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SUMMARY

Hippocampal ripples are highly synchronized neuronal population patterns reactivating past waking expe-

riences in the offline brain. Whether the level, structure, and content of ripple-nested activity are consistent 
across consecutive events or are tuned in each event remains unclear. By profiling individual ripples using 
laminar currents in the mouse hippocampus during sleep/rest, we identified ripples in stratum pyramidale 
that feature current sinks in stratum radiatum (Rad sink ) versus stratum lacunosum-moleculare (LM sink ). 
These two ripple profiles recruit neurons differently. Rad sink ripples integrate recent motifs of waking coac-

tivity, combining superficial and deep CA1 principal cells into denser, higher-dimensional patterns 
that undergo hour-long stable reactivation. By contrast, LM sink ripples contain core motifs of prior 
coactivity, engaging deep cells in sparser, lower-dimensional patterns that undergo a reactivation drift 
to gradually update their pre-existing content for recent wakefulness. We propose that ripple-by-ripple di-

versity supports parallel reactivation channels for integrating recent wakefulness while updating prior 
representations.

INTRODUCTION

The brain has a remarkable ability to retain prior knowledge while 

continuously integrating new information. How neuronal popula-

tions coordinate these operations to enable seamless updating 

of brain networks remains a fundamental biological question. 

The offline states of sleep and rest could support this process 

by providing windows for the reorganization and stabilization of 

neural activity patterns. 1–3 Hippocampal ripples have emerged 

as critical network events for facilitating offline processing of 

neuronal population activity. 4,5

Hippocampal ripples are transient network events character-

ized by high-frequency oscillations (100–250 Hz) in the local field 

potentials (LFPs) of the CA1 pyramidal cell layer (stratum pyrami-

dale). 6–8 These events, prevalent during sleep and rest, are 

paired with a prominent negative deflection in the LFPs of the 

stratum radiatum—the sharp wave—reflecting CA3-to-CA1 in-

puts. 4,9,10 The sharp-wave/ripple (SWR) complex has a well-

defined laminar current source density (CSD) profile featuring a 

sink in the CA1 stratum radiatum. 4,6,10,11 Ripples represent the 

most synchronous pattern of neuronal population activity in the 

mammalian brain, providing discrete windows during which hip-

pocampal principal cells discharge action potentials collectively.

This synchrony facilitates the ‘‘reactivation’’ of coactivity pat-

terns from waking experiences for further offline processing. 12–21 

The relevance of ripples has been demonstrated in studies 

showing that their suppression destabilizes hippocampal 

activity patterns and impairs memory, 8,22–27 while promoting rip-

ples and their associated spiking activity improves memory 

retention. 28,29 Beyond their canonical role in memory, ripple-

nested spiking is also linked to planning, inference, and even 

metabolism. 5,14,15,30–32 Moreover, ripples provide a framework 

for brain-wide interactions, with both intra- and extra-hippocam-

pal inputs shaping their electrophysiological features. 33,34 Yet, 

ripples have typically been treated as a homogeneous network 

pattern, raising the question of how they support diverse func-

tions. Recent evidence suggests that hippocampal ripples are 

not uniform but exhibit significant variability in their electrophys-

iological expression, forming a continuum of features in the LFP 

waveform space. 35,36 This variability may reflect differences in 

how inputs are organized along the somato-dendritic axis of 

CA1 principal cells. 37,38 However, this diversity remains under-

explored, as traditional analyses rely on averaging spectral char-

acteristics, potentially masking important differences in these 

events. 34–36 Identifying the ripple-by-ripple variability in activity 

levels, structural organization, and coactivity content is essential
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for understanding how these events support hippocampal 

computations.

To investigate hippocampal ripple diversity, we explored the 

CSD underlying each individual ripple across the CA1 layers. 

This revealed two laminar profiles that we refer to as radiatum 

(Rad) sink versus lacunosum-moleculare (LM) sink ripples, for stra-

tum pyramidale events paired with a dominant current sink in stra-

tum radiatum versus those with a dominant current sink in stratum 

lacunosum-moleculare. These profiles engage CA1 and CA3 neu-

rons differently, hosting distinct millisecond-timescale population 

coactivity motifs. LM sink ripples feature small, stronger coactivity 

motifs primarily involving deep-sublayer CA1 pyramidal cells. 

Following waking experience, Rad sink ripples append recently 

coactive cells, predominantly from the superficial CA1 pyramidal 

sublayer, to these core motifs, yielding denser, higher-dimen-

sional population patterns that are consistently reactivated over 

hour-long sleep/rest. Meanwhile, the pre-existing coactivity 

backbone nested in LM sink ripples, formed by sparser, lower-

dimensional patterns, gradually disengages throughout sleep/ 

rest, slowly drifting to reflect recent wakefulness. Collectively, 

these findings reveal two ripple profiles with distinct population 

activity levels, structural organization, and neuronal content that 

cooperatively balance the integration of recent experiences 

with the updating of neuronal priors in the offline hippocampus.

RESULTS

Profiling individual hippocampal ripples using their 

laminar currents

We began investigating ripple diversity by simultaneously 

recording LFPs across CA1 layers using silicon probes

(Table S1). This setup enabled ripple detection in the LFPs of 

stratum pyramidale and CSD analysis of laminar currents 

(Figures 1A–1C and S1A; 52.2 total h of sleep/rest from 5 mice; 

38 sleep/rest sessions; mean duration [interquartile range 

(IQR)]: 82.4 [59.5–105.9] min per sleep/rest session). In line 

with existing knowledge, 4 the average ripple profile displayed a 

current sink in stratum radiatum and a current source in stratum 

lacunosum-moleculare (Figure 1A). However, individual ripples 

showed considerable variability in their CSD profiles 

(Figures 1B, S1B, and S1C). Most individual ripples featured a 

dominant current sink in stratum radiatum (mean proportion 

[95% confidence interval (CI)]: 0.81 [0.76–0.87]; Figures 1B, 

S1B, S1D, and S1E), consistent with the grand average 

(Figure 1A). In addition to these canonical events, a subset of rip-

ples exhibited a distinct CSD profile with a dominant current sink 

in stratum lacunosum-moleculare around the ripple peak (mean 

proportion [95% CI]: 0.16 [0.12–0.20]; Figures 1A, 1B, and 

S1C–S1E). A small fraction of ripples showed a dominant sink 

in stratum oriens (mean proportion [95% CI]: 0.02 [0.01–0.03]; 

Figures S1D and S1E). The sink in stratum oriens was strongly 

correlated with the sink in stratum radiatum (Figures S1F and 

S1G). The distribution of ripples across these different current 

profiles was stable between pre- and post-exploration sleep/ 

rest sessions (Figure S1E). During exploration, ripple events 

were too sparse to evaluate the ratio of dominant sinks.

We studied ripple variability using each event’s CSD signature, 

defined as the CSD signal within a 50-ms window centered on 

the ripple power peak. This allowed representing each ripple 

as a curve characterizing its laminar current profile along the 

CA1 somato-dendritic axis (Figures S1B and S1C). Principal-

component analysis of these CSD signatures unveiled two

A B C D E

Figure 1. Laminar current profiles reveal two types of hippocampal CA1 ripples

(A) Average CSD (color-coded map) and LFP waveform (black traces) for ripples recorded in stratum pyramidale using a silicon probe spanning CA1 layers (Or, 

oriens; Pyr, pyramidale; Rad, radiatum; LM, lacunosum-moleculare).

(B) Instantaneous CSD and LFP waveforms for two example ripples from one sleep session.

(C) Average CSD and LFP waveform for ripples with a dominant current sink in either radiatum (Rad sink ripples) or lacunosum-moleculare (LM sink ripples). LM sink 

ripples featured a double-sink profile: a first sink in stratum lacunosum-moleculare preceding the ripple peak by an average of 17.3 ms (95% CI: 20.7–12.3 ms) and 

a second sink in stratum radiatum that occurred on average 12.4 ms after the ripple peak (95% CI: 8.8–16.2 ms). For this ripple type, the lacunosum-moleculare 

sink was significantly stronger than the radiatum sink (p = 0.018; paired bootstrap test; n = 38 sleep/rest sessions from five mice).

(D) Average LFPs waveform for Rad sink (red) and LM sink (blue) ripples recorded in the pyramidal, radiatum, and lacunosum-moleculare layers. To visualize dif-

ferences in ripple frequencies, LFP waveforms were referenced to the highest ripple peak. Shaded area around each trace, 95% CIs.

(E) Estimation plot showing the effect size for the difference in average ripple frequency between Rad sink and LM sink ripples. Top: raw data distributions (each dot 

represents a sleep session). Bottom: mean difference (black dot, mean; black ticks, 95% CIs; colored area, bootstrapped error distribution).

***p < 0.001. (A and B) Yellow arrows show current sinks. (D and E) Data shown are from n = 38 sleep/rest sessions from five mice.

ll
OPEN ACCESS Article

2 Neuron 113, 1–18, December 17, 2025

Please cite this article in press as: Castelli et al., Hippocampal ripple diversity organizes neuronal reactivation dynamics in the offline brain, Neuron 
(2025), https://doi.org/10.1016/j.neuron.2025.09.012



distinct laminar profiles forming a continuum (Figures 1C and 

S2A–S2E). One end of this continuum featured ripples character-

ized by a dominant sink in stratum radiatum (Rad), hereafter 

referred to as ‘‘Rad sink ripples’’ (Figures 1C, S2D, and S2E). To-

ward the other end, ripples exhibited progressively stronger cur-

rent sinks in stratum lacunosum-moleculare (Figures 1C, S2D, 

and S2E). Ripples at that end also exhibited a second, weaker 

sink in the stratum radiatum that emerged after the dominant la-

cunosum-moleculare sink, and we refer to these as ‘‘LM sink rip-

ples’’ (Figure 1C). These profiles were consistently observed 

regardless of how LFP and the CSD signals were referenced to 

ripple events (Figures S2F–S2I). Ripples between the Rad sink 

and LM sink profiles are referred to as ‘‘intermediate ripples.’’

In terms of LFP waveforms, Rad sink ripples exhibited the well-

described negative sharp wave in the stratum radiatum, while 

LM sink ripples showed a positive deflection in the stratum pyrami-

dale accompanied by a negative deflection in the stratum lacuno-

sum-moleculare (Figure 1D). Compared with Rad sink , LM sink 

ripples exhibited lower frequency (Figures 1E and S2J–S2L; 

mean frequency [95% CI]: Rad sink , 147.1 [145.3–148.8] Hz; 

LM sink , 125.4 [124.0–126.9] Hz; p < 10 − 5 ; paired bootstrap test). 

This frequency difference persisted across sleep and pre-rapid 

eye movement (REM) epochs, suggesting it does not reflect state 

transitions (Figures S2M and S2N). Rad sink ripples showed higher 

power (Figures S2L and S2O) and longer duration (Figure S2P). 

The occurrence rates of Rad sink and LM sink ripples remained sta-

ble throughout non-REM (NREM) sleep (Figures S2Q and S2R). 

Further, ripples of the same profile tended to occur in bursts, while 

transitions between profiles occurred less frequently than ex-

pected by chance (Figures S2S and S2T).

Cortical state bias in hippocampal ripple laminar 

profiles

To assess how Rad sink and LM sink ripples relate to broader sleep-

related network dynamics, we analyzed their occurrence across 

cortical Up and Down states. These states were inferred from the 

relationship between entorhinal cortex (EC) activation and CSD 

signals in the dentate gyrus (DG) molecular layers 11,39,40 

(Figures 2A, 2B, and S3A). Both ripple types increased in inci-

dence during Up DG compared with Down DG states (Figure 

S3B). However, the proportion of ripples classified as LM sink 

significantly increased in Up DG states (Figures 2C and 2D). 

Further, Rad sink ripples peaked in occurrence shortly after the 

onset of Up DG states, whereas LM sink ripples were more evenly 

distributed throughout each state (Figure S3B).

These findings show that ripple occurrence generally in-

creases during cortical Up states, consistent with previous re-

ports. 41,42 Additionally, the CSD profile associated with cortical 

Up states shows a relative increase of ripples with a lacuno-

sum-moleculare sink, aligning with EC-to-CA1 projections tar-

geting this layer. 43,44 These observations suggest that offline 

EC activation not only increases the occurrence of hippocampal 

ripples but also biases their laminar current profile.

Inferring ripple CSD laminar profiles from CA1 stratum 

pyramidale LFPs

Given the differences between Rad sink and LM sink ripple LFP 

waveforms (Figure 1D), we asked whether the laminar current 

profile underlying a given ripple could be inferred from CA1 stra-

tum pyramidale LFPs. Consistent with recent work, 35 ripple 

events did not form discrete clusters based on either their

A B

C D

Figure 2. Up DG and Down DG states bias the laminar profile of ripple currents

(A) Average CSDs and LFP waveforms for Rad sink and LM sink ripples recorded using a silicon probe spanning layers along the CA1-to-DG axis (Or, oriens; Pyr, 

pyramidale; Rad, radiatum; LM, lacunosum-moleculare; Mol, moleculare; GCL, granule cell layer). Yellow arrows show current sinks.

(B) Example raw LFPs simultaneously recorded from the CA1 stratum pyramidale, radiatum, and lacunosum-moleculare; and the DG stratum moleculare and GCL 

during a detected Up DG to Down DG transition.

(C) Difference in the proportion of ripples classified as LM sink between Down DG and Up DG states. Each dot represents one sleep session. A significantly higher 

proportion of LM sink ripples occurred during Up DG states compared with Down DG (mean difference > 0; p < 10 − 5 ; paired bootstrap test).

(D) Proportion of ripples classified as LM sink as a function of CSD energy in the DG molecular layer. Positive x values correspond to Up DG states; negative x values 

reflect Down DG states. Shaded area: 95% CI.

*** p < 0.001. (C and D) Data shown are from n = 23 sleep/rest sessions from five mice.
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laminar current profiles or their pyramidal layer LFP waveforms 

(Figure 3A). We tested whether pyramidal layer LFPs predicted 

ripple-related CSD signals across the different CA1 strata (i.e., 

oriens, pyramidale, Rad, and LM). Using linear regressions, we 

found that CSDs in all layers were predicted above chance and 

throughout sleep (Figures 3B and S3C). The CSD from stratum 

lacunosum-moleculare was the most strongly explained by pyra-

midal layer LFPs (Figure 3B). Similar results were obtained using 

the structure index 45 (Figure S3D). Accordingly, we trained a 

linear discriminant analysis (LDA) model to classify individual rip-

ple events using their pyramidal LFP waveforms, with class la-

bels (Rad sink , intermediate, and LM sink ripples) defined by the

corresponding lacunosum-moleculare CSD (Figures 3C and 

S3E–S3I). To evaluate generalizability, the model was iteratively 

trained on data from a set of mice and tested on a different 

mouse (i.e., a leave-one-mouse-out cross-validation approach). 

The classifier reliably distinguished ripple types based solely on 

the pyramidal LFP waveforms (Figures 3D and 3E; mean accu-

racy gains over shuffle controls [95% CI]: 55.0% [38.5–66.2]; 

p = 0.0014, one-tailed t test; model cross-validated across five 

mice). Performance was unaffected by the recording depth 

within the CA1 pyramidal layer (Figure S3J).

Overall, these results demonstrate that hippocampal ripples 

vary in their laminar current profiles, forming a continuum that

A B

C D E

Figure 3. Latent CSD information embedded within CA1 stratum pyramidale LFPs

(A) Ripple-triggered CSDs and pyramidal layer LFP waveforms define a continuum capturing laminar and spectral ripple features. Top: schematic illustration of 

dimensionality reduction applied to ripple-triggered CSD profiles across CA1 channels (left; each channel as one dimension) and to pyramidal layer LFP ripple 

waveforms (right; each time point as one dimension). Middle and bottom: example projections from a single sleep session onto the first two principal components 

(PCs) of each space. Each dot represents one ripple, color-coded by CSD in stratum lacunosum-moleculare (middle) or ripple frequency (bottom). Both reduced 

spaces preserve information about laminar CSD and spectral content.

(B) Variance explained in the ripple pyramidal layer LFP by the concurrent CSD in each CA1 layer. Each dot represents a sleep session. The lacunosum-mo-

leculare CSD explains most of the variance (p = 1.2 × 10 − 24 , one-way ANOVA; Rad versus LM: p = 5.7 × 10 − 4 , Tukey post hoc; n = 38 sleep/rest sessions).

(C) Schematic of linear discriminant analysis (LDA) predicting the CSD in stratum lacunosum-moleculare (LM) from the ripple LFP signals in stratum pyramidale. 

Each ripple LFP trace and its corresponding CSD signal are used in the LDA classifier to distinguish Rad sink , intermediate (interm.), and LM sink ripples.

(D) LDA accuracy. Each dot represents one mouse left outside the training set (leave-one-out approach). Dashed line, chance level; gray dot, mean; vertical ticks, 

95% CI.

(E) Radiatum and lacunosum-moleculare CSD values in LDA-classified Rad sink , interm., and LM sink ripples. For each leave-one-out model, we applied the trained 

model to the mouse left out of training and computed the mean CSD (unit-variance) in each predicted ripple using a window centered at the time of the sink. Each 

dot represents one mouse left out of training (n = 5 mice). LDA models significantly discriminated ripples with a dominant radiatum current sink, those with an 

interm. CSD profile, and those with a dominant lacunosum-moleculare sink (radiatum CSD, p = 1.8 × 10 − 6 ; lacunosum-moleculare CSD, p = 4.2 × 10 − 7 ; one-way 

ANOVA with Tukey post-hoc; n = 5 mice).

*p < 0.05, **p < 0.01, ***p < 0.001.

ll
OPEN ACCESS Article

4 Neuron 113, 1–18, December 17, 2025

Please cite this article in press as: Castelli et al., Hippocampal ripple diversity organizes neuronal reactivation dynamics in the offline brain, Neuron 
(2025), https://doi.org/10.1016/j.neuron.2025.09.012



includes events with a prominent lacunosum-moleculare sink, 

which was not evident in the grand average profile. Moreover, 

the pyramidal layer LFP waveform allows distinguishing Rad sink 

versus LM sink ripples. Having established the classification pro-

cedure using leave-one-mouse-out cross-validation (Figures 

3C–3E), we trained a final model on the full silicon probe dataset 

(all mice) for application to the tetrode-recorded datasets in sub-

sequent analyses.

