ0 is expressed as

X1–
=

{

Kref (a cosφ0 – b sinφ0) + K ′
ref (a sinφ0 + b cosφ0)

}

eσ
φ0
ω . (14)

An instantaneous stimulation δX1 is applied at X1– as

X1+
=

(

X1+
1 , X1+

2
)

=
(

X1–
1 + δX1, X1–

2
)

. (15)

The trajectory after stimulation is still constrained by the dynamics given by Eq. (9), which
allows for expressions for the coefficients on this new trajectory Kstim and K ′

stim to be found
(see Appendix C). To measure the change in phase and amplitude between the next peaks
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Figure 4 Illustration of the approach taken to derive expressions for the phase and amplitude responses in
the linearisation of a 2D focus model. Top: phase plane, bottom: time series of X1. The tremor is modelled by
X1, and the stimulation δX1 is applied to X1. The system shown corresponds to the linearised fit of patient 1 as
described in Sect. 6.1

of the stimulated trajectory and the reference trajectory, the phase φmax of the next maxi-
mum of the first coordinate on the stimulated trajectory Xstim

1 is needed (the phase of the
next maximum of X1 on the reference trajectory is 2π ). A derivation for φmax is provided
in Appendix D.
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4.4 Phase response
The first order phase response curve can be calculated based on the reference trajectory
period T0 and the stimulated trajectory period Tstim, which is given by the sum of the
time spent on the reference trajectory before stimulation and the time spent on the new
trajectory after stimulation:

T0 =
2π

ω
,

Tstim =
(φ0 – 0) + (2π + φmax – φ0)

ω
=

2π + φmax

ω
.

For a phase response curve in radians, we obtain

hPRC(1)(φ0) = 2π
T0 – Tstim

T0
= –φmax(δX1), (16)

where the phase φmax depends on the stimulation magnitude δX1 (see Eq. (15)). The de-
pendency enters through Kstim and K ′

stim (see Eq. (41) in Appendix D and Eqs. (37) and
(39) in Appendix C). A Taylor expansion around δX1 = 0 yields, to lowest order in δX1 (for
weak stimulation),

hPRC(1)(φ0) ≈ δX1

X0
1

(A cosφ0 – B sinφ0)Ce–σ
φ0
ω (17)

with

A = (a1a2 + b1b2)ω – (a1b2 – a2b1)σ ,

B = (a1b2 – a2b1)ω + (a1a2 + b1b2)σ ,

C =
ω

(ω2 + σ 2)(a1b2 – a2b1)
.

Although we are omitting the amplitude dependence in our notations for convenience in
Eqs. (16) and (17), the first order PRC is found to be proportional to the inverse of the
peak amplitude of the oscillations at the beginning of the stimulation period X0

1 . It is also
directly proportional to the stimulation amplitude δX1, and directly depends on phase via
sinusoidal functions and a factor related to the decay. But unlike in the cosine test (Sect. 2),
no assumption was made on a dominant first harmonic in our derivation. The constants
A, B, and C only depend on the real and imaginary parts of the eigenvalue λ+ (decay and
rotation) and the associated eigenvector k.

4.5 Amplitude response
For our purposes we are interested in the amplitude of the first coordinate, and the first
order ARC is obtained as the difference in first coordinates between the stimulated and the
reference trajectories evaluated at their respective next peak after stimulation. It should
be noted this is approximately equivalent to a first order change in Hilbert amplitude, at
least for ω � |σ |. The first order ARC is calculated as

hARC(1)(φ0) = Xstim
1

(

2π + φmax(δX1)
ω

)

– Xref
1

(

2π

ω

)

. (18)
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A Taylor expansion around 0 yields, to lowest order in δX1,

hARC(1)(φ0)≈δX1(cosφ0 + D sinφ0)e–σ
φ0–2π

ω (19)

with

D =
a1a2 + b1b2

a1b2 – a2b1
.

Interestingly, the first order ARC close to the fixed point does not depend on the ampli-
tude of the oscillations X0

1 . As expected, the first order ARC is directly proportional to the
stimulation amplitude δX1. Similarly to the first order PRC, it directly depends on phase
via sinusoidal functions and a factor related to the decay, and the constant D only depends
on k. The obvious similarities between the first order PRC and ARC suggest there may be
a relationship between the two.

4.6 Relationship between first order PRC and ARC
We seek a relationship involving the derivative of the first order PRC, which, based on
Eq. (17), is given by

–
dhPRC(1)(φ0)

dφ0
≈ δX1

FX0
1

(cosφ0 + G sinφ0)e–σ
φ0–2π

ω (20)

with

F =
(a1b2 – a2b1)(ω2 + σ 2)

(a1b2 – a2b1)(ω2 – σ 2) + 2(a1a2 + b1b2)ωσ
e

2πσ
ω ,

G =
(a1a2 + b1b2)(ω2 – σ 2) – 2(a1b2 – a2b1)ωσ

(a1b2 – a2b1)(ω2 – σ 2) + 2(a1a2 + b1b2)ωσ
.

For ω � |σ |, we have

F =
(a1b2 – a2b1)(1 + ( σ

ω
)2)

(a1b2 – a2b1)(1 – ( σ
ω

)2) + 2(a1a2 + b1b2) σ
ω

e
2πσ
ω ≈ 1 – 2(D – π )

σ

ω
≈ 1,

G =
(a1a2 + b1b2)(1 – ( σ

ω
)2) – 2(a1b2 – a2b1)( σ

ω
)

(a1b2 – a2b1)(1 – ( σ
ω

)2) + 2(a1a2 + b1b2)( σ
ω

)
≈ D – 2

(

1 + D2)σ

ω
≈ D.

Therefore in that case the first order ARC is approximately the opposite of the derivative
of the first order PRC scaled by the peak amplitude at the beginning of the stimulation
period (in general, the scaling factor is FX0

1 ):

–X0
1

dhPRC(1)(φ0)
dφ0

≈ hARC(1)(φ0). (21)

For a slow decay compared to the rotation, the PRC-ARC shift in the linearisation of a
focus will therefore be close to π

2 , which is the value observed for patient 5 (see Fig. 2).
A detailed analysis of the PRC-ARC shift in the model is provided in Sect. 6.
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4.7 Applications to simple systems
We turn to simple examples of linear systems to illustrate the results of the previous sec-
tions, in particular how the strength of the decay affects the sinusoidal character of the
response curves and the PRC-ARC shift, and how a tilted ellipsoid flow impacts the re-
sponse curves. Additionally, links to the WC model are provided when possible. In what
follows, response curves are given for δX1 = 2 × 10–4 and X0

1 = 10–3, X0
1 being a maximum

of X1 as a function of time (these only act as scaling factors of the response curves and will
not change their shape).

Circular flow without decay As an introductory example, let us consider a simple circular
flow for which the J matrix is

Jcirc =

[

0 –1
1 0

]

.

The eigenvalues of Jcirc are ±i so the results of the previous sections can be applied. Equa-
tions (17) and (19) are plotted for this system with our choice of δX1 and X0

1 . The result for
the first order PRC is shown in Fig. 5, panel A2, and for the first order ARC in panel A3. For
this system, σ = 0, and hPRC(1) is simply the opposite of a sine, hARC(1) simply a cosine.
Moreover, G = D (see Sect. 4.6) and Eq. (21) is exact, as exemplified in Fig. 5, panel A3. The
amplitude response curve hARC(1) is obtained by only scaling the derivative of hPRC(1) by
–X0

1 as a2 = b1 = 0 and F = 1. Note that WC parameters for which the system’s Jacobian at
the fixed point is Jcirc cannot be found as the second diagonal term cannot be 0, at least in
the version of the WC model used in this work (see equation (44) in Appendix E).

Circular flow with decay We can introduce a slow decay (Fig. 5, panel B) and then a fast
decay (Fig. 5, panel C) in the circular flow. We choose the J matrices

Jslow
circ =

[

–5×10–3 –1
1 –5×10–3

]

, J fast
circ =

[

–2×10–1 –1
1 –2×10–1

]

.

The slow decay leads to a scaling factor F ≈ 1, and the approximation of Eq. (21) is very
good, as ω � |σ | (see Fig. 5, panel B3, close match of the ARC and the scaled derivative
of the PRC, hence a shift close to π

2 ). The case of the fast decay corresponds to ω = 5|σ |.
The first order PRC and ARC no longer look like pure sinusoids and the approximation
relating the response curves is less accurate (ω = 200|σ |; see Fig. 5, panel C3), highlighting
a shift different from π

2 . It is also more obvious that the first order response curves are not
periodic due to the measurement of the changes in phase and amplitude at the end of the
stimulation period. It is possible to find WC parameters for which the system’s Jacobian at
the fixed point is Jslow

circ or J fast
circ . How such parameters are found is explained in Appendix E,

and the results are presented in Supplementary Table 1 in Appendix J. In both cases, wIE =
wIE , and wEE = 0.

Tilted elliptic flow without decay The tilted elliptic flow without decay of Fig. 5, panel D,
corresponds to the J matrix

Jellip =

[

1 –1
2 –1

]

.
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Figure 5 Analytical results in simple systems (initial conditions as in the main text). First column: phase space.
Second column: first order PRC as per Eq. (17) (scaling valid for the first cycle). Third column: first order ARC as
per Eq. (19) and opposite of the derivative of the first order PRC scaled by FX01 . Panel A corresponds to Jcirc
(circular flow, no decay), panel B to Jslowcirc (circular flow, slow decay), panel C to Jfastcirc (circular flow, fast decay),
and panel D to Jellip (tilted elliptic flow, no decay)

The first order PRC and ARC are sums of a sine and a cosine, which brings a horizontal
shift in phase for both curves compared to a circular flow without decay. The eigenvalues
are still purely imaginary, but F is no longer one. Because σ = 0, the relationship of Eq. (21)
is still exact (see Fig. 5, panel D3). It is possible to find WC parameters for which the
system’s Jacobian at the fixed point is Jellip (see Supplementary Table 1 in Appendix J).
Patient fits fall in the category of (potentially tilted) elliptic flows with decay, and will be
dealt with in Sect. 6.1.

For a slow decay compared to the rotation, the linearised stable focus model exhibits
close to sinusoidal response curves and a PRC-ARC shift close to π

2 as shown by Eq. (21).
This is verified in Fig. 5, as the scaled first order PRC very closely match the ARC (except
in panel C where the decay is fast). When contrasted with patient data (response curves
passing the cosine model F test and PRC-ARC shifts in [ π

2 ,π ] as shown in Fig. 2), these
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results already provide a good level of description of the data, but also a strong motivation
to fit the more complex nonlinear WC model to data.

5 Fitting the full Wilson–Cowan model to patient data and response to
phase-locked stimulation

5.1 Fitting procedure
With the insights on the linearised stable focus response curves given by the previous sec-
tion in mind, and to provide a more accurate level of description of the data in particular
in terms of PRC-ARC shift, we now turn to fitting our stochastic neural mass model in-
troduced in Sect. 3 (Eq. (6)) to patient data. The model is fitted to features (also known as
summary statistics) extracted from patient tremor recordings. The parameters we fit are
shown in Table 2, and include model parameters, stimulation magnitude, and stimulation
delay (time between when the stimulation trigger is recorded and when stimulation is ac-
tually provided to the E population, more about its interpretation in Sect. 7). Stimulation
is implemented directly in the Euler update of our integration scheme. We aim at repro-
ducing tremor dynamics and fit to three dynamical features: the power spectrum density
(PSD) of the data, its Hilbert envelope probability density function (PDF), and its Hilbert
envelope PSD. While the envelope PDF captures the range of amplitudes present in the
tremor, the envelope PSD describes how quickly tremor amplitude changes. But we also
aim at reproducing response to stimulation, and fit to the patient bPRC. The data dynam-
ical features are obtained after filtering and z-scoring the data as described in Sect. 2.1.
The data bPRC is obtained as described in Sect. 2.1.

The fitting procedure is summarized in Fig. 6. Local optimisations are carried out us-
ing gradient free optimisation, specifically a direct search algorithm called the generalized
pattern search algorithm (more details are given in Appendix F). In order to measure re-
sponse to stimulation as in the data, each local optimisation step needs to simulate the
model with phase-locked blocks of stimulation. This requires integrating the differential
equations of the model while tracking the phase and providing stimulation at the right
time, which is done by monitoring the zero-crossing phase alongside a Euler–Maruyama
integration scheme. Appendix G details implementation of the simulator. The four fea-
tures (PSD, envelope PDF, envelope PSD, bPRC) are computed on the model output at
each optimisation step. The same method is used as for the data features, with three dif-
ferences. The first is that for increased stability of the optimisation, the model bPRC is
averaged over a much greater number of trials (600 trials), while the more robust dynam-
ical features are obtained from nine trials only to reduce computation cost. The second is

Table 2 Best parameters for the three fitted patients

Parameter Symbol Best fit values

Patient 1 Patient 5 Patient 6

I to E weight wIE 9.4014 26.048 5.2064
E to I weight wEI 9.6306 25.3384 24.4813
E to E weight wEE 6.7541 1.548 2.7514
Sigmoid steepness parameter β 1.1853 2.4234 4.1933
Time constant (s) τ 0.0758 0.29984 0.2513
Constant input to E θE 1.4240 22.8621 2.9127
Constant input to I θI –3.2345 –9.9279 –3.4008
Noise standard deviation ζ 0.0457 0.013707 0.0263
Stimulation magnitude δE 0.001684 0.00598 0.001686
Stimulation delay (ms) �tstim 138.8366 444.1573 183.4711
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Figure 6 The fitting procedure involves 2500 local optimisations for each patient. The simulation of the
model at each optimisation step requires one to track the zero-crossing phase in order to provide stimulation
at the right phase. The phase-tracking ability of the scheme is satisfactory when compared to the actual
Hilbert phase (left, detailed in Supplementary Fig. 2 in Appendix I). The optimiser minimises a cost function
that includes the comparison of three tremor dynamics features (tremor PSD, tremor envelope PSD, tremor
envelope PDF) plus the bPRC against the data (middle). Response curves are obtained the same way for the
data and the model. Following a second optimisation of the 20 best results with a finer time step, a best set of
parameters comes out of the procedure, and the model bARC can be compared against the data bARC. More
details on the fitting procedure are given in Appendix F

that the model output is not filtered to compute the dynamical features (only z-scored),
as we want the model output to primarily generate the filtered tremor signal (a model
generating mostly 1 Hz oscillations but reproducing patient tremor when filtered at 5 Hz
would not be desirable). Computing the bPRC still requires filtering, as it relies on the
Hilbert transform. The third difference is that the filtering window for the bPRC cannot
be adjusted manually in optimisation steps, so a 4 Hz band centered on the model PSD
peak is used. As for the data bPRC and bARC, the actual Hilbert phase at which stimu-
lation occurred is used to compute response curves via the re-binning process described
in Sect. 2.1, and the zero-crossing phase is only needed to enable phase-locked stimula-
tion in the model. Phase-tracking performance is illustrated in Supplementary Fig. 2 in
the Appendix.

At each step, once the four features have been computed on the model output, the op-
timiser returns the cost

c =
1
4

4
∑

n=1

(
∑Nn

i=1(ydata
n,i – ymodel

n,i )2

∑Nn
i=1(ydata

n,i – ydata
n )2

)

, (22)

with yn, n ∈ {1, 2, 3, 4} being the four features considered, Nn the length of yn, and ydata
n the

mean of data feature n. At the end of the procedure, the fit with the highest R2 = 1 – c for
each patient is deemed the best fit. In the case of a tie (difference in mean costs lower than
standard error of the mean), foci are preferred over limit cycles. The bifurcation structure
of the original WC model has been studied in [36], but we simply differentiate between pa-
rameters giving rise to stable foci and limit cycles by forward simulating the model without
noise, and exploring the region of phase space that is occupied by the system with noise.
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5.2 Results of the fits
Patients with both of their response curves statistically significant (see significance crite-
rion in Sect. 2), in other words with meaningful response curves, are fitted to. For these
patients, namely patient 1, 5, and 6, we find that the model successfully reproduces tremor
dynamics, including tremors with sudden bursts, and can fit to patient phase response to
stimulation. The best fits obtained upon completion of the optimisation procedure are
shown in Figs. 7, 8, and 9. In addition to reproducing tremor dynamics and being able to
fit to patient bPRCs, the model seems to be able to reasonably predict patient bARCs (ob-
tained as in Sect. 2.1, but not fitted to), and in particular which phases are approximately
the best phases to stimulate, i.e. the phases at which the maximum decrease in tremor
happens. Because of averaging across 600 trials, the model bPRC and bARC error bars are
small compared to the data error bars (only about 10 trials per phase bin).

Validating fitted stimulation magnitude As Cagnan et al. [11] report what the device
settings are, and in particular the total electrical energy delivered (TEED) per unit time
for each patient, we can validate fitted stimulation magnitudes against these values. We
build an equivalent quantity Ξ for the model that we call “model effective stimulation per
unit time”, and that should scale with the TEED per unit time. We define Ξ as

Ξ =
δE
Eσ

fE , (23)

where Eσ is the standard deviation of the non z-scored first dimension of the model output,
and fE is the mean frequency of the first dimension of the model output. Since stimula-
tion in the model is a direct increase in E, δE should be scaled the same way, which is the
purpose of the division by Eσ . And since bursts are delivered once per period, the multi-
plication by fE ensures that Ξ is defined per unit time (the number of pulses per burst is

Figure 7 Best fit to patient 1. The four features that were included in the cost function are shown on the left,
namely tremor PSD (A), tremor envelope PDF (B), tremor envelope PSD (C) and bPRC (D). The R2 for the
model fit to these features is 0.795, and the model reasonably predicts the data bARC (E). The model phase
plane is shown in (H), and the model tremor time series (F) is shown next to the patient tremor time series (G).
The framed black bar in (H) indicates the fitted stimulation magnitude to scale
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Figure 8 Best fit to patient 5. The four features that were included in the cost function are shown on the left,
namely tremor PSD (A), tremor envelope PDF (B), tremor envelope PSD (C) and bPRC (D). The R2 for the
model fit to these features is 0.823, and the model predicts the data bARC (E). The model phase plane is
shown in (H), and the model tremor time series (F) is shown next to the patient tremor time series (G). The
framed black bar in (H) indicates the fitted stimulation magnitude to scale

Figure 9 Best fit to patient 6. The four features that were included in the cost function are shown on the left,
namely tremor PSD (A), tremor envelope PDF (B), tremor envelope PSD (C) and bPRC (D). The R2 for the
model fit to these features is 0.830, and the model reasonably predicts the data bARC (E). The model phase
plane is shown in (H), and the model tremor time series (F) is shown next to the patient tremor time series (G).
The framed black bar in (H) indicates the fitted stimulation magnitude to scale

the same for the three patients). Figure 10 shows the model effective stimulation per unit
time for the 15 best performing fits against the TEED per unit time for each patient (cor-
relation coefficient for fit averages r = 0.98). Under the assumption that patient intrinsic
sensitivities to stimulation are somewhat similar, we can conclude from the correlation
that the fitting procedure successfully captures the scale of stimulation across patients.
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Figure 10 Model effective stimulation per unit time Ξ versus total electrical energy delivered per unit time
by the device, for the three fitted patients. Showing the 15 best performing models for each patient, along
with the mean and standard error of the mean error bars for each patient in black

Figure 11 PRC-ARC shift in synthetic data (full WC
model fitted to patients). For each patient, the shift for
all 10 repeats of the top 15 fits is shown (smaller
circles), as well as the repeat mean for each fit (larger
circles). One repeat corresponds to 600 trials

PRC-ARC shift in WC synthetic data The PRC-ARC shift is computed on WC synthetic
data with phased-locked blocks of stimulation generated by the full model fitted to each
patient. This time we can take full advantage of the model and compute bPRCs and bARCs
from more trials than for patient data or model data in optimisation steps, and perform
10 repeats of 600 trials for the top 15 fits for each patient. The PRC-ARC shift is then
measured as in Sect. 2.1 for each of the 10 repeats, and shown in Fig. 11. The large filled
circles represent the mean of the 10 repeats for each patient fit. It appears that PRC-ARC
shifts obtained for synthetic data of top patient fits mostly lie in the upper-left quadrant
of the unit circle for all three patients ([ π

2 ,π ]), similarly to patient data. One fit to patient
6 is an outlier in terms of its shift, due to high model effective stimulation (defined in the
previous section). While the nonlinear model can allow for a larger shift than π

2 , this is
not the case for the linearised model, and the difference is the focus of the next section.

6 PRC-ARC shift in the model
The analytical expressions for the linearised model make different predictions for patient
response curves than synthetic data generated by the full model and analysed with the
block method, in particular in terms of PRC-ARC shift. The present section will look at
the deterministic linearisation of patient fits, and then contrast it with the full model with
noise.
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6.1 Relationship between analytic response curves in the linearised fitted WC
models

The first order PRC and ARC expressions derived in Sect. 4 can be applied to the linearisa-
tion of the best WC models fitted to data from the three patients satisfying our significance
criterion. The Jacobians at the fixed points are

J1 =

[

11.9723 –35.0323
34.9513 –13.1953

]

, J5 =

[

–0.2252 –52.3293
23.2880 –3.3351

]

,

J6 =

[

2.8269 –12.8784
101.6943 –3.9789

]

,

where Ji corresponds to patient i. In the fits b1 = 0 or b2 = 0, which marginally simplifies
Eqs. (17) and (19). The response curves obtained are shown in Fig. 12. The same values as
in Sect. 4.7 are used for X0

1 and δX1. Note that the stimulation delay �tstim is not shown—it
affects both the PRC and the ARC and does not play a role in the PRC-ARC shift. More
interestingly, we observe that ω � |σ | in the 3 fits (see Supplementary Table 2 in Ap-
pendix J), suggesting that the response curves’ relationship described by Eq. (21) should
approximately hold. This is indeed the case as shown in the third column of Fig. 12, which
tells us that the PRC-ARC shift should be close to π

2 . The decay is higher for patient 5
(about 5% of the rotation versus less than 2% for the other two patients) and as expected,

Figure 12 Analytical results for linearised patient fits (initial conditions as in the main text). First column:
phase space. Second column: first order PRC as per Eq. (17) (scaling valid for the first cycle). Third column: first
order ARC as per Eq. (19) and opposite of the derivative of the first order PRC scaled by FX01 . Panel A, B, and C
correspond to patient 1, 5, and 6, respectively
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the approximation is slightly worse for this patient (panel B3 in Fig. 12). For small stim-
ulation and close to the fixed point, the deterministic picture with patient parameters is
that the PRC-ARC shift should be close to π

2 . In what follows, we investigate the difference
between this idealised picture and what is observed in synthetic data.

6.2 Accounting for the difference in shift between focus model analytic
expressions and WC synthetic data

Four factors could account for the difference in PRC-ARC shift between the idealised pic-
ture given by analytic response curves with patient parameters (previous section) and what
is observed in WC synthetic data (Sect. 5.2). First, the stimulation may be large enough
that the Taylor expansions used to derive the analytic PRC and ARC expressions are no
longer approximately valid. Second, tremor in patient fits may correspond to a regime
where trajectories are not so close to the fixed point, compromising the linearisation va-
lidity. Third, the introduction of noise in the model may result in effects on the PRC-ARC
shift that do not average out to zero. Fourth, in synthetic data, the response to stimulation
is measured by the block method, which differs from the first order approach taken in our
derivations. We next show that for the three best fits considered, nonlinearity is the main
driver.

Ten repeats of 600 trials of synthetic data are generated for the linearisation of the best
fits to each patient. The integration scheme with live phase tracking and stimulation is the
same as described in Sect. 5.1, only the stochastic differential equations are now

[

dE
dI

]

= J

[

E – E∗

I – I∗

]

dt + ζ

[

dWE

dWI

]

, (24)

where dWE and dWI are Wiener processes, ζ the noise standard deviation (same values as
in the nonlinear case), E∗ and I∗ are the coordinates of the fixed point, and J is the Jacobian
at the fixed point of the patient fit. The same values as in the nonlinear case are used for the
stimulation magnitude and delay, with the exception of patient 5, for whom the stimulation
magnitude is set to a fifth of its value in the nonlinear case, as higher values were seen to
cause a breakdown of phase tracking, and result in unreliable response curves.

For each patient and for each of the 10 repeats, bPRCs and bARCs are obtained, and the
PRC-ARC shift is then measured as in Sect. 2.1. The results are shown in Fig. 13 (middle),
alongside the shifts measured from the response curves presented in Sect. 6.1 (left), and
the shifts measured in the full WC model (right). It can be seen that going from the an-
alytic response curves to the linearised model (i.e. adding noise, measuring the response
to stimulation via the block method and not a first order method, and using a finite stim-
ulation magnitude rather than a infinitesimal stimulation), does not affect the shift much
(compare the left and middle panels of Fig. 13). However, a substantial increase in the
shift is obtained by introducing the nonlinearity (compare the middle and right panels
of Fig. 13), which brings the shift in the upper-left quadrant, where patient data lie. The
PRC-ARC shift can be modulated in the nonlinear model in a way that is not available in
the linearisation.

7 Discussion
We showed that in a 2D linearised stable focus model, the first order PRC and ARC based
on a phase definition approximately equivalent to the Hilbert phase are close to sinusoidal
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Figure 13 Nonlinearity accounts for most of the difference in PRC-ARC shift seen in synthetic data (middle
and right), when compared to the PRC-ARC shift derived in the focus model (left). When computed from
synthetic data, the PRC-ARC shift of all 10 repeats is shown (smaller circles), as well as the repeat mean (larger
circles). One repeat corresponds to 600 trials, only showing the best fit for each patient

for small decay. Moreover, the PRC-ARC shift is close to π
2 . Half of the patients in our

dataset had significant sinusoidal bPRCs and bARCs (an effect of stimulation phase could
not be found in other patients in at least one of their response curves), and the signifi-
cant patients have a PRC-ARC shift in the interval [ π

2 ,π ]. A full WC model can be fitted
to tremor dynamics features and to the bPRC for these patients, and as hinted at by the
similarities seen in the linearised focus model and the data, the best fits—a vast majority
of stable foci—can reproduce the dependence of the effects of stimulation on the phase of
stimulation. The best fits also reasonably predict the bARC, and notably what is approxi-
mately the best phase to stimulate. Compared to the 2D linearised focus, the nonlinearities
of the full WC model allow for a better reproduction of the phase-dependence found in
patient data, in particular as far as the PRC-ARC shift is concerned. Our full model can
capture the behaviour of neural populations plausibly involved in the generation of tremor,
which, together with its success in reproducing phase response and predicting amplitude
response in patients, makes it a strong candidate for further study of phase-locked DBS.

Phase definition While asymptotic phase definitions are common in theoretical studies,
experimental studies tend to favour instantaneous phase definitions such as the Hilbert
phase. To reproduce the data, an instantaneous phase seems more appropriate than an
asymptotic phase, as there is no indication of stimulation happening on or close to an
attractor. It has been shown recently in [37] how an operational definition of the phase
can describe transient spiking, when an asymptotic phase does not capture the phase-
dependence of transients. Moreover, stimulation is assumed to be small in our analytical
expressions (Sect. 4), but not in the full model, contrary to standard asymptotic phase
reduction strategies.

In this study, our phase definition is the Hilbert phase of the tremor data or approxi-
mately equivalent. It is therefore referenced to the maximum of the tremor oscillations
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(represented by the first coordinate of the dynamical system in our models), and does not
require a limit cycle. The Hilbert phase is an angle in the analytic signal space, it does not
generally grow linearly with time, and is a protophase [38]. This is not a concern from the
perspective of describing patient data, as this is the observable choice we are making for
both the data and the model. Commonly used with data, the Hilbert transform has also
been proposed as a robust method to measure steady state PRCs in single neuron models
[39].

Linearisation The response curves derived for the linearisation of a 2D focus in Sect. 4
can be related to previously published expressions. In particular, the infinitesimal PRC for
radial isochron clocks has been derived in [40], and has been recently included in [41]
under the larger umbrella of general radial isochron clocks. The radial clock case (K(φ) =
ω in [41]) perturbed along the first dimension agrees with our Eq. (17) for the case of a
circular flow (see Sect. 4.7). For this simple system, the asymptotic phase response is the
same as the first order Hilbert phase response.

Moreover, we demonstrated that in the linearisation of a 2D focus, the best phase to
stimulate (i.e. the minimum of the ARC), corresponds to the maximum positive slope of
the first order PRC (see Eq. (21)). This is valid for small decay compared to the rotation,
for the phase and amplitude definitions given in Sect. 4.2 (phase approximately equivalent
to the Hilbert phase, amplitude defined as the first coordinate), and for a small stimula-
tion magnitude. In fact, the first order ARC is simply a scaled version of the opposite of
the first order PRC derivative. A similar relationship has been first reported in a theoret-
ical study in the context of an individual oscillator [42], and more recently in [15] in the
context of population responses arising from the individual responses of coupled phase
oscillators, whose time evolution follows Kuramoto equations, and where the level of syn-
chrony takes the role of amplitude. The results in [15] also assume particular distributions
of oscillator frequencies. It is noteworthy that we found a similar result with very few as-
sumptions on the dynamics: our result is valid for the linearisation of any 2D focus with
slow decay, i.e. any linearisation obeying Eq. (9) with slow decay. This applies in particular
for the linearisation of the WC model, another popular neuroscience model very different
in essence from coupled oscillator models. In the thermodynamic limit and under certain
assumptions about the distribution of oscillator frequencies, the Kuramoto model can be
reduced to a two-dimensional system [43, 44]. Our results are applicable to the lineari-
sation of a fully desynchronised reduced Kuramoto model observed through X1 = ρ cos θ

where r = ρeiθ is the order parameter (ρ is the modulus and θ the angle in the complex
plane). Such a system therefore satisfies Eq. (21) as well (for small decay).

Our derivations do not assume proximity to a limit cycle, and this allows the study of
the dependence of the response to stimulation on the amplitude of the oscillations for a
given model (limit cycles do not have an amplitude variable in the case of infinitesimal
perturbations). In the linearisation, the PRC is found to be inversely proportional to the
amplitude of the oscillations before stimulation (see X0

1 term in Eq. (17)), while the ARC
does not depend on it.

Because the block method phase and amplitude response used in the rest of paper are
normalised by the number of pulses and blocks are only about 25 period long, it seems
legitimate to think that, although they are different objects, the first order response to a
single pulse (hPRC(1) and hARC(1)) and the block method response (bPRC and bARC)
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could be related, and in particular that they might have similar PRC-ARC relationships.
Part of the connection hinges on our proof that the phase definition in the linearisation of
the focus model matches with the Hilbert phase when the decay is small compared to the
rotation (Sect. 4.2). And indeed, the PRC-ARC shift predicted by our expressions derived
for the first order response to one pulse of stimulation in a linearised focus is very close to
the shift obtained by the block method on linearised WC synthetic data (compare the left
and middle panels of Fig. 13). Our analytical derivations provide a rationale to fit the full
WC model to data and an intuition for why the model can predict patient ARC, but do
not offer an exact analytic treatment of the block method. Specifically, individual pulses
in a block may have different effects depending on where they are located in the block and
depending on stimulation history within the block [11].

To the best of our knowledge, there is no simple way of getting analytical PRCs and ARCs
based on Hilbert phase and amplitude or equivalent in the nonlinear system, making the
analytical expressions for the linearisation more valuable. It is also of interest to under-
stand what can be achieved with a simple, linear model before adding more complexity.
In fact, realising that the linear model can explain already the data to some extent is a
motivation to fit the nonlinear model, which is an expansive endeavour.

Fitting procedure Fits of the nonlinear WC model were performed using the general-
ized pattern search algorithm on many sets of random initial parameters. This approach
was chosen for its robustness and computational efficiency in a non-smooth, non-convex
landscape with four nonlinear features and 10 parameters, despite requiring the use of
a supercomputer. In particular it has been deemed superior to the simplex algorithm in
finding better fits. The implementation used also has the additional benefit of being able
to handle failed simulations (which occasionally happen as response curves with 12 phase
bins cannot be obtained for some parameter sets with noise values too high compared
to the vector field). However, the fitting procedure results in many “good” local optima.
What these “good” sets of parameters have in common and what they can tell us about
the patients we are fitting to is not easily addressed with our current fitting strategy. Even
real biological networks may have redundancies, and may exhibit the same behavior un-
der different network configurations. Approximate Bayesian computation [45, 46] allows
one to approximate the posterior distribution over parameters for intractable likelihoods,
hence to answer the question what is the space of parameters consistent with the data.
Whether approximate Bayesian computation methods could successfully tackle a compli-
cated landscape and provide more meaningful insight on fitted model parameters in the
setting of the present work is an interesting avenue for further research. A limitation of
our fitting method is related to the integration scheme: to reduce computation cost, the
Euler step used in the first optimisation process is 1 ms. The top 20 best fits are then re-
optimised based on a Euler step of 0.1 ms, and results are produced with this finer time
step, as dynamics can be qualitatively different (further reduction in the Euler step has not
been seen to change the dynamics). While the need to track the phase at each integration
step to decide if stimulation has to be applied precludes the direct use of built-in, pow-
erful integration schemes, a more advanced custom event-based stochastic integration
scheme could remove the need for a second optimisation while keeping the computation
cost down. The performance of our simple phase-tracking strategy is good for patient 1
and 6 and satisfactory for patient 5 (see Supplementary Fig. 2 in the Appendix). Response
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curves are obtained based on the actual Hilbert phase of stimulation in a post hoc manner,
which makes up for the reduced performance observed for patient 5. Still, more accurate
algorithms could be explored. Our simple live phase estimation strategy is based on a lin-
ear phase evolution between zero-crossings of E (details in Appendix G), and it would
benefit from a better frequency estimate for the current period (currently simply based
on the duration of the previous period) and more robustness to noise. Even better live
estimates of the Hilbert phase could be obtained thanks to autoregressive forward predic-
tion [47], but at the expense of a higher computational cost, and of a need to adjust hyper
parameters for each time series.

Nonlinear WC model The fitting procedure discussed above was applied to fit to data
the full WC model with Gaussian white noise (Eq. (6)). The best performing fits are stable
foci for all three patients, and very few limit cycles are found in the top 15 fits for all three
patients. One is found for patient 1 (shares the 1st place with a stable focus—distance
between mean costs only 30% of the standard error of the mean), one for patient 5, and
none for patient 6. In the stable focus regime, noise brings the system away from the stable
fixed point, and the interaction of the noise with the dynamics of the system makes the
reproduction of patient tremor possible. In our study, noise corresponds to contributions
that are not modelled by either the E/I populations or the inputs to these populations. We
are considering that these contributions have no explanatory power, and model them with
uncorrelated noise. While in the absence of noise, the system would converge to the sta-
ble fixed point and no tremor would be generated, Gaussian white noise cannot generate
realistic tremor time series. Symptoms in the model depend just as much on the noise as
on the other parameters of the model. This is shown in Appendix H where an expression
is obtained for the stationary standard deviation of the linearisation of the WC model.
The standard deviation is dependent on the noise, but also on the other parameters of the
model via the Jacobian at the fixed point. A limitation of our approach is that compari-
son of the fitted weights or fitted inputs across patients may be difficult when noise levels
are not comparable. Enforcing a constant level of noise in the fits or limiting noise to the
minimum level required to reproduce the data may address this point. Instead of noise,
tremor-like activity may be obtained by exploiting chaotic dynamics arising from coupling
several WC models together [48], but this would significantly increase the complexity of
the model (more on increasing complexity in the last part of this section).

Contrary to weights, stimulation delays can more easily be compared across patients,
and the fitted values obtained deserve some discussion. In fitting our thalamic model to
tremor acceleration, we are assuming thalamic activity and tremor are directly related as
mentioned before (see Sect. 5.1). Tremor activity is, however, expected to lag thalamic
activity due to conduction delays. The accelerometer used to measure tremor is also ex-
pected to introduce an electromechanical coupling delay. In the model, we allow for a
stimulation delay �tstim between the stimulation trigger and the time when stimulation
is actually delivered to the excitatory population. This parameter is fitted to the data, and
gives the model the ability to shift its bPRC in phase. Fitted stimulation delays are hundreds
of milliseconds, and conduction and accelerometer delays (tens of milliseconds) only ac-
count for a small part. The higher fitted values are required by the model to match data
bPRCs. With our candidate VIM/nRT mapping in mind, the higher fitted values remain
unexplained on the biology side, although as mentioned before tremor generation and ET
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DBS are not fully understood. It is interesting to note that the stimulation delay of the best
performing model for patient 5 is longer than one period (see Table 2). This is found con-
sistently in the top three best fits, and reducing the delay to its value modulo the average
period substantially reduces the quality of the bPRC fit. Besides this short-term delay, our
model does not include medium- or long-term plasticity effects, which are not expected
to be strongly present in the recordings as stimulation is only delivered for periods of 5
seconds in a row. In our model, stimulation is provided to the E population via a direct
increase in the population activity. While stimulation is provided via the sigmoid function
of the excitatory population in other studies [18], we found this approach too restrictive
due to sigmoid saturation, and inadequate to reproduce the full extent of the response to
phase-locked DBS in some patients. As a reminder, the choice of stimulating the excita-
tory population rather than the inhibitory population is made for biological consistency,
as the VIM is the most common stimulation target in ET DBS.

The success of the nonlinear WC model in predicting patient ARCs when fitted to their
PRCs is partially explained by its ability to modulate the PRC-ARC shift. The PRC-ARC
shift in the full model can reach the range found in patients while the linearised version of
the WC is limited to the close vicinity of π

2 . The response curves of the full WC model are
also better at reproducing the data and can deviate from pure sinusoids. However, there
is still some room for improvement in reproducing the shift, in particular as far as patient
1 is concerned (patient shift quite a bit larger than the model). The model can allow for a
larger shift as shown by a fit hand-picked in the top 15 shown in Supplementary Fig. 3 in
Appendix I. While the troughs of the model bPRCs are roughly aligned with the troughs
of the data bPRCs in Supplementary Fig. 3 and in our best fit in Fig. 7, it is apparent that
the peaks of the model bARCs are closer to the peaks of the data bARCs in Supplementary
Fig. 3 than in Fig. 7. This highlights that the PRC-ARC shift of the model is closer to that
of the data in Supplementary Fig. 3 than in Fig. 7. The PRC-ARC shift could be selected
as an additional feature to fit to in order to improve ARC reproduction.

In its two-population version, the suggested mapping of the excitatory and inhibitory
populations (VIM and nRT) is not the only possibility. Other candidates include an-
tidromically stimulated structures at the cerebellar level or below, such as DCN as the
inhibitory population, and the inferior olive as the excitatory population. The model could
also be extended by including more populations. With our current mapping in mind, the
cortex and the DCN could be turned into populations of their own, which would make the
model four-dimensional. As suggested in [18], the inferior olive which provides input to
the DCN could also be modelled, and the spatial extent of the VIM could be accounted for
by splitting it in two populations or more. Increasing the number of populations would,
however, increase the number of parameters of the model, and make the optimisation pro-
cess more computationally intensive, and the model more prone to over-fitting. In con-
trast, the incorporation of additional loops in the model architecture may help explain
the inertia in stimulation effects discussed above. Nevertheless, the model seems to be
able to reproduce the data in its current state, which suggests an increase in complexity is
not warranted. It is remarkable that one excitatory/inhibitory loop seems to be enough to
model the phase-dependent effects of ET DBS in the datasets available with statistically
significant response curves. It gives some support to the hypothesis that sub-circuits of the
central tremor network may behave as individual oscillators entraining each other [49].
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8 Conclusion
The nonlinear focus WC model with noise can reproduce the phase-dependence of the
response to phase-locked DBS in ET patient data with statistically significant response
curves, as well as predict tremor reduction in response to phase-locked stimulation.
Phase-locked stimulation promises less stimulation, hence less side effects for the same
clinical benefits, which would be highly desirable for patients. Our study positions the
WC as a strong candidate to model the effects of phase-locked DBS. Its ability to describe
all patients with both response curves statistically significant in at least one of our tests
should be re-assessed as more data becomes available, both in terms of number of patients
and recording length. Phase-dependent activity is thought to play a central role in physio-
logical information processing [50, 51], and in our analytical derivations, the phase of the
linearised model was defined in a way that does not depend on modelling oscillations by a
limit cycle, and that for small decay approximately matches with a phase definition widely
used in experiments, the Hilbert phase. Finally, as far as ET generation is concerned, we
showed that a single excitatory/inhibitory loop is enough to reproduce both the dynam-
ics of the tremor and the phase-dependent effects of stimulation, however, it should be
nonlinear.

Appendices
We include here technicalities on approximating the Hilbert phase in the linearisation
(Appendix A), details of the derivations leading to response curves analytical expressions
in the linearised system (Appendices B to D), and the procedure used to obtain WC pa-
rameters from a given Jacobian (Appendix E). We also present details of the two-step op-
timisation used for fitting to patient data (Appendix F), the implementation of live-phase
tracking and stimulation (Appendix G), as well as an analytical expression for the standard
deviation of the tremor for the stationary linearised model (Appendix H). Supplementary
figures and supplementary tables make up Appendix I and Appendix J, respectively.

Appendix A: Hilbert transforms of sine and cosine exponential decays with
error terms

The goal here is to show that H(s(t)sj(t)) ≈ s(t)H(sj(t)) for j = c, n, with s(t) = eσ |t|, sc(t) =
cosωt, and sn(t) = sinωt. The Bedrosian identity [52] states that the Hilbert transform of
the product of a low-pass and a high-pass signal with non-overlapping spectra is the prod-
uct of the low-pass signal and the Hilbert transform of the high-pass signal. The spectrum
support of s isR and therefore overlaps with the spectra of sc and sn, but for low decay com-
pared to the rotation, the spectrum of s is very small where it overlaps with the spectra of
sc or sn. Because of the overlaps, the equality given by the Bedrosian identity is not exact
and turns into an approximation, and inspired by the proof in [52], we can calculate error
terms. Let S and Sc be the Fourier transforms of s and sc, respectively:

s(t)sc(t) =
1

(2π )2

∫ ∞

–∞

∫ ∞

–∞
S(u)Sc(v)ei(u+v)t du dv, (25)

H
(

s(t)sc(t)
)

=
1

(2π )2

∫ ∞

–∞

∫ ∞

–∞
S(u)Sc(v)i sgn(u + v)ei(u+v)t du dv. (26)
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The Fourier transform of sc is given by Sc(v) = π [δ(v – ω) + δ(v + ω)], so

H
(

s(t)sc(t)
)

=
1

(2π )2

∫ ∞

–∞
S(u)eiutΓ (u) du, (27)

where Γ (u) = π
i [sgn(u + ω)eiωt + sgn(u – ω)e–iωt]. This can be simplified as

Γ (u) = 2π sinωt +

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, |u| < ω,

– 2π
i eiωt , u < –ω,

2π
i e–iωt , u > ω.

The Fourier transform S(u) = 2σ

σ 2+u2 is even, therefore

H
(

s(t)sc(t)
)

=
sin(ωt)
(2π )2

∫ ∞

–∞
S(u)eiut du +

1
2π i

∫ ∞

ω

S(u)
(

ei(u–ω)t – e–i(u–ω)t)du, (28)

H
(

s(t)sc(t)
)

= s(t)H
(

sc(t)
)

+ Isc , (29)

with

H
(

sc(t)
)

= sinωt,

Isc =
2
π

∫ ∞

ω

σ

σ 2 + u2 sin (u – ω)t du.

A similar derivation provides

H
(

s(t)sn(t)
)

= s(t)H
(

sn(t)
)

+ Isn (30)

with

H
(

sn(t)
)

= – cosωt,

Isn =
2
π

∫ ∞

ω

σ

σ 2 + u2 cos (u – ω)t du.

Numerical integration demonstrates that for ω � |σ |, and in particular in the case of the
patients we are interested in, Isc and Isn are under 5% of the signal scale for about 12
periods (see Fig. 14). This is more than enough for our purposes as only one period is
needed to derive response curves. It is therefore reasonable to ignore Isc and Isn .

Appendix B: Reference trajectory without stimulation
Let us find the coefficients Kref and K ′

ref of the trajectory starting at t = 0 at a maximum of
the first coordinate X1 = X0

1 > 0. With the choice φ = ωt, this will ensure we are referencing
the phase to the maximum of X1. It should be noted at this point that we are not using the
Jacobian in what follows as we are interested in the dependence of the response on the
rotation ω and the decay σ . From the initial condition at t = 0,

Kref a1 + K ′
ref b1 = X0

1 . (31)
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Figure 14 Relative error made across patients in estimatingH(s(t)sc(t)) by s(t)H(sc(t)) (solid lines) and
H(s(t)sn(t)) by s(t)H(sn(t)) (dashed lines). The error is calculated as the ratio of Isc (respectively, Isn ) over the
modulus of the numerical Hilbert transform of the signal, which is the envelope of the signal. The relative
error is under 5% in all cases for at least 12 periods

Additionally, X0
1 being a maximum requires that dX1

dt = 0 at t = 0, therefore

dX1

dt
= eσ t[–ω

(

Kref a1 + K ′
ref b1

)

sinωt + ω
(

–Kref b1 + K ′
ref a1

)

cosωt

+ σ
{(

Kref a1 + K ′
ref b1

)

cosωt +
(

–Kref b1 + K ′
ref a1

)

sinωt
}]

. (32)

Using the condition at t = 0,

Kref (σa1 – ωb1) + K ′
ref (σb1 + ωa1) = 0, (33)

(31) + (33) 	⇒
Kref =

σb1 + ωa1

ω(a2
1 + b2

1)
X0

1 ,

K ′
ref =

–σa1 + ωb1

ω(a2
1 + b2

1)
X0

1 .
(34)

We are excluding the case where the denominator in (34) is equal to zero, which corre-
sponds to both a1 and b1 being zero, which would imply X1(t) = 0. Also note that by picking
a positive X0

1 , we are ensuring that the null derivative corresponds to a maximum of X1

rather than a minimum.

Appendix C: Trajectory with stimulation
Let us determine what the coefficients Kstim and K ′

stim are for the stimulated trajectory (still
constrained by the dynamics of Eq. (9)). We have

X1+
=

{

Kstim(a cosφ0 – b sinφ0) + K ′
stim(a sinφ0 + b cosφ0)

}

eσ
φ0
ω . (35)
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Solving for Kstim gives

Kstim =
X1–

2 (a1 sinφ0 + b1 cosφ0) – (X1–
1 + δX1)(aY sinφ0 + b2 cosφ0)

a2b1 – a1b2
e–σ

φ0
ω . (36)

Plugging in X1–
1 , X1–

2 , and the expressions for Kref and K ′
ref yields

Kstim =
ωa1 + σb1

ω(a2
1 + b2

1)
X0

1 –
a2 sinφ0 + b2 cosφ0

a2b1 – a1b2
δX1e–σ

φ0
ω . (37)

Similarly for K ′
stim, using the previous result,

K ′
stim =

X1–
2 e–σ

φ0
ω – Kstim(a1 cosφ0 – b1 sinφ0)

a1 sinφ0 + b1 cosφ0
, (38)

K ′
stim =

–σa1 + ωb1

ω(a2
1 + b2

1)
X0

1 +
a2 cosφ0 – b2 sinφ0

a2b1 – a1b2
δX1e–σ

φ0
ω . (39)

Appendix D: Phase at the next maximum of X1 on the stimulated trajectory
We are looking for φmax such that dXstim

1
dt = 0 at ωt = φmax. This give us

eσ
φmax

ω
[

–ω
(

Kstima1 + K ′
stimb1

)

sinφmax + ω
(

–Kstimb1 + K ′
stima1

)

cosφmax

+ σ
{(

Kstima1 + K ′
stimb1

)

cosφmax +
(

–Kstimb1 + K ′
stima1

)

sinφmax
}]

= 0, (40)

tanφmax =
Kstim(σa1 – ωb1) + K ′

stim(σb1 + ωa1)
Kstim(σb1 + ωa1) + K ′

stim(–σa1 + ωb1)
. (41)

The phase φmax is returned by the arctan function in (– π
2 , π

2 ), and corresponds to the pre-
vious peak on the stimulated trajectory extended backwards. The next peak has the same
phase (mod 2π ) as the expression in square brackets in Eq. (40) is 2π-periodic.

Appendix E: Finding WC parameters corresponding to a given Jacobian
The Jacobian of (6) evaluated at (E∗, I∗) can be simplified by making use of f ′(x) = βf (x)(1–
f (x)). We also have

f (Θ1) = E∗, (42)

f (Θ2) = I∗, (43)

with

Θ1 = wEEE∗ – wIEI∗ + θE,

Θ2 = wEIE∗ + θI .
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The Jacobian of (6) evaluated at (E∗, I∗) is therefore given by

JWC =
1
τ

[

wEEf ′(Θ1) – 1 –wIEf ′(Θ1)
wEIf ′(Θ2) –1

]

=
1
τ

[

wEEβE∗(1 – E∗) – 1 –wIEβI∗(1 – I∗)
wEIβE∗(1 – E∗) –1

]

. (44)

We are interested in finding WC parameters so that the linearisation of the WC model at
the fixed point will be characterised by a given Jacobian matrix

J =

[

J11 J12

J21 J22

]

. (45)

If we pick values for β , E∗ and I∗, the remaining parameters can be obtained by equating
(44) and (45), and by re-arranging Eqs. (42) and (43). The parameters in Supplementary
Table 1 were obtained using this method, which yields

τ = –
1

J22
,

wEE =
τ J11 + 1

βE∗(1 – E∗),

wIE = –
τ J12

βE∗(1 – E∗)
,

wEI =
τ J21

βI∗(1 – I∗)
,

θE = 1 –
1
β

ln

(

1
E∗ – 1

)

– wEEE∗ + wIEI∗,

θI = 1 –
1
β

ln

(

1
I∗ – 1

)

– wEIE∗.

Appendix F: Two-step optimisation
The optimisation procedure is as follows. For each patient, random sets of parameters are
picked from uniform distributions (bounds in Supplementary Table 3). To improve the
efficiency of the optimisation, we accept parameters only if the PSD peak of the corre-
sponding model (without stimulation) is within 1 Hz and 25% in magnitude of the data
PSD peak. Once 2500 parameter sets have been accepted, we put them through local op-
timisations. Local optimisations are carried out using a direct search algorithm called the
generalized pattern search algorithm [53, 54]. The pattern is a set of fixed vectors in pa-
rameter space. At each step, points to be polled (the mesh) are generated by adding a scaled
version of the pattern to the current best point. If a point with a lower value of the objec-
tive function is found, this point becomes the new best point, and a scaled up version of
the pattern is used next. If not, a scaled down version of the pattern is used next. Param-
eters supplied to pattern search are put on a similar scale to improve search robustness,
and hard limits are given to the optimiser (see Supplementary Table 3 in Appendix J). Op-
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timisations are performed in parallel on a supercomputer. A time step of 1 ms is used for
the fits (a period is about 200 ms). At the end of this process, the 20 best performing sets
of parameters were put through more local optimisations with a finer time step of 0.1 ms
and stop criteria leaving room for more steps. The finer time step is also used to produce
the results shown in Sect. 5.2).

The implementation of the generalized pattern search algorithm used is Matlab’s pat-
ternsearch optimiser with the poll method “positive basis 2N” and the following stop cri-
teria:

• main optimisation (time step of 1 ms): mesh size of 10–4, function call budget of 800,
• second optimisation (time step of 0.1 ms): mesh size of 10–5, function call budget of

1000.

Appendix G: Live phase tracking and stimulation
One simulation consists of 600 trials with 12 blocks of phase-locked stimulation each. As
in the experimental paradigm, blocks last 5 s, and inter-block intervals are 1 s. Inter-trial
intervals are 5 s, and the first trial starts after about 200 periods. During this initial time,
the mean of E and the standard deviation of E, σsim, are obtained from about 20 periods
after a ramp-up of about 40 periods. Phase-tracking subsequently starts: E is centered
and a threshold T = 0.2σsim is used to track positive zero-crossings. We define a positive
zero-crossing as happening when

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

E(n) < –T ,

E(p) > T ,

p > n,

∀i ∈ {n + 1, . . . , p – 1}, E(i) ∈ [–T , T].

(46)

These conditions are constantly monitored, and if found true, a positive zero-crossing is
declared to have happened at time step χ = n+p

2 . The threshold T was found critical to
handle the noise included in the model, as it prevents situations where a negative zero-
crossing very closely follows a positive zero-crossing (or vice versa) from interfering. We
evolve the zero-crossing phase according to a frequency based on the previous period,
and if χk is the last positive zero-crossing to have occurred, the current value of the zero-
crossing phase is given by

ϕ =
2π

tχk – tχk–1

(t – tχk ). (47)

If the value of 2π is reached, the phase value is set to 0 until the next positive zero-crossing
is detected. Stimulation is provided after ϕ reaches the target phase for the block, and the
stimulation trigger is recorded �tstim before stimulation occurs. If the zero-crossing phase
has not reached the target stimulation phase yet when the next positive zero-crossing is
detected, stimulation is provided right then. As in [11], a pulse of stimulation consists of
six quick bursts at 130 Hz.
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Appendix H: Stationary standard deviation of the first coordinate in the
linearised model

In the absence of stimulation, the stationary covariance matrix P∞ of the linearised model
(Eq. (24)) must satisfy (see [55])

JP∞ + P∞JT +

[

ζ 2 0
0 ζ 2

]

= 0. (48)

Solving for P∞ and following the notation in Eq. (45), we can write the stationary standard
deviation of the first coordinate in the linearised model as

√

P∞
11 = ζ

√

J2
12 + J2

22 + J11J22 – J12J21

2(J11 + J22)(J12J21 – J11J22)
. (49)

Appendix I: Supplementary figures

Supplementary Figure 1 Patients’ bPRCs (first column) and bARCs (second column) obtained as described
in Sect. 2.1. Datasets with both response curves significant according to at least one of our statistical tests
under FDR control are highlighted with green rectangles
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Supplementary Figure 2 Phase tracking illustrated in the three fitted patients by histograms of the pair
(target stimulation phase for the stimulation block, average of actual Hilbert phase at stimulation for the
stimulation block). The actual Hilbert phase is obtained post hoc after filtering. A block average includes
averaging across bursts and within the block. Averages are obtained using circular means. The effect of the
stimulation delay was removed, and phases are reference to positive zero-crossings. Phase tracking is
satisfactory for all patients, although tracking is less precise for later phases in patient 5

Supplementary Figure 3 Fit to patient 1 showing the best PRC-ARC shift. The four features that were
included in the cost function are shown on the left, namely tremor PSD (A), tremor envelope PDF (B), tremor
envelope PSD (C) and bPRC (D). The model better predicts the data bARC (E) thanks to a PRC-ARC shift closer
to that of the data (equivalent PRC alignment between the model and the data, but better ARC alignment).
The model phase plane is shown in (H), and the model tremor time series (F) is shown next to the patient
tremor time series (G). The framed black bar in (H) indicates the fitted stimulation magnitude to scale

Appendix J: Supplementary tables

Supplementary Table 1 WC parameters corresponding to the Jacobians presented in Sect. 4.7. The
steepness parameter β was set to 4, E∗ and I∗ to 0.5, and parameters were determined according the
method presented in Appendix E

Parameter Symbol Jslowcirc Jfastcirc Jellip

I to E weight wIE 200 5 1
E to I weight wEI 200 5 2
E to E weight wEE 0 0 2
Sigmoid steepness parameter β 4 4 4
Time constant (s) τ 200 5 1
Constant input to E θE 101 3.5 0.5
Constant input to I θI –99 –1.5 0
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Supplementary Table 2 |σ |/ω ratios in the linearisation of patient fits

Patient 1 Patient 5 Patient 6
|σ |
ω 1.9% 5.1% 1.6%

Supplementary Table 3 Lower and upper bounds of parameters uniform distributions used to
generate initial parameters for fitting, and hard limits enforced by pattern search during the
optimisation process

Parameter Symbol Initial parameter distribution Hard limits enforced
by optimizer

Lower bound Upper bound Lower bound Upper bound

I to E weight wIE 0 10 0 30
E to I weight wEI 0 10 0 30
E to E weight wEE 0 10 0 30
Sigmoid steepness parameter β 0 10 0 30
Time constant (s) τ 0 0.3 0 0.5
Constant input to E θE –2 10 –30 30
Constant input to I θI –10 2 –30 30
Noise standard deviation ζ 0 0.1 0 0.3
Stimulation magnitude δE 0 0.02 0 0.1
Stimulation delay (ms) �tstim 0 250 0 500
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