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Abstract This paper describes a framework for modelling dopamine function in the mammalian

brain. It proposes that both learning and action planning involve processes minimizing prediction

errors encoded by dopaminergic neurons. In this framework, dopaminergic neurons projecting to

different parts of the striatum encode errors in predictions made by the corresponding systems

within the basal ganglia. The dopaminergic neurons encode differences between rewards and

expectations in the goal-directed system, and differences between the chosen and habitual actions

in the habit system. These prediction errors trigger learning about rewards and habit formation,

respectively. Additionally, dopaminergic neurons in the goal-directed system play a key role in

action planning: They compute the difference between a desired reward and the reward expected

from the current motor plan, and they facilitate action planning until this difference diminishes.

Presented models account for dopaminergic responses during movements, effects of dopamine

depletion on behaviour, and make several experimental predictions.

Introduction
Neurons releasing dopamine send widespread projections to many brain regions, including basal

ganglia and cortex (Björklund and Dunnett, 2007), and substantially modulate information process-

ing in the target areas. Dopaminergic neurons in the ventral tegmental area respond to unexpected

rewards (Schultz et al., 1997), and hence it has been proposed that they encode reward prediction

error, defined as the difference between obtained and expected reward (Houk et al., 1995;

Montague et al., 1996). According to the classical reinforcement learning theory, this prediction

error triggers update of the estimates of expected rewards encoded in striatum. Indeed, it has been

observed that dopaminergic activity modulates synaptic plasticity in the striatum in a way predicted

by the theory (Reynolds et al., 2001; Shen et al., 2008). This classical reinforcement learning theory

of dopamine has been one of the greatest successes of computational neuroscience, as the pre-

dicted patterns of dopaminergic activity have been seen in diverse studies in multiple species

(Eshel et al., 2016; Tobler et al., 2005; Zaghloul et al., 2009).

However, this classical theory does not account for the important role of dopamine in action plan-

ning. This role is evident from the difficulties in initiation of voluntary movements seen after the

death of dopaminergic neurons in Parkinson’s disease. This role is consistent with the diversity in the

activity of dopaminergic neurons, with many of them responding to movements (da Silva et al.,

2018; Dodson et al., 2016; Howe and Dombeck, 2016; Jin and Costa, 2010; Lee et al., 2019;

Schultz et al., 1983; Syed et al., 2016). The function of dopamine in energizing movements is likely

to come from the effects it has on the excitability or gain of the target neurons (Lahiri and Bevan,

2020; Thurley et al., 2008). Understanding the role of dopamine in action planning and movement

initiation is important for refining treatments for Parkinson’s disease, where the symptoms are

caused by dopamine depletion.

A foundation for a framework accounting the role of dopamine in both learning and action plan-

ning may be provided by a theory called active inference (Friston, 2010). This theory relies on an

assumption that the brain attempts to minimize prediction errors defined as the differences between
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observed stimuli and expectations. In active inference, these prediction errors can be minimized in

two ways: through learning – by updating expectations to match stimuli, and through action – by

changing the world to match the expectations. According to the active inference theory, prediction

errors may need to be minimized by actions, because the brain maintains prior expectations that are

necessary for survival and so cannot be overwritten by learning, e.g. an expectation that food

reserves should be at a certain level. When such predictions are not satisfied, the brain plans actions

to reduce the corresponding prediction errors, for example by finding food.

This paper suggests that a more complete description of dopamine function can be gained by

integrating reinforcement learning with elements of three more recent theories. First, taking inspira-

tion from active inference, we propose that prediction errors represented by dopaminergic neurons

are minimized by both learning and action planning, which gives rise to the roles of dopamine in

both these processes. Second, we incorporate a recent theory of habit formation, which suggests

that the habit and goal-directed systems learn on the basis of distinct prediction errors (Miller et al.,

2019), and we propose that these prediction errors are encoded by distinct populations of dopami-

nergic neurons, giving rise to the observed diversity of their responses. Third, we assume that the

most appropriate actions are identified through Bayesian inference (Solway and Botvinick, 2012),

and present a mathematical framework describing how this inference can be physically implemented

in anatomically identified networks within the basal ganglia. Since the framework extends the

description of dopamine function to action planning, we refer to it as the DopAct framework. The

DopAct framework accounts for a wide range of experimental data including the diversity of dopa-

minergic responses, the difficulties in initiation of voluntary movements under dopamine depletion,

and it makes several experimentally testable predictions.

Results
To provide an intuition for the DopAct framework, we start with giving its overview. Next, we formal-

ize the framework, and show examples of models developed within it for two tasks commonly used

eLife digest In the brain, chemicals such as dopamine allow nerve cells to ‘talk’ to each other

and to relay information from and to the environment. Dopamine, in particular, is released when

pleasant surprises are experienced: this helps the organism to learn about the consequences of

certain actions. If a new flavour of ice-cream tastes better than expected, for example, the release of

dopamine tells the brain that this flavour is worth choosing again.

However, dopamine has an additional role in controlling movement. When the cells that produce

dopamine die, for instance in Parkinson’s disease, individuals may find it difficult to initiate

deliberate movements. Here, Rafal Bogacz aimed to develop a comprehensive framework that could

reconcile the two seemingly unrelated roles played by dopamine.

The new theory proposes that dopamine is released when an outcome differs from expectations,

which helps the organism to adjust and minimise these differences. In the ice-cream example, the

difference is between how good the treat is expected to taste, and how tasty it really is. By learning

to select the same flavour repeatedly, the brain aligns expectation and the result of the choice. This

ability would also apply when movements are planned. In this case, the brain compares the desired

reward with the predicted results of the planned actions. For example, while planning to get a

spoonful of ice-cream, the brain compares the pleasure expected from the movement that is

currently planned, and the pleasure of eating a full spoon of the treat. If the two differ, for example

because no movement has been planned yet, the brain releases dopamine to form a better version

of the action plan. The theory was then tested using a computer simulation of nerve cells that

release dopamine; this showed that the behaviour of the virtual cells closely matched that of their

real-life counterparts.

This work offers a comprehensive description of the fundamental role of dopamine in the brain.

The model now needs to be verified through experiments on living nerve cells; ultimately, it could

help doctors and researchers to develop better treatments for conditions such as Parkinson’s

disease or ADHD, which are linked to a lack of dopamine.
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in experimental studies of reinforcement learning and habit formation: selection of action intensity

(such as frequency of lever pressing) and choice between two actions.

Overview of the framework
This section first gives an overview of computations taking place during action planning in the Dop-

Act framework, and then summarizes how these computations could be implemented in neural cir-

cuits including dopaminergic neurons.

The DopAct framework includes two components contributing to planning of behaviour. The first

component is a valuation system, which finds the value v of reward that the animal should aim at

acquiring in a given situation. A situation of an animal can be described by two classes of factors:

internal factors connected with level of reserves such as food, water, etc. to which we refer as

‘reserves’, and external factors related to the environment, such as stimuli or locations in space, to

which we refer as a ‘state’ following reinforcement learning terminology. The value v depends on

both the amount of reward available in state s, and the current level of reserves. For example, if ani-

mal is not hungry, the desired value is equal to v ¼ 0 even if food is available. The second compo-

nent of the DopAct framework is an actor, which selects an action to obtain the desired reward. This

paper focusses on describing computations in the actor. Thus, for simplicity, we assume that the val-

uation system is able to compute the value v, but this paper does not describe how that computa-

tion is performed. In simulations we mostly focus on a case of low reserves, and use a simple model

similar to a critic in standard reinforcement learning, which just learns the average value v sð Þ of

resource in state s (Sutton and Barto, 1998). Extending the description of the valuation system will

be an important direction for future work and we come back to it in Discussion.

The goal of the actor is to select an action to obtain the reward set by the valuation system. This

action is selected through inference in a probabilistic model, which describes relationships between

states, actions and rewards, which we denote by s, a and R. Following reinforcement learning con-

vention, we use R to denote the total reward defined in Equation 1.1 of Figure 1A, which includes

the current reward r, and the future reward value v computed by the valuation system. The DopAct

framework assumes that two systems within the actor learn distinct relationships between the varia-

bles, shown in Figure 1A. The first system, shown in orange, learns how the reward depends on the

action selected in a given state, and we refer to it as ‘goal-directed’, because it can infer actions that

typically lead to the desired reward. The second system, in blue, learns which actions should gener-

ally be chosen in a given state, and we refer to it as ‘habit’, because it suggests actions without con-

sidering the value of the reward currently available. Both goal-directed and habit systems propose

an action, and their influence depends on their relative certainty.

Figure 1B gives an overview of how the systems mentioned above contribute to action planning,

in a typical task. During initial trials, the valuation system (shown in red) evaluates the current state s

and computes the value of desired reward v, and the goal-directed system selects the action a. At

this stage the habit system contributes little to the planning process as its uncertainty is high. As the

training progresses, the habit system learns to mimic the choices made by the goal-directed system

(Miller et al., 2019). On later trials the action is jointly determined by the habit and goal-directed

systems (Figure 1B), and their relative contributions depend on their levels of certainty.