Rad sink versus LM sink ripples exhibit distinct population 

activity patterns

We next tested whether Rad sink and LM sink ripples differentially 

engage neuronal spiking, using multichannel tetrode recordings 

simultaneously from CA1 and CA3 pyramidal layers (Figure 4A; 

mean principal cells per recording day [IQR]: 42.9 [27.0–62.8]; 

3,521 total principal cells; 280 total hours of sleep/rest from 13 

mice; 244 sleep/rest sessions; mean duration [IQR]: 68.8 [48.0– 

90.2] min per sleep/rest session). CA3 cells were monitored, as 

they are the main upstream trigger for CA1 SWRs. 4 Using the 

CSD-validated model (Figures 3C–3E), we classified tetrode-re-

corded CA1 ripples as Rad sink or LM sink events (Figure 4A; mean

number [IQR] of classified ripples per sleep/rest session: Rad sink ,

1,062 [677.8–1,417.0]; LM sink , 866.8 [490.8–1,146.3]). Both the 

ripple frequency and LFP waveform of tetrode-recorded 

Rad sink and LM sink ripples (Figures S3K and S3L) matched those 

recorded with silicon probes (Figures 1D and 1E).

CA1 principal cell activity increased in both Rad sink and LM sink 

ripples (Figure 4B), with higher firing rates in Rad sink ripples 

(Figure S4A; mean peak rate [95% CI]: Rad sink , 21.88 [21.27– 

22.50] Hz; LM sink , 13.12 [12.70–13.55] Hz; p < 10 − 5 , paired boot-

strap test; n = 2,196 CA1 principal cells). CA1 principal cells fired 

at an earlier phase in LM sink ripples yet maintained similar 

coupling strength (Figures S4B and S4C). In CA3, principal cells 

also fired more in Rad sink ripples (Figures 4B and S4D; mean 

peak rate [95% CI]: Rad sink , 8.82 [8.14–9.54] Hz; LM sink , 5.18 

[4.80–5.61] Hz; p < 10 − 5 , paired bootstrap test; n = 1,325 CA3 

principal cells). CA3 principal cell firing further exhibited a 

distinct temporal pattern in LM sink ripples, with an additional 

transient firing increase ∼100 ms before the ripple power peak 

(Figure 4B). CA3 interneurons also showed distinct firing pat-

terns across ripple types (Figure S4E). In CA3, but not CA1, the 

interneuron-to-principal cell firing ratio was higher in LM sink rip-

ples (Figure S4F).

To examine the timing relationship between principal cell firing 

and laminar currents, we aligned the spiking activity (from the 

tetrode dataset) and the CSD signals (from the silicon probe data-

set) to the ripple envelope peak, separately for Rad sink and LM sink 

ripples. In Rad sink ripples, CA1 and CA3 principal cells showed 

strong firing responses aligned to the radiatum sink (Figure 4C), 

consistent with previous work on canonical CA1 ripples. 10 During 

LM sink ripples, CA1 firing ramped up following the dominant lacu-

nosum-moleculare sink and peaked before the radiatum sink 

reached its maximum (Figure 4C). This second LM sink ripple sink 

in stratum radiatum coincided with the rise in CA3 principal cell 

firing near the ripple peak. The pre-LM sink ripple firing increase of 

CA3 principal cells (∼100 ms before LM sink ripple peak) coincided 

with a sink in the DG molecular layer (Figure 4C). Interestingly, the 

pre-LM sink ripple firing rate of principal cells in CA3 (but not CA1)

was strongly anti-correlated with their activity during Rad sink rip-

ples (mean Pearson correlation [95% CI]: − 0.34 [− 0.39 

to − 0.28]; Figures S4G and S4H), suggesting that these two pro-

files engage different cell populations.

To further explore this, we trained classifiers to discriminate rip-

ple types using their instantaneous population activity vectors from 

CA1 or CA3 principal cells. As controls, we used surrogate po-

pulation vectors that preserved both individual neuron firing rates 

(i.e., number of spikes each cell discharged across ripples) and 

population firing rates (i.e., number of spikes the population dis-

charged in each ripple) while shuffling the combination of neurons 

coactive in each ripple (i.e., instantaneous population coactivity 

patterns). These (coactivity shuffled) control models still outper-

formed chance, indicating that some ripple-type information was 

derived from firing rates (Figure 4D), consistent with the cross-rip-

ple firing difference (Figures 4B, S4A, and S4D). The observed CA1 

and CA3 population coactivity patterns distinguished Rad sink and 

LM sink ripples, surpassing control models based on individual cells 

firing and population rates alone (Figure 4D), suggesting that these 

two ripple types engage distinct, non-redundant motifs of coactive 

neurons. Ripple classification was further improved when incorpo-

rating the full temporal structure of spike trains around each ripple 

event (Figures S4I–S4K; Table S2), especially in CA3, consistent 

with its strong pre-LM sink and Rad sink firing anti-correlation 

(Figures S4G and S4H). Together, these results indicate that 

LM sink and Rad sink ripples are associated with different spatiotem-

poral firing dynamics in both CA1 and CA3.

Rad sink ripples integrate additional neurons into core 

LM sink coactivity motifs to form composite patterns

We next characterized coactivity motifs in Rad sink versus LM sink 

ripples. For each ripple type, we measured the coactivity between 

cell pairs (i; j) using the regression coefficient from the prediction 

of neuron i’s spiking from neuron j, controlling for the remaining 

population (Figure 5A). CA1 principal cells showed higher coactiv-

ity in LM sink ripples (Figures 5B, S5A, and S5B; p < 10 − 5 , paired 

bootstrap test), whereas CA3 principal cells showed higher coac-

tivity in Rad sink ripples (Figures S5A, S5C, and S5D). Consistent 

with this, the graph-theoretical structural balance measure indi-

cated that CA1 coactivity motifs in LM sink ripples were more sta-

ble, with no significant difference in CA3 (Figures S5E–S5H). 

Compared with Rad sink , LM sink ripples recruited a sparser CA1 

principal cell population, as indicated by a higher Gini index 

(Figures 5C and 5D; p < 10 − 5 , bootstrap test) and a lower propor-

tion of active cells (Figure S5I; mean proportion of active CA1 

cells [95% CI]: Rad sink , 0.41 [0.40–0.42]; LM sink , 0.28 [0.27– 

0.28]; p < 10 − 5 , paired bootstrap test). Furthermore, LM sink pop-

ulation vectors exhibited both lower intrinsic dimensionality 46

(Figure 5E; mean intrinsic dimensionality [95% CI]: Rad sink ,

3.29 [3.24–3.35]; LM sink , 2.72 [2.63–2.81]; p < 10 − 5 , paired boot-

strap test) and lower linear dimensionality (Figure S5J). This ef-

fect persisted across different cell sample sizes (Figure S5K) 

and was not explained by sparsity alone (Figure S5L). Thus, 

LM sink ripples are characterized by sparse, low-dimensional 

population coactivity patterns, whereas Rad sink ripples engage 

denser, higher-dimensional patterns.

LM sink ripples have lower ripple power (Figures S2L and S2O), 

lower firing rates (Figures 4B and S4A), and sparser CA1

ll
OPEN ACCESSArticle

Neuron 113, 1–18, December 17, 2025 5

Please cite this article in press as: Castelli et al., Hippocampal ripple diversity organizes neuronal reactivation dynamics in the offline brain, Neuron 
(2025), https://doi.org/10.1016/j.neuron.2025.09.012



population recruitment (Figures 5D and S5I). However, LM sink 

coactivity motifs did not simply reflect the engagement of 

higher-rate cells (likely those easiest to recruit with a weak drive) 

but instead reflected structured coactivity (i.e., the specific neu-

rons that fire together) that was not solely driven by neurons’ 

excitability (Figures S6A–S6C).

We then tested whether the coactivity motifs in LM sink ripples 

reoccur within the larger (denser) motifs observed in Rad sink rip-

ples. An asymmetrical Jaccard similarity coefficient indicated 

that LM sink motifs are consistently re-expressed in Rad sink rip-

ples (Figures S6D–S6F), suggesting that Rad sink events recruit 

the core motifs expressed in LM sink ripples along with additional 

neurons. To explore this, we extracted individual LM sink motifs 

from each sleep session using independent component anal-

ysis 47,48 and quantified the contribution gain of each principal 

cell as the change in their cofiring with each LM sink motif during 

Rad sink ripples (Figure 5F). To control for firing rates and sparsity 

differences, we repeated the analysis using surrogate ripple ac-

tivity that preserved both individual neuron rates per ripple type 

and total spike counts per event (Figure S6G). This confirmed

A B

C D

Figure 4. Principal cell firing response to Rad sink versus LM sink ripples

(A) Example dual-site 14-tetrode ensemble recording of CA1 and CA3 principal cells. Top trace: raw LFP signal from CA1 pyramidal layer. Bottom raster plot: 

(color-coded) CA1 and CA3 principal cell spike trains (one cell per row; a 1-s sample recording for clarity). Population vector (PV) of spiking activity in individual 

ripple extracted using a 50-ms window centered at the ripple envelope peak. Tetrode-recorded Rad sink and LM sink ripples were distinguished using the silicon 

probe-validated LDA (Figures 3C–3E).

(B) Triggered average firing response of CA1 and CA3 principal cells to Rad sink and LM sink ripples. Top: overall population average responses. Bottom: firing 

response (Z scored) of individual cells, sorted by their firing rates in Rad sink ripples.

(C) Ripple-triggered average firing of CA1 and CA3 principal cells during Rad sink ripples (left) and LM sink ripples (right), alongside inverted CSD traces (from the 

silicon probe dataset) in CA1 stratum radiatum (Rad), lacunosum-moleculare (LM), and DG molecular (Mol) layer. Shaded areas around each trace: 95% CIs (Rad 

and LM, n = 38 sleep/rest sessions; DG-Mol n = 23 sleep/rest sessions).

(D) Estimation plots showing the difference in classifier accuracy (measured as mutual information) in discriminating Rad sink and LM sink ripples using ripple-nested 

PVs from CA1 (left) or CA3 (right). Each distribution observed in the real data (original) is compared with chance level (dashed lines) and a surrogate distribution 

(coactivity shuffled) that preserved individual cell firing rates and overall population statistics while shuffling coactivity patterns (gray distributions). Each dot 

represents a single sleep session. For both CA1 and CA3, preserving population coactivity improved accuracy over both controls (CA1, p < 10 − 5 ; CA3, p < 10 − 5 ; 

paired bootstrap tests; n = 129 sleep/rest sessions for CA1, and n = 89 sleep/rest sessions for CA3).

*p < 0.05, **p < 0.01, ***p < 0.001.
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A B

C D E

F G

Figure 5. CA1 population coactivity level and structural organization differ in Rad sink versus LM sink ripples

(A) Schematic outlining the measure of ripple-nested principal cell population-conditioned coactivity. Left: an example LFP trace from the CA1 pyramidal layer 

accompanies a raster plot of a subset of CA1 principal cells. Neuron i spiking is predicted by neuron j spiking while accounting for the population rate (P) using a 

linear regression model. Right: corresponding Rad sink and LM sink ripples adjacency matrices of beta coefficients.

(B) Bootstrapped mean differences in population-conditioned coactivity of CA1 principal cells (LM sink minus Rad sink ; n = 1,580 cells). Difference expressed as a 

percentage relative to the mean coactivity in Rad sink ripples.

(C) Example raw LFP trace and raster plot of CA1 principal cells for one Rad sink ripple and one LM sink ripple, with the corresponding binarized population vectors 

(PVs) of active cells (black fields).

(D) Estimation plot showing the difference in the sparsity (Gini index) of the population vectors nested in Rad sink versus LM sink ripples. Each point represents the 

mean sparsity of a single sleep session.

(E) Estimation plots showing the difference in intrinsic dimensionality of population vectors in Rad sink versus LM sink ripples. Each point represents a single sleep 

session.

(F) Example of a neuron joining an LM sink core motif during Rad sink ripples. Left: bar plot showing mean firing rates for a subset of CA1 principal cells (8 cells for 

clarity). Center-left: coactivity motif detected during LM sink ripples. Center-right: raw LFP traces and raster plots for representative example individual LM sink and 

Rad sink ripples. Spikes from cells significantly contributing to the LM sink motif are shown in purple. Spikes from a non-contributing cell are shown in black. Spikes 

from a cell not part of the LM sink motif but with increased contribution during Rad sink ripples are shown in orange. Right: contribution gain to coactivity motif from 

LM sink to Rad sink ripples for each cell, shown alongside their null distribution (gray bars: 95% CI of surrogate contribution changes, controlling for excitability). 

Note that the ‘‘orange’’ cell was not part of the LM sink motif but significantly increased its contribution during Rad sink , indicating it was ‘‘aggregated’’ onto the 

LM sink motif.

(G) Bootstrapped mean contribution gain of CA1 coactivity motifs (Z scored relative to surrogate distribution) from LM sink to Rad sink ripples. For each detected 

motif, the contribution gain of each cell quantified the increase in participation for that motif from LM sink to Rad sink ripples. For each motif, these chance-

normalized contribution gains were averaged across all cells. Note that the mean of this gain is significantly positive, indicating that cells tended to be integrated 

into LM sink motifs during Rad sink ripples more than expected by their excitability (p = 2.5 × 10 − 3 ; bootstrap test; n = 231 motifs detected in 10 mice).

*p < 0.05, **p < 0.01, ***p < 0.001. (D and E) Data shown are from n = 208 sleep/rest sessions from 13 mice.
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that during Rad sink ripples some individual neurons significantly 

increased their coactivity with LM sink motifs (Figure 5G). 

Conversely, cell contribution gain from Rad sink motifs in LM sink 

ripples was significantly lower than expected from surrogates 

(Figure S6H). Moreover, the number of neurons significantly 

aggregated onto LM sink motifs during Rad sink ripples exceeded 

what was expected from the surrogate distributions (Figure 

S6I). These findings show that LM sink ripples reflect sparse, 

low-dimensional ‘‘core’’ motifs that reappear during Rad sink rip-

ples alongside additional neurons to form denser, higher-dimen-

sional ‘‘composite’’ patterns.

Rad sink and LM sink ripples differentially recruit neurons 

across CA1 pyramidal sublayers

Traditionally, hippocampal network function has been studied 

assuming CA1 principal cells as a homogeneous population. 

Recent research has revealed significant heterogeneity, segre-

gating CA1 pyramidal cells into two subpopulations with distinct 

properties. 49–65 For example, deep-sublayer CA1 pyramidal 

cells exhibit higher firing rates than those in the superficial sub-

layer during awake theta oscillations, 37,66 whereas superficial-

sublayer cells show higher firing rates during ripples 37,51,67 (see 

also Figures S6J and S6K). We assessed whether LM sink and 

Rad sink ripples differently engage deep and superficial cells 

(Figure 6A). 37 For each cell population, we calculated the change 

in firing rates from their pre-ripple baseline activity (using a 200– 

100 ms window before ripple power peak) to each event type. 

During Rad sink ripples, superficial and deep cells increased their 

firing similarly (Figures 6B and 6C). However, during LM sink rip-

ples, deep cells showed a higher firing increase than superficial 

cells (Figures 6B, 6C, and S6L). Consistent with this, the cells 

aggregated onto LM sink -defined coactivity motifs during 

Rad sink ripples (Figures 5F, 5G, and S6I) were significantly biased 

toward the superficial sublayer (Figure 6D).

To examine offline reactivation during Rad sink and LM sink rip-

ples, we trained generalized linear models to predict each prin-

cipal cell’s activity during awake theta oscillations based on 

peer activity (Figure 6E). Reactivation was then assessed by 

applying each cell’s theta-coactivity model to predict its ripple-

nested activity in post-exploration sleep/rest, controlling for 

pre-exploration sleep/rest. When applied across all CA1 prin-

cipal cells (regardless of somatic location), both Rad sink and 

LM sink ripples showed significant reactivation of waking theta ac-

tivity, with stronger levels in Rad sink ripples (Figure S7A). When 

analyzing deep and superficial principal cells separately, both 

subpopulations reactivated their waking theta coactivity in 

Rad sink ripples (Figure 6F), whereas only deep cells significantly 

reactivated in LM sink ripples (Figure 6G). CA3 principal cells 

mirrored CA1 superficial cells, reactivating in Rad sink but not in 

LM sink ripples (Figure S7B).

Temporal stability of Rad sink ’s recent patterns and 

gradual drift of LM sink ’s prior patterns

Although LM sink ripples showed stronger coactivity (Figures 5B 

and S5B), theta-nested population patterns from recent experi-

ence were more strongly reactivated in Rad sink ripples (Figure 

S7A). This was particularly observed in CA1 superficial cells 

(Figure 6F), which showed no detectable reactivation in LM sink rip-

ples (Figure 6G). This led us to hypothesize that LM sink coactivity 

motifs are more biased toward pre-existing patterns, whereas 

Rad sink coactivity is more influenced by recent wakefulness.

To test this, we quantified how strongly post-exploration sleep 

ripples expressed coactivity motifs that were strengthened dur-

ing preceding waking exploration relative to pre-exploration 

sleep (Figures 7A and S7C–S7F). This recent-to-prior motif bal-

ance showed that post-exploration Rad sink ripple activity was 

more aligned with recent (waking theta) motifs than LM sink activ-

ity, which remained more biased toward prior (pre-exploration 

sleep) motifs (Figure 7B). Similar results were obtained for 

CA3-CA1 neuron pairs (Figure S7G). Post-exploration sleep 

alignment with prior motifs in LM sink ripples was stronger in 

deep CA1 principal cells, whereas alignment with recent motifs 

in Rad sink ripples was stronger in superficial cells (Figure 7C).

We then analyzed temporal dynamics of CA1 population pat-

terns during extended sleep (mean duration [IQR]: 86.25 [76.33– 

91.62] min per sleep; n = 118 pairs of pre- and post-exploration 

sleep sessions from 13 mice). Although LM sink ripple activity was 

more aligned with prior motifs when averaged across long 

(>60 min) post-exploration sleep periods, analyzing it over time 

uncovered a progressive drift toward the recent motifs, reaching 

expression levels comparable to Rad sink ripples within ∼30 min 

(Figure 7D; time constant τ [95% CI], 13.12 [8.34–21.80] min). 

By contrast, Rad sink ripples showed no such gradual change 

(Figure 7D). The population drift observed in LM sink ripples 

from prior to recent motifs over time was explained by ripple 

occurrence time and not by ripple occurrence frequency or 

changes in ripple population sparsity (Figures S7H–S7J).

These findings suggested that LM sink ripple activity progres-

sively transitioned across post-exploration sleep, drifting away 

from prior coactivity motifs to converge toward recent motifs 

(Figure 5D). However, it remained unclear whether this gradual 

shift in population motifs reflects a progressive disengagement 

from prior coactivity structure, an increasing expression of 

recent motifs, or a combination of both. To address this, we per-

formed two complementary analyses on prior and recent motifs 

separately.

First, we examined whether the expression of prior coactivity 

motifs in LM sink ripples declined over post-exploration sleep. 

To do so, we trained generalized linear models to predict each 

principal cell’s activity from its peers (as in Figure 6E) during 

pre-exploration sleep ripples and used their prediction accuracy 

when applied to post-exploration sleep Rad sink or LM sink ripples 

to quantify the reactivation strength of pre-sleep coactivity. Aver-

aged over the entire post-exploration sleep, the reactivation 

strength of pre-sleep coactivity in LM sink ripples was stronger 

than in Rad sink ripples (Figure S7K). However, in line with the 

trend observed in the recent-to-prior motif balance analysis 

(Figure 7D), the reactivation of pre-exploration sleep coactivity 

declined exponentially in post-exploration sleep LM sink ripples 

while it remained stable in Rad sink ripples (Figure 7E). This 

confirmed a progressive disengagement of prior motifs in 

LM sink ripples throughout post-exploration sleep reactivation.

Second, we examined whether the reactivation of recent co-

activity motifs in post-exploration sleep LM sink ripples increased 

over time. To test this, we measured the reactivation strength of 

wakefulness coactivity by computing the pairwise correlations of
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CA1 principal cell activity between exploration theta and post-

exploration sleep ripples, regressing out the coactivity observed 

in pre-exploration sleep ripples. Both ripple types significantly 

reactivated recent waking theta coactivity, and this remained 

stable throughout post-exploration sleep (Figure 7F).

Thus, the population drift from prior to recent coactivity motifs 

in post-exploration sleep LM sink ripples (Figure 7D) was largely 

explained by the gradual disengagement of prior (pre-explora-

tion sleep) motifs over time (Figure 7E), increasing the ratio of 

recent-to-prior motif expression (Figure 7D). This prior motif 

disengagement was better accounted for by the gradual shift 

in coactivity among deep CA1 principal cells (Figures S7L and 

S7M), drifting away from their initial stronger participation in prior 

motifs (Figure 7C). In sum, Rad sink ripple coactivity showed

stronger alignment with recent waking theta motifs from the 

beginning till the end of post-exploration sleep, whereas LM sink 

ripple coactivity gradually drifted away from prior motifs toward 

recent motifs, eventually reaching expression levels comparable 

to Rad sink ripples (Figure 7G).

DISCUSSION

In this study, we identified two ripple profiles that exhibit distinct 

laminar currents across the CA1 somato-dendritic axis and 

differentially recruit hippocampal neurons during offline periods 

of sleep/rest. The first profile, with a dominant current in stratum 

radiatum, combines superficial and deep CA1 principal cells into 

higher-dimensional composite patterns that undergo hour-long

A B C

D E F G

Figure 6. Firing response to Rad sink and LM sink ripples of principal cells in deep versus superficial CA1 pyramidal sublayers

(A) Distribution of CA1 principal cells recorded in the deep (purple) versus superficial (orange) pyramidal sublayers.

(B) Example raw LFP traces and raster plots showing (color-coded) spiking activity of deep and superficial cells in Rad sink and LM sink ripples.

(C) Change in firing response of deep and superficial cells. In Rad sink ripples, deep and superficial principal cells increase their firing rates similarly (relative to their

pre-ripple baseline), whereas in LM sink ripples, deep cells show a significantly greater firing increase compared with superficial cells (mean ± 95% CI; Rad sink ,

p = 0.10; LM sink , p = 3.2 × 10 − 3 ; bootstrap tests; n = 1,100 deep and 480 superficial cells).

(D) Bootstrapped mean difference between CA1 sublayers (superficial minus deep) in contribution gain of principal cells to LM sink motifs during Rad sink ripples 

(measured as in Figures 5F and 5G). Superficial cells showed a significantly higher gain, indicating they are more likely to be integrated into the LM sink motifs 

during Rad sink ripples (p = 3.5 × 10 − 3 ; bootstrap test; n = 227 motifs with deep cells and n = 157 motifs with superficial).

(E–G) Rad sink ripples reactivate waking theta coactivity of both deep and superficial cells, but LM sink ripples selectively reactivate deep cells. Shown in (E) is a 

schematic of the method for computing offline reactivation. Using theta cycles in active exploration, a generalized linear model (GLM) was trained to predict the 

activity of each principal cell from the waking theta spiking activity of the other cells in the same sublayer. Each theta model was then applied to predict the 

response of its target cell during Rad sink and LM sink ripples of pre-exploration sleep versus post-exploration sleep. Reactivation was measured as the difference in 

model accuracy in post-exploration sleep relative to pre-exploration sleep. Shown in (F) is the bootstrapped mean difference in reactivation during Rad sink ripples 

for deep and superficial cells. Both sublayers exhibit significant Rad sink reactivation (all ps < 10 − 5 ; one-tailed bootstrap tests). (G) As (F), but for LM sink ripples. 

Note that only deep cells reactivate significantly during post-sleep LM sink ripples (deep cells: p = 2.7 × 10 − 4 ; superficial cells: p = 0.84; one-tailed bootstrap tests; 

n = 1,097 deep and 478 superficial cells).

*p < 0.05, **p < 0.01, ***p < 0.001. (A) shows data from n = total 1,353 deep and 843 superficial cells from 13 mice.
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A B

C D E

F

G

Figure 7. Prior versus recent coactivity motif dynamics in Rad sink and LM sink ripples

(A) Schematic of the method identifying prior and recent coactivity motifs (see also Figures S7C–S7F). Coactivity matrices (top) and corresponding neuronal graph 

motifs (bottom) across pre-exploration sleep (pre-sleep ripples), exploration (theta cycles), and post-exploration sleep (post-sleep ripples). Purple squares 

denote cell pairs constituting prior coactivity motifs (i.e., already present in pre-sleep), while orange squares show coactivity relationships that selectively 

emerged during exploration (i.e., absent in pre-sleep).

(B) Bootstrapped mean difference (Rad sink minus LM sink ) in motif expression during post-sleep for prior and recent motifs. Rad sink ripples expressed recent 

coactivity motifs more strongly than LM sink ripples (p < 10 − 5 ; two-sided bootstrap test), whereas LM sink ripples more closely aligned with prior motifs (p = 6 × 10 − 4 ; 

two-sided bootstrap test). n = 140 pre- and post-sleep session pairs from 13 mice.

(C) Bootstrapped mean difference in expression strength of prior (left) and recent (right) motifs between deep and superficial cells (relative to the mean of su-

perficial cells). Deep cells were more aligned with prior motifs than superficial cells (p = 4 × 10 − 5 ; two-sided bootstrap test), whereas superficial cells expressed 

recent motifs more strongly (p = 8 × 10 − 5 ; two-sided bootstrap test). n = 43 pre- and post-sleep session pairs from 6 mice.

(D) Time course of the recent-to-prior motif balance in Rad sink and LM sink ripples over the hour-long sleep/rest (normalized by subtracting the overall mean 

reactivation of that session). LM sink showed an exponential increase (Bayesian information criterion [BIC]: BIC flat = − 1,107.8; BIC exp = − 1,129.7), showing that 

LM sink coactivity gradually became more biased toward recent motifs. Rad sink ripples exhibited stable recent-to-prior motif balance throughout hour-long sleep/ 

rest (BIC flat = − 1,491.5; BIC exp = − 1,478.8). Shaded areas: 95% CI.

(E) Reactivation time course of pre-exploration sleep coactivity, computed for Rad sink and LM sink ripples during post-exploration sleep. LM sink ripples showed an 

exponential decrease (BIC flat = − 2,854.6; BIC exp = − 2,855.4), suggesting gradual disengagement of prior coactivity motifs. Reactivation strength of pre-sleep 

coactivity was stable in Rad sink ripples (BIC flat = − 2,987.5; BIC exp = − 2,976.8). Shaded areas: 95% CI (n = 10,000 exponential fit bootstraps using data from 116 

pairs of pre- and post-sleep sessions from 13 mice).

(F) Similar to (E) but showing the reactivation time course of recent waking theta coactivity, computed for Rad sink and LM sink ripples throughout post-exploration 

sleep. For both LM sink (BIC flat = − 2,017.2; BIC exp = − 2,004.5) and Rad sink (BIC flat = − 2,255.6; BIC exp = − 2,248.5), reactivation values were stable and significantly

(legend continued on next page)
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stable reactivation of recently expressed waking motifs of 

neuronal coactivity. The second ripple profile, with a dominant 

current in stratum lacunosum-moleculare, contains core motifs 

that primarily recruit deep cells in lower-dimensional patterns 

that undergo time-varying reactivation, gradually drifting over 

sleep from prior to recent coactivity spaces. Collectively, these 

findings reveal a diversity in hippocampal ripples that is linked 

to the offline organization of neuronal reactivation. We propose 

that by tuning differences in the activity level, structural organiza-

tion, and neuronal content of population patterns (Figure 8), this 

ripple-by-ripple diversity supports two parallel processing chan-

nels for consolidating recent waking experience while updating 

prior memory representations in the offline hippocampus.

Ripple-by-ripple variability reveals distinct laminar 

current profiles

We began our investigation by analyzing the variability in CSD 

profiles of individual ripples. These profiles form a continuum 

rather than discrete clusters, aligning with recent work showing 

that ripple waveforms and features occupy a continuum of 

parameter space. 35 This might enable the dynamical modulation 

of the hippocampal population activity on a ripple-by-ripple ba-

sis using transient changes of currents in specific neural layers. 

The dominant contributors to this continuum are ripples associ-

ated with a stronger current sink in stratum radiatum (Rad sink rip-

ples), reflecting the canonical CSD profile of the grand average 

ripple. In addition to these are ripples that instead show a stron-

ger current sink in stratum lacunosum-moleculare (LM sink rip-

ples), thus far hidden in the grand average. CA3 projections to 

CA1 stratum radiatum play a key role in SWR generation, 4,68,69 

consistent with the observed large average input current in this 

layer (Figure 1A). Yet, both this study and previous work 35 reveal 

significant variability in current profiles associated with individual 

ripples. Using an unsupervised approach, we identified here a 

subset of ripples with a dominant current sink in stratum lacuno-

sum-moleculare and slower ripple frequency. Interestingly, 

following the dominant sink in stratum lacunosum-moleculare, 

this subset of LM sink ripples then exhibits a second sink in stra-

tum radiatum following the ripple peak, suggesting a complex 

interplay of temporally distinct inputs shaping these events.

This is in line with recent work by Sebastian et al., 35 which re-

ported a subset of ripples with a current sink in stratum lacuno-

sum-moleculare, supporting the idea that cortical drive can influ-

ence ripple waveform shape. In line with our findings, a recent 

study also highlights that ripples lacking sharp waves (inter-

preted as events with stronger cortical influence) show reduced 

CSD energy in stratum lacunosum-moleculare, suggesting a 

decrease in the overall global current flow. 70 Our results extend 

this observation by showing that ripples with weaker CA3 drive 

are associated with a dominant current sink in LM, supporting

the presence of cortical input during ripples with no stratum radi-

atum sharp waves. This LM sink ripple profile likely implicates pro-

jections from the EC layer III (EC3) to CA1, suggesting a complex 

interplay of CA3 and EC3 inputs in CA1 ripple generation.

In line with this hypothesis, we found that the proportion of 

LM sink events increased during Up DG states, suggesting a 

greater contribution of EC-driven activity to this ripple profile. 

This also indicates that the overall diversity of ripple CSD profiles 

is biased and embedded within broader sleep-state dynamics. 

Consistent with these findings, removing CA3 inputs does not 

entirely prevent ripple generation. Instead, slower-frequency rip-

ples persist in the absence of CA3, 69 while lesions to the medial 

EC are associated with changes in the proportion of high-to-low 

frequency ripples. 71 Furthermore, recent findings indicate that 

EC inputs to CA1 can shape ripple characteristics. 60,71,72 This 

transient tuning on a moment-by-moment basis across individ-

ual ripples is reminiscent of that previously observed across in-

dividual cycles of hippocampal theta oscillations during awake 

exploration. 57,73 Similar to waking theta cycles, our findings 

show that the hippocampus dynamically tunes offline population 

activity on a ripple-by-ripple basis, in line with recent work sug-

gesting that a temporal microstructure of sleep embeds the re-

activation of coexisting hippocampal patterns. 27

Rad sink and LM sink ripples differentially modulate 

hippocampal cells and circuits

We found that principal cells and interneurons in both CA1 and 

CA3 were recruited at varying levels across the two ripple profiles. 

Rad sink ripples have higher firing rates and denser recruitment of 

neurons compared with LM sink ripples. Furthermore, in CA3, 

beyond these quantitative differences in neuronal recruitment, 

we observed qualitatively different temporal firing responses in 

Rad sink and LM sink ripples. In particular, while Rad sink ripples 

were associated with CA3 activity aligned to a current sink in stra-

tum radiatum (Figure 4C), LM sink ripples showed a distinct tempo-

ral pattern: the pre-LM sink ripple increase in CA3 firing (∼100 ms 

before ripple peak) coincided with a current sink in the DG molec-

ular layer, followed by a later, sustained peak in CA3 activity that 

coincided with a radiatum sink toward the end of the ripple 

(Figure 4C). This delayed radiatum sink emerged only after both 

the lacunosum-moleculare current sink and CA1 principal cell 

firing had peaked (Figure 4C).

These findings further support the idea that these two ripple 

CSD profiles arise in the hippocampal circuit differently. The 

high recurrency in CA3 could enable strong excitatory currents 

converging to stratum radiatum during Rad sink ripples, activating 

a larger number of neurons at higher firing rates and producing 

higher-frequency ripples. By contrast, during LM sink ripples, 

CA3 → CA1 inputs would be significantly weaker, either intrinsi-

cally or attenuated locally by interneurons within CA3 or CA1,

above zero, suggesting that recent coactivity motif expression did not change over time . Shaded areas: 95% CI (n = 10,000 exponential fit bootstraps using data 

from 118 pairs of pre- and post-sleep sessions from 13 mice).

(G) Schematic illustrating the drift of prior versus recent motifs in neural space across sleep and wake. Left: during pre-exploration sleep (ripples), CA1 neurons 

express coactivity motifs whose neural trajectories (dashed line) gravitate around a backbone of prior motifs (purple circle). Center: during wakefulness (theta 

cycles), experience-related motifs (orange circle) attract the neural trajectory (theta-driven shift). Right: in post-exploration sleep, Rad sink ripples express recent 

motifs from the beginning. By contrast, LM sink ripples initially align with prior motifs but then gradually drift toward recent motifs.

*p < 0.05, **p < 0.01, ***p < 0.001.
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promoting stronger differential current in stratum lacunosum-

moleculare. These distal currents still recruit a population of neu-

rons at lower firing rates than in Rad sink ripples. This reduced 

recruitment may stem from weaker input currents from CA3 dur-

ing LM sink ripples or from the additional attenuation caused by 

the longer distance these currents must travel to generate so-

matic spikes in CA1, compared with the shorter path from stra-

tum radiatum. Our findings establish that within the continuum 

of CSD profiles, CA1 and CA3 principal cells are modulated to 

varying degrees, reinforcing the dynamic nature of ripple-associ-

ated recruitment in the hippocampal circuitry.

The differences between Rad sink and LM sink ripples extend 

beyond modulation of activity levels to include distinct structural 

properties of the population patterns formed by principal cell coac-

tivation in these events. Specifically, we show that different coac-

tivity motifs are recruited across the two ripple profiles. CA1 prin-

Figure 8. Summary schematic

Two ripple profiles, identified by their radially orga-

nized currents, exhibit distinct CA1 population ac-

tivity level, structure, and content. Rad sink ripples, 

with stronger stratum radiatum current sinks, inte-

grate recent motifs of waking coactivity, combining 

superficial with deep principal cells into composite

and higher-dimensional population patterns that 

undergo stable reactivation over hour-long sleep/ 

rest. By contrast, LM sink ripples, with stronger 

stratum lacunosum-moleculare current sinks,

contain core motifs of pre-structured coactivity,

engaging deep cells into lower-dimensional pat-

terns that gradually drift from expressing prior to 

recent motifs throughout sleep. Dynamical tuning

(depicted by the fader at the bottom) of population 

activity between these two ripple profiles could 

support parallel reactivation channels for inte-

grating recent wakefulness while preserving prior 

representations.

cipal cells contributing to the sparser 

LM sink ripples formed lower-dimensional 

core motifs of high coactivity, which also 

reappear in higher-dimensional Rad sink 

ripples alongside additional cells. Impor-

tantly, neuronal recruitment during LM sink 

ripples reflects structured coactivity 

beyond what individual firing rate differ-

ences alone can explain (Figures S6A– 

S6C). These findings suggest that, despite 

potentially originating from parallel hippo-

campal circuits, CA1 principal cell popula-

tion responses to Rad sink and LM sink rip-

ples can influence each other.

Distinct CA1 pyramidal sublayer 

dynamics during Rad sink and LM sink 

ripples

Recent studies have documented signifi-

cant diversity among CA1 pyramidal cells, 

emphasizing that their somatic location in 

the deep versus superficial sublayers of the stratum pyramidale 

predicts distinct contributions to hippocampal network dynamics 

(e.g., Lopes-dos-Santos et al., 37 Gava et al., 49 Valero et al., 51 

Navas-Olive et al., 57 Esparza et al., 65 Mizuseki et al., 66 Harvey 

et al., 67 and Cavalieri et al. 74 ). Overall, during ripples, superficial 

CA1 principal cells exhibit stronger changes in firing activity 

compared with deep cells. 37,49,51,67 Here, we show that while 

Rad sink ripples reflect the canonical pattern of superficial cells be-

ing more active than deep cells, LM sink ripples exhibit the oppo-

site trend, with deep cells being predominantly more active 

than their superficial counterparts. Furthermore, we found that 

during Rad sink ripples CA1 primarily ‘‘aggregates’’ superficial 

principal cells onto core LM sink ripple motifs.

Importantly, while previous work showed that the offline reac-

tivation of waking patterns in CA1 is mainly driven by superficial 

cells, 67 we observed that this is not the case during LM sink ripples.
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CA1 superficial cells and CA3 principal cells were not significantly 

reactivated during these events (Figures 6G and S7B). These 

findings align with earlier reports showing that CA1 deep cells 

receive stronger inputs from EC3, which projects to stratum lacu-

nosum-moleculare, while CA1 superficial cells receive stronger 

inputs from CA3, which projects to stratum radiatum. 38,51,56,75 

Accordingly, we suggest that during Rad sink ripples, offline reac-

tivation of waking patterns primarily engages CA3 ensembles, 

which in turn bias CA1 to reactivate the associated higher-dimen-

sional response integrating superficial CA1 cells.

Deep and superficial CA1 principal cells have also been shown 

to respond differently to behavioral experiences. Notably, in 

theta cycles marking wakeful exploration, deep cells exhibit 

higher firing rates and more stable activity patterns, whereas su-

perficial cells show lower firing rates and adapt flexibly to new 

experiences. 37,49,67 This difference could be partly attributed to 

stronger excitatory inputs that superficial cells receive from 

CA3, enabling them to respond to contextual changes. 38,51,59 

Consistent with these findings, we show that superficial cells 

drive in Rad sink ripples of post-exploration sleep the expression 

of coactivity motifs expressed during the preceding exploratory 

behavior. By contrast, the more rigid deep cells instantiate pre-

existing motifs of coactivity in LM sink ripples. Previous studies re-

ported that CA1 superficial, but not deep, principal cells undergo 

postsynaptic potentiation in response to CA3 inputs after novel 

experience. 59 These results suggest that CA3 enables CA1 su-

perficial cells to rapidly and flexibly reorganize coactivity pat-

terns in Rad sink ripples following new waking experience. 

Conversely, the reduced activity of CA3 during LM sink ripples 

could favor the expression of deep cell motifs.

Ripple diversity for balancing integration of recent 

experiences and preservation of prior representations 

in the hippocampus

Why does the offline hippocampus co-process rapid integration 

of recent population responses and gradual adaptation of prior 

population responses? While the prompt integration of new in-

formation is essential, maintaining a stable underlying population 

activity structure could yet provide a ‘‘backbone’’ upon which 

finer-grain information processing can be built. Recent theoret-

ical work suggests that the hippocampus integrates new sensory 

information using a pre-structured internal scaffold provided by 

EC, enabling scalable, flexible, and efficient memory storage. 76 

In line with this, the core motifs of deep cells associated here 

with LM sink ripples would define such a pre-structured scaffold. 

Recent waking experience would then flexibly recruit coactivity 

motifs of CA1 superficial cells within the network. Through 

CA3-driven theta-nested activity, the network is transiently 

pushed out of the prior neural backbone to append new informa-

tion (Figure 7G). Combining deep and superficial CA1 principal 

cells would allow enhancing the specificity and distinctiveness 

of newly acquired representations. The resulting composite pop-

ulation patterns would be later reactivated offline, particularly 

during Rad sink ripples. Meanwhile, LM sink ripples would also 

continue expressing core activity motifs, which gradually drift 

to update the population backbone. Deep and superficial cells 

would therefore work synergistically toward the concomitant 

rapid integration and gradual refinement of hippocampal popula-

tion representations. Moreover, the observed differences be-

tween ripple types in the offline dynamics of recent versus prior 

motifs suggest that these changes are not driven by global 

changes in the behavioral sleep state.

The prior coactivity motifs nested in LM sink ripples appear more 

stable and yet not stationary over the hour-long sleep following 

recent wakefulness. Population patterns in LM sink ripples, but 

not those in Rad sink ripples, gradually drift toward the coactivity 

motifs defined during the recent waking activity. The reactivation 

strength of pre-exploration sleep coactivity during LM sink ripples 

gradually decreased over the course of post-exploration sleep, 

while reactivation of recent motifs remained stable and signifi-

cant, although weaker than during Rad sink ripples. This suggests 

that the structure of neuronal coactivity motifs is temporally 

refined in LM sink ripples, drifting away from the prior motif back-

bone to more closely resemble recent motifs, progressively 

increasing on a ripple-by-ripple basis the expression ratio of 

recent-to-prior motifs throughout sleep. Importantly, temporal 

dynamics in the coactivity among CA1 deep principal cells better 

explained this drift compared with those among superficial ones. 

This might be associated with the complex input-output relation-

ships established by superficial and deep CA1 principal cells and 

the possibility of bidirectional influences. CA1 superficial cells 

predominantly project to EC, 38,56,63,67,75 and CA1 deep cells pref-

erentially receive inputs from EC. This could actuate a feedback 

loop to CA1 deep cells. CA1 superficial cells could also modulate 

deep cells by recruiting local inhibitory circuits (e.g., parvalbu-

min-expressing basket cells 51,77 ). By these means, CA1 superfi-

cial cells would influence both the hippocampal-entorhinal and 

the intra-hippocampal circuitries, shaping the core motifs of 

deep CA1 cell activity embedded in LM sink ripples. That is, during 

post-exploration sleep, motifs of superficial cells reflecting recent 

waking experience reactivate in Rad sink ripples. This could in turn 

bias EC activity, which projects back to CA1 deep cells, gradually 

shifting the CA1 deep motifs toward the most recent activity state 

space. This interactive process could help internal linking of the 

recent experience with previous ones in the hippocampus and 

allow network updating with the most recently encountered infor-

mation. 78,79 Moreover, CA1 deep cells project to neocortical 

areas (prefrontal cortex). 67 The gradual drift of the hippocampal 

backbone, evolving from prior to recent coactivity spaces over 

hour-long post-exploration sleep/rest, could exert important in-

fluence on systems consolidation of neuronal ensembles in 

downstream neocortical circuits (e.g., prefrontal cortex 67,80 ). In 

parallel, this gradual drift would also update the local neuronal 

priors within the hippocampus, which would then serve as the 

foundation for the next low-dimensional backbone in LM sink rip-

ples, while Rad sink ripples, following recent experience, continue 

to push the network out of this state through superficial cells, with 

high-dimensional patterns reporting recent wakefulness. Such a 

functional loop could support a network trade-off between stabil-

ity and flexibility.

Limitations of the study

This study focused on offline CA1 ripples occurring during hour-

long periods of sleep/rest. The number of awake ripples detected 

during exploration was insufficient to reliably characterize their 

laminar current profiles. CA2 contributes more strongly to awake
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ripples, whereas CA3 participates more in sleep ripples. 81 This may 

account for the very small subset ripples associated with a domi-

nant current sink in stratum oriens, the main CA1 target of CA2 pro-

jections. Future work could investigate whether specific CSD pro-

files emerge in awake ripples, potentially revealing a more 

substantial subset of CA2-associated ripple types. This would 

require a high number of events to capture ripple-by-ripple vari-

ability robustly. In conditions with few detected ripples, it remains 

difficult to distinguish genuine diversity from sampling limitations. 

The findings presented here are observational in nature. The 

specific hippocampal and extra-hippocampal circuits respon-

sible for generating Rad sink and LM sink ripples remain to be 

explored. Our results provide evidence that Rad sink ripples 

involve more CA3 inputs, while LM sink ripples might be more 

closely associated with EC inputs to CA1. Establishing a causal 

link between these inputs and ripple profiles would require tar-

geted manipulations. This approach remains complicated by 

the dynamic interactions between hippocampal and EC regions. 

In line with this, we observed that the occurrence of both Rad sink 

and LM sink ripples was generally higher during epochs of strong 

EC input (as inferred from the DG CSD signals), suggesting that 

both ripple types are driven, at least in part, by cortical inputs. 

Moreover, LM sink ripples are characterized by two temporally 

distinct current sinks around the ripple peak: an early, stronger 

sink in lacunosum-moleculare followed by a late sink in radiatum 

coinciding with increased CA3 activity. This suggests that CA3, 

the primary input during Rad sink ripples, also contributes to 

LM sink ripples as their second sink of current. Moreover, CA1 pro-

jects back to the EC, potentially influencing the trisynaptic loop, 

including CA3. This reciprocal connectivity makes it likely that 

manipulating either CA3 or EC affects the other, complicating 

any attempt to dissociate their respective roles in generating 

Rad sink versus LM sink ripples. Together, these findings highlight 

the complex interplay between intra-hippocampal and cortical 

inputs in shaping ripple dynamics and caution against attributing 

ripple generation to a single region using standard manipulation 

techniques. Moreover, other regions (e.g., the nucleus re-

uniens 82,83 ) project to stratum lacunosum-moleculare, consti-

tuting a potential further input underlying ripple current sinks. 

Therefore, a more refined approach to probe for the role of spe-

cific inputs would involve closed-loop, ripple-type-specific inter-

ventions guided by real-time classification of laminar CSD pro-

files. Future work could develop such technology not yet 

available, leveraging the findings of this study on ripple diversity 

for causal manipulations testing circuit mechanisms and func-

tions of Rad sink and LM sink ripples.

Conclusions

These findings underscore the diversity in the expression profiles 

of a given network pattern (e.g., CA1 ripples), which, along with 

the heterogeneity within a given neuronal population (e.g., CA1 

principal cells), can instantiate parallel processing channels in 

the hippocampus. Here, Rad sink ripples nest hour-long, tempo-

rally stable reactivation of recent waking population patterns, inte-

grating recently recruited superficial cells with core activity motifs 

of deep cells. By contrast, LM sink ripples nest time-varying reacti-

vation of prior population patterns, undergoing hour-long gradual 

drift that updates core activity motifs with recent waking experi-

ence. This pre-existing hippocampal backbone could not only 

preserve a coherent population activity structure but also facilitate 

automatic integration of new waking information. Organizing 

distinct waking experiences within a common ‘‘schema’’ could 

support flexible computations and further reduce energy demand 

compared with a framework imposing the de novo creation of 

entirely new high-dimensional population patterns from the outset 

each time. 76,84–86 We propose that ripple-by-ripple diversity lever-

ages differences in the activity level, structural organization, and 

neuronal content of population patterns for parallel offline reacti-

vation of prior versus recent activity in the hippocampal system.
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49. Gava, G.P., Lefè vre, L., Broadbelt, T., McHugh, S.B., Lopes-Dos-Santos, 

V., Brizee, D., Hartwich, K., Sjoberg, H., Perestenko, P.V., Toth, R., et al. 

(2024). Organizing the coactivity structure of the hippocampus from 

robust to flexible memory. Science 385, 1120–1127. https://doi.org/10. 

1126/science.adk9611.
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STAR★METHODS

KEY RESOURCES TABLE

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Animals

These experiments used adult (4–6 months old) male C57BL/6J wild-type mice (Charles River Laboratories, UK). Animals were 

housed with their littermates up until the start of the experiment. All mice were held in IVCs, with wooden chew sticks and nestlets 

in a dedicated housing facility with a 12/12 h light/dark cycle (lights on at 07:00), 19–23 ◦ C ambient temperature and 40–70% humidity. 

They had free access to water and food ad libitum throughout the experiment. Experimental procedures were performed on mice in 

accordance with the Animals (Scientific Procedures) Act, 1986 (United Kingdom), with final ethical review by the Animals in Science 

Regulation Unit of the UK Home Office.

METHOD DETAILS

Surgical procedure

All surgical procedures were performed under deep anesthesia using isoflurane (0.5–2%) and oxygen (2 l/min), with analgesia pro-

vided before (0.1 mg/kg vetergesic) and after (5 mg/kg metacam) surgery.

For silicon probe recordings, mice were implanted with a single-shank silicon probe (Table S1) under stereotaxic control in refer-

ence to bregma, using central coordinates -2.0 mm anteroposterior from bregma, +1.7 mm lateral from bregma, and an initial depth 

of 1.5 mm ventral from the brain surface to span the somato-dendritic axis of CA1 principal cells and reach the DG. Following the 

implantation, the exposed parts of the silicon probe were covered with Vaseline® Healing Jelly, after which its plastic drive was 

secured to the skull using dental cement and stainless-steel anchor screws inserted into the skull. Two of the anchor screws, 

both above the cerebellum, were attached to a 50 μm tungsten wire (California Fine Wire) and served as ground. For the recordings, 

the silicon probe was positioned along the radial axis of CA1 pyramidal cells, using the rotations applied to its holding screw.

For tetrode recordings, mice were similarly implanted with a single microdrive containing 14 independently movable tetrodes, each 

positioned to target the stratum pyramidale of either CA1 or CA3 in the dorsal hippocampus. Tetrodes were constructed by twisting 

together four insulated tungsten wires (12 μm diameter, California Fine Wire) which were briefly heated to bind them together into a 

single bundle. Each tetrode was loaded in one cannula attached to a 6 mm long M1.0 screw to enable its independent manipulation of 

depth. The drive was implanted under stereotaxic control in reference to bregma using the following coordinates. For CA1 pyramidal 

cell layer tetrodes, the span was between AP -2.0 to –2.4 mm and ML 1.6 to 2.3 mm. For CA3 pyramidal cell layer tetrodes, the span

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental models: Organisms/strains

C57BL/6J mice Charles River IMSR_JAX:000664

Software and algorithms

Intan RHD2000 Intan Technologies RHD2164

Positrack Kevin Allen N/A

Empirical Mode Decomposition in Python Quinn et al. 87 https://pypi.org/project/emd/

Hippocampal ripple classifier 

(Ripple-CSDprof-classifier)

This study https://doi.org/10.5281/zenodo.16995137

Hippocampal LFP embedding 

(Hipp-LFP-embedding)

Lopes-dos-Santos et al. 37 , this study https://doi.org/10.5281/zenodo.15275527

Kilosort via SpikeForest Magland et al. 88 , Pachitariu et al. 89 N/A

Other

12μm tungsten wires California Fine Wire M294520

Silicon probe NeuroNexus A1x32-5mm-25-177-H32_21mm

Silicon probe NeuroNexus A1x64-edge-6mm-20-177-H64LP_30mm

Silicon probe Cambridge NeuroTech ASSY-236 H3 Chronic 64-Molex

Head-stage amplifier Intan Technologies RHD2164
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was between AP -1.8 to –2.2 mm and ML 2.0 to 2.7 mm. The initial depth of the tetrodes during the implantation surgery was 1.0 mm 

ventral from the brain surface. The distance between neighboring tetrodes was 350 μm. Following the implantation, the exposed 

parts of the tetrodes were covered with paraffin wax, after which the drive was secured to the skull using dental cement and stain-

less-steel anchor screws inserted into the skull. Two of the anchor screws, both above the cerebellum, were attached to a 50 μm 

tungsten wire (California Fine Wire) and served as ground. For the recordings, each tetrode was lowered along the vertical axis to 

reach either the CA1 or CA3 pyramidale layers, using the rotations applied to its tetrode cannula-holding screw and the electrophys-

iological profile of the local field potentials in the hippocampal ripple frequency band, with final depth position subsequently 

confirmed by histology of anatomical tracks.

Recording procedure

Following implantation surgery, mice were allowed to recover for at least 7 days. They were then familiarized with the recording pro-

cedure, being handled daily in a dedicated towel, connected to the recording cable and exposed to the sleep box for at least 30 min 

per day for a minimum of 4 days. During this period, both silicon probes and tetrodes were gradually lowered toward the target cell 

layers. For silicon probe implants, probes were positioned to target the CA1 region, and once the appropriate depth was reached, 

they were left in place for the remaining days of the experiment. For tetrode implants, tetrodes were adjusted every day to target the 

CA1 and CA3 pyramidal cell layers. Electrophysiological profiles, including local field potential characteristics such as sharp-wave 

ripples and gamma oscillations, were used to guide daily placement. On each recording day, tetrodes were lowered into the target 

layers in the morning to capture ensemble spiking activity and left in place for approximately 1.5–2 h before recordings began that 

day. At the end of the recording day, tetrodes were raised by approximately 150 μm to prevent mechanical damage to the hippocam-

pal layers. The following morning, tetrodes were re-adjusted to locate new cells, minimizing the likelihood of recording from the same 

neurons across days.

Each recording day began with a baseline sleep/rest session (pre-exploration sleep/rest), followed by an exploration session to fin-

ish with a post-exploration sleep/rest session (post-exploration sleep/rest). The environments used in these recordings were either 

open-field arenas for exploration sessions (e.g., 41 cm diameter cylinder, 41 × 41 cm square box; all with 30 cm high walls) or the sleep 

box (12 × 12 × 28 cm; containing sawdust bedding and nesting material). After placing the mouse in the sleep box, experimenters 

monitored the animal’s movements and real-time raw electrophysiological signals to confirm that the mouse had started to sleep/ 

rest. In the absence of electromyographic or any other signals (e.g., neuromodulator levels, respiratory patterns) to categorize sleep 

stages, we refer to these offline periods of extended immobility as sleep/rest. Exploration sessions lasted ∼30 min; sleep/rest sessions 

lasted ∼60–90 min. All experiments were conducted under dim light conditions (∼20 lux) with low-level background white noise 

(∼50 dB). In total, the silicon probe dataset included 38 sleep sessions [mean duration (IQR): 82.4 (59.5 – 105.9) min per sleep/rest] 

from 5 mice; the tetrode dataset included 244 sleep sessions [mean duration (IQR): 68.8 (48.0 – 90.2) min per sleep/rest] from 13 mice.

Acquisition of multichannel data and tracking of animal position

Extracellular signals were recorded using an integrated circuit mounted on the animal’s head (model RHD2164, Intan Technologies; 

http://intantech.com/products_RHD2000.html), which provided a frequency response from 0.09 Hz to 7.60 kHz during the amplifi-

cation stage. The amplified and filtered signals were digitized at a sampling rate of 20 kHz. These digitized signals were stored along-

side additional data streams, including digital pulses indicating the animal’s position (via transistor-transistor logic) and signals from a 

three-axis accelerometer integrated into the head-mounted device, which measured head movements and provided an additional 

measure of the animal’s movement. Positional data were obtained using an overhead color camera (https://github.com/kevin-

allen/positrack/wiki), which tracked the movement of LED clusters in three distinct colors affixed to the electrode assembly. These 

positional signals were captured at a rate of 39 frames per second.

Processing of local field potential (LFP) signals

LFP signals underwent initial filtering using an 8th-order Chebyshev type I anti-aliasing filter, applied to the wide-band signals 

sampled at 20 kHz. These filtered signals were then downsampled to a rate of 1,250 Hz, employing the decimate function within Sci-

py’s signal submodule (version 1.11.2).

Sharp-wave/ripple (SWR) event detection

LFPs were first referenced to a channel without CA1 ripples. This differential signal underwent dual stage-filtering: through a ripple-

specific bandpass filter (80-250 Hz, 4th-order Butterworth Filter), and then through a high-frequency bandpass filter (200-500 Hz, 

4th-order Butterworth Filter). Instantaneous signal characteristics, including envelopes and phases, were derived using the Hilbert 

transform. SWR events were identified by detecting envelope peaks within the ripple band that exceeded a threshold of five times 

the median value. In instances of multiple peaks within a 20-ms window, only the peak with the highest amplitude was considered. 

For each event we then identified its onset and offset points as the points where the envelope fell below half of the established 

threshold. Analysis extended to quantifying the ripple cycle count within each event by examining phase shifts, with cycle calculation 

based on the unwrapped phase difference between event onset and offset as previously described. 37 The mean frequency of each 

event was calculated by dividing the total cycle count by the event’s duration. Finally, we validated candidate SWR events using four 

criteria: (1) Ripple band power in the detection channel, calculated as the squared mean amplitude, needed to be double that of the
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reference channel, ensuring detected events were prominent; (2) The mean frequency of detected events must exceed 80 Hz; (3) 

Each event should contain at least four complete ripple cycles; (4) Ripple band power should be at least double that of the control 

high-frequency band. We focused this study to ripples detected during sleep/rest epochs, as too few ripples were detected during 

exploratory behavior [median (IQR) number of detected awake ripples across both the silicon probe and tetrode datasets: 17 (4 – 53) 

events; n = 230 exploration sessions]. All detected ripples were included in the analyses unless stated otherwise, as appropriate 

[mean number of detected ripples (IQR): 3,341.6 (2,130.3 – 4,413.5) per sleep/rest]. Namely, for specific analyses requiring preventing 

influences by overlapping events (which would otherwise contaminate average signals), only isolated ripples were used (i.e., ripple 

events with no other detected ripple occurring within ±250 ms). This applies to ripple-triggered average signals (e.g., the triggered-

average CSD in Figures 1C and S2F–S2I; the peri-ripple cells’ response in Figure 4B). All the ripple-triggered average signals were 

referenced to the ripple-envelope peak unless stated otherwise.

Determination of CA1 pyramidal layer reference channel

To identify the optimal reference channel for SWR events and theta oscillations within the CA1 pyramidal layer, we computed a ripple 

band score for each channel. This score was calculated by dividing the power in the ripple band (80–250 Hz) by the power in an adja-

cent frequency range (70–300 Hz), using a Welch spectrum (4-s Hann windows overlapping by 50%). The channel with highest score 

was set as a reference channel within the CA1 pyramidal layer.

Extraction of theta oscillations from LFPs

To isolate theta oscillations from the LFP data in exploration sessions, we employed the masked Empirical Mode Decomposition 

method 90,91 as implemented by Quinn et al. 87 With this, we adopted the mask sift procedure using specific mask frequencies set at 

350, 200, 70, 40, 30, and 7 Hz, following the parameters optimized in Quinn et al. 92 grounded in Fosso and Molinas. 93 For each 

mask, the amplitude was set to three times the standard deviation of the input signal. This procedure decomposes each LFP signal 

into oscillatory components termed intrinsic mode functions (IMFs) from faster to lower frequency components. Upon completion of 

this procedure with the parameters mentioned, six IMFs and a residue were computed, with IMF-6 effectively isolating theta oscillations.

To delineate individual theta cycles, we began by pinpointing peaks and troughs (i.e., the local maxima and minima, respectively) of 

the obtained theta IMF. The residue of the LFP not captured by the six IMFs was defined as the lower frequency component of the 

signal and its envelope was used as the amplitude threshold for retaining peaks and troughs for the next step. We then defined each 

peak-trough-peak sequence as a candidate theta cycle. We took as valid cycles sequences having their peak-trough and trough-

peak intervals falling within the 31 to 100 ms range (corresponding to the half period of cycles with frequencies ranging from ∼16 

to 4 Hz); and peak-to-peak distance was between 71 ms (equivalent to ∼14 Hz) and 200 ms (equivalent to 5 Hz).

For each validated cycle, we found six control points: the zero-crossing prior to the first peak, the peak itself, the subsequent zero-

crossing post the first peak, the trough, and the zero-crossing following the trough. Then, we computed the instantaneous theta 

phase for each timestamp through a linear interpolation of the control points. 73,94

Wavelet spectrograms

The spectrograms shown in Figure S2H were generated using the complex Morlet Wavelet Transform. For this analysis, 50 logarith-

mically spaced frequencies were selected, spanning from 2 Hz to 300 Hz unless otherwise specified. Each wavelet kernel was L1-

normalized, meaning the sum of the absolute values of the elements in the kernel was set to 1. This normalization ensured that the 

wavelet preserved the relative amplitudes of individual frequency components without amplifying or attenuating them.

Current source density analysis

We applied CSD analysis 95,96 to event-triggered LFP signals obtained using linear silicon probes. For ripple-related analyses, we 

centered LFP signals around the ripple-band envelope peak. Upon configuring these event-based signals, we calculated the CSD 

at a specific channel n and time point using the formula:

CSD n = − (LFP n − 1 − 2 ⋅ LFP n + LFP n+1 );

where n − 1 and n + 1 represent the channels directly above and below channel n, respectively. This way, for each ripple event we 

obtained its CSD signals. In this study, we focused on CA1 channels. We defined the location of oriens, radiatum and lacunosum-

moleculare layers according to the ripple and sharp-wave laminar profiles and electrode spacing, as previously described. 37 To 

ensure uniform spatial resolution of CSD measurements across silicon probes with different channel spacing (Table S1), we applied 

Gaussian kernel smoothing with a standard deviation parameter set to 50 μm. For the ripple-triggered average CSD signals in 

Figures 1C and S3A–S3E, we only included isolated ripples (see section ‘sharp-wave/ripple (SWR) event detection’).

Single-ripple CSD signatures

To obtain the CSD signature of each ripple, for each channel we computed the mean CSD signal within a 50-ms window around the 

ripple envelope peak. This way, for each ripple event we obtained a curve that described the average CSD signals during that ripple. 

We defined this curve as the CSD signature of this ripple event. To identify the dominant sink layer for each ripple, we checked which
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of the oriens, pyramidale, radiatum, or lacunosum-moleculare strata had the most negative value in the ripple’s CSD signature 

(Figures S1D and S1E). For example, a ripple was classified as having the dominant sink in radiatum if its CSD in that layer was nega-

tive and lower than in all other layers.

Principal-component analysis of single-ripple CSD signatures

To analyze the variance across CSD signature profiles, we applied principal-component analysis (PCA). For each recording session, 

we computed the variance explained by each extracted principal component (PC) as:

Variance Explained =
σ 2i

∑m

j = 1

σ 2j
;

where σ i is the singular value associated of the i th PC and mis the total number of PCs extracted. To ensure consistency in the sign of 

PCs across different recording sessions, we adjusted the sign of the first PC so that it consistently exhibited negative weights within 

the stratum radiatum.

Identification of Rad sink and LM sink profiles from single-ripple CSD signatures

To investigate the variations in CSD profiles modulated by the first PC across different ripple events, we categorized the distribution 

of PC1 strengths into three groups, focusing on the extremes of the distribution to capture the most pronounced CSD signatures. 

Specifically, since PC1 was adjusted to exhibit negative weights in the stratum radiatum (indicating that a higher PC1 value corre-

sponds to a stronger current sink in this layer), the ripples with PC1 strengths surpassing the 70th percentile were classified as 

Rad sink events. Conversely, ripples with PC1 strengths falling below the 30 th percentile were designated as LM sink events. The re-

maining ripples were placed in an ‘intermediate’ event category (e.g., used in Figures 3C, 3E, S2F–S2I, and S2T).

Occurrence distribution of Rad sink and LM sink ripples in NREM sleep

To assess the temporal distribution of Rad sink and LM sink ripples during NREM sleep, we first delineated individual NREM bouts. For 

this, we computed the theta-power ratio from the CA1 pyramidal layer channel using short-time Fourier transform (scipy.signal.spec-

trogram), with a 2-s window and 90% overlap. The ratio was defined as the power in the theta band (5–10 Hz) divided by the total 

power in the 0.1–10 Hz range. We then downsampled the resulting time series to 1 Hz to extract its slower component, generating 

a signal that tracked relative theta power throughout the sleep session. Visual inspection (e.g., Figure S2Q) confirmed that epochs 

with low and high theta-power ratios corresponded to NREM sleep and REM sleep (or awake epochs), respectively, in line with the 

behavioral states labelled during the recording procedure (see section ‘recording procedure’). To distinguish NREM from REM 

(or awake) epochs, we applied a two-component Gaussian mixture model to the distribution of this theta-power ratio and additionally 

required maximum tracking speed to fall below 1.5 standard deviations from the session mean (∼1.5–2 cm/s). REM and awake 

epochs were then distinguished based on animal speed in each temporal window, with REM epochs defined as periods that (1) 

had a maximum speed below the above-mentioned threshold and (2) followed a NREM epoch lasting at least 2 min.

We divided each identified NREM epoch into five equally spaced bins thus using a normalized time axis. For each bin, we calcu-

lated how ripples of each type were distributed by computing their proportion relative to the total number of that type across the entire 

NREM epoch. Only NREM bouts lasting at least 10 s were included in this analysis. To test whether the rate of each ripple type 

changed over NREM time, we concatenated the NREM ripple proportion curves from all sleep sessions and tested whether they 

were significantly correlated with NREM normalized time. Statistical significance was determined by comparing the observed cor-

relation to a null distribution obtained by shuffling NREM time 10,000 times. From the whole silicon probe dataset, three out of 

five mice had tracking data available to be able to perform these analyses.

Control analyses for ripple frequency differences

In Figures S2M and S2N, we performed two analyses to control for the possibility that the observed difference in Rad sink and LM sink 

ripple frequency could be explained by rest/sleep transitions.

First, for each session lasting at least 60 min (excluding the initial 10 min of each session to account for potential rest-to-sleep tran-

sitions), we computed the time-resolved difference in ripple frequency between Rad sink and LM sink events (Figure S2M). We then as-

sessed whether this difference changed over time by computing the correlation between the ripple frequency difference and the cor-

responding time bins. The resulting correlation values were compared against a null distribution obtained by shuffling the time bins. 

Second, in Figure S2N, we recomputed ripple frequency estimates using only those events occurring within the 5 min preceding REM 

onset (see STAR Methods: ‘occurrence distribution of Rad sink and LM sink ripples in NREM sleep’), a period during which rest-to-sleep 

transitions are highly unlikely. This analysis was performed on sleep sessions where at least one bout of REM sleep was detected.

Rad sink versus LM sink sequential order

To investigate whether Rad sink and LM sink ripples co-occur interchangeably or tend to cluster in bursts of events, we modelled ripple 

types as a first order Markov process in which each event type (Markovian state). This framework captures the temporal structure of
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ripple occurrence by quantifying the transition probabilities between types (i.e., the likelihood of observing a given ripple type after 

another). These values fall in a range from 0 to 1, inclusive. A probability of 0 means the transition is impossible, and a probability of 1 

indicates it is certain. For each state, the sum of transition probabilities to all states (including remaining in the same state) must equal 

to 1. We first identified chains of ripples in which successive events occurred within 250 ms of one another. Across sleep sessions, 

these chains most commonly consisted of two ripples, with the likelihood of longer chains declining monotonically (Figure S2S). 

Within each chain, we classified ripple events as Rad sink , intermediate, or LM sink , and used these labels to compute the probability 

of observing a ripple of type n given a preceding ripple of type m. These values were used to construct ripple-type transition prob-

ability matrices (Figure S2T). To account for class imbalance in the number of ripples per type, we generated surrogate transition 

matrices by randomly shuffling ripple-type labels while preserving the total number of events per class. This procedure disrupted 

the temporal structure while maintaining the overall class proportions. The shuffling was repeated 1,000 times, and each entry of 

the observed transition matrix was normalized by subtracting the corresponding mean value from the surrogate distribution.

Assessment of cortical up/down states

To test whether Rad sink and LM sink ripples are differentially distributed within cortical Up/Down states, we estimated the CSD energy 

within the molecular (Mol) layer of the dentate gyrus (DG) as a proxy for EC input strength to the hippocampus. 11,39,40 Specifically, we 

computed the DG Mol CSD energy as the average rectified CSD across recording channels in this layer. The resulting signal was 

smoothed with a 1-s median filter, downsampled to 5 Hz, and Z scored. This time series exhibited a bimodal distribution 

(Figure S3A). To identify Up and Down states, we fit a two-component Gaussian Mixture Model to this distribution using the 

GaussianMixture class from the sklearn.mixture module. The state probabilities from this mixture model were used to initialize the 

emission probabilities of a two-state Hidden Markov Model (HMM), implemented using the hmmlearn.hmm class from the hmmlearn 

package. The HMM was then trained on the downsampled DG Mol CSD signal using the Viterbi algorithm to infer the most likely 

sequence of Up and Down states. This procedure allowed segmenting each sleep session into epochs of high and low DG Mol 

CSD energy, which we refer to as Up DG and Down DG states, respectively (Figures 2B and S3A). These Up DG and Down DG epochs 

had comparable durations across sleep sessions [mean duration (IQR): Up DG : 5.74 (3.6 – 7.4) s; Down DG : 4.4 (3.4 – 4.2) s; p = 

0.13; paired bootstrap test; n = 33 sleep/rest sessions], consistent with previous reports. 39 We next identified Up DG → Down DG 

and Down DG → Up DG transitions, considering only states changes preceded and followed by epochs lasting at least 500 ms 

(Figure S3B). For this analysis, we included only sleep sessions in which silicon probe spanned from the outer molecular layer to 

the granule cell layer of the DG, and in which the algorithm detected at least 100 Up and 100 Down states. This yielded a total of 

26 sleep sessions from 5 mice. To examine how the proportion of LM sink ripples varies with the DG Mol energy, we computed, for 

each session, their relative proportion across equally spaced bins of the Z scored DG Mol CSD energy (Figure 2D).

Explained variance of ripple LFPs by laminar CSD

In Figure 3B, we quantified the extent to which the ripple-by-ripple variations in the LFP waveforms from a given recording site placed 

in the CA1 stratum pyramidale can be accounted for by their underlying CSD across different CA1 layers, from stratum oriens to stra-

tum lacunosum-moleculare. To this end, we trained linear decoders to predict for each individual ripple the strength and the sign of 

the CSD marking each CA1 layer from the LFP recorded in the stratum pyramidale. Each ripple-nested stratum pyramidale LFP trace 

was low-pass filtered through a Butterworth filter (4th order, with a cut-off frequency of 30 Hz) to focus specifically on the low-fre-

quency component reflecting the ‘sharp-wave’, which we hypothesized contained all the information to distinguish the underlying 

current profiles. Then, the filtered LFP waveforms were standardized through Z score transformation to ensure uniformity in variance 

and mean across the signals of all ripples. We then applied principal component analysis to reduce the dimensionality of the 200-ms 

LFP traces down to six principal components, which explained more than 80% of the variance of all ripple-LFP waveforms 

(Figure S3I). Similarly, the CSD signals for each CA1 layer (strata oriens, pyramidale, radiatum, and lacunosum-moleculare) were 

normalized by dividing each CSD signal by its standard deviation calculated over multiple events. This normalization allowed main-

taining the polarity information of the CSD signals while ensuring comparability across different magnitudes.

Subsequently, we employed linear regression models to predict the normalized CSD in each CA1 layer from the dimensionality-

reduced LFP signals during ripple events. To validate the robustness and generalizability of our models, we performed a cross-vali-

dation 20 times (80% training, 20% testing) on the LFP and CSD data. For each iteration, the model was fitted to the training set and 

then evaluated on the testing set, thereby obtaining a coefficient of determination R 2 for each run. The coefficient of determination, 

R 2 , was calculated as:

R 2layer = 1 −

∑ n

i = 1

( 
y i;layer − ŷi;layer

) 2

∑ n

i = 1

( 
y i;layer − y layer 

) 2
;

where y i;layer and ̂ yi;layer respectively represent the actual and the predicted CSD value for the i-th ripple in the specified ’layer’; y layer is 

the mean of the actual CSD in the specified ‘layer’; nis the total number of ripples in each recording session. The variance explained 

by each model was then determined by averaging the R 2 values across all 20 cross-validation iterations, providing a measure of how
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well the CSD can be predicted from the LFP signals across the different CA1 layers. This cross-validated approach allowed us to 

assess the predictive power and reliability of our linear decoders in explaining the variance in CSD strength and sign from the 

LFP recordings during ripple events. The chance level of explained variance of the LFPs was determined by shuffling 500 times 

the true CSD values and then computing the variance explained by the shuffled data.

To control for the possibility that differences in explained variance of ripple LFPs were driven by rest/sleep transitions, we repeated 

the above procedure separately for the first and second half of the detected ripples in each recording session lasting at least 60 min 

(Figure S3C).

Structure index of LPF waveforms

Using the structure index measure, 45 we further validated (in Figure S3D) the observed relationship between the ripple-triggered LFP 

signals recorded in the pyramidal cell layer and the CSD signals obtained in each CA1 layers (in Figure 3B). For each sleep/rest ses-

sion, we first applied the same pre-processing steps to the LFP and CSD signals described above (see ‘explained variance of ripple 

LFPs by laminar CSD’). Then, we computed the structure index for each layer to quantify the interplay between the time profiles of the 

pyramidal LFPs and the CA1 layer-selective CSD magnitude during ripples. To evaluate the significance of our results, chance levels 

were determined by shuffling the data 500 times as previously described. 45

Single-ripple CSD profile prediction from pyramidal LFP waveform

We applied Linear Discriminant Analysis (LDA) to predict both the polarity (sign) and the magnitude of the lacunosum-moleculare (LM) 

current for each ripple event based on the corresponding stratum pyramidale LFP time course. Ripple LFPs waveforms from the py-

ramidal layer were extracted and pre-processed as explained in section ‘explained variance of ripple LFPs by laminar CSD’ (n = 

117,658 isolated ripples from five mice; see Figures S3E–S3I). To classify each ripple event into the Rad sink versus LM sink category, 

the corresponding stratum lacunosum-moleculare CSD was computed within a 50-ms window centered on the ripple peak. This CSD 

was averaged over three adjacent probe channels: one in lacunosum-moleculare and the channels immediately above and below it. 

To ensure comparability across sleep sessions while retaining information about current polarity, the ripple CSD was normalized by 

the standard deviation of all ripple events. Ripple events with a normalized negative CSD in the lowest 30th percentile were classified 

as LM sink ripples, while those in the top 30th percentile were classified as Rad sink ripples. Ripples with CSD values within the 30–70th 

percentile range were classified as ‘intermediate’ ripples (Figures S3E–S3I), characterized by relatively small current magnitudes. 

To assess the robustness of the LDA model, we employed a leave-one-out cross-validation procedure, where each mouse was 

excluded from the training set in turn, and the model’s accuracy was evaluated on the left-out mouse. To address class imbalance in 

the training data, we downsampled each class to match the size of the smallest class, repeating this balancing procedure 1,000 times. 

For each permutation, we also trained a null model with shuffled training labels, disrupting the relationship between pyramidal LFP wave-

forms and stratum lacunosum-moleculare currents to estimate chance-level accuracy. In each iteration, we computed the accuracy of 

both the true model and the null model on the testing data for the left-out mouse. This process provided a chance-normalized accuracy 

for each left-out mouse, calculated by comparing the mean accuracy of the true models to that of the null models (Figure 3D).

To further validate that the model could recover the expected CSD sink polarity and amplitude, we computed the mean CSD in 

stratum radiatum and lacunosum moleculare for ripples classified as Rad sink , intermediate, and LM sink during each leave-one-out 

iteration (Figure 3E). As the ripple envelope peak does not coincide with the timing of current sinks, we used the training set to identify 

the time point of the maximal sink. We then aligned test-set events accordingly: LM sink ripples were aligned to the deepest sink in 

lacunosum-moleculare, whereas Rad sink and intermediate ripples were aligned to the deepest radiatum sink. Mean CSD amplitude 

was then computed in the testing set using a 10-ms window centered on these sink-optimized time points.

To test whether the LDA classifier could reliably generalize across different radial positions within the CA1 pyramidal layer, we 

applied the model described above to ripple waveforms recorded from channels located ±60 μm from the pyramidal layer center 

(see Table S1) and evaluated performance against the CSD-based ground-truth labels (Figure S3K). We specifically assessed the 

classifier’s ability to discriminate between Rad sink and LM sink ripples, as these two profiles represent the two ends of the embedding 

continuum (Figures 3A and S3E–S3I). For each recording day, we concatenated all ripple waveforms recorded and then applied the 

model for prediction. These predictions were used to compute a discrimination index defined as the ratio of correctly classified 

Rad sink and LM sink ripples to those misclassified as the opposite type (e.g. a true Rad sink predicted as LM sink ). To obtain a conser-

vative estimate of classification performance, we took the lower of the two values as the session’s discrimination index. This proced-

ure was repeated across different recording depths within the pyramidal layer, allowing us to assess how classification performance 

varied as a function of radial position.

When this model was applied to the tetrode dataset, the pyramidal layer tetrode used for ripple classification was picked as the one 

with average LFP waveform most similar to the average waveform from the model’s training set. Applying this model to the tetrode 

dataset resulted in a total of 259,273 Rad sink and 211,505 LM sink ripples from 13 mice [mean number of ripples per sleep/rest (IQR): 

Rad sink , 1,062 (677.8 – 1,417.0); LM sink , 866.8 (490.8 – 1,146.3)].

Spike detection and unit isolation

Spike sorting and unit isolation used an automated clustering approach, leveraging Kilosort (https://github.com/cortex-lab/KiloSort) 

within the SpikeForest framework (https://github.com/flatironinstitute/spikeforest), as outlined in Pachitariu et al. 89 and Magland
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et al. 88 For data acquired using tetrodes, KiloSort’s algorithm was adapted to limit templates to channels associated with a specific 

tetrode bundle and to exclude all other recording channels. Data from all sessions recorded within a single day were concatenated 

and processed collectively, enabling continuous cell tracking across the day. The clusters generated were manually confirmed by 

examining cross-channel spike waveforms, auto-correlation histograms, and cross-correlation histograms. Units selected for anal-

ysis consistently exhibited stable spike waveforms, a distinct refractory period in their auto-correlation histograms, and no refractory 

periods in cross-correlation histograms with other units throughout the day.

Principal cell versus interneuron classification

Hippocampal principal cells and interneurons were distinguished using features of their spike waveforms, as described previously. 37 

Briefly, waveform consistency for each unit was evaluated using the waveform with the maximum amplitude across tetrode channels 

for each cluster. To quantify the prominence of a unit’s mean waveform amplitude relative to its spike-to-spike variability, we 

computed a waveform score:

wv score =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑ n

i = 1

( 
w i
σ i

) 2

n

√ 
√ 
√ 
√ 
√
√ ;

where w i is the value of the mean waveform at sample i, σ i is the standard deviation at sample i across all spikes, and nis the number of 

waveform samples. This metric reflects the relative magnitude of the mean waveform amplitude compared to variability across 

spikes. Units with a waveform score above 0.75 and fewer than 2% refractory period violations (intervals < 2 ms in the inter-spike 

interval distribution) were included for further analysis. Putative interneurons and principal cells were then classified based on the 

trough-to-peak latency of their waveforms. In a prior dataset of 4,000 neurons, the trough-to-peak latency exhibited a bimodal dis-

tribution. A one-dimensional, two-component gaussian mixture model was fitted to this distribution, and the intersection of the two 

components was used as the classification threshold: units with latencies above the threshold were classified as putative principal 

cells, and those below as putative interneurons. We applied the same inclusion criteria to the principal cells and interneurons in the 

tetrode dataset of this study. In total, this study includes 2,196 CA1 principal cells and 1,325 CA3 principal cells, with 408 CA1 in-

terneurons and 333 CA3 interneurons, recorded across 83 days in 13 mice [mean number of cells per sleep/rest session (IQR): 

CA1 principal cells, 26.8 (15.3 – 38.0); CA3 principal cells, 19.8 (14.0 – 25.0); CA1 interneurons, 5.0 (3.3 – 6.0); CA3 interneurons, 

5.0 (3.0 – 6.0)]. For analyses involving principal cell correlations or distances between population vectors across ripple types, we ad-

dressed the issue of highly sparse spike trains and imbalanced ripple counts across groups by using sleep sessions with at least 250 

ripples from each group (Rad sink or LM sink ) and five principal cells with an average firing rate of at least 0.25 Hz over the entire 

recording day. This criterion was met by 208 sleep/rest sessions for CA1 principal cells and 171 sessions for CA3 principal cells, re-

sulting in 1,580 CA1 and 866 CA3 principal cells across 13 mice.

Peri-event time histograms

In Figures 4B and S4E, we constructed Peri-event time histograms (PETHs) over 400-ms windows, spanning 200 ms on either side of 

the envelope peak of isolated ripples (see section ‘sharp-wave/ripple (SWR) event detection’), with a bin width of 0.8 ms. For each cell 

group (e.g., principal cells or interneurons in CA1 or CA3), we first computed the raw firing rate responses during Rad sink and LM sink 

ripples. These raw responses were smoothed using a Gaussian kernel (s.d. = 5 ms) and used to calculate the peak firing rate as the 

maximum rate within a 50-ms window centered on the ripple peak (Figures S4A and S4D). To visualize responses across all cells 

(Figures 4B and S4E), the responses were then Z scored relative to their mean and standard deviation (s.d.) during Rad sink ripples 

and further smoothed with a Gaussian kernel (s.d. = 5 ms).

In Figure 4C, we aligned the CA1 and CA3 principal cells’ PETHs with the average CSD sinks in stratum radiatum, lacunosum-mo-

leculare, and the middle molecular layer of the dentate gyrus from silicon probe recordings. CSD sinks were computed as the 

inverted CSD and normalized by dividing each session’s average sink profile by its standard deviation. Both the CSD signals and 

the spike times were referenced to the ripple envelope peak, enabling direct comparison between the silicon probe and the tetrode 

datasets.

Population correlation across ripple types

In Figures S4G and S4H, we assessed whether the neuronal populations engaged during Rad sink ripples were related to those active 

at the pre-LM sink ripple windows. For this, we first extracted the Z scored PETH (see ‘peri-event time histograms’ section) of each cell 

individually and computed the mean Z scored rate within a ±25 ms window centered either 100 ms before the LM sink ripple peak or at 

envelope peak of LM sink and Rad sink ripples. For each cell type separately (i.e., CA1 or CA3 principal cells and CA1 or CA3 interneu-

rons), we then computed the Pearson correlation between the resulting population vectors. Confidence intervals were estimated by 

bootstrapping cells (10,000 times). To reduce the impact of sparse firing, we applied the same minimum firing rate criterion described 

in the ‘principal cell versus interneuron classification’ section.
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Preferred ripple phase and phase coherence

In Figures S4B and S4C, we computed the coupling of CA1 principal cells to ripple oscillations during a single sleep session for each 

recording day. We first band-pass filtered the LFPs between 90 and 300 Hz using a 4th-order Butterworth filter and estimated the 

instantaneous phase of the ripple signal during each ripple event, from onset to offset. For each CA1 principal cell, we then calculated 

the probability of spiking relative to the local ripple phase, using the phase signal from the tetrode where the cell was recorded. The 

phase range was divided into 24 equally spaced bins between 0 and 2π, and the spike-phase probabilities were computed separately 

for Rad sink and LM sink ripples. From these spike-phase probabilities, we calculated the preferred ripple phase as the angular compo-

nent of the mean resultant vector of the phase distribution, while the mean phase coherence was derived from the magnitude of this 

vector, reflecting the strength of phase locking to the ripple oscillations.

Interneurons to principal cells firing ratio during Rad sink and LM sink ripples

In Figure S4F, we estimated the ratio of interneurons firing rate over principal cells firing rate during Rad sink and LM sink ripples. For 

both CA1 and CA3, we calculated the mean ripple firing rate of individual interneurons (rate interneurons ) and divided it by the mean ripple 

firing rate of individual principal cells (rate principals ) recorded on the same day:

Ratio = log 10 

(
rate interneurons

rate principals

)

Positive values of this ratio indicated a relatively higher firing rate of interneurons compared to principal cells. This analysis was 

performed separately for Rad sink and LM sink ripples, and the resulting ratios were compared.

Population activity discrimination of Rad sink versus LM sink ripples

To determine whether the overall structure of principal cell population activity significantly differed between Rad sink and LM sink rip-

ples, we trained a logistic regression model to predict ripple identity (i.e., whether an event was a Rad sink or LM sink ripple) based on the 

Z scored ripple-nested population vectors (PVs) containing spike discharge of CA1 or CA3 principal cells (Figure 4D). To control for 

the number of predictors across CA1 and CA3, we trained these models using multiples of 5 principal cells (i.e., 5, 10, 15, …, N, where 

N is the maximum number of cells divisible by 5). For each step in the number of cells, we performed 200 permutations, randomly 

selecting cells for the model. Each model was cross-validated 20 times (80% training, 20% testing), with accuracy measured as 

the mutual information between the true ripple classes and model predictions (0 bit = chance; 1 bit = perfect prediction). To account 

for class imbalance, we matched the number of events in each ripple class by resampling the larger class to match the size of the 

smaller class in each permutation. Additionally, for each step in the number of cells, we trained another model using surrogate 

PVs, where the coactivity of principal cells was shuffled while preserving the overall firing rate of each cell and the population rate 

within each ripple (see STAR Methods section "spikes shuffling control"). For each sleep session, we calculated the mean accuracy 

(or mutual information) across the 200 permutations as a function of the number of cells used for training. This was repeated for the 

shuffle control models.

These analyses were performed independently for CA1 and CA3. In Figure 4D, we compared the accuracy of the models trained 

with 15 principal cells.

In Figures S4I–S4K, we performed an alternative analysis where, instead of using the ripple-nested population vectors, we clas-

sified ripple identity based on the entire temporal pattern of spiking activity surrounding each ripple. For this, we extracted the spike 

train of each cell within a ±200 ms window around the ripple peak and smoothed this temporal pattern using a Gaussian kernel with a 

standard deviation of 3 ms. This resulted in a matrix for each cell with dimensions (N ripples x N bins ) , where N ripples is the number of 

ripples and N bins ) is the number of time bins in the ± 200 ms window. Principal component analysis (PCA) was then applied to 

this matrix to extract the first two principal components (PCs), which captured the main temporal patterns of the cell across ripples. 

For each cell, this produced a matrix of dimensions (N ripples x 2) (representing the strength of the first two PCs across all ripples). 

These matrices were concatenated across all cells to create a larger matrix with dimensions (N ripples x (2 ⋅N cells )), where N cells is 

the total number of CA1 (or CA3) principal cells in that recording day. Each PC was then Z scored, and the resulting matrix was 

used as input for the classifier described above. A schematic of this method is shown in Figure S4I.

In Figure S4J, we report the accuracy of this temporal spike pattern classification as a function of the number of CA1 or CA3 cells 

used for training, and in Figure S4K, we compared the accuracy of CA3 and CA1 models when using 15 cells as predictors. For this 

analysis, to avoid contamination of the time course waveforms we used only isolated ripples (see section ‘sharp-wave/ripple (SWR) 

event detection’).

Spikes shuffling control

We developed a shuffling procedure on spike matrices that preserves both the overall firing rates of individual neurons and the total 

population activity across time bins while disrupting neuronal coactivity. The original matrix, where each row represents a neuron and 

each column represents a time bin, was shuffled to maintain the sum of spikes for each neuron (i.e., individual neuron firing rates) and 

the total number of spikes fired by the population (i.e., overall population firing rate) in each time bin (e.g., a given ripple). This pro-

cedure begins by calculating the total spike count for each neuron across all time bins, generating a list of indices corresponding to
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the times of these spikes. This list is then randomly shuffled to ensure a uniform distribution of spikes across the matrix. The shuffled 

spike indices are iteratively reassigned to a new matrix, preserving the total number of spikes per neuron (row) and per time bin (col-

umn) consistent with the original matrix. This approach controls for individual neuron firing rates and the overall population activity 

while disrupting the coactivity patterns of neurons within each time bin. This shuffling control is used in Figures 4D, 5F, S6A–S6C, 

S6G–S6I, and S6L.

Neuronal coactivity graphs

To analyze the coactivity of CA1 (or CA3) principal cells during ripples, we constructed the corresponding neuronal graphs. For a 

given sleep session, we first computed the spike count of each principal cell within a 50-ms window centered at the time of each 

ripple envelope peak, yielding a matrix with dimensions defined by the number of cells and ripple events (N cells ; N ripples ). These 

matrices were constructed separately for Rad sink and LM sink ripples, and for CA1 versus CA3 principal cells. We then estimated co-

activity using two methods, as described below.

Method 1: Population-conditioned coactivity. We fitted a linear regression to predict the activity neurons j from that of neuron i, 

while controlling for the population rate. This yield, for each pair (i; j) of neurons, a regression coefficient β ij (Figure 5A):

x j ∼ β ij x i + α ij P;

where x j ; x i are the Z scored ripple-nested spike trains of individual neurons j (the target) and i (the predictor), and P is the summed 

activity of the other N − 2 neurons,

P = 
∑N − {i;j}

n = 0

x n ;

with α ij weighting the influence of the population contribution to the activity of target neuron j. Hence, the recorded neurons (and their 

coactivity) defined the nodes (and their edges) in the coactivity graphs of each sleep session. We characterized each neuronal graph 

through its adjacency matrix, A, defined as an N cells × N cells square matrix that encapsulated the ripple-associated population-condi-

tioned coactivity interactions across the network, resulting in a (signed and weighted) graph with no self-connections:

A = 

⎛

⎝ 
β 0;0 ⋯ β 0;N
⋮ ⋱ ⋮

β N;0 ⋯ β N;N

⎞

⎠ ;

with β i;i = 0 ∀i in N, and the additional requirement of symmetric connections A = A+A T

2
forming an undirected graph.

Method 2: Fully-conditioned coactivity. In this case, we estimated coactivity by quantifying how well the activity of each cell can be 

predicted from the activity of all other neurons (individually, rather than as a summed activity). Specifically, for each target cell i, we 

fitted a regularized regression model (ridge regression with L2 penalty), using the Ridge algorithm from the sklearn.linear_model mod-

ule, to predict its activity from all other simultaneously recorded neurons::

x i ∼ 
∑ 

j∕=i

β ij x j

These, N cells − 1 regularized regression coefficients for each neuron i quantified the predictive contribution of every other neuron 

onto i’s activity. These coefficients were then used to populate the rows of an adjacency matrix of fully-conditioned coactivity, result-

ing in a second signed and weighted graph with no self-connections:

C = 

⎛

⎝ 
β 0;0 ⋯ β 0;N
⋮ ⋱ ⋮

β N;0 ⋯ β N;N

⎞

⎠

with β i;i = 0 ∀i in N cells . Note that C is not symmetric in contrast to the matrix A obtained from the population-conditioned coactivity.

Single-neuron coactivity strength

In Figures 5B and S5A–S5D, we defined the single-neuron coactivity strength as the average pairwise activity correlation of a given 

node with the other nodes in the weighted graph. As a reference, the strength in a weighted graph can be compared to the degree in a 

binary graph, which accounts for the number of the node’s neighbors. Here, the strength S i of a node i is the average across all the 

weights β ij of the edges projected from that node:

S i =

∑ N

j = 0

β ij

N 
;

where N is the number of neurons j that node i projects to.
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Structural balance

The combination of positive and negative edges in a network gives rise to both stable and unstable patterns of relationships. 49,97 We 

determined the stability of the coactivity patterns in LM sink and Rad sink ripples by computing the structural balance of the neuronal 

graphs embedding the measured coactivity relationships (Figures S5E and S5F). We assessed structural balance by examining triads 

(three-node subgraphs), which are the smallest non-trivial motifs capable of expressing network consistency and are computation-

ally efficient to analyze (i.e., the complexity of higher-order subgraphs increases combinatorially as O(n P ) for P-node motifs). A triad is 

considered consistent (‘‘balanced’’) if it satisfies either of two conditions. First, all three nodes are positively connected (i.e., all edges 

are positive), indicating the absence of internal conflict (Figure S5E). Second, a triad is also balanced if two mutually positive nodes 

are both negatively associated to a third, a configuration often arising when a network is partitioned into two internally cohesive 

groups with antagonistic interactions (e.g., two coactive neurons while a third one is suppressed). By contrast, a triad is structurally 

inconsistent (‘‘unbalanced’’) if only one or all three edges are negative, as these sign configurations violate mutual consistency 

(Figure S5E). The greater the proportion of balanced triads in a network, the more structurally coherent its organization (topology) 

of the relationships (here, coactivity) between its pairs of constituting nodes (here, neurons). In the context of neuronal networks, 

balanced triads typically reflect structured and internally consistent coactivation patterns, whereas unbalanced triads suggest 

more disorganized or stochastic coactivity. In Figures S5G and S5H, we computed the structural balance of the hippocampal graphs 

in Rad sink versus LM sink as the proportion of each graph’s triads which were balanced triads (Figures S5E and S5F).

Population-level sparsity

The sparsity (S) of a population firing vector (x) was computed using the Gini index 98–100 as:

S =

∑ N

i = 1

(2i − N − 1)x i

N 
∑N

i = 1

x i

;

where x represents the population vector of spike counts for each principal cell, arranged in ascending order, within a 50-ms time 

window centered at the ripple peak (either Rad sink or LM sink ), N is the number of simultaneously recorded principal cells (i.e., the 

length of the vector), and i denotes the rank of spike count in ascending order. This ordering involved a fixed ranking based on

the cluster indices assigned by the spike sorting algorithm (e.g., neuron 1, 2, ..., N). Thus, the same ranking was used to compute

the Gini index across all population vectors and all ripples recorded on the same day. Population vectors where spike counts are 

more evenly distributed across neurons have a lower Gini index (indicating lower sparsity), while those where spike counts are 

concentrated in a few neurons have a higher Gini index (indicating higher sparsity). In Figure 5D, we reported the sparsity for CA1 

principal cells population vectors.

Population-level dimensionality

We quantified the intrinsic dimensionality of CA1 ripple-nested activity population vectors (i.e., within a 50-ms time window centered 

at the ripple peak) in Rad sink versus LM sink ripples using the angle based intrinsic dimensionality (ABID) measure. 46 ABID is non-linear, 

making it suited for capturing complex neural activity patterns. Briefly, ABID estimates dimensionality (D) by analysing the cosine 

similarity between each ripple population vector (PV) and its k-nearest neighbors (k = 50). For a given sleep/rest session with M rip-

ples (calculated separately for Rad sink and LM sink ), the ripple-nested PVs were Z scored, and the dimensionality of each ripple m was 

computed as:

D m =
k 2

∑k

i = 1

∑k

j = 1

S2
ij

;

where S ij is the cosine similarity between the normalized k-nearest PVs of ripple m. Dimensionality is inversely related to the concen-

tration of these similarities: when the cosine similarities (S ij ) are high, indicating tightly clustered neighbors in the high-dimensional

space, the sum of squared similarities ( 
∑k

i = 1 

∑k
j = 1 S 

2
ij ) increases, resulting in lower dimensionality. Conversely, when similarities

are lower, reflecting a more spread-out distribution of neighbors, the dimensionality is higher. The intrinsic dimensionality for each 

sleep/rest session was then computed as the average across all M ripples. To control for class imbalance between the two ripple 

types and across sleep/rest sessions, we randomly selected 100 PVs for each ripple type and calculated the intrinsic dimensionality 

of this subsampled data. This procedure was repeated 1,000 times, and for each sleep session, the mean intrinsic dimensionality for 

Rad sink and LM sink ripples was defined as the average across these 1,000 permutations (Figure 5E).

In Figure S5K, to control for the influence of population size on dimensionality estimates, we also computed the intrinsic dimen-

sionality across random subpopulations of n = 5, 10, …, N CA1 principal cells for each session, using 1,000 permutations per sub-

population size. Moreover, to determine whether the differences in dimensionality between Rad sink and LM sink ripples reflect genuine 

coactivity structure rather than being purely driven by the sparsity differences (Figure 5D), we computed intrinsic dimensionality from 

surrogate datasets in which neuron identities were shuffled within each ripple. This procedure preserved the sparsity difference
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across ripple types while disrupting structured coactivation, thereby generating higher-dimensional population vectors (PVs) that 

represent unstructured, noisy activity. For each sleep session, the true intrinsic dimensionality of ripple events was then normalized 

by the corresponding value obtained from the surrogates, yielding a normalized dimensionality measure (Figure S5L) that reports how 

structured (i.e., low-dimensional) the true data are relative to a maximally uncorrelated version.

Finally, we cross-validated the intrinsic dimensionality findings by computing the linear dimensionality of Rad sink and LM sink ripples 

(Figure S5J). Linear dimensionality was estimated using the participation ratio, as described in Recanatesi et al. 101 :

P = 

(
∑N

i = 0

λ i 
) 2

∑ N

i = 0

λ 2i

;

where λ i is the i th singular value (sorted) and N denotes the number of cells recorded during that session. This metric quantifies how 

variance is distributed across principal components: high values indicate that variance is more evenly distributed, reflecting higher 

dimensionality; whereas low values indicate that variance is concentrated in fewer components, corresponding to lower 

dimensionality.

Controlling for individual firing rates in motif structure

To test whether the CA1 core motif structure during LM sink ripples could be explained by differences in individual firing rates alone, we 

performed PCA on the corresponding Z scored LM sink ripple–spike count matrix, where each row represented a neuron and each 

column a ripple (Figures S6A–S6C). The first principal component (PC1) captured the dominant pattern of joint activity; that is, the 

weighted combination of neurons that best explained shared variance in firing across LM sink ripples. If motif structure was solely 

driven by individual firing rates, PC1 weights should be strongly correlated with each neuron’s average firing rate across ripples. 

We therefore computed the correlation between PC1 weights and each neuron’s mean firing rate across LM sink ripples.

To assess whether any observed correlation could arise from firing-rate variability alone, we compared it to a null distribution ob-

tained from surrogate LM sink spike count matrices (see ‘spikes shuffling control’). Importantly, these surrogates preserved the two 

main features of excitability-driven coactivation: each neuron overall firing rates and each ripple total spike count. This analysis 

was performed on sessions with at least 10 CA1 principal cells.

An illustration of this method is shown on simulated data in Figures S6A and S6B.

Coactivity motif extraction with independent component analysis

We extracted coactivity motifs from population activity during LM sink (or Rad sink ) ripples using a previously published PCA/ICA-based 

assembly detection method. 47,48 We first computed ripple-nested spike count of CA1 principal cells within a 50-ms time window 

centered at the ripple peak, thus obtaining a matrix of dimensions (N cells × N ripples ). This activity matrix was then Z scored, resulting 

in matrix Z, where each neuron’s firing rate across events had zero mean and unitary variance. Principal component analysis was

applied to Z, and we determined the number of significant motifs as significant the number of principal components with loadings

above the Mar� cenko-Pastur distribution-based threshold 1 + 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ 
N cells 

/ 
N ripples

√ 
, which defines the upper bound for the concentration

of variance expected from uncorrelated data. We then apply Independent Component Analysis to the Z projected onto the subspace 

spanned by these significant components to isolate meaningful coactivity patterns across ripples. We refer to the resulting compo-

nents as LM sink or Rad sink motifs, depending on the ripple group analyzed.

To test whether a LM sink motif is embedded in the activity observed in Rad sink ripples, we (1) quantified the cofiring of each CA1 

principal cell with the LM sink motif during Rad sink and LM sink ripples separately, and (2) tested whether there was a significant ‘contri-

bution gain’ of that cell to the motif from LM sink to Rad sink ripples, accounting for differences in firing rate and sparsity; as 

detailed below.

To quantify the cofiring between a single neuron and a motif, we first computed the motif activation strength in each ripple as the 

inner product between the independent component unit vector (v) and the population activity in that ripple (i.e., a column in Z). To 

remove influence of the neuron being tested on the motif strength, we set the element of v corresponding to that neuron to zero before 

the computing the projection. We then calculated the correlation between the neuron’s activity and the motif activation across rip-

ples. This correlation provided a measure of how strongly the neuron participated in the expression of the corresponding LM sink motif 

during Rad sink ripples. This procedure was repeated for all recorded principal cells.

We defined as the contribution gain of each neuron to each LM sink motif as the difference between that neuron’s correlation to the 

motif strength obtained for LM sink and Rad sink ripples. To test if that contribution was significantly higher than expected given the 

increase in rate and lower sparsity in Rad sink ripples, we compared the results to those obtained from surrogate activity matrices 

that preserved both the spike count of each neuron and the total spike count per ripple, while eliminating higher-order structure 

(see Section ‘spikes shuffling control’).

An illustration of this approach is presented in Figure S6G.
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This procedure was applied to each sleep session that included at least 10 CA1 principal cells. PCA and ICA (using the FastICA 

algorithm) were implemented via the scikit-learn library.

In Figure 5G, we report these mean changes across all cells for each motif. Moreover, for each sleep session, we computed the 

number of neurons that got ‘aggregated’ relative to what was expected from the surrogate distributions across all detected motifs 

(Figure S6I). As an additional control, we repeated the analysis in the opposite direction: extracting Rad sink motifs and evaluating 

changes in individual neuron participation during LM sink ripples (Figure S6H). Finally, in Figure 6D, we tested whether the aggregated 

neurons were more likely to correspond to superficial CA1 pyramidal cells by comparing these Z scored recruitment changes.

Cross-population vector inclusion of activity motifs

To quantify the degree of inclusion between the coactivity patterns in LM sink versus those in Rad sink ripples, we computed the overlap 

among their population vectors (PVs). Each ripple-nested PV contained the instantaneous firing activity of CA1 principal cells within a 

50-ms window centered around the ripple peak. Each PV was then described as a binary vector where the presence of any spikes 

from a neuron is denoted by 1, and absence of any spike from a neuron is denoted by 0. This approach allowed constructing an ad-

jacency matrix, where each entry provides a measure of overlap between the activity patterns of different PVs (see Figures S6D and 

S6E). Given two population vectors, PV m = [p m1 ;p m2 ; …; p mn ] and PV q = [p q1 ;p q2 ;…;p qn ], where n represents the total number of 

principal cells in the population, and p mk , p qk indicate the (binary) firing state of the k-th neuron in the pair of ripple-nested population 

vectors m and q, respectively. To quantify the overlap in active neurons between two PVs, we computed an asymmetric version of the 

Jaccard coefficient between PV m and PV q . Effectively, this metric, denoted asI m;q ; quantifies the proportion of cells in PV m that are 

also active in PV q :

I m;q =

⃒
⃒ PV m ∩ PV q

⃒
⃒

|PV m | 
;

where the ∩ symbol represents the intersection between the two sets of active cells, and the | ⋅ | operator represents the cardinality of 

the set, i.e. the number of (active) cells it contains. Thus, here a value of 1 indicated that all cells active in PV m were also active in PV q , 

and zero if none were active in both. Similarly, we defined the proportion of cells in PV q that are also active in PV m :

I q;m =

⃒
⃒ PV m ∩ PV q

⃒
⃒

⃒
⃒ PV q

⃒
⃒

Note the different denominator with respect to the previous equation. It is important to also note that this operation is inherently 

asymmetric due to the directional nature of the cardinality of the two sets, resulting in I m;q not necessarily being equal to I q;m . This 

asymmetry allowed exploring directional similarities in activity patterns and thus provided insights into the pattern similarities be-

tween PVs. To highlight the importance of this directionality (e.g., in Figures S6D–S6F), we employed notation I m;q = I m→q .

Neural inclusion of LM sink into Rad sink ripples

For each sleep session, we computed the inclusion between each pair (m; q) of ripple-nested PVs (as presented in the section 

above). Using pairs of PVs nested in LM sink and Rad sink ripples, we quantified the degree of active cells similarity in the sets of 

active neurons from LM sink into Rad sink ripples (see Figure S6F). This provided insights into the directional pattern similarities and 

differences between these ripple types. To account for the potential bias due to an imbalance in the number of instances between 

LM sink and Rad sink ripples, we standardized the comparison by matching the number of PVs from each class to the smaller of the two, 

denoted by D. Then, the mean overlap of LM sink into Rad sink PVs (I LM→Rad )was calculated as the average across these subsampled 

D PVs.

To further mitigate potential biases arising from subsampling specific sets of PVs, we adopted a resampling strategy. In each iter-

ation, the inclusion I LM→Rad was recalculated using a randomly selected subset of DPVs from the class with the larger number of in-

stances. This procedure was repeated across 1,000 iterations to account for variability within the data. It is important to note that we 

avoided direct comparison between I LM→Rad andI Rad→LM because the sparsity differences between the two ripple sets could bias their 

respective overlaps.

Classification of CA1 principal cells into deep and superficial

We classified CA1 principal cells as either deep or superficial, following the approach described in previous work. 37 Briefly, we ex-

tracted LFP features from the tetrode where each principal cell was recorded. These features were then projected onto a linearized 

trajectory, which estimates the cell’s depth within the pyramidal layer specifically, whether the associated tetrode is closer to the 

stratum radiatum or the stratum oriens. As illustrated in Figure 6A, the depth distribution of CA1 principal cells along this trajectory 

is bimodal. Using this distribution, we classified all recorded cells either as superficial or deep, with a threshold depth value of 6 sepa-

rating the two groups, resulting in a total of 1,353 deep and 843 superficial cells. For analyses where the criteria described in ‘principal 

cell versus interneuron classification’ were applied, the numbers were refined to 1,100 deep and 480 superficial cells. To validate that 

this method captures the expected characteristics of deep and superficial cells, 37,57,66,67 we report in Figures S6J and S6K their 

mean firing rates during theta oscillations and ripple events.
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Change in firing rate during ripples relative to baseline

In Figure 6C, we compared the change in firing rate deep and superficial principal cells relative to a pre-ripple baseline. This allowed 

comparing cells with different firing rates in ripples (i.e., deep versus superficial CA1 principal cells. To compute this measure, we 

calculated the mean instantaneous firing activity of each cell within a 50-ms window centered around the ripple peak (rate ripple ). 

To estimate the baseline firing rate (rate baseline ), we computed the mean firing activity in a time window from − 200 ms to − 100 ms 

relative to the ripple peak. Then, independently for Rad sink and LM sink ripples, we calculated the increase in firing rate as:

Δrate = log 10 

(
rate ripple

rate baseline

) 

;

where positive values of Δrate indicate an increase in firing rate relative to the pre-ripple baseline, while negative values indicate a 

decrease. For this analysis, we included only isolated ripples to avoid contamination of the baseline rate (see section ‘sharp-wave/ 

ripple (SWR) event detection’).

Additional cells active in Rad sink but not in LM sink ripples

In the analysis presented in Figure S6L, we investigated cells exhibiting preferential firing for Rad sink but not LM sink ripples (see 

Figures 5 and S6D–S6F). We first identified the cells active in each ripple, as described in section "cross-population vector 

inclusion of activity motifs." For each cell, we then calculated the conditional probability of it being active in a Rad sink ripple given 

that it was inactive in an LM sink ripple. To control for the intrinsic firing probability of each cell across ripples, we estimated a chance 

level for each cell using a shuffling procedure. This procedure independently shuffled the coactive neurons during Rad sink and LM sink 

ripples while maintaining the total number of ripples in which the cell was active and preserving the sparsity of each ripple (see "spikes 

shuffling control" section). The shuffling process was repeated 200 times, and the resulting chance levels were used to Z score the 

observed conditional probabilities.

Offline reactivation

To analyze offline reactivation of CA1 or CA3 (Figures S7A and S7B) principal cell spiking patterns during sleep/rest, we first trained a 

linear regression model using awake theta-cycle activity from the exploration session of that recording day. Specifically, the model 

was trained to predict the firing rate of a target cell based on the activity of four other cells, ensuring that none of the predictor cells 

were recorded on the same tetrode as the target cell. This criterion allowed avoiding biases in correlations that could arise from 

shared global tetrode activity. Model accuracy was evaluated as the Pearson correlation between the actual firing rate of the target 

cell and the firing rate predicted by the model. To ensure robustness, we performed 100 bootstrap iterations, randomly selecting four 

predictor cells from the pool of cells recorded on the same day for each iteration. Next, we applied these cross-validated models to 

the Z scored ripple-nested (using a 50-ms window centered around the ripple peak) firing activity of the target cell during pre-explo-

ration and post-exploration sleep/rest sessions. For each cell, the mean accuracy across the 100 cross-validated models was calcu-

lated separately for pre-exploration sleep and post-exploration sleep, providing two model accuracy values. Reactivation was 

defined by comparing the overall accuracy across all cells in post-exploration sleep to the corresponding accuracy in pre-exploration 

sleep. Specifically, significant reactivation was identified if the post-exploration accuracy was higher than the pre-sleep accuracy (1-

tailed paired bootstrap tests). This analysis was performed independently for Rad sink and LM sink ripples during both pre- and 

post-sleep.

Deep and superficial cells reactivation

In Figures 6E–6G, we computed the offline reactivation of awake spiking patterns for deep and superficial cells. This analysis followed 

the same approach described in the "offline reactivation" section, with an additional criterion: predictor cells and the predicted cell 

were required to belong to the same CA1 pyramidal sublayer. Specifically, a set of four superficial cells was used to predict the ac-

tivity of another superficial cell, and a set of four deep cells was used to predict the activity of another deep cell, as illustrated in 

Figure 6E. Together with the existing criterion that predictor cells and the predicted cell must be recorded on different tetrodes 

(see section "offline reactivation").

Recent-to-prior coactivity motif balance

We analyzed whether the coactivity patterns observed in Rad sink and LM sink ripples were more aligned with recent wakefulness (i.e., 

theta coactivity patterns during open-field exploration) or with pre-existing patterns (i.e., ripple coactivity patterns during baseline 

sleep immediately before exploration). For this, we constructed coactivity matrices (Population-conditioned coactivity described 

in section ‘‘neuronal coactivity graphs’’) for each period: pre-sleep, awake, and post-sleep. As before, coactivities during the awake 

session were computed across theta cycles, while ripple events were used for the sleep sessions. For pre-sleep, we sampled an 

equal number of Rad sink and LM sink ripples, establishing a coactivity baseline.

To isolate coactivity motifs expressed during wakefulness but absent in pre-sleep, we modelled the change in coactivity from pre-

sleep to wakefulness as a linear transformation:

A theta = W recent ∗ A pre
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From this, we computed the transformation matrix:

W recent = A theta A − 1 
pre ;

where W recent represented the coactivity motifs strengthened during wakefulness relative to pre-sleep. The A − 1
pre matrix can be inter-

preted as a whitening step, effectively decorrelating the coactivity patterns observed during pre-sleep. Thus, A theta A 
− 1 
pre captures the

structure that emerges in awake after removing baseline patterns. We then computed, for each ripple:

recent − to − prior balance = v T W recent v;

where v is the population vector in a ripple in post-sleep. This measure reflects how strongly the ripple’s coactivity motifs align with 

recent (wake-specific) versus prior (pre-sleep) motifs. Intuitively, components of v that align with pre-sleep patterns (A pre ) are down-

weighted by the transformation, while components aligning with wake patterns (A theta ) are emphasized. As a result, v T W recent v in-

creases when the ripple coactivity pattern resembles motifs gained during wakefulness (relative to pre-sleep) and decreases

when it resembles pre-sleep patterns. Similarly, one can also define the transformation W prior = A pre ∗ A 
− 1 
theta which captures the co-

activity motifs expressed in pre-sleep but not present in wakefulness.

Balance scores were computed separately for Rad sink and LM sink ripples during post-sleep. Within each sleep session (or time win-

dow), these values were averaged across ripples to yield the balance score for each ripple type.

In Figure S7G, we applied the same framework described above to assess CA3–CA1 coactivity motifs. Coactivity matrices were 

constructed as before but including all CA1 and CA3 principal cells. To isolate the contribution of CA3–CA1 pairs, all coactivity matrix 

entries were set to zero except those corresponding to pairs formed by one CA3 and one CA1 principal cell. Note that the CA1-only 

reactivation described above corresponds to retaining only CA1–CA1 entries and zeroing all others. These CA3-CA1 coactivity 

matrices were then used to project population vectors from both Rad sink and LM sink ripples, as before, but using activity from 

both CA1 and CA3 neurons.

An illustration of this method is shown through simulations in Figures S7C–S7F.

Recent-to-prior coactivity motif balance across CA1 sublayers

In Figure 7C, we measured the recent-to-prior motif balance separately within either deep or superficial CA1 principal cells. Specif-

ically, we computed the post-sleep balance score (see ‘recent-to-prior coactivity motif balance’) using groups of five randomly 

sampled deep cells or five superficial. For each session with more than five cells in a sublayer, we performed up to 500 permutations 

by randomly sampling five cells from the group and obtained the average across permutations. Recordings with fewer than 5 cells in 

either group were excluded from this analysis. Finally, each recording day we compared the balance scores between deep and su-

perficial cells.

Resolving recent-to-prior coactivity motif balance across time

In Figures 7D and S7H–S7J, we quantified changes in the recent-to-prior motif balance (see ‘recent-to-prior coactivity motif balance’) 

across post-sleep. For this analysis, we included recordings in which pre- and post-sleep epochs lasted at least 1 h. Balance scores 

were computed as before, but within non-overlapping 10-min windows spanning the first post-sleep hour. To ensure comparability 

across recordings with different numbers of recorded cells, scores were normalized within each recording by subtracting the global 

mean across all time bins and ripple types (Rad sink or LM sink ). To test for significant changes over time (as opposed to scores remain-

ing constant), we fit the time course of each ripple type using an exponential model (see "exponential fit of motifs dynamics 

throughout sleep" section).

Exponential fit of motifs dynamics throughout sleep

To determine whether motif expression changed over post-exploration sleep, we compared two models: a constant model repre-

senting the mean and an exponential decay model (see equation below). For each analysis (e.g., recent-to-prior balance, pre-sleep 

coactivity strength and wakefulness reactivation), we concatenated data across all sleep/rest sessions, creating two vectors: one 

containing the time point of each bin and the other containing the corresponding motifs balance (or reactivation) values.

We then fit both models and computed the Bayesian Information Criterion (BIC) to assess which model better explained the 

observed motif expression trends. BIC penalizes model complexity, thereby preventing overfitting when comparing models of 

differing order:

BIC = k ∗ log(n) + n ∗ log

⎛

⎜ 
⎜
⎝ 

∑n

i = 0

( 
y − y pred 

) 2

n

⎞

⎟ 
⎟ 
⎠;

where k is the model order (k = 1 for the flat line, and k = 3 for the exponential model), n is the number of samples, and
∑ n 

i = 0 (y − y pred ) 
2 

is the sum of squared errors between the true motif dynamics and the values predicted by each model (flat or expo-
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nential). If the BIC of the exponential model was lower than that of the flat model, the dynamics were considered to follow an expo-

nential trend and was further investigated as described below.

Dynamics changing exponentially were defined as:

motif strength(t) = a⋅e− t
τ + c;

where ais the amplitude (scaling factor), τ is the time constant (decay parameter), and c is the offset or baseline.

A hyperparameter search was conducted to find the best initial estimates for a;τ, and c, maximizing the fit between the model and 

the data. The goodness of fit was quantified using the Pearson correlation r between the observed motif strength values and the 

model predictions. To estimate the mean fit score (r) and time constant (τ), we conducted a cross-validation by fitting the exponential 

function using a bootstrapped set of recording days. This procedure was repeated over 10,000 resamples, generating distributions of 

estimates for the r and exponential function parameters (i.e. a; τ and c), which were used to plot the model fit (see Figures 7E and 7F). 

Importantly, to control for early sleep stages transitions to bias estimates of trend over time, the initial 10 min of sleep were excluded 

from these analyses, as those epochs might be associated with a higher probability of rest-to-sleep transitions.

Recent-to-prior motif balance over time controlling for ripple occurrence frequency and ripple population sparsity 

In Figures S7H–S7J, we evaluated whether the observed gradual changes in recent-to-prior motif balance over time during LM sink 

ripples (see Figure 7D) were genuinely time-dependent (i.e., related to the ripple occurrence time in sleep/rest session) or driven 

rather related to changes in ripple occurrence frequency (i.e., how many ripples per unit of time) or ripple population sparsity (i.e., 

how many active neurons per ripple) (Figure S7H). To address this, we concatenated the time-binned recent-to-prior motif balance 

(during Rad sink or LM sink ripples) and trained a linear regression model to these values at each time bin (see section ‘resolving recent-

to-prior coactivity motif balance across time’). The predictors included: (1) the ripple occurrence time (i.e., the time of the bin), (2) the 

ripple occurrence frequency (mean number of ripples per minute in each time-bin), and (3) the ripple population sparsity (calculated 

as the mean proportion of active cells in ripples in each time-bin). Given the non-linear relationship between time and motifs balance 

(see Figure 7D), we applied a log transformation to the ripple occurrence times to linearize this relationship. To avoid potential biases 

introduced by the changes in behavioral states, we excluded the first 10 min from each session. The model was trained and cross-

validated 20 times (80% training, 20% testing), with accuracy measured as the Pearson correlation between the observed recent-to-

prior motif balance and the model’s predictions. To establish a chance level, we shuffled the recent-to-prior motif balance values 

25,000 times and compared the model’s accuracy to these shuffled data (Figure S7I). To determine the contribution of each feature 

to the model’s accuracy, we trained additional models where individual features were shuffled 25,000 times, thereby removing spe-

cific information from the shuffled feature. The gain in accuracy for a given feature was calculated as the difference between the ac-

curacy of the original model and that of the feature-shuffled model (Figure S7J). A high accuracy gain for a feature indicated strong 

predictive power, showing that the feature contributed significantly to changes in motifs balance. The significance of each feature 

was assessed by calculating p values as the proportion of shuffled models with a gain less than 0 (indicating the feature significantly 

contributed to the model).

Reactivation strength of pre-sleep coactivity and dynamics in LM sink and Rad sink ripples

To measure whether the coactivity patterns nested in Rad sink and LM sink ripples changed from pre-exploration to post-exploration, 

we first isolated ripple-nested population vectors (PVs) that contained the instantaneous firing activity of CA1 principal cells within a 

50-ms window centered around the ripple peak. This was done separately for pre-exploration sleep and post-exploration sleep/rest 

sessions. Using the Z scored PVs from pre-sleep, we trained a generalized linear model (GLM) to predict the firing response of each 

CA1 principal cell based on the activity of the rest of the population during each ripple. This process was repeated independently for 

Rad sink and LM sink ripples, yielding two models for each cell (one for LM sink and one for Rad sink ripples). Each model was cross-vali-

dated 20 times (80% training, 20% testing), and accuracy was assessed as the mean correlation between the predicted and true 

activity of the testing set for each iteration: r pre;i . To estimate the chance level for each GLM, we used a shuffling procedure that ran-

domized the cell IDs within each PV 500 times prior to training, breaking cell correlations but preserving the overall rate for each PV. 

To measure the overall coactivity changes from pre- to post-exploration rest, we applied the cross-validated model of each cell to the 

(Z scored) PVs from post-sleep and measured its accuracy (r post;i ). For both Rad sink and LM sink ripples, we quantified the coactivity 

stability for cell i as:

Stability i = 1 − 
( 
r pre;i − r post;i 

) 
;

where r pre;i and r post;i are the accuracy values in pre- and post-sleep of the GLM of cell i which were normalized with respect to the 

chance level estimated through the shuffling procedure mentioned above (Figure S7K). A high stability score (∼1) indicates that the 

model’s accuracy was similar between pre- and post-sleep, reporting that coactivity patterns did not undergo significant cross-ses-

sion changes. Conversely, a low stability score reflects a substantial change in coactivity from pre- to post-sleep.

In Figure 7E, we adapted a similar framework to quantify the reactivation strength of pre-exploration sleep ripple coactivity 

throughout the time in post-exploration sleep ripples. Specifically, we tested whether the recent-to-prior motifs balance trends 

observed in Figure 7D reflected a disengagement from prior motifs, by assessing whether the expression of pre-exploration sleep
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coactivity in LM sink ripples declined over the course of post-exploration sleep (‘‘post-sleep’’) lasting at least 1 h. To do so, as 

described above, for each CA1 principal cell, we fit a linear model using the activity of all other cells during pre-exploration sleep 

ripples (including only pre-sleep with at least 250 Rad sink and 250 LM sink ripples). We then applied these models to predict activity 

during ripples occurring in successive, non-overlapping 10-min windows of post-sleep. The average prediction accuracy across all 

neurons, in each post-exploration sleep window was taken as the reactivation strength of pre-exploration sleep coactivity. The 

observed dynamics of these pre-sleep coactivities were used to fit an exponential function whose predictions were used to generate 

the data shown in Figure 7E (see section ‘‘exponential fit of motifs dynamics throughout sleep’’).

Dynamics of sublayer-specific pyramidal reactivation of pre-sleep

In Figures S7L and S7M, we assessed whether the decay observed throughout post-exploration sleep in the reactivation strength of 

pre-exploration sleep coactivity during LM sink ripples differed between deep and superficial CA1 principal cells. To do this, we 

repeated the analysis described in the section ‘‘reactivation strength of pre-sleep coactivity and dynamics in LM sink and Rad sink rip-

ples’’ separately for deep and superficial cells (e.g., predicting each deep cell’s activity using the other deep cells, and analogously for 

superficial cells), with no averaging across all cells. This allowed us to estimate the temporal decay of reactivation of pre-sleep co-

activity during post-sleep LM sink ripples separately for the two pyramidal sublayers.

To evaluate whether deep and superficial cells disengaged from prior motifs at similar or different speeds, we trained linear regres-

sion models to predict the reactivation strength of pre-sleep coactivity from time (log-transformed to account for exponential trends). 

The beta coefficient of each model represented the rate of decay, i.e., the slope of reactivation strength weakening over time (with 

negative values indicating a decline). To obtain robust estimates of this rate, we trained the models using data concatenated across a 

bootstrapped subset of sleep sessions (10,000 iterations), separately for deep and superficial cells. To assess statistical significance, 

in each bootstrap iteration we generated a chance-level beta by circularly shuffling the time labels. This preserved the autocorrelation 

structure of the time series while destroying the relationship between time and motif strength. In Figure S7L, we report the Z scored 

beta values of the true model relative to this surrogate distribution, separately for deep and superficial cells.

Using a similar framework, we also asked whether the LM sink recent-to-prior motif balance trends observed in Figure 7D could be 

better explained by the decay of reactivation of pre-sleep coactivity in deep or superficial cells. To do so, we repeated the same 

regression procedure as above, but used the mean LM sink motifs balance (rather than time) to predict the reactivation strength of 

pre-sleep coactivity. In this case, the beta coefficient reflected the correlation between LM sink recent-to-prior motifs balance trends 

and the layer-specific expression of pre-sleep coactivity patterns across post-sleep windows.

Reactivation strength of awake coactivity and dynamics in LM sink and Rad sink ripples

To test whether the drift in expressed motifs observed in Figure 7D reflected an increase in the expression of recent motifs, we exam-

ined whether the reactivation of exploration-related coactivity patterns changed over the course of post-exploration sleep. To do this, 

we first extracted CA1 principal cells coactivity graphs from pre-exploration sleep, exploration, and post-exploration sleep sessions, 

as described in the section ‘‘recent-to-prior coactivity motif balance’’. We then trained linear regression models to estimate pairwise 

cofiring correlations between the awake and post-sleep periods, while regressing out pre-sleep cofiring. The resulting beta coeffi-

cients quantified the degree to which waking coactivity patterns were re-expressed during post-sleep ripples not explained by 

pre-sleep, i.e., the reactivation strength. This analysis was performed on ripple events grouped into successive, non-overlapping 

10-min windows across the post-sleep period, allowing us to track the temporal dynamics of awake coactivity reactivation. These 

reactivation values were then used to fit an exponential function, whose predictions generated the data shown in Figure 7F (see sec-

tion ‘‘exponential fit of motifs dynamics throughout sleep’’).

QUANTIFICATION AND STATISTICAL ANALYSIS

Data analyses were conducted using Python versions 3.6 and 3.10, incorporating the following packages: DABEST, 102 scikit-

learn, 103 NetworkX, 104 NumPy 105 , SciPy, 106 Stats-Models, 107 Matplotlib 108 , Pandas, 109 and Seaborn. 110 Symmetric distribution as-

sumptions underpinned the two-sided statistical tests, visualized using Gardner-Altman and Cumming plots from the DABEST 

framework. These plots illustrate effect sizes by comparing mean or median differences across groups. Each plot consists of two 

panels: the top shows raw data distributions with group means ± SEM (unless stated otherwise), and the bottom shows differences 

relative to a reference group, calculated from 5,000 bootstrapped samples. Black dots represent the mean, black ticks indicate 95% 

confidence intervals, and bootstrapped error distribution curves are included. Statistical comparisons included t tests against a mean 

(to compare one distribution to a fixed value) and one-way ANOVA for multiple conditions, followed by a Tukey post hoc test. To 

compare two conditions, bootstrap tests were employed. These tests, which accommodated both paired and unpaired compari-

sons, estimated the bootstrapped mean difference (either absolute or as a percentage relative to one of the two variables) by resam-

pling the data 100,000 times (unless stated otherwise) with replacement. For paired comparisons, indices were resampled to pre-

serve the relationship between pairs, whereas for unpaired comparisons, each condition was resampled independently. p values 

for these tests were computed numerically, under the null hypothesis of zero difference. For one-sided tests, the p value was calcu-

lated as the proportion of bootstraps where the difference distribution was either greater than or less than zero, depending on the test 

direction. For two-sided tests, the p value was determined by multiplying the smaller proportion of bootstraps below or above zero by
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two. Unless otherwise specified, all p values from bootstrap tests were two-sided. In some instances (e.g., Figures 5B, 6F, 6G, 7B, 

and 7C), we visualized the bootstrapped mean differences using histograms, from which the corresponding p values were derived. 

These histograms do not depict the distribution of raw data points but rather represent empirical estimations of the sampling dis-

tribution of the mean difference, obtained by the resampling approach described above. All confidence intervals (95% CI) were 

calculated via bootstrapping with 100,000 resamples (unless stated otherwise). For each interval, data were resampled randomly 

with replacement, and the 2.5 th and 97.5 th percentiles of the bootstrapped distributions determined the lower and upper bounds 

of the CI.
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