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Abstract

Introduction:Weassess risks differentlywhen they are explicitly described, compared

towhenwe learndirectly fromexperience, suggestingdissociable decision-making sys-

tems. Our needs, such as hunger, could globally affect our risk preferences, but do

they affect described and learned risks equally? On one hand, decision-making from

descriptions is often considered flexible and context sensitive, and might therefore

be modulated by metabolic needs. On the other hand, preferences learned through

reinforcement might bemore strongly coupled to biological drives.

Method:Thirty-twohealthy participants (females: 20,mean age: 25.6±6.5 years)with

a normal weight (Body Mass Index: 22.9 ± 3.2 kg/m2) were tested in a within-subjects

counterbalanced, randomized crossover design for the effects of hunger on two sep-

arate risk-taking tasks. We asked participants to choose between two options with

different risks to obtain monetary outcomes. In one task, the outcome probabilities

were described numerically, whereas in a second task, they were learned.

Result: In agreementwith previous studies, we found that rewarding contexts induced

risk-aversion when risks were explicitly described (F1,31 = 55.01, p < .0001, ηp2 = .64),

but risk-seeking when they were learned through experience (F1,31 = 10.28, p < .003,

ηp2 = .25). Crucially, hunger attenuated these contextual biases, but only for learned

risks (F1,31 = 8.38, p< .007, ηp2 = .21).

Conclusion:The results suggest that ourmetabolic state determines risk-taking biases

whenwe lack explicit descriptions.
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1 INTRODUCTION

When we decide between options with uncertain outcomes, we factor

risk into the decision. This is most commonly evaluated by asking

people to decide between explicitly described, hypothetical choice
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scenarios (Allais, 1953; Arrow, 1951; Ellsberg, 1961; Kahneman &

Tversky, 1979; Weber et al., 2004). In these experiments, risk-taking

is typically modulated by the magnitude and probability of outcomes,

or by framing choices in a high- or low-reward context using words or

diagrams. This contrasts with real-life scenarios, in which humans usu-

ally make repeated choices, and learn about uncertain outcomes from

Brain Behav. 2023;e2978. wileyonlinelibrary.com/journal/brb3 1 of 14

https://doi.org/10.1002/brb3.2978

https://orcid.org/0000-0002-7361-9467
https://orcid.org/0000-0002-8994-1661
https://orcid.org/0000-0003-0735-4349
mailto:mvanswieten@outlook.com
http://creativecommons.org/licenses/by/4.0/
https://wileyonlinelibrary.com/journal/brb3
https://doi.org/10.1002/brb3.2978
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fbrb3.2978&domain=pdf&date_stamp=2023-04-05


2 of 14 VAN SWIETEN ET AL.

experience. Several studies have reported that experience-based

choices differ from choices based on verbal or graphical descriptions

(Hertwig & Erev, 2009; Hertwig et al., 2004; Niv et al., 2012). This

observation is better known as the description–experience gap. In par-

ticular, empirical studies have also shown that people are typically risk-

seeking for negatively framed choices, but risk-averse for positively

framed choices when outcomes are explicitly described (Kahneman &

Tversky, 1979; Tversky & Kahneman, 1981). However, when choices

made from experience are framed in a high- or low-reward context,

risk attitudes are reversed compared to description-based decisions

(Hertwig et al., 2004; Ludvig & Spetch, 2011; Ludvig et al., 2014).

The effect of decision context is thought to be driven by anticipa-

tory emotions (De Martino et al., 2006) as well as biological needs

(Stephens, 1981). Nevertheless, only a handful of studies has investi-

gated the effect of physiological factors, such as hunger, on risk-taking

from descriptions in humans, and suggest that hunger increases risk-

seeking (Levy et al., 2013; Shabat-Simon et al., 2018; Symmonds et al.,

2010), but the effect of hunger on risk-taking learned through expe-

rience has not yet been tested in humans. Biological need, which is

described as the disparity between the current state and the goal

state, has been shown to motivate decision-making in animals that

make experiential choices (Aw et al., 2011; Papageorgiou et al., 2016;

Pompilio et al., 2006) and has been captured by computational mod-

els (van Swieten & Bogacz, 2020). The concept of making decisions

to reduce this disparity also underlies the risk-sensitive foraging the-

ory (Stephens, 1981). According to this theory, if the goal cannot be

reached with a safe, low-risk option, then an individual should choose

a high-risk option because it offers a chance of meeting the need and

increases the chance of survival.

The contextualmodulation of risk-taking canbe capturedby a utility

function, such as proposed by the prospect theory for described risks

(Kahneman & Tversky, 1979). Recent work has described a model that

can account for the contextual modulation of risk-taking for experi-

enced risks (Moeller et al., 2021). This model is grounded in the theory

of dopamine function, because dopamine enhancement promotes risk-

seeking behavior (Gallagher et al., 2007; Rigoli et al., 2016; St. Onge

& Floresco, 2009). High- or low-reward contexts may generate a pos-

itive or negative prediction error, signaled by dopamine, whichmight in

turn alter risk preference (the Prediction Error Induced Risk-Seeking

[PEIRS] model [Moeller et al., 2021]). Similar to the utility function

in prospect theory, PEIRS includes a risk-sensitivity parameter that

determines the impact of context on risk-taking. Crucially, if hunger

alters the extent to which context modulates risk-taking, this could be

captured by changes in this parameter.

Given that experiential and description-based risk-taking are

thought to involve different neural systems (Fitzgerald et al., 2010),

we tested two alternative hypotheses about the effects of hunger

on explicitly described versus experientially learned risky choice. On

one hand, we might expect the description-based decision-making to

be modulated by hunger, because risk is tracked and represented in

cortical areas that are informed by high-level cognitive representa-

tions, including the prefrontal cortex (Clark et al., 2008; Elliott et al.,

1999; Huettel et al., 2005; Knutson & Bossaerts, 2007; St. Onge et al.,

2011; Tobler et al., 2007), the parietal (Huettel et al., 2005, 2006),

orbitofrontal (Hsu et al., 2005; O’Neill & Schultz, 2010; Tobler et al.,

2007), posterior cingulate (McCoy & Platt, 2005), and insular cor-

tex (Knutson & Bossaerts, 2007). It is susceptible to framing effects,

whereby the cognitive, numerical, and linguistic context of options

influences choice (Allais, 1953; Arrow, 1951; Kahneman & Tversky,

1979) and might therefore be more flexible than the experienced-

based system. Hunger may modulate high-level decision-making sys-

tems, with the appetite-stimulating hormone ghrelin activating recep-

tors distributed widely in the cerebral cortex including hippocampus

(Zigman et al., 2006) and can enhance memory and performance

(Diano et al., 2006). Accordingly, hunger may increase risk-seeking for

explicitly described food but also monetary reward (Levy et al., 2013;

Shabat-Simon et al., 2018; Symmonds et al., 2010), suggesting that

metabolic signals could impact cognitive decisions.

On the other hand, we might expect experiential decision-making

to be biased by the organism’s needs, because it may rely more

on primitive neural systems. The modulation of risk preferences

according to energy reserves may be crucial for the adaptation to

changes in the environment, in particular when resources are scarce

(Houston, 1991; Kacelnik & Bateson, 1997; Stephens, 1981). Expe-

riential decision-making relies on subcortical brain areas such as the

striatum and the dopaminergic midbrain (Abler et al., 2006; Knutson

et al., 2001; Niv et al., 2012; Tobler et al., 2007) that are targeted by

circulating hormones that signal current energy reserves (Elmquist

et al., 1998; Zigman et al., 2006). In particular, leptin inhibits and

ghrelin activates dopaminergic neurons in the ventral tegmental area,

and could therefore modulate learning and decision-making via the

mesolimbic pathway (Abizaid et al., 2006; Figlewi et al., 2007; Hommel

et al., 2006). In line with this, in animal studies, food deprivation

increases risk-seeking in experience-based tasks (Kacelnik & Bateson,

1997). Perhaps surprisingly, the effects of hunger on experientially

learned and explicitly described risk-taking have never been directly

compared.

We employed two risk-taking tasks in a within-subject design that

have both previously been used to study the involvement of the

motivational system (Moeller et al., 2021; Norbury et al., 2013). The

described-risk task involved decisions between two options whose

probability of winning and losing, and the magnitude of rewards,

was described visually (Rogers et al., 2003). This well-known task is

sensitive to motivation effects (George et al., 2005; Howard et al.,

2020; Koester et al., 2013; Norbury et al., 2013; Rock et al., 2013)

and specifically, has recently provided evidence that hunger does not

affect risk-taking for described risks (Howard et al., 2020). This task

shows outcomes after each decision, contrasting with other tasks from

description where hunger increases risk-taking when outcomes were

not provided (Levy et al., 2013; Shabat-Simon et al., 2018; Symmonds

et al., 2010). The learned-risk task involved decisions between options

whose average reward and uncertainty had to be estimated through

experience. The presence of outcome feedback for each choice in both

tasks means that potential differences in the effects of hunger are

driven by how risks are presented, rather than the omission/inclusion

of feedback.
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Both tasks included three decision contexts, allowing us to verify

whether choices were driven by the expected value or by the risk of

options. The options presented in a mixed context differed in their

expected value, which typically drive risk-neutral behavior. The pair of

options in a low-reward context differed in risk, and were matched in

expected value, but both options yielded less than the average reward

in the task. Options in the high-reward context were analogous to

the low-reward context, but the expected values were both higher

than average. These three decision contexts allowed us to examine the

effect of both hunger and reward value on risk-taking learned through

experience or risk-taking for which the risks were described. The

described-risk task achieved this contrast by independently varying

both gains and losses. However, to simplify participants’ learning needs

in the learned-risk task, contexts were achieved using only probabilis-

tic gains of varyingmagnitudes. Both tasks also includedmixed-context

trials, meaning that the two options had different values.

In agreement with previous studies, we showed that risk attitudes

for described risks were opposite to those for learned risks. Hunger

only modulated risk preferences for learned risks in a context-specific

manner, showing that the experience-based system, but not the cogni-

tive system, is sensitive to themotivational drive of an organism.

2 METHODS

2.1 Participants

Thirty-twohealthy volunteers (females: 20,meanage: 25.6±6.5 years)

were recruited for this study. All participants were healthy, had no

history of psychiatric diagnoses, had no history of neurological or

metabolic illnesses, and had not used recreational drugs in the past

3 months. All participants had a normal weight (Body Mass Index:

22.9 ± 3.2 kg/m2), regular eating patterns, and no history of eating

disorders. Each participant gave written informed consent and the

study was conducted in accordance with the guidelines of the Uni-

versity of Oxford ethics committee. To be able to observe an effect

of hunger on risk-taking, we estimated the effect size from previous

papers as 0.25 (Shabat-Simon et al., 2018; Symmonds et al., 2010). The

effect size for detecting an effect of task type on context effects (i.e.,

the description–experience gap) is 0.6 (Ludvig & Spetch, 2011), which

exceeds the effect of hunger on risk-taking. We designed our study

to be able to detect either effect with a power of at least 80%. We

used G*Power (3.1.9.7) and estimated that we need 30 participants to

obtain a power of 0.85. Post hoc power calculations confirmed that

the observed power in our study was 0.8. All data are openly available

at https://data.mrc.ox.ac.uk/dataset/effects-hunger-experiential-and-

explicit-risk-taking (van Swieten, Manohar, et al., 2021).

2.2 Manipulation of metabolic state

Participants were tested in a within-subjects counterbalanced, ran-

domized crossover design for the effects of hunger on risk-taking tasks

(Figure 1a). Sessions were approximately 1 week apart (at least 4 days,

but no more than 14 days). All sessions took place at the same time of

day between 10:00 a.m. and 1:00 p.m., to minimize time-of-day effects.

For one session, participants were asked to refrain from eating and

drinking caloric drinks from 8:00 p.m. the night prior to testing. For

the other session, participants were asked to eat normally the day

before and consume a full breakfast within 1 h of arriving at the lab

for testing. We assessed the effect of fasting on self-reported feel-

ings of hunger and mood using a computerized Visual Analogue Scale

at the start and end of each session (Bond & Lader, 1974; Flint et al.,

2000). Participants were asked to place a cursor on a 100-mm scale

with positive or negative text ratings anchored at either end. This

assessment provided a subjective measure of whether the manipula-

tion worked. Participants performed the decision-by-description task

first, then a learning, attention, and planning task not described in this

paper (van Swieten, 2020; van Swieten, Bogacz, et al., 2021), and fin-

ished with the decision-by-experience task. This order was fixed to

control for fasting time. Hunger ratings did not significantly change

during the fasted session (Wilcoxon signed rank test: Z= 1.95, p> .05)

but increased during the sated session (Wilcoxon signed rank test:

Z = 4.01, p < .0001), indicating that the effect of hunger would be

greater for the decision-by-description task. Finally, the session order

did not affect performance.

2.3 Experimental design

2.3.1 Decisions by experience

We employed a modified version of a risk-taking task developed by

Moeller et al. (2021). Participants learned the reward value of four

stimuli through repeated sampling. Each stimulus was associated with

aGaussian reward distribution that followed a 2×2 design: high or low

mean value (65 or 35 points) and high or low standard deviation (20

or 5) (Figure 1b). When a stimulus was chosen, participants received a

reward drawn from the corresponding distribution. The task included

three trial types: high/low-reward context trials (50%), mixed-context

trials (33%), and forced sampling trials (17%) (Figure 1c). High-context

trials and low-context trials consisted of two options with equal mean,

but different risks. High-context trials have a mean above the aver-

age outcome in the task. In contrast, low-context trials have a mean

below the average outcome in the task. Mixed-context trials offered

choices between options with unequal expected value. These trials

acted as a positive control to check participants paid attention to their

choices and understood the difference between the stimuli. Forced

sampling trials were trials in which only one stimulus was presented.

These trials ensured that all options were sampled from and that par-

ticipants occasionally experienced reward contingencies that they did

not prefer.

Each trial had the same structure. After a short intertrial inter-

val (ITI) of 500–700 ms, the stimuli were presented on the screen.

Responses were made by pressing on the left or right arrow key of

the keyboard to choose the left or right option, respectively. Choices

were immediately followed by feedback for 1.5 s, showing the num-

ber of points won (Figure 1c). The total accumulated points were

 21579032, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/brb3.2978 by T

est, W
iley O

nline L
ibrary on [05/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://data.mrc.ox.ac.uk/dataset/effects-hunger-experiential-and-explicit-risk-taking
https://data.mrc.ox.ac.uk/dataset/effects-hunger-experiential-and-explicit-risk-taking


4 of 14 VAN SWIETEN ET AL.

(a) (c)

(b)

F IGURE 1 Decisions by experience. (a) Participants were tested in a counterbalanced, randomized crossover design. Participants were tested
on two separate days approximately 1 week apart. One session took place after 14 h fasting, the other session after consuming a full meal. (b) Each
reward distribution associated with a stimulus was approximately normal. Themean of the distribution was either 35 or 65with a standard
deviation of either 5 or 20. The dark gray distributions indicate themore risky option. (c) Task structure of decisionsmade from experience. The
task consisted of three different trial types: high/low reward context trials (half of the trials), mixed-context trials (two thirds of the trials), and
forced sampling trials (one sixth of the trials). After a response, a reward sampled from the associated reward distribution was presented.

continuously displayed at the top of the screen. Participants were

instructed to maximize their total number of points, which was con-

verted into a monetary performance bonus at the end of the task.

Each participant completed four blocks of 72 trials. All trial types were

equally distributed over the blocks, but we ensured that a stimulus

presented in a forced sampling trial did not precede a high/low-reward

context trial with the same stimulus to avoid priming of choices.

Reward distributions were generated at the start of each block to

ensure each block had the intended reward distribution and stimulus

setswere reset after twoblocks (or 144 trials). After each block, partic-

ipants were asked to indicate the reward distribution of each stimulus

by placing two cursors on a Visual Analogue Scale ranging from 0 to

100 points, one for the minimum and one for the maximum reward

in the distribution. The rated spread was computed as the difference

between the rated minimum and maximum of the reward distribution

and the ratedmeanwas taken as the average of the two values.

2.3.2 Decisions by description

Risk-taking behavior from descriptions was probed using the proba-

bilistic task described by Rogers and colleagues (Norbury et al., 2013;

Rogers et al., 2003). This task used two trial types—high/low-reward

context trials (one fifth of the trials) and mixed-context trials (four

fifths of the trials). In contrast to the paradigm for decisions by experi-

ence, no sampling trials were included in this task since decisions were

made based on description and not experience. There were 10 unique

gambles; the type of gamble was determined by the probability of win-

ning, the amount that could be won, and the amount that could be

lost.

High- and low-reward trials offered a choice between a certain

win or loss (low-risk option) and a 50:50 chance gamble (high-risk

option) with the same expected value. High- and low-reward gambles

were identical in terms of prospect, but differed in valence, allow-

ing for the examination of high- and low-reward context effects on

differences in risk attitudes. Mixed-context trials offered a choice

between two options that differed in their objective expected val-

ues. The low-risk option offered a 50:50 chance of winning or

losing 10 points, giving an expected value of 0. The other option

was a high-risk gamble, and varied either in the probability of win-

ning (0.6 or 0.4), the magnitude of possible points to win (30 or

70 points), or the magnitude of possible points to lose (30 or 70

points), giving an expected value between−30 and 30 (gambles 1–8 in

Figure 2a,b).

 21579032, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/brb3.2978 by T

est, W
iley O

nline L
ibrary on [05/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



VAN SWIETEN ET AL. 5 of 14

(a) (c)

(b)

F IGURE 2 Decisions by description. Decisionsmade from description were probed using 10 unique gambles, divided into two types of
gambles: mixed-context trials and low/high-reward context trials. Mixed-context trials consisted of eight different combinations of points to win,
points to lose, and the probabilities of winning, with the expected value of the high-risk option between−30 to 30 (see gambles 1–8 in panel A),
while the low-risk option always had an expected value of 0. In high/low-reward context, the expected value of the high- and low-risk option was
matched (see gambles 9 and 10 in panel A). (B) Graphical representation of theminimum andmaximum reward points for each option. The bold
black line indicates the expected value of the option, taking into account the probability of winning, and the points to win and lose. The dark gray
distributions indicate the high-risk option. (C) Task structure of decisionsmade from description. The task consisted of two different trial types:
high/low-reward context trials (one fifth of the trials) andmixed-context trials (four fifths of the trials). Each trial consisted of a choice between a
low-risk gamble (yellow) and high-risk gamble (blue). Points to win and lose were presented in green and red, respectively. The probability of
winning corresponded to the size of the filled bar. Feedback was given after each choice and the running total was updated.

The task had the following structure: On each trial, participants

were required to choose between two simultaneously presented gam-

bles (Figure 2c). Each gamble was represented visually by a histogram

ofwhich the height indicated the relative probability ofwinning a given

number of points. The magnitude of possible points to win was indi-

cated in green above each histogram, with the magnitude of possible

points to lose indicated below in red. Visual feedback (win/lose) was

given after each choice was made, and the revised running total points

was presented before the next trial. Participants were instructed that

each gamble should be considered independently of outcomes of pre-

vious gambles. Participants completed four blocks of 20 trials, and the

order in which gambles were presented was kept constant for both

conditions. The highest total score obtained in a block was converted

into pence and paid at the end of the task as a performance bonus.

Deliberation times were also recorded.

All computerized behavioral paradigms were implemented using

Psychophysics Toolbox Version 3 on MATLAB (version 19b; Math-

Works, Natick, MA).

2.4 Behavioral analyses

Risk was defined as the uncertainty in possible outcomes of a decision,

expressed as the variance of the associated reward distribution (Roth-

schild & Stiglitz, 1970). Risk attitudes were computed separately for

high- and low-reward contexts.

For learned risks, the risk preference was averaged over the second

half of the trials (72 trials) of each stimulus set (Figure S1A). Using only

the second half of the trials allowed participants sufficient opportunity

to learn the outcomes associated with each option, while providing a

long enough sample to get a reliable measure of their risk preference

(Ludvig et al., 2014; Niv et al., 2012).

For described risks, the risk preference was assessed as the pro-

portion of risky gambles chosen in the low (decision type 9) or high

(decision type 10) reward context. All trials were included, because

no learning occurred and each gamble was considered independently

(Figure S1B).

We used the performance onmixed-context trials as a control mea-

sure to verify if people maximized their outcome. The proportion

of options with the highest expected value was calculated based on

the performance on mixed-context trials in experienced-based risk-

taking task and the gambles 1−8 in the description-based risk-taking

task.

Statistical significance was tested using paired t-tests or

repeated measures analysis of variance (ANOVA) as appro-

priate in MATLAB and SPSS (IBM Corp. Released 2019. IBM

SPSS statistics for Windows, Version 26.0. Armonk, NY: IBM

Corp.).
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2.5 Computational model fitting

We used a reinforcement learning model to further assess the

effects of hunger on experience-based risk-taking. The model itself

is described in the results section. We used a hierarchical model-

fitting strategy that takes into account the likelihood of individual

participant choices given the individual participant parameters and

also the likelihood of the individual participant parameters given the

parameter distribution in the overall population across conditions. This

two-stage hierarchical procedure is an estimation strategy of the iter-

ative expectation–maximization algorithm (EM) (Guitart-Masip et al.,

2011; Huys et al., 2012; MacKay, 2003). This regularizes individual

participants’ parameter fits, rendering themmore robust toward over-

fitting. To infer the maximum-a-posteriori estimate of each parameter

for each participant, we set the prior distribution to the maximum-

likelihood given the data of all participants and then use EM for the

two conditions separately to obtain parameter estimates for each

condition. The statistical significance was tested using paired t-tests

with respect to the Gaussian scaled model parameters (see Sup-

porting Information for the transformation of parameters). Reported

p-valueswere corrected formultiple comparisons using theBonferroni

method.

In the fitting procedure, all context trials were used to estimate all

parameters. Forced sampling trials were only included for the estima-

tion of learning rates for the mean and variance of a stimulus using

Equations (1) and (3), respectively. Due to the absence of a choice,

forced sampling trials were excluded from the estimation of the soft-

max choice parameter and the risk parameters. The presence of only

one stimulus makes the probability of choosing this stimulus 1, and

this would interfere with the parameter estimation. Initial values for

Q and S were set to 50 and 5, respectively. The model compari-

son and parameter recovery method can be found in the Supporting

Information.

3 RESULTS

As expected, participants rated their subjective feelings of hunger sig-

nificantly higher after 14 h of fasting than after eating a full meal

(Wilcoxon signed rank test: Z = −4.84, p < .0001, d = .86), indicating

that themanipulation was successful.

3.1 Hunger altered experiential risk-taking in a
context-specific manner

We first analyzed choice behavior in the low- and high-reward context

to evaluate experience-based risk-taking in a context-specific man-

ner (Figure 3A). Participants were significantly more likely to choose

the risky option in a high-reward context, but not a low-reward con-

text (main effect of context [F1,31 = 10.28, p < .003, ηp2 = .25]). Such

risk-seeking for high reward and risk avoidance for low-reward con-

texts is consistent with previously reported risk attitudes for learned

risks (Ludvig et al., 2014; Madan et al., 2015). Crucially, hunger mod-

ulated risk-attitudes for high- and low-reward contexts in opposite

manner (interaction effect of hunger and context [F1,31 =8.38, p< .007,

ηp2 = .21]), such that hunger neutralized the risk preferences in both

contexts. A post hoc paired t-test revealed that this interaction effect

was mainly driven by hunger decreasing risk-taking behavior in the

high-reward context (t31 = 2.73, p = .010, d = .49), and not by an

increase in risk-seeking in the low-reward context (t31 = 1.01, p= .319,

d= .18).

Although the interaction is significant at a group level, we further

asked whether the effect is strong enough to be seen within individu-

als. For each participant, we ran a post hoc context × hunger logistic

regression (Figure S2). Ten out of 32 people had effects that reached

significance in the expected direction even within single participants.

Only one person had a significant effect in the opposite direction.

Finally, hunger did not alter overall risk-taking behavior (main effect of

hunger [F1,31 = 1.19, p= .283, ηp2 = .04]).

To verify that neutral risk preferences were not caused by an inabil-

ity to differentiate stimuli, we used mixed-context trials to examine

whether participants understood the difference in mean and variance

of reward distributions. All participants performed on average above

90%onmixed-context trials, and no participant performed below 60%,

indicating that they understood the distinction between high- and

low-mean stimuli. The level of hunger did not affect the accuracy on

mixed-context trials (t31 = 0.62, p= .543; Figure 3b).

Finally, the observed changes in risk preferences following hunger

werenot the result of changes in attention, as theoverall reaction times

were consistent across conditions (main effect of hunger [F1,31 < 1];

Figure S3A).

3.2 Hunger did not affect risk-taking from
descriptions

To provide a comparable measure to the context effects in experience-

based risk-taking, we also analyzed the risk preference for matched

mean gambles in high- and low-reward context in description-based

choices (Figure 3c). Participantswere risk-seeking for low-reward con-

texts and risk-averse for high-reward contexts (main effect of context

[F1,31 = 55.01, p < .0001, ηp2 = .64]). This risk pattern has been pre-

viously described by prospect theory (Kahneman & Tversky, 1979), in

which extreme positive outcomes are downweighted. In contrast to

learned risks, hunger did not alter context-specific risk attitudes for

described risks (interaction effect of hunger and context [F1,31 = 1.53,

p = .255, ηp2 = .05]) or overall risk-taking (main effect of hunger

[F1,31 <1]; Figure3c). In linewithprevious reports, the risk attitudes for

experience- and description-based risk-taking were opposite, which

confirms the existence of the description–experience gap (Hertwig &

Erev, 2009).

Participants chose the option with the highest expected value

more often in mixed-decision contexts, regardless of the level of risk

(Figure 3d), showing that the difference in expected value drove choice

behavior (Weber et al., 2004). In line with the performance on the
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(a) (b) (c) (d)

F IGURE 3 Risk attitudes for learned and described risks. (a) For learned risks, participants were risk-averse for low-reward contexts and
risk-seeking for high-reward contexts. Hunger attenuated risk attitudes for decision contexts in opposite direction. Data are presented with
respect to chance level. (b) Proportion of high-mean options chosen for mixed-context trials in decisions from experience. (c) For described risks,
participants were risk-seeking for low-reward contexts and risk-averse for high-reward contexts (gambles 9 and 10; Figure 2a). Hunger did not
affect these risk preferences. Data are presented with respect to chance level. (d) Proportion of high-mean options chosen for mixed-context trials
(gambles 1−8; Figure 2a) in described-risk task. Error bars represent SEM. **p< .01; ***p< .001.

experience-based task, but inconsistent with previous findings (Levy

et al., 2013; Symmonds et al., 2010), hunger did not attenuate this

effect (t31 =−0.29, p= .776). Despite the absence of a shift in risk pref-

erence, hunger increased reaction times for all gambles independently

of the decision context (main effect of hunger [F1,31 = 37.42, p< .0001,

ηp2 = .31]; Figure S3B).

3.3 Modeling of risk-sensitive choice behavior

The previous analyses showed that hunger only altered decision-

makingwhen risks had to be learned. However, the behavioral analyses

do not provide insight into what computational process was altered by

hunger. Therefore, we employed a computational modeling strategy to

account for the integration of a specific reward history triggered by

sampling. This strategy allowed us to attribute the effects of hunger to

a specific computational process. We applied a reinforcement learning

model to explain the behavioral data. We used an adapted version of

standard reinforcement learning (RW) (Rescorla &Wagner, 1972) that

has recently been proposed to account for contextual risk preferences

(PEIRS) (Moeller et al., 2021).

Reinforcement learning models describe the learning process in

associative learningwhen subjects learn fromthediscrepancybetween

what is expected to happen and what actually happens. The expected

mean value of the chosen stimulusQc was updated using:

Qc,t+1 = Qc,t + 𝛼Q
(
rt − Qc,t

)
, (1)

where rt is the reward obtained by choosing a stimulus on trial t and αQ
is the learning rate for the mean reward. Decisions in this model were

solely based on the expected mean value of the presented stimuli. The

utilityU of stimulus i on trial twasUi,t =Qi,t. The probability of choosing

an option was computed using the softmax decision rule:

Pc =
1

1 + e (−𝛽 (Uc − Uu))
, (2)

where Uc and Uu reflect the utility for the chosen and unchosen

options, respectively. The parameter β determines the participant’s

tendency to exploit (i.e., to choose the stimulus with the highest U

value) or to explore (i.e., to randomly choose a stimulus).

The equations so far provide trial-by-trial estimates of the expected

mean value of each stimulus, but do not consider the variability in

outcomes. ThePEIRSmodel extends standardRW learning by account-

ing for both the average outcome and the variability, or spread (S), in

outcomes of an action. It also captures innate risk propensities and

assumes that high- and low-reward contexts influence how the spread

in reward outcomes affects the subjective utility of an action. The

spread in reward outcomes was learned in an analogous manner to

Q-values using

Sc,t+1 = Sc,t + 𝛼S
(||rt − Qc,t

|| − Sc,t
)
, (3)

where αS is the learning rate for the spread, and rt − Qc,t is the

reward prediction error that captures the deviation of the current out-

come from the average outcome, which is compared with the current

expected spread in reward outcomes Sc,t.

The PEIRS model accounts for how participants differentiate

matched mean stimuli based on the spread and captures individual

risk propensities. For this model, the utility that was entered into the

softmax function (Equation 2) depends on the expected mean reward,

the spread in reward outcomes, and the sensitivity to the decision

context (i.e., the context effect), in the following way:

Uc,t = Qc,t
⏟⏟⏟

Expected mean

+ 𝛾0 × Sc,t
⏟⎴⏟⎴⏟

Risk propensity

+𝛾1 × 𝛿context × Sc,t
⏟⎴⎴⎴⎴⏟ ⎴⎴⎴⎴⏟

Context effect

, (4)

where the parameter γ0 modulates the risk propensity of an individual

and reflects the tonic level of dopamine (Mikhael & Bogacz, 2016). A

positive value of γ0 increases risk-seeking, because ahigh variance con-
tributes positively to an option’s value, meaning that the high-spread

option is preferred. This effect is reversed when γ0 < 0. Note that the

first two terms in Equation (4) are analogous to the mean-variance
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8 of 14 VAN SWIETEN ET AL.

models developed for decisions from description (Boorman & Sallet,

2009; D’Acremont et al., 2009).

The third term captures the biasing effect of high- or low-reward

contexts on choice behavior. Context effects play an important mod-

ulatory role in risky decision-making (De Martino et al., 2006; Tversky

& Kahneman, 1981) and were also observed in the current study. The

context reflects how the expected value of the presented stimuli com-

pares to the overall expected value of all stimuli in the task 𝛿context =

Qpresented,t − Qall,t , where Qpresented,t is the average of the Q-values of

the stimuli on the current trial and Qall,t is the average of the Q-values

of all four stimuli. The true average value of all stimuli is 50 points, but

Qall,t fluctuates around50as theQ-values of the stimuli changeby trial-

to-trial updates. High-reward contexts have an objective value above

the average (𝛿highcontext = 65 − 50 = +15 points), whereas low-reward

contexts have a context value below the average (𝛿lowcontext = 35 − 50 =

−15 points). The parameter γ1 is a gain parameter that determines

the extent to which the decision context and spread in reward out-

comes contribute to choice behavior. Positive values of γ1 increase

risk-taking behavior in high-reward contexts, and reduce risk-seeking

in low-reward contexts. The opposite is true for negative values of γ1.
In the PEIRSmodel, the effects of hunger can be attributed to how par-

ticipants learn about the expected value (reflected by αQ), the spread
of reward outcomes (reflected by αS), the individual risk propensity

(reflected by γ0), and/or sensitivity to the context (reflected by γ1).
For example, if hunger makes people inherently more risky, we would

see an increase in the baseline risk propensity γ0 of the individual. If

hunger influences risk-taking dependent on the context the choices

are presented in, we would see a change in γ1. If hunger influences
how individuals learn about the mean and variance of outcomes, we

would see a change in αQ and αS, respectively. A slower learning rate

could contribute to an under-/overvaluation of the mean and/or vari-

ance of a stimulus, since the individual may not have had enough time

or exposure to learn the “true” reward value.

3.4 Computational modeling captured risk
preferences

To confirm that the PEIRS model described risk preferences, we

compared it to a simplified model without γ parameters, that is, a sim-

ple Rescorla–Wagner model. Over 70% (23 out of 32 participants)

were better described by the PEIRS model (BICRW = 16,915 and

BICPEIRS = 15,996), confirming that the addition of extra parameters

was justified. The quality of the fitting procedure was verified with

a parameter recovery analysis. All parameters were well recovered

(.75 < R < .95) and the model fitting procedure did not introduce spu-

rious correlations between the other parameters (|R| < .3; Figure S4).

Surrogate data generated with the best fitted parameters specifically

confirmed that the model reproduces the key effect of hunger on

choice preferences (Figure 4a).

In line with the behavioral analyses, we found an effect of hunger

on parameter estimates obtainedwith the PEIRSmodel (Figure 4b). On

average, hungry participants had lower learning rates for the spread

(αS, p < .0001, d = .70) and a lower sensitivity to context effects (γ1,
p = .02, d = .55), making them risk neutral across decision contexts.

Hunger did not significantly alter learning rates of mean values (αQ,
p = .165, d = .48) or choice stochasticity (β, p = 1, d = .13). Although

risk propensities were differently affected by hunger among individu-

als, at the group level, individual risk propensitieswere not significantly

altered by hunger (γ0, p= 1, d= .04).

3.5 Subjective rating reflects learned utility

We also asked participants to indicate the reward distribution of each

stimulus on a Visual Analogue Scale at the end of each block. We used

these measures to examine whether people distinguished the stimuli

based on the true mean and variance, or a scaled version of the objec-

tive values. We found that the subjectively rated mean and spread of

each reward distribution (Figure 5a,b) showed a similar pattern as the

objective values (Figure 1b).

Participants were able to reliably distinguish stimuli based on their

mean (main effect of mean [F1,31 = 831.91, p < .0001, ηp2 = .96];

Figure 5a). The average outcome for the risky option was rated higher

for high-mean stimulus, but lower for the low-mean stimulus (interac-

tion effect of truemean and spread [F1,31 = 11.19, p< .002, ηp2 = .27]).

To highlight this effect, Figure 5A includes lines connecting the mean

ratings of low- and high-variance stimuli, which have different slopes

for high-meanand low-mean stimuli. These findings are consistentwith

the risk preferences observed in Figure 3a, showing that participants

valued their preferred stimulus more. This effect was less strong in

hungry individuals, who rated the mean of stimuli in the high- and

low-reward contextmore similarly, regardless of the level of risk (inter-

action effect of hunger and spread [F1,31 = 9.48, p < .004, ηp2 = .23]).

The rated values are in line with the risk-neutral choice behavior of

hungry individuals (Figure 3a).

All participants understood that matched mean stimuli differed in

the level of spread (main effect of spread [F1,31 = 61.93, p < .0001];

Figure 5b). However, participants rated the spread for high-mean

options consistently higher than that for low-meanoptions (main effect

of mean [F1,31 = 86.56, p < .0001]). Furthermore, the perceived con-

trast in variance for high-mean options was larger compared to the

perceived contrast for low-mean options (interaction effect mean and

spread [F1,31 = 32.45, p< .0001, ηp2 = .51]).

Given that we observed biases for the preferred (i.e., most cho-

sen) stimulus in the subjective ratings, we examined whether this

was reflected by the learned utility. The utility of each of the stim-

uli (Equation 4) was computed using the Q and S-values obtained

from the simulations in Figure 4a and the best fitted parameters of

each individual. During the ratings, only one stimulus is presented

at the time, thus 𝛿context = Qratedstimulus −mean(Qallstimuli). The utili-

ties were computed for each stimulus set separately and averaged

across individuals (Figure 5c). We observed three analogous effects in

the learned utility as observed in the subjectively rated mean values

(Figure 5a vs. Figure 5c). First, the utility of high-mean stimuli was sig-

nificantly higher than the utility of low-mean stimuli (main effect of
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β α α γ γ

(a) (b)

F IGURE 4 Model fitting results with the Prediction Error Induced Risk-Seeking (PEIRS) model. (a) Simulated choice behavior using estimated
parameters for the fasted and sated condition. Simulated data showed a similar pattern to the behavioral data depicted in Figure 3a. Data are
presentedwith respect to chance level. (b) Hunger significantly decreased the learning rate for reward spread αS, and the sensitivity to contexts γ1.
Hunger did not alter the softmax temperature β, the learning rate for mean αQ, or individual risk preferences γ0. Error bars represent SEM. Plotted
parameters are the boundedmodel parameters. Statistical significance was tested with respect to the unconstrained Gaussian distributed
parameters. *p< .05.

(a) (b) (c)

F IGURE 5 Subjective rating reflects learned utility. At the end of each block, participants indicated themean (a) and spread (b) of the
distribution associatedwith each stimulus. (c) The computed utility for each of the stimuli (Equation 4) reflects the same pattern as the subjectively
ratedmean values. Dashed lines indicate objectivemean or spread in the reward points. Error bars represent SEM.

mean [F1,31 = 319.85, p< .0001, ηp2 = .91]). Second, the learned utility

for the risky option was higher for the high-mean stimulus, but lower

for the low-mean stimulus (interaction effect of mean and variance

[F1,31 = 19.32, p< .0001, ηp2 = .38]). Third, hunger altered the learned

utility. Hunger increased the utility for low-mean stimuli, but not for

high-mean stimuli (interaction effect of mean and hunger [F1,31 = 6.21,

p= .018, ηp2 = .17]). This effect was specific for high-variance options,

but not low-variance options (interaction effect of mean, variance, and

hunger [F1,31 = 5.86, p= .022, ηp2 = .16]).

4 DISCUSSION

Using information about the current metabolic state to adapt to

variable reward outcomes is critical for survival (Stephens, 1981).

In this study, we used two tasks to test whether hunger selec-

tively affected risk-taking for learned or explicitly described options.

We found that hunger modulated risk attitudes for decisions whose

outcome statistics had to be learned, but not for decisions whose

outcome statistics were explicitly described. Furthermore, hunger

promoted risk aversion for high-reward contexts, but not for low-

reward contexts. These results suggest that the current metabolic

state drives adaptive behavior for trial-and-error learning in a

context-specific manner, but may not alter the integration of factual

information.

As postulated by the risk-sensitive foraging theory (Stephens,

1981), individuals should make decisions that minimize the dispar-

ity between the goal and the current state to maximize the chance

of survival. When forced to choose between two low-reward options

of similar expected value but different risk, the high-variance option

should be preferred when hungry, because this is the only option that

offers a chance of fulfilling the current biological need (Figure 6a). In

contrast, when higher rewards are at stake, hungry individuals should

now opt for the low-risk option, because this option allows them to

fulfil their need, without incurring an unnecessary cost that may com-

promise survival (Figure 6b). Although the participants in this study

were not starving and the rewards in this task may only indirectly (via

money) fulfil their biological needs, we found shifts in risk preferences

(Figure 3a) that follow the predictions by the risk foraging theory as

explained in Figure 6. Our data illustrate that hunger has the tendency

to alter risk-taking in line with important evolutionary processes from

the past.
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10 of 14 VAN SWIETEN ET AL.

(a) (b)

F IGURE 6 “Optimal” choice scenarios for high- and low-reward contexts. The circles denote the expected value of the high- and low-risk
option and the arrows denote the spread of the reward. Filled circle indicates the preferred choice. Panel (a) represents a scenario in a
low-mean/low-reward context.When forced to choose between options of similar expected value but different risk (i.e., outcome variance),
decision-makers should prefer high-risk options (filled circle) when hungry (because it is the only option that offers a chance of fulfilling their need),
and prefer low-risk options (open circle) when sated to ensure the goal state is achieved and avoid unnecessary downside costs that might be
incurred if the high-risk option is chosen. Panel (b) represents a scenario in a high-mean/high-reward context. The goal state can now be achieved
with the low-risk option so this should be chosen in a high-reward context. The risky option should only be chosen if the needs cannot bemet by
choosing a safe option. Sated individuals can afford the costs (as this is still close to their goal state) andmay therefore bemore willing to gamble.

While risk-taking from description and experience are both mod-

ulated by the contextual value of the options presented, they are

not equally susceptible to modulation by hunger. For experience-

based decisions, information about the availability of reward and the

metabolic need is integrated (Abizaid et al., 2006; Aitken et al., 2016;

Cone et al., 2016; Hommel et al., 2006; Papageorgiou et al., 2016),

whereas the evaluation of description-based decisions is susceptible to

reward availability only.

Importantly, the behavioral data showed that the decision context

was important for choice behavior. For example, participants pre-

ferred the risky option in high-reward contexts, but preferred the

safer option when it was presented with a low-mean stimulus in a

mixed context. This contextual adaptability is beneficial for survival

and recent work has provided amechanistic explanation for these con-

textual effects in experiential risk-taking (Moeller et al., 2021). Pupil

dilation at the time of decision context tracked how surprising the con-

text was, corresponding to |𝛿context|. Furthermore, across individuals

this dilation independently correlated with the size of γ1, which con-

trols how strongly the context biases choices. Crucially, in the present

study, the effects of hunger were directly reflected by this parame-

ter. Sated individuals showed a different choice bias in each decision

context, while hungry participants were risk neutral across both deci-

sion contexts.Hunger has beenpreviously associatedwithmaladaptive

behavior (Bartholdy et al., 2016; Kirk & Logue, 1997; Skrynka & Vin-

cent, 2019); however, the results in this study show that hunger makes

peoplemore “rational” in their behavior. These individuals relymore on

the objective expected value of an option, rather than the subjective

expected utility (von Neumann &Morgenstern, 1944).

What might the cognitive mechanisms of the hunger effect be?

One possibility is that hunger might increase cognitive load or reduce

memory capacity. These two domains might be more important for

decisions from experience than decisions made from descriptions.

Memory biases, particularly for big wins, could contribute to the asym-

metrical effects we observe for experienced risk (Madan et al., 2017).

It is also possible that our results stem fromusingmonetary, secondary

reward, rather than primary rewards like food, which have been more

extensively used in the eating behavior literature (De Araujo et al.,

2020; Murray et al., 2014). Future work could compare contextual

effects of abstract rewards with primary food rewards.

Hunger did not affect description-based risk-taking, which is in line

with the findings by Howard et al. (2020). However, this result may be

surprising when compared to earlier studies that reported increased

risk-seeking for food, water, and monetary rewards when gambles

were explicitly described to hungry individuals (Levy et al., 2013;

Shabat-Simon et al., 2018; Symmonds et al., 2010). One of the obvious

differences between the studies with and without an effect is the

presence of feedback. Studies involving described risks typically omit

feedback. This approach may be acceptable for a laboratory setting;

real-world choices usually lead to outcomes even if the outcome

probabilities are known. Although feedback about described risks

could alter risk attitudes (Jessup & O’Doherty, 2010), we did not find

evidence that learning occurred in this task as there was no change
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in risk preferences over the course of the task or across sessions.

In addition to the presence of feedback, there are two additional

differences in task design that may contribute to the observed effect.

First, previous studies mostly concerned a decision between a fixed

certain amount and a risky alternative (Levy et al., 2013; Shabat-Simon

et al., 2018), whereas the current study compared two risky options (as

in Symmonds et al., 2010), so one possibility is that hunger affects how

risk is compared against certainty. Second, our task included 10 unique

choice types that were played eight times each, which might increase

familiarity and promote explicit rational processing; in contrast,

previous studies used trial-unique gambles thatwere only played once.

One potentially relevant difference between the two tasks in the

present study is the proportion of mixed-context (easy) trials; in the

description task, half of trials weremixed context, whereas in the expe-

rience task, they were in a 4:1 ratio. This was primarily to keep the

description-based task matched to previous work. Further, it allowed

us to look for any hunger-related differences between loss, gain, and

probability processing, whichwere absent in our data.We have not run

this task without losses so we cannot be certain the effects would hold

with rewards only.

One might also argue that the differential effect of hunger on risk-

taking could be driven by the strong effect of task type. We observe

that the overall risk-taking behavior in both tasks is neutral, which is

illustrated by an overall p(risky) of .5 and a γ0 around 0. The direc-

tion of the context effect also reverses as a result of our modulation.

Therefore, we believe that the effect of hunger on risk taking is not

attributable to a main effect of task type. We also considered whether

the differential results could be caused by the order the tasks were

administered in, rather than the type of task. We believe that the

experience in one task is not likely to affect the other task, since the

tasks are fundamentally different, they were not introduced to the

participants as gambling tasks, and participants were unaware that

these tasks would be compared later. Possible order effects could have

altered baseline risk preferences. However, the order of the tasks was

fixed, making it therefore unlikely that the effect of hunger on risk

preference would be affected as a result.

As in previous studies (e.g., Clark et al., 2008; Fitzgerald et al., 2010;

Madan et al., 2017), the decisions from description contained exact

repeated trials. On one hand, this matches the experience task, where

the four options and their symbols were fixed. On the other hand, deci-

sions from experience arguably have different values on each trial due

to learning. This could lead to discrepancies between the tasks, but it

is not easy to match description and experience tasks exactly in this

respect.

We first opted for a design that was more similar in reward

outcomes to the experience-based task (similar to the design by Sym-

monds et al., 2010), but a pilot study showed that using normally

distributed reward outcomes (instead of discrete rewards as used by

Symmonds et al.) complicated the task and failed to induce clear risk

preferences. We are also not aware of any established risk-taking by

description task design that includes rewards that are drawn from

a normal distribution. We therefore opted for a task that has been

previously used to measure changes in risk preferences following the

manipulation of the dopamine (motivational) system (Norbury et al.,

2013).

Our data suggest that hunger does not impact risk-taking for

description-based choices, at leastwhen explicitly comparing two risky

optionswith feedback provided, perhaps because the neural processes

that drive explicit risk-taking arenot under thedirect control of hunger.

An important contribution of the current study is that we com-

pared the effect of hunger on risk preferences for description- and

experience-based risks in the same individual following the same level

of deprivation. It may be difficult to compare our results to those

of existing studies due to varying levels of deprivation; some studies

report 4 h of fasting (Levy et al., 2013), others report 12 h (Shabat-

Simon et al., 2018; Symmonds et al., 2010) or even 20 h of fasting

(Howard et al., 2020). Furthermore, risk preferences vary greatly

among individuals (Levy et al., 2013). Previous studies showed that

hunger had a converging effect on a population—individuals who were

highly risk-averse when satiated became less averse when hungry,

while risk-seeking individuals became more risk-averse (Levy et al.,

2013).

Our study demonstrates that the opposing risk patterns in the

description–experience gap are driven by how risks are presented,

rather than individual risk propensities. Previous studies suggested

that these different risk patterns arise from memory biases (Madan

et al., 2014, 2017) or under- and overweighting of rare events

in description- and experience-based choices, respectively (Hertwig,

2012; Hertwig et al., 2004; Kahneman & Tversky, 1979). The disso-

ciable effect of hunger on experiential and explicit risk-taking in this

study suggests that the neural processes driving these preferences are,

at least partially, distinct (Fitzgerald et al., 2010; Jessup & O’Doherty,

2010).

In conclusion, we found that hunger decreased risk-taking for

high-reward context in decisions where outcome statistics had to be

learned. This observation matches optimal foraging theory, which pre-

dicts a survival advantage when individuals consider the variability

of resources in the environment according to the current level of

energy reserves. For learned risks, hungry individuals considered their

metabolic need and the availability of rewards when making choices,

whereas sated individuals only considered the availability for rewards.

Hunger did not alter explicit risk-taking, suggesting that cognitive eval-

uation of risk may be unaffected. This is the first study that uses a

within-subject design to test the effects of hunger on risk attitudes for

decisions involving learned anddescribed risks in high- and low-reward

contexts. It provides new insights into the modulatory role of hunger

in adaptive behavior. Further studies will need to address the neural

processing involved in the effects of hunger on decision-making under

uncertainty.
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