The details of the above computations in the framework will be described in the next section, and

it will be later shown how an algorithm inferring action can be implemented in a network resembling

the anatomy of the basal ganglia. But before going through a mathematical description, let us first

provide an overview of this implementation (Figure 1C). In this implementation, the valuation, goal-

directed and habit systems are mapped on the spectrum of cortico-basal ganglia loops

(Alexander et al., 1986), ranging from valuation in a loop including ventral striatum, to habit in a

loop including the dorsolateral striatum that has been shown to be critical for habitual behaviour

(Burton et al., 2015). In the DopAct framework, the probability distributions learned by the actor

are encoded in the strengths of synaptic connections in the corresponding loops, primarily in cor-

tico-striatal connections. As in a standard implementation of the critic (Houk et al., 1995), the

parameters of the value function learned by the valuation system are encoded in cortico-striatal con-

nections of the corresponding loop.

Analogous to classical reinforcement learning theory, dopaminergic neurons play a critical role in

learning, and encode errors in predictions made by the systems in the DopAct framework. However,

by contrast to the standard theory, dopaminergic neurons do not all encode the same signal, but
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instead dopaminergic populations in different systems compute errors in predictions made by their

corresponding system. Since both valuation and goal-directed systems learn to predict reward, the

dopaminergic neurons in these systems encode reward prediction errors (which slightly differ

between these two systems, as will be illustrated in simulations presented later). By contrast, the

habit system learns to predict action on the basis of a state, so its prediction error encodes how the

currently chosen action differs from a habitual action in the given state. Thus these dopaminergic

neurons respond to non-habitual actions in the DopAct framework. We denote the prediction errors

in the valuation, goal-directed and habit systems by dv, dg and dh, respectively. The dopaminergic

neurons send these prediction errors to the striatum, where they trigger plasticity of cortico-striatal

connections.

In the DopAct framework, habits are formed through a process in which the habit system learns

to mimic the goal-directed system. Unlike in a previous model of habit formation (Daw et al., 2005),

in the DopAct framework learning in the habit system is not driven by a reward prediction error, but

by a signal encoding a difference between chosen and habitual actions. At the start of training,

when an action is selected mostly by the goal-directed system, the dopaminergic neurons in the

habit system receive an input encoding the chosen action, but the striatal neurons in the habit sys-

tem are not yet able to predict this action, resulting in a prediction error encoded in dopaminergic

activity (left display in Figure 1D). This prediction error triggers plasticity in the striatal neurons of

the habit system, so they tend to predict this action in the future (right display in Figure 1D).
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Figure 1. Overview of systems within the DopAct framework. (A) Probabilistic model learned by the actor. Random variables are indicated by circles,

and arrows denote dependencies learned by different systems. (B) Schematic overview of information processing in the framework at different stages of

task acquisition. (C) Mapping of the systems on different parts of the cortico-basal ganglia network. Circles correspond to neural populations located in

the regions indicated by labels to the left, where ‘Striatum’ denotes medium spiny neurons expressing D1 receptors, ‘GABA’ denotes inhibitory neurons

located in vicinity of dopaminergic neurons, and ‘Reward’ denotes neurons providing information on the magnitude of instantaneous reward. Arrows

denote excitatory projections, while lines ending with circles denote inhibitory projections. (D) Schematic illustration of the mechanism of habit

formation. Notation as in panel C, but additionally shading indicates the level of activity, and thickness of lines indicates the strength of synaptic

connections.
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The systems communicate through an ‘ascending spiral’ structure of striato-dopaminergic projec-

tions identified by Haber et al., 2000. These Authors observed that dopaminergic neurons within a

given loop project to the corresponding striatal neurons, while the striatal neurons project to the

dopaminergic neurons in the corresponding and next loops, and they proposed that the projections

to the next loop go via interneurons, so they are effectively excitatory (Figure 1C). In the DopAct

framework, once the striatal neurons in the valuation system compute the value of the state v, they

send it to the dopaminergic neurons in the goal-directed system.

In the DopAct framework, dopamine in the goal-directed system plays a role in both action plan-

ning and learning, and now an overview of this role is given. In agreement with classical reinforce-

ment learning theory, the dopaminergic activity dg encodes reward prediction error, namely the

difference between the reward R (including both obtained and available reward) and the expected

reward (Schultz et al., 1997), but in the DopAct framework the expectation of reward in the goal-

directed system is computed on the basis of the current action plan. Therefore, this reward expecta-

tion only arises from formulating a plan to achieve it. Consequently, when a reward is available, the

prediction error dg can only be reduced to zero, once a plan to obtain the reward is formulated.

To gain an intuition for how the goal-directed system operates, let us consider a simple example

of a hungry rat in a standard operant conditioning experiment. Assume that the rat has been trained

that after pressing a lever a food pellet is delivered (Figure 2A). Consider a situation in which a lever

is suddenly made available to the animal. Its sight allows the valuation system to predict that reward

is available, and it sends an estimated value of the reward to the goal-directed system. Such input

induces a reward prediction error in the goal-directed system, because this system has received

information that a reward is available, but has not yet prepared actions to obtain the reward, hence

it does not expect any reward for its action. The resulting prediction error triggers a process of plan-

ning actions that can get the reward. This facilitation of planning arises in the network, because the

dopaminergic neurons in the goal-directed system project to striatal neurons (Figure 1C), and

increase their excitability. Once an appropriate action has been computed, the animal starts to

expect the available reward, and the dopamine level encoding the prediction error decreases.

Importantly, in this network dopamine provides a crucial feedback to striatal neurons on whether the

current action plan is sufficient to obtain the available reward. If it is not, this feedback triggers

changes in the action plan until it becomes appropriate. Thus the framework suggests why it is useful

for the neurons encoding reward prediction error to be involved in planning, namely it suggests that

this prediction error provides a useful feedback for the action planning system, informing if the plan

is suitable to obtain the reward.

It is worth explaining why the reward expectation in the goal-directed system arises already once

an action is computed and before it is implemented. It happens in the DopAct framework, because

Expected reward 

from ac�on plan

Predic�on error 

or dopamine

Reward 

(current and future)

–

foodlever

�me

foodlever

�me

B)A)

Figure 2. Schematic illustration of changes in dopaminergic activity in the goal-directed system while a hungry rat presses a lever and a food pellet is

delivered. (A) Prediction error reduced by action planning. The prediction error encoded in dopamine (bottom trace) is equal to a difference between

the reward available (top trace) and the expectation of reward arising from a plan to obtain it (middle trace). (B) Prediction errors reduced by both

action planning and learning.
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the striatal neurons in the goal-directed system learn over trials to predict that particular pattern of

activity of neurons encoding action in the basal ganglia (which subsequently triggers a motor

response) leads to reward in the future. This mechanism is fully analogous to that in the temporal-dif-

ference learning model used to describe classical conditioning, where the reward expectation also

arises already after a stimulus, because the striatal neurons learn that the pattern of cortical inputs

to the basal ganglia encoding the state (i.e. the stimulus) will lead to a reward (Schultz et al., 1997).

In the goal-directed system of DopAct, an analogous reward prediction is made, but not only on the

basis of a state, but on the basis of a combination of state and action.

The prediction error in the goal-directed system also allows the animal to learn about the rewards

resulting from actions. In the example we considered above such learning would be necessary if the

amount of reward changed, for example to two pellets (Figure 2B). On the first trial after such

change, a prediction error will be produced after reward delivery. This prediction error can be

reduced by learning, so the animal will expect such increased reward in the future trials and no lon-

ger produce prediction error at reward delivery. In summary, the prediction errors in the goal-

directed system are reduced by both planning and learning, as in active inference (Friston, 2010).

Namely, the prediction errors arising from rewards becoming available are reduced within trials by

formulating plans to obtain them, and the prediction errors due to outcomes of actions differing

from expectations are reduced across trials by changing weights of synaptic connection encoding

expected reward.

The next three sections will provide the details of the DopAct framework. For clarity, we will fol-

low Marr’s levels of description, and discuss computations, an algorithm, and its implementation in

the basal ganglia network.

Computations during planning and learning
To illustrate the computations in the framework we will consider a simple task, in which only an

intensity of a single action needs to be chosen. Such choice has to be made by animals in classical

experiments investigating habit formation, where the animals are offered a single lever, and need to

decide how frequently to press it. Furthermore, action intensity often needs to be chosen by animals

also in the wild (e.g. a tiger deciding how vigorously pounce on a prey, a chimpanzee choosing how

strongly hit a nut with a stone, or a sheep selecting how quickly eat the grass). Let us denote the

action intensity by a. Let us assume that the animal chooses it on the basis of the reward it expects R

and the stimulus s (e.g. the size of prey, nut or grass). Thus the animal needs to infer an action inten-

sity sufficient to obtain the desired reward (but not larger to avoid unnecessary effort).

Let us consider the computation in the DopAct framework during action planning. During plan-

ning, the animal has not received any reward yet r ¼ 0, so according to Equation 1.1, the total

reward is equal to the reward available R ¼ v. While planning to obtain this reward, the actor com-

bines information from the goal-directed system (encoding how the reward depends on actions

taken in given states), and the habit system (encoding the probability distribution of generally select-

ing actions in particular states). These two pieces information are combined according to Bayes’ the-

orem (Equation 3.1 in Figure 3), which states that the posterior probability of selecting a particular

action given available reward is proportional to the product of a likelihood of the reward given the

action, which we propose is represented in the goal-directed system, and a prior, which we propose

is encoded by the habit system.

In the DopAct framework, an action a is selected which maximizes the probability P ajR; sð Þ. An
analogous way of selecting actions has been used in models treating planning as inference

(Attias, 2003), and it has been nicely summarized by Solway and Botvinick, 2012 ’The decision pro-

cess takes the occurrence of reward as a premise, and leverages the generative model to determine

which course of action best explains the observation of reward.’ In this paper, we make explicit the

rationale for this approach: The desired amount of resources that should be acquired depends on

the levels of reserves (and a given state); this value is computed by the valuation system, and the

actor needs to find the action depending on this reward. Let us provide a further rationale for select-

ing an action a which maximizes P ajR; sð Þ, by analysing what this probability expresses. Let us con-

sider the following hypothetical scenario: An animal selected an action without considering the

desired reward, that is by sampling it from its default policy P ajsð Þ provided by the habit system, and

obtained reward R. In this case, P ajR; sð Þ is the probability that the selected action was a. When an

animal knows the amount of resource desired R, then instead of just relying on the prior, the animal
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should rather choose an action maximizing P ajR; sð Þ, which was the action most likely to yield this

reward in the above scenario.

One may ask why it is useful to employ the habit system, instead of exclusively relying on the

goal-directed system that encodes the relationship between rewards and actions. It is because there

may be uncertainty in the action suggested by the goal-directed system, arising for example, from

noise in the computations of the valuation system or inaccurate estimates of the parameters of the

goal-directed system. According to Bayesian philosophy, in face of such uncertainty, it is useful to

additionally bias the action by a prior, which here is provided by the habit system. This prior encodes

an action policy that has overall worked in the situations previously experienced by the animal, so it

is a useful policy to consider under the uncertainty in the goal-directed system.

To make the above computation more concrete, we need to specify the form of the prior and

likelihood distributions. We first provide them for the example of choosing action intensity. They are

given in Figure 3B, where f x;�;Sð Þ denotes the probability density of a normal distribution with

A) Computa�on

B) Distribu�ons

Planning ( = ): Choose ac�on that maximizes

, =
, ( | )

( | )

Goal Habit

Learning ( = ): Update parameters to increase ( | )

(3.1)

, = ; , Σ = ; , Σ

C) Example

= 1

Σ = 0.5

ℎ = 3

Σ = 1

= 1

= 2

where ; , Σ = exp −

(3.2)

(3.3)

Figure 3. Computational level. (A) Summary of computations performed by the actor. (B) Sample form of

probability distributions. (C) An example of inference of action intensity. In this example the stimulus intensity is

equal to s ¼ 1, the valuation system computes desired reward R ¼ 2, and the parameters of the probability

distributions encoded in the goal-directed and habit systems are listed in the panel. The blue curve shows the

distribution of action intensity, which the habit system has learned to be generally suitable for this stimulus. The

orange curve shows probability density of obtaining reward of 2 for a given action intensity, and this probability is

estimated by the goal-directed system. For the chosen parameters, it is the probability of obtaining 2 from a

normal distribution with mean a. Finally, the green curve shows a posterior distribution computed from Equation

3.1.
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mean � and variance S. In a case of the prior, we assume that action intensity is normally distributed

around a mean given by stimulus intensity scaled by parameter h, reflecting an assumption that a

typical action intensity often depends on a stimulus (e.g. the larger a nut, the harder a chimpanzee

must hit it). On the other hand, in a case of the probability of reward R maintained by the goal-

directed system, the mean of the reward is equal to a product of action intensity and the stimulus

size, scaled by parameter q. We assume that the mean reward depends on a product of a and s for

three reasons. First, in many situations reward depends jointly on the size of the stimulus, and the

intensity with which the action is taken, because if the action is too weak, the reward may not be

obtained (e.g. a prey may escape or a nut may not crack), and the product captures this dependence

of reward on a conjunction of stimulus and action. Second, in many foraging situations, the reward

that can be obtained within a period of time is proportional to a product of a and s (e.g. the amount

of grass eaten by a sheep is proportional to both how quickly the sheep eats it, and how high the

grass is). Third, when the framework is generalized to multiple actions later in the paper, the

assumption of reward being proportional to a product of a and s will highlight a link with classical

reinforcement learning. We denote the variances of the distributions of the goal-directed and habit

systems by Sg and Sh. The variance Sg quantifies to what extent the obtained rewards have differed

from those predicted by the goal-directed system, while the variance Sh describes by how much the

chosen actions have differed from the habitual actions.

Figure 3C shows an example of probability distributions encoded by the two systems for sample

parameters. It also shows a posterior distribution P ajR; sð Þ, and please note that its peak is in

between the peaks of the distributions of the two systems, but it is closer to the peak of a system

with smaller uncertainty (orange distribution is narrower). This illustrates how in the DopAct frame-

work, the action is inferred by incorporating information from both systems, but weighting it by the

certainty of the systems.

In addition to action planning, the animal needs to learn from the outcomes, to predict rewards

more accurately in the future. After observing an outcome, the valuation system no longer predicts

future reward v ¼ 0, so according to Equation 1.1 the total reward is equal to the reward actually

obtained R ¼ r. The parameters of the distributions should be updated to increase P Rjsð Þ, so in the

future the animal is less surprised by the reward obtained in that state (Figure 3A).

Algorithm for planning and learning
Let us describe an algorithm used by the actor to infer action intensity a that maximizes the posterior

probability P ajR; sð Þ. This posterior probability could be computed from Equation 3.1, but note that

a does not occur in the denominator of that equation, so we can simply find the action that maxi-

mizes the numerator. Hence, we define an objective function F equal to a logarithm of the numera-

tor of Bayes’ theorem (Equation 4.1 in Figure 4). Introducing the logarithm will simplify function F

because it will cancel with exponents present in the definition of normal density (Equation 3.3), and

it does not change the position of the maximum of the numerator because the logarithm is a mono-

tonic function. For example, the green curve in Figure 4B shows function F corresponding to the

posterior probability in Figure 3C. Both green curves have the maximum at the same point, so

instead of searching for a maximum of a posterior probability, we can seek the maximum of a sim-

pler function F.

During action planning the total reward is equal to reward available, so we set R ¼ v in Equation

4.1, and we find the action maximizing F. This can be achieved by initializing a to any value, and

then changing it proportionally to the gradient of F (Equation 4.2). Figure 4B illustrates that with

such dynamics, the value of a approaches a maximum of F. Once a converges, the animal may select

the action with the corresponding intensity. In summary, this method yields a differential equation

describing an evolution of a variable a, which converges to a value of a that maximizes P ajR; sð Þ.
After obtaining a reward, R is equal to the reward obtained, so we set R ¼ r in Equation 4.1, and

the values of parameters are changed proportionally to the gradient of F (Equations 4.3). Such

parameter updates allow the model to be less surprised by the rewards (as aimed for in Figure 3A),

because under certain assumptions function F expresses ’negative free energy’. The negative free

energy (for the inference problem considered in this paper) is defined as F ¼ lnP Rjsð Þ � KL, where

KL is the Kullback-Leibler divergence between P ajR; sð Þ and an estimate of this distribution (a

detailed definition and an explanation for why F given in Equation 4.1 expresses negative free

energy for an analogous problem is given by Bogacz, 2017). Importantly, since KL � 0, the negative
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free energy provides a lower bound on P Rjsð Þ (Friston, 2005). Thus changing the parameters to

increase F, rises the lower bound on P Rjsð Þ, and so it tends to increase P Rjsð Þ.
Let us derive the details of the algorithm (general form of which is given in Figure 4A) for the

problem of choosing action intensity. Let us start with considering a special case in which both vari-

ance parameters are fixed to Sg ¼ Sh ¼ 1, because then the form of the algorithm and its mapping

on the network are particularly beautiful. Substituting probability densities of likelihood and prior

distributions (Equations 3.2-3.3) for the case of unit variances into Equation 4.1 (and ignoring

A) B)

= ln ( | , ) ( | )

Define:

Planning ( = ): Update ac"on un"l convergence:

̇ =

Learning ( = ): Update parameters:

∆ ~ , ∆Σ ~ ,   ∆ℎ~ ,   ∆Σ ~

(4.1)

(4.2)

(4.3)

> 0

< 0

Figure 4. Algorithmic level. (A) Summary of the algorithm used by the actor. (B) Identifying an action based on a gradient of F. The panel shows an

example of a dependence of F on a, and we wish a to take the value maximizing F. To find the action, we let a to change over time in proportion to

the gradient of F over a (Equation 4.2, where the dot over a denotes derivative over time). For example, if the action is initialized to a ¼ 1.5, then the

gradient of F at this point is positive, so a is increased (Equation 4.2), as indicated by a green arrow on the x-axis. These changes in a continue until the

gradient is no longer positive, i.e. when a is at the maximum. Analogously, if the action is initialized to a ¼ 3:5, then the gradient of F is negative, so a is

decreased until it reaches the maximum of F.

= −

̇ = = + −

= − −

∆ ~ =

= − ℎ

∆ℎ~ =

A)

3.2-3.3 to 4.1:

Where:

Planning:

Learning:

(5.1)

(5.2)

(5.3)

(5.4)

ℎ

Goal Habit

−

Cortex

Striatum

Thalamus

Dopamine

Output

Reward

B)

=
( )

( )

C)

Figure 5. Description of a model selecting action intensity, in a case of unit variances. (A) Details of the algorithm. (B) Mapping of the algorithm on

network architecture. Notation as in Figure 1C, and additionally ‘Output’ denotes the output nuclei of the basal ganglia. (C) Definition of striatal activity

in the goal-directed system.
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constants 1=
ffiffiffiffiffiffi

2p
p

), we obtain the expression for the objective function F in Equation 5.1 (Figure 5A).

We see that F consists of two terms, which are the squared prediction errors associated with goal-

directed and habit systems. The prediction error for the goal-directed system describes how the

reward differs from the expected mean, while the prediction error of the habit system expresses

how the chosen action differs from that typically chosen in the current state (Equations 5.2). As

described in the previous section, action intensity can be found by changing its value according to a

gradient of F (Equation 4.2). Computing the derivative of F over a, we obtain Equation 5.3, where

the two colours indicate terms connected with derivatives of the corresponding prediction errors.

Finally, when the reward is obtained, we modify the parameters proportionally to the derivatives of

F over the parameters, which are equal to relatively simple expressions in Equations 5.4.

Figure 5A illustrates the key feature of the DopAct framework, that both action planning and

learning can be described by the same process. Namely in both planning and learning, certain varia-

bles (the action intensity and synaptic weights, respectively) are changed to maximize the same func-

tion F (Equations 5.3 and 5.4). Since F is a negative of the sum of prediction errors (Equation 5.1),

both action planning and learning are aimed at reducing prediction errors.

Network selecting action intensity
The key elements of the algorithm in Figure 5A naturally map on the known anatomy of striato-

dopaminergic connections. This mapping relies on three assumptions analogous to those typically

made in models of the basal ganglia: (i) the information about state s is provided to the striatum by

cortical input, (ii) the parameters of the systems q and h are encoded in the cortico-striatal weights,

and (iii) the computed action intensity is represented in the thalamus (Figure 5B). Under these

assumptions, Equation 5.3 describing an update of action intensity can be mapped on the circuit:

The action intensity in the model is jointly determined by the striatal neurons in the goal-directed

and habit systems, which compute the corresponding terms of Equation 5.3, and communicate them

by projecting to the thalamus via the output nuclei of the basal ganglia. The first term dgqs can be

provided by striatal neurons in the goal-directed system (denoted by G in Figure 5B): They receive

cortical input encoding stimulus intensity s, which is scaled by cortico-striatal weights encoding

parameter q, so these neurons receive synaptic input qs: To compute dgqs, the gain of the striatal

neurons in the goal-directed system needs to be modulated by dopaminergic neurons encoding pre-

diction error dg (this modulation is represented in Figure 5B by an arrow from dopaminergic to stria-

tal neurons). Hence, these dopaminergic neurons drive an increase in action intensity until the

prediction error they represent is reduced (as discussed in Figure 2). The second term hs in Equation

5.3 can be computed by a population of neurons in the habit system receiving cortical input via con-

nection with the weight h. Finally, the last term �a simply corresponds to a decay.

In the DopAct framework, dopaminergic neurons within each system compute errors in the pre-

dictions about the corresponding variable, i.e. reward for the goal-directed system, and action for

the habit system. Importantly, in the network on Figure 5B this computation can be performed

locally, i.e. the dopaminergic neurons receive inputs encoding all quantities necessary to compute

their corresponding errors. In the habit system, the prediction error is equal to a difference between

action a and expectation hs (blue Equation 5.2). Such error can be easily computed in a network of

Figure 5B, where the dopaminergic neurons in the habit system receive effective input form the out-

put nuclei equal to a (as they receive inhibition equal to �a), and inhibition hs from the striatal neu-

rons. In the goal-directed system, the expression for prediction error is more complex (orange

Equation 5.2), but importantly, all terms occurring in the equation could be provided to dopaminer-

gic neurons in the goal-directed system via connections shown in Figure 5B (qs could be provided

by the striatum, while a thorough an input from the output nuclei which have been reported to proj-

ect to dopaminergic neurons [Watabe-Uchida et al., 2012]).

Once the actual reward is obtained, changing parameters proportionally to prediction errors

(Equations 5.4) can arise due to dopaminergic modulation of the plasticity of cortico-striatal connec-

tions (represented in Figure 5B by arrows going from dopamine neurons to parameters). With such

a modulation, learning could be achieved through local synaptic plasticity: The update of a weight

encoding parameter h (blue Equation 5.4) is simply proportional to the product of presynaptic (s)

and dopaminergic activity (dh). In the goal-directed system, orange Equation 5.4 corresponds to local

plasticity, if at the time of reward the striatal neurons encode information about action intensity (see
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definition of G in Figure 5C). Such information could be provided from the thalamus during action

execution. Then the update of synaptic weight encoding parameter q will correspond to a standard

three-factor rule (Kuśmierz et al., 2017) involving a product of presynaptic (s), postsynaptic (a) and

dopaminergic activity (dg).

The model can be extended so that the parameters Sg and Sh describing variances of distribu-

tions are encoded in synaptic connections or internal properties of the neurons (e.g. leak conduc-

tance). In such an extended model, the action proposals of the two systems are weighted according

to their certainties. Figure 6A shows the general description of the algorithms which is analogous to

that in Figure 5A. The action intensity is driven by both goal-directed and habit systems, but now

their contributions are normalised by the variance parameters. For the habit system this normaliza-

tion is stated explicitly in Equation 6.2, while for the goal-directed system it comes from a normaliza-

tion of prediction error by variance in orange Equation 6.3 (it is not necessary to normalize habit

prediction error by variance because the contribution of the habit system is already normalized in

Equation 6.2).

∆ ~ = ∆ℎ~ =

= −ln Σ −
−

Σ
− ln Σ −

−

Σ

∆Σ ~
Σ

~ Σ − Σ

̇ = = + − /Σ

= − /Σ = −

∆Σ ~
Σ

~ − Σ

A)

ℎ
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−
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B)

Σ

1/Σ

3.2-3.3 to 4.1:
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Learning:

Errors:

(6.1)

(6.2)

(6.3)

(6.4)

(6.5)

Σ

̇ = + − /Σ

̇ = ℎ̇ =

̇ = + − − Σ ̇ = − ℎ −

Σ̇ = ( − Σ )Σ̇ = Σ − Σ

(6.6)

(6.7)

(6.8)

(6.9)

C)

Figure 6. Description of a model selecting action intensity. (A) Details of the algorithm. The update rules for the variance parameters can be obtained

by computing derivatives of F, giving d
2

g � 1=Sg and d
2

h=S
2

h � 1=Sh; but to simplify these expressions, we scale them by S2

g and S
2

h, resulting in Equations

6.5. Such scaling does not change the value to which the variance parameters converge because S
2

g and S
2

h are positive. (B) Mapping of the algorithm

on network architecture. Notation as in Figure 5B. This network is very similar to that shown in Figure 5B, but now the projection to output nuclei from

the habit system is weighted by its precision 1=Sh (to reflect the weighting factor in Equation 6.2), and also the rate of decay (or relaxation to baseline)

in the output nuclei needs to depend on Sh. One way to ensure that the prediction error in goal-directed system is scaled by Sg is to encode Sg in the

rate of decay or leak of these prediction error neurons (Bogacz, 2017). Such decay is included as the last term in orange Equation 6.7 describing the

dynamics of prediction error neurons. Prediction error evolving according to this equation converges to the value in orange Equation 6.3 (the value in

equilibrium can be found by setting the left hand side of orange Equation 6.7 to 0, and solving for dg). In Equation 6.7, total reward R was replaced

according to Equation 1.1 by the sum of instantaneous reward r, and available reward v computed by the valuation system. (C) Dynamics of the model.
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There are several ways of including the variance parameters in the network, and one of them is

illustrated in Figure 6B (see caption for details). The updates of the variance parameters (Equations

6.5) only depend on the corresponding prediction errors and the variance parameters themselves,

so they could be implemented with local plasticity, if the neurons encoding variance parameters

received corresponding prediction errors. Figure 6C provides a complete description of the dynam-

ics of the simulated model. It parallels that in Figure 6B, but now explicitly includes time constants

for update of neural activity (t , t d), and learning rates for synaptic weights (a with corresponding

indices).

As described in the Materials and methods, a simple model of the valuation system based on

standard temporal-difference learning was employed in simulations (because the simulations corre-

sponded to a case of low level of animal’s reserves). Striatal neurons in the valuation system com-

pute the reward expected in a current state on the basis of parameters wt denoting estimates of

reward at time t after a stimulus, and following standard reinforcement learning we assume that

these parameters are encoded in cortico-striatal weights. The dopaminergic neurons in the valuation

system encode the prediction error similar to that in the temporal-difference learning model, and

after reward delivery, they modulate plasticity of cortico-striatal connections. The Method section

also provides details of the implementation and simulations of the model.

Simulations of action intensity selection
To illustrate how the model mechanistically operates and to help relate it to experimental data, we

now describe a simulation of the model inferring action intensity. On each simulated trial the model

selected action intensity, after observing a stimulus, which was set to s ¼ 1. The reward obtained

depended on action intensity as shown in Figure 7A, according to r ¼ 5 tanh 3a=5ð Þ � a. Thus, the

reward was proportional to the action intensity, transformed through a saturating function, and a

cost was subtracted proportional to the action intensity, that could correspond to a price for making

an effort. We also added Gaussian noise to reward (with standard deviation sr ¼ 0:5) to account for

randomness in the environment, and to action intensity to account for imprecision of the motor sys-

tem or exploration.

Figure 7AB shows how the quantities encoded in the valuation system changed throughout the

learning process. The pattern of prediction errors in this figure is very similar to that expected from

the temporal difference model, as the valuation system was based on that model. The stimulus was

presented at time t ¼ 1. On the first trial (left display) the simulated animal received a positive

reward at time t ¼ 2 (dashed black curve) due to stochastic nature of the rewards in the simulation.

As initially the expectation of reward was low (dashed red curve), the reward triggered a substantial

prediction error (solid red curve). The middle and right plots show the same quantities after learning.

Now the prediction error was produced after the presentation of the stimulus, because after seeing

the stimulus a simulated animal expected more reward than before the stimulus. In the middle dis-

play the reward received at time t ¼ 2 was very close to the expectation, so the prediction error at

the time of the reward was close to 0. In the right display the reward happened to be lower than

usual (due to noise in the reward), which resulted in a negative prediction error. Note that the pat-

tern of prediction errors in the valuation system in Figure 7B resembles the famous figure showing

the activity of dopaminergic neurons during conditioning (Schultz et al., 1997).

Figure 7C shows the prediction errors in the actor and action intensity on the same trials that

were visualised in Figure 7B. Prediction errors in the goal-directed system follow a similar pattern as

in the valuation system in the left and middle displays in Figure 7C, that is before the behaviour

becomes habitual. The middle display in Figure 7C shows simulated neural activity that was sche-

matically illustrated in Figure 2A: As the valuation system detected that a reward was available (see

panel above), it initially resulted in a prediction error in the goal-directed system, visible as an

increase in the orange curve. This prediction error triggered a process of action planning, so with

time the green curve representing planned action intensity increased. Once the action plan has been

formulated, it provided a reward expectation, so the orange prediction error decreased. When an

action became habitual after extensive training (right display in Figure 7C), the prediction error in

the goal-directed system started to qualitatively differ from that in the valuation system. At this

stage of training, the action was rapidly computed by the habit system, and the goal-directed sys-

tem was too slow to lead action planning, so the orange prediction error was lower. This illustrates
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that in the DopAct framework reward expectations in the goal-directed system can arise even if an

action is computed by the habit system.

The prediction error in the habit system follows a very different pattern than in other systems.

Before an action became habitual, the prediction errors in the habit system arose after the action

has been computed (middle display in Figure 7C). Since the habit system has not formed significant

habits on early trials, it was surprised by the action, and this high value of blue prediction error drove

its learning over trials. Once the habit system was highly trained (right display in Figure 7C) it rapidly

drove action planning, so the green curve showing planned action intensity increased more rapidly.
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Figure 7. Simulation of a model selecting action intensity. (A) Mean reward given to a simulated agent as a function of action intensity. (B) Changes in

variables encoded by the valuation system in different stages of task acquisition. (C) Changes in variables encoded by the actor. (D) Changes in model

parameters across trials. The green curve in the right display shows the action intensity at the end of a planning phase of each trial. (E) Action intensity

inferred by the model after simulated blocking of dopaminergic neurons.
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Nevertheless, due to the dynamics in the model, the increase in action intensity was not instant, so

there was a transient negative prediction error in the habit system while an action was not yet equal

to the intensity predicted by the habit system. The prediction error in the habit system at the time of

action execution depended on how the chosen action differed from a habitual one, rather than on

the received reward (e.g. in the right display in Figure 7C, dh>0 because the executed action was

stronger than the planned one due to motor noise, despite reward being lower than expected).

Figure 7D shows how the parameters in the model evolved over the trials in the simulation. The

left display shows changes in the parameters of the three systems. A parameter of the valuation sys-

tem correctly converged to the maximum value of the reward available in the task w1 » 2 (i.e. the

maximum of the curve in Figure 7A). The parameter of the habit system correctly converged to

h» 2, i.e. typical action intensity chosen over trials (shown by a green curve in the right display of

Figure 7D). The parameter of the goal-directed system converged to a vicinity of q» 1, which allows

the goal-directed system to expect the reward of 2 after selecting an action with intensity 2

(according to orange Equation 3.2 the reward expected by the goal-directed system is equal to

aqs» 2� 1� 1 ¼ 2). The right display in Figure 7D shows how the variance parameters in the goal-

directed and habit systems changed during the simulation. The variance of the habit system was ini-

tialised to a high value, and it decreased over time, resulting in an increased certainty of the habit

system.

Dopaminergic neurons in the model are only required to facilitate planning in the goal-directed

system, where they increase excitability of striatal neurons, but not in the habit system. To illustrate

it, Figure 7E shows simulations of a complete dopamine depletion in the model. It shows action

intensity produced by the model in which following training, all dopaminergic neurons were set to 0.

After 119 trials of training, on the 120th trial, the model was unable to plan an action. By contrast,

after 359 training trials (when the uncertainty of the habit system has decreased – see the blue curve

in right display of Figure 7D), the model was still able to produce a habitual response, because

dopaminergic neurons are not required for generating habitual responses in the model. This paral-

lels the experimentally observed robustness of habitual responses to blocking dopaminergic modu-

lation (Choi et al., 2005).

Simulations of effects observed in conditioning experiments
This section shows that the model is able to reproduce two key patterns of behaviour that are

thought to arise from interactions between different learning systems, namely the resistance of

habitual responses to reward devaluation (Dickinson, 1985), and Pavlovian-instrumental transfer

(Estes, 1943).

In experiments investigating devaluation, animals are trained to press a level (typically multiple

times) for reward, for example food. Following this training the reward is devalued in a subgroup of

animals, e.g. the animals in the devaluation group are fed to satiety, so they no longer desire the

reward. Top displays in Figure 8A replot experimental data from one such study (Dickinson et al.,

1995). The displays show the average number of lever presses made by trained animals during a

testing period in which no reward was given for lever pressing. The dashed and solid curves corre-

spond to devaluation and control groups, and the two displays correspond to groups of animals

trained for different periods, that is trained until they received 120 or 360 rewards respectively.

Figure 8A illustrates two key effects. First, all animals eventually reduced lever pressing with time,

thus demonstrating extinction of the previously learned responses. Second, the effect of devaluation

on initial testing trials depended on the amount of training. In particular, in the case of animals that

received moderate amount of training (top left display) the number of responses in the first bin was

much lower for the devaluation group than control group. By contrast, highly trained animals (top

right display) produced more similar numbers of responses in the first bin irrespective of devaluation.

Such production of actions despite their consequence being no longer desired is considered as a

hallmark of habit formation.

The model can also produce insensitivity to devaluation with extensive training. Although the

experimental tasks involving pressing levers multiple times is not identical to choosing intensity of a

single action, such tasks could be conceptualized as a choice of the frequency of pressing a lever,

that could also be described by a single number a. Furthermore, the average reward rate experi-

enced by an animal in paradigms typically used in studies of habit formation (variable interval sched-

ules that will be explained in Discussion) may correspond to a non-monotonic function similar to that
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in Figure 7A, because in these paradigms the reward per unit of time increases with frequency of

lever press only to a certain point, but beyond certain frequency, there is no benefit of pressing

faster.

To simulate the experiment described above, the model was trained either for 120 trials (bottom

left display in Figure 8A) or 360 trials (bottom right display). During the training the reward

depended on action as in Figure 7A. Following this training, the model was tested on 180 trials on

which reward was not delivered, so in simulations r ¼ �a reflecting just a cost connected with mak-

ing an effort. To simulate devaluation, the expectation of reward was set to 0.

Bottom displays in Figure 8A show the average action intensity produced by the model, and they

reproduce qualitatively the key two effects in the top displays. First, the action intensity decreased

with time, because the valuation and goal-directed systems learned that the reward was no longer

available. Second, the action intensity just after devaluation was higher in the highly trained group

(bottom right display) than in moderately trained group (bottom left display). This effect was pro-

duced by the model because after 360 trials of training the variance Sh in the habit system was much

lower than after 120 trials (right display in Figure 7D), so after the extended training, the action
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Figure 8. Comparison of experimentally observed lever pressing (top displays) and action intensity produced by the model (bottom displays). (A)

Devaluation paradigm. Top displays replot data represented by open shapes in Figure 1 in a paper by Dickinson et al., 1995. Bottom displays show

the average action intensity produced by the model across bins of 30 trials of the testing period. Simulations were repeated 10 times, and error bars

indicate standard deviation across simulations. (B) Pavlovian-instrumental transfer. Top display replots the data represented by solid line in Figure 1 in a

paper by Estes, 1943. Bottom displays show the average action intensity produced by the model across bins of 10 trials of the testing period.

Simulations were repeated 10 times, and error bars indicate standard error across simulations.
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intensity was to a larger extent determined by the habit system, which was not affected by

devaluation.

The model can be easily extended to capture the phenomenon of Pavlovian-instrumental transfer.

This phenomenon was observed in an experiment that consisted of three stages (Estes, 1943). First,

animals were trained to press a lever to obtain a reward. Second, the animals were placed in a cage

without levers, and trained that a conditioned stimulus predicted the reward. Third, the animals

were placed back to a conditioning apparatus, but no reward was given for lever pressing. Top dis-

play in Figure 8B shows the numbers of responses in that third stage, and as expected they gradu-

ally decreased as animals learned that no reward was available. Importantly, in the third and fifth

intervals of this testing phase the conditioned stimulus was shown (highlighted with pink background

in Figure 8B), and then the lever pressing increased. Thus the learned association between the con-

ditioned stimulus and reward influenced the intensity of actions produced in the presence of the

stimulus.

The bottom display of Figure 8B shows the action intensity produced by the model in simulations

of the above paradigm. As described in Materials and methods, the valuation system learned the

rewards associated with two states: presence of a lever, and the conditioned stimulus. During the

first stage (operant conditioning), the reward expectation computed by the valuation system drove

action planning, while in the second stage (classical conditioning), no action was available, so the val-

uation system generated predictions for the reward without triggering action planning. In the third

stage (testing), on the highlighted intervals on which the conditioned stimulus was present, the

expected reward v was increased, because it was a sum of rewards associated with both states. Con-

sequently, the actor computed that a higher action intensity was required to obtain a bigger reward,

because the goal-directed system assumes that the action intensity is proportional to the mean

reward (orange Equation 3.2). In summary, the model explains the Pavlovian-instrumental transfer by

proposing that the presence of the conditioned stimulus increases the reward expected by the valu-

ation system, which results in actor selecting higher action intensity to obtain this anticipated

reward.

Extending the model to choice between two actions
This section shows how models developed within the DopAct framework can also describe more

complex tasks with multiple actions and multiple dimensions of state. We consider a task involving

choice between two options, often used in experimental studies, as it allows illustrating the generali-

zation, and at the same time results in a relatively simple model. This section will also show that the

models developed in the framework can under certain assumptions be closely related to previously

proposed models of reinforcement learning and habit formation.

To make dimensionality of all variables and parameters explicit, we will denote vectors with a bar

and matrices with a bold font. Thus s
�
is a vector where different entries correspond to intensities of

different stimuli in an environment, and a
�
is a vector where different entries correspond to intensities

of different actions. The model is set up such that only one action can be chosen, so following a

decision, ai ¼ 1 for the chosen action i, while for other actions aj 6¼i ¼ 0. Thus symbol a
�
still denotes

action intensity, but the intensity of an action only takes binary values once an action has been

chosen.

Equation 9.1 in Figure 9A shows how the definitions of the probability distributions encoded by

the goal-directed and habit systems can be generalized to multiple dimensions. Orange Equation

9.1 states that the reward expected by the goal-directed system has mean a
�T

Qs
�
, where Q is now a

matrix of parameters. This notation highlights the link with the standard reinforcement learning,

where the expected reward for selecting action i in state j is denoted by Qi;j: Note that if a
�
and s

�
are

both binary vectors with entries i and j equal to 1 in the corresponding vectors, and all other entries

equal to 0, then a
�T

Qs
�
is equal to the element Qi;j of matrix Q.

In the model, the prior probability is proportional to a product of three distributions. The first of

them is encoded by the habit system and given in blue Equation 9.1. The expected action intensity

encoded in the habit system has mean Hs
�
, and this notation highlights the analogy with a recent

model of habit formation (Miller et al., 2019) where a tendency to select action i in state j is also

denoted by Hi;j. Additionally, we introduce another prior given in Equation 9.2, which ensures that
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only one action has intensity significantly deviating from 0. Furthermore, to link the framework with

classical reinforcement learning, we enforce a third condition ensuring that action intensity remains

between 0 and 1 (Equation 9.3). These additional priors will often result in one entry of a
�
converging

to 1, while all other entries decaying towards 0 due to competition. Since in our simulations we also

use a binary state vector, the reward expected by the goal-directed system will often be equal to Qi;j

as in the classical reinforcement learning (see paragraph above).

Let us now derive equations describing inference and learning for the above probabilistic model.

Substituting probability densities from Equations 9.1 and 9.2 into the objective function of Equation

4.1, we obtain Equation 9.4 in Figure 9B. To ensure that action intensity remained between 0 and 1

(Equation 9.3), ai was set to one of these values if it exceeded the range during numerical

integration.

To obtain the equations describing action planning or learning, we need to compute derivatives

of F over vectors or matrices. The rules for computing such derivatives are natural generalizations of

the standard rules and they can be found in a tutorial paper (Bogacz, 2017). During planning, the

action intensity should change proportionally to a gradient of F, which is given in Equation 9.5,

| , ̅ = ; ̅, Σ | ̅ = ; ̅, ΣDistribu�ons:

Addi�onal priors: = exp −

= 0 for  < 0 or  > 1

Planning:

Learning:

̇ ≈
Σ

̅ +
1

Σ
̅

∆ , ~ − , ∆ ∗, ~ ∗ − ∗,

(9.1)

(9.2)

(9.3)

(9.9)

(9.10)

̅ ̅

9.1-9.2 

to 4.1:

∆ ~ = ̅ ∆ ~ ~ ̅ ̅

= −ln Σ −
− ̅

Σ
− ln Σ −

− ̅ − ̅

Σ
−

̇ = = ̅ + ⁄̅ − Σ −

= − ̅ /Σ ̅ = − ̅

∆Σ ~
Σ

~ ̅ ̅ − Σ∆Σ ~
Σ

~ Σ − Σ

Planning:

Learning:

Errors:

(9.4)

(9.5)

(9.6)

(9.7)

(9.8)

B)

A)

C)

Figure 9. Description of the model of choice between two actions. (A) Probability distributions assumed in the model. (B) Details of the algorithm. (C)

Approximation of the algorithm. In blue Equation 9.10, * indicates that the parameters are updated for all actions.
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where the prediction errors are defined in Equations 9.6. These equations have an analogous form

to those in Figure 6A, but are generalized to matrices. The only additional element is the last term

in Equation 9.5, which ensures competition between different actions, i.e. a1 will be decreased pro-

portionally to a2, and vice versa. During learning, the parameters need to be updated proportionally

to the corresponding gradients of F, which are given in Equations 9.7 and 9.8. Again, these equa-

tions are fully analogous to those in Figure 6A.

Both action selection and learning in the above model share similarities with standard models of

reinforcement learning and a recent model of habit formation (Miller et al., 2019). To see which

action is most likely to be selected in the model, it is useful to consider the evolution of action inten-

sity at the start of a trial, when ai » 0, because the action with a largest initial input is likely to win the

competition and be selected. Substituting orange Equation 9.6 into Equation 9.5 and setting ai ¼ 0,

we obtain Equation 9.9 in Figure 9C. This equation suggests that probabilities of selecting actions

depend on a sum of inputs form the goal-directed and habit systems weighted by their certainty,

analogously as in a model by Miller et al., 2019. There are also similarities in the update rules: if

only single elements of vectors a
�
and s

�
have non-zero values ai ¼ 1 and sj ¼ 1, then substituting

Equations 9.6 into 9.7 and ignoring constants gives Equations 9.10. These equations suggest that

the parameter Qi;j describing expected reward for action i in state j is modified proportionally to a

reward prediction error, as in classical reinforcement learning. Additionally, for every action and cur-

rent state j the parameter describing a tendency to take this action is modified proportionally to a

prediction error equal to a difference between the intensity of this action and the intensity expected

by the habit system, as in a model of habit formation (Miller et al., 2019).

The similarity of a model developed in the DopAct framework to classical reinforcement learning,

which has been designed to maximize resources, highlights that the model also tends to maximize

resources, when animal’s reserves are sufficiently low. But the framework is additionally adaptive to

the levels of reserves: If the reserves were at the desired level, then R ¼ 0 during action planning, so

according to Equation 9.9, the goal-directed system would not suggest any action.

Let us now consider how the inference and learning can be implemented in a generalized version

of the network described previously, which is shown in Figure 10A. In this network, striatum, output

nuclei and thalamus include neural populations selective for the two alternative actions (shown in

vivid and pale colours in Figure 10A), as in standard models of action selection in the basal ganglia

(Bogacz and Gurney, 2007; Frank et al., 2007; Gurney et al., 2001). We assume that the connec-

tions between these nuclei are within the populations selective for a given action, as in previous

models (Bogacz and Gurney, 2007; Frank et al., 2007; Gurney et al., 2001). Additionally, we

assume that sensory cortex includes neurons selective for different states (shown in black and grey in

,

Goal Habit

−

Σ

1/Σ

,

Cortex

Striatum

Thalamus

Dopamine

Output

Reward

A) B)

∆ ~ − ̅

= − ̅ (10.1)

(10.2)

Approximate error:

Approximate learning:

Σ

Figure 10. Implementation of the model of choice between two actions. (A) Mapping of the algorithm on network architecture. Notation as in

Figure 5B. (B) An approximation of learning in the habit system.
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Figure 10A), and the parameters Qi;j and Hi;j are encoded in cortico-striatal connections. Then, the

orange and blue terms in Equation 9.5 can be computed by the striatal neurons in goal-directed and

habit systems in exactly analogous way as in the network inferring action intensity, and these terms

can be integrated in the output nuclei and thalamus. The last term in Equation 9.5 corresponds to

mutual inhibition between the populations selective for the two actions, and such inhibition could be

provided by inhibitory projections that are presents in many different regions of this circuit, e.g. by

co-lateral projections of striatal neurons (Preston et al., 1980) or via a subthalamic nucleus, which

has been proposed to play role in inhibiting non-selected actions (Bogacz and Gurney, 2007;

Frank et al., 2007; Gurney et al., 2001).

The prediction error in the goal-directed system (orange Equation 9.6) could be computed

locally, because the orange dopaminergic neurons in Figure 10A receive inputs encoding all terms

in the equation. During learning, the prediction error in the goal-directed system modulates plastic-

ity of the corresponding cortico-striatal connections according to orange Equation 9.7, which

describes a standard tri-factor Hebbian rule (if following movement the striatal neurons encode cho-

sen action, as assumed in Figure 5C).

The prediction error in the habit system (blue Equation 9.6) is a vector, so computing it explicitly

would also require multiple populations of dopaminergic neurons in the habit system selective for

available actions, but different dopaminergic neurons in the real brain may not be selective for differ-

ent actions (da Silva et al., 2018). Nevertheless, learning in the habit system can be approximated

with a single dopaminergic population, because the prediction error d
�
h has a characteristic structure

with large redundancy. Namely, if only one entry in the vectors a
�
and s

�
is equal to 1 and other

entries to 0, then only one entry in d

�
h corresponding to the chosen action is positive, while all other

entries are negative (because parameters Hi;j stay in a range between 0 and 1 when initialized within

this range and updated according to blue Equation 9.7). Hence, we simulated an approximate

model just encoding the prediction error for the chosen action (Equation 10.1). With such a single

modulatory signal, the learning rules for striatal neurons in the habit system have to be adjusted so

the plasticity has opposite directions for the neurons selective for the chosen and the other actions.

Such modified rule is given in Equation 10.2 and corresponds to tri-factor Hebbian learning (if striatal

neurons in the habit system have activity proportional to a
�
during learning, as we assumed for the

goal-directed system). Thanks to this approximation, the prediction error and plasticity in the habit

system take a form that is more analogous to that in the goal-directed system. When the prediction

error in the habit system is a scalar, the learning rule for the variance parameter (blue Equation 9.8)

becomes the same as in the model in the previous section (cf. blue Equation 6.5).

Materials and method section provides the description of the valuation system in this model, and

describes details of the simulations.

Simulations of choice between two actions
To illustrate predictions made by the model, we simulated it in a probabilistic reversal task. On each

trial, the model was ’presented’ with one of two ’stimuli’, that is one randomly chosen entry of vector

s
�
was set to 1, while the other entry was set to 0. On the initial 150 trials, the correct response was

to select action 1 for stimulus 1 and action 2 for stimulus 2, while on the subsequent trials, the cor-

rect responses were reversed. The mean reward was equal to 1 for a correct response and 0 for an

error. In each case, a Gaussian noise (with standard deviation sr ¼ 0:5) was added to the reward.

Figure 11A shows changes in action intensity and inputs from goal-directed and habit systems as

a function of time during planning on different trials within a simulation. On an early trial (left display)

the changes in action intensity were primarily driven by the goal-directed system. The intensity of

the correct action converged to 1, while it stayed at 0 for the incorrect one. After substantial training

(middle display), the changes in action intensity were primarily driven by the faster habit system. Fol-

lowing a reversal (right display) one can observe a competition between the two systems: Although

the goal-directed system had already learned the new contingency (solid orange curve), the habit

system still provided larger input to the incorrect action node (dashed blue curve). Since the habit

system was faster, the incorrect action had higher intensity initially, and only with time, the correct

action node received input from the goal-directed system, and inhibited the incorrect one.
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Figure 11B shows how parameters in the model changed over trials. Left display illustrates

changes in sample cortico-striatal weights in the three systems. The valuation system rapidly learned

the reward available, but after reversal this estimate decreased, as the model persevered in choos-

ing the incorrect option. Once the model discovered the new rule, the estimated value of the stimu-

lus increased. The goal-directed system learned that selecting the first action after the first stimulus

gave higher rewards before reversal, but not after. The changes in the parameters of the habit sys-

tem followed those in the goal-directed system. The right display shows that the variance estimated

by the habit system initially decreased, but then increased several trials after the reversal, when the

goal-directed system discovered the new contingency, and thus the selected actions differed from

the habitual ones. Figure 11C shows an analogous pattern in dopaminergic activity, where the neu-

rons in the habit system signalled higher prediction errors following a reversal. This pattern of pre-

diction errors is unique to the habit system, as the prediction errors in the goal-directed system

(orange curve) fluctuated throughout the simulation following the fluctuations in reward. The

increase in dopaminergic activity in the habit system following a reversal is a key experimental pre-

diction of the model, to which we will come back in Discussion.

Let us consider the mechanisms of reversal in the model. Since the prediction errors in the habit

system do not directly depend on rewards, the habit system would not perform reversal on its own,

and the goal-directed system is necessary to initiate the reversal. This feature is visible in simulations,
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Figure 11. Simulation of the model of choice between two actions. (A) Changes in action intensity and inputs from the goal-directed and habit

systems, defined below Equation 9.9. Solid lines correspond to a correct action and dashed lines to an error. Thus selecting action 1 for stimulus 1 (or

action 2 for stimulus 2) corresponds to solid lines before reversal (left and middle displays) and to dashed lines after reversal (right display). (B) Changes

in model parameters across trials. Dashed black lines indicate a reversal trial. (C) Maximum values of prediction errors during action planning on each

simulated trial.
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where just after the reversal the agent was still selecting the same actions as before, so the habits

were still being strengthen rather weakened (the blue curve in left display of Figure 11B still

increased for ~20 trials after the reversal). When the goal-directed system learned that the previously

selected actions were no longer rewarded, the tendency to select them decreased, and other

actions had higher chances of being selected due to noise (although the amount of noise added to

the choice process was constant, there was a higher chance for noise to affect behaviour, because

the old actions were now suggested only by the habit rather than both systems). Once the goal-

directed system found that the actions selected according to new contingency gave rewards, the

probability of selecting action according to the old contingency decreased, and only then the habit

system slowly unlearned the old habit.

It is worth adding that the reversal was made harder by the fact that a sudden change in reward

increased the uncertainty of the goal-directed system (the orange curve in the right display of

Figure 11B increased after reversal), which actually weakened the control by that system. Neverthe-

less, this increase of uncertainty was brief, because the goal-directed system quickly learned to pre-

dict rewards in the new contingency and regained its influence on choices.

Discussion
In this paper, we proposed how an action can be identified through Bayesian inference, where the

habit system provides a prior and the goal-directed system represents reward likelihood. Within the

DopAct framework, the goal-directed and habit systems may not be viewed as fundamentally differ-

ent systems, but rather as analogous segments of neural machinery performing inference in a hierar-

chical probabilistic model (Figure 1A), which correspond to different levels of hierarchy.

In this section, we discuss the relationship of the framework to other theories and experimental

data, mechanisms of habit formation, and suggest experimental predictions and directions for future

work.

Relationship to other theories
The DopAct framework combines elements from four theories: reinforcement learning, active infer-

ence, habit formation, and planning as inference. For each of the theories we summarize key similari-

ties, and highlight the ways in which the DopAct framework extends them.

As in classical reinforcement learning (Houk et al., 1995; Montague et al., 1996), in the DopAct

framework the dopaminergic neurons in the valuation and goal-directed systems encode reward pre-

diction errors, and these prediction errors drive learning to improve future choices. However, the

key conceptual difference of the DopAct framework is that it assumes that animals aim to achieve a

desired level of reserves (Buckley et al., 2017; Hull, 1952; Stephan et al., 2016), rather than always

maximize acquiring resources. It has been proposed that when a physiological state is considered,

the reward an animal aims to maximize can be defined as a reduction of distance between the cur-

rent and desired levels of reserves (Juechems and Summerfield, 2019; Keramati and Gutkin,

2014). Under this definition, a resource is equal to such subjective reward only if consuming it would

not bring the animal beyond its optimal reserve level. When an animal is close to the desired level,

acquiring a resource may even move the animal further from the desired level, resulting in a negative

subjective reward. As the standard reinforcement learning algorithms do not consider physiological

state, they do not always maximize the subjective reward defined in this way. By contrast, the Dop-

Act framework offers flexibility to stop acquiring resources, when the reserves reach the desired

level.

The DopAct framework relies on a key high-level principle from the active inference theory (Fris-

ton, 2010) that the prediction errors can be minimized by both learning and action planning. Fur-

thermore, the network implementations of the proposed models share a similarity with predictive

coding networks that the neurons encoding prediction errors affect both the plasticity and the activ-

ity of its target neurons (Friston, 2005; Rao and Ballard, 1999). A novel contribution of this paper is

to show how these principles can be realized in anatomically identified networks in the brain.

The DopAct framework shares a feature of a recent model of habit formation (Miller et al., 2019)

that learning in the habit system is driven by prediction errors that do not depend on reward, but

rather encode the difference between the chosen and habitual actions. The key new contribution of
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this paper is to propose how such learning can be implemented in the basal ganglia circuit including

multiple populations of dopaminergic neurons encoding different prediction errors.

Similarly as in the model describing goal-directed decision making as probabilistic inference

(Solway and Botvinick, 2012), the actions selected in the DopAct framework maximize a posterior

probability of action given the reward. The new contribution of this paper is making explicit the

rationale for why such probabilistic inference is the right thing for the brain to do: The resource that

should be acquired in a given state depends on the level of reserves, so the inferred action should

depend on the reward required to restore the reserves. We also proposed a detailed implementa-

tion of the probabilistic inference in the basal ganglia circuit.

It is useful to discuss the relationship of the DopAct framework to several other theories. The

tonic level of dopamine has been proposed to determine the vigour of movements (Niv et al.,

2007). In our model selecting action intensity, the dopaminergic signals in the valuation and goal-

directed systems indeed influence the resulting intensity of movement, but in the DopAct frame-

work, it is the phasic rather than tonic dopamine that determines the vigour, in agreement with

recent data (da Silva et al., 2018). It has been also proposed that dopamine encodes incentive

salience of the available rewards (Berridge and Robinson, 1998; McClure et al., 2003). Such encod-

ing is present in the DopAct framework, where the prediction error in the goal-directed system

depends on whether the available resource is desired by an animal.

Relationship to experimental data
To relate the DopAct framework to experimental data, we need to assume a particular mapping of

different systems on anatomically defined brain regions. Thus we assume that the striatal neurons in

valuation, goal-directed, and habit systems can be approximately mapped on ventral, dorsomedial,

and dorsolateral striatum. This mapping is consistent with the pattern of neural activity in the stria-

tum, which shifts from encoding reward expectation to movement as one progresses from ventral to

dorsolateral striatum (Burton et al., 2015), and with increased activity in dorsolateral striatum during

habitual movements (Tricomi et al., 2009). This mapping is also consistent with the observation that

deactivation of dorsomedial striatum impairs learning which action leads to larger rewards

(Yin et al., 2005), while lesion of dorsolateral striatum prevents habit formation (Yin et al., 2004).

Furthermore, we will assume that dopaminergic neurons in valuation, goal-directed, and habit sys-

tems can be mapped on a spectrum of dopaminergic neurons ranging from ventral tegmental area

(VTA) to substantia nigra pars compacta (SNc). VTA is connected with striatal regions we mapped on

the valuation system, while SNc with those mapped on the habit system (Haber et al., 2000), so we

assume that dv and dh are represented in VTA and SNc respectively. Such mapping in consistent with

lesions to SNc preventing habit formation (Faure et al., 2005). The mapping of the dopaminergic

neurons from the goal-directed system is less clear, so let us assume that these neurons may be

present in both areas.

The key prediction of the DopAct framework is that the dopaminergic neurons in the valuation

and goal-directed systems should encode reward prediction errors, while the dopaminergic neurons

in the habit system should respond to non-habitual actions. This prediction can be most directly

compared with the data in a study where rewards and movements have been dissociated. That study

employed a task in which mice could make spontaneous movements and rewards were delivered at

random times (Howe and Dombeck, 2016). It has been observed that a fraction of dopaminergic

neurons had increased responses to rewards, while a group of neurons responded to movements.

Moreover, the reward responding neurons were located in VTA while most movement responding

neurons in SNc (Howe and Dombeck, 2016). In that study the rewards were delivered to animals

irrespectively of movements, so the movements they generated were most likely not driven by pro-

cesses aiming at achieving reward (simulated in this paper), but rather by other inputs (modelled by

noise in our simulations). To relate this task to the DopAct framework, let us consider the prediction

errors likely to occur at the times of reward and movement. At the time of reward the animal was

not able to predict it, so dv>0; dg>0, but it was not necessarily making any movements dh ¼ 0, while

at the time of a movement the animal might have not expected reward dv ¼ dg ¼ 0, but might have

made non-habitual movements dh>0. Hence the framework predicts separate groups of dopaminer-

gic neurons to produce responses at times of reward and movements, as experimentally observed

(Howe and Dombeck, 2016). Furthermore, the peak of the movement related response of SNc neu-

rons was observed to occur after the movement onset (Howe and Dombeck, 2016), which suggests
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that most of this dopaminergic activity was a response to a movement rather than activity initiating a

movement. This timing is consistent with the role of dopaminergic neurons in the habit system,

which compute a movement prediction error, rather than initiate movements.

While discussing dopaminergic neurons, one has to mention the influential studies showing that

VTA neurons encode reward prediction error (Eshel et al., 2016; Schultz et al., 1997; Tobler et al.,

2005). So for completeness, let us reiterate that in the DopAct framework the valuation system is

similar to the standard temporal difference learning model, hence it inherits the ability to account

for the dopaminergic responses to unexpected rewards previously explained with that model

(Figure 7B).

The DopAct framework also makes predictions on dopaminergic responses during movements

performed to obtain rewards. In presented simulations, such responses were present in all systems

(Figure 7B–C), and indeed responses to reward-directed movements were observed experimentally

in both VTA and SNc (Engelhard et al., 2019; Schultz, 1986). The framework predicts that the

responses to movements should be modulated by the magnitude of available reward in the valuation

and goal-directed systems, but not in the habit system. This prediction can be compared with data

from a task in which animals could press one of two levers that differed in magnitude of resulting

rewards (Jin and Costa, 2010). So for this task, the framework predicts that the dopaminergic neu-

rons in the valuation and goal-directed systems should respond differently depending on which lever

was pressed, while the dopaminergic response in the habit system should depend just on action

intensity but not reward magnitude. Indeed, a diversity of dopaminergic neurons have been

observed in SNc, and the neurons differed in whether their movement related response depended

on reward available (Figure 4j in the paper by Jin and Costa, 2010).

In the DopAct framework, the activity of dopaminergic neurons in the goal-directed system is nor-

malized by the uncertainty of that system. Analogous scaling of dopaminergic activity by an estimate

of reward variance is also present in a model by Gershman, 2017. He demonstrated that such scal-

ing is consistent with an experimental observation that dopaminergic responses adapt to the range

of rewards available in a given context (Tobler et al., 2005).

In the DopAct framework the role of dopamine during action planning is specific to preparing

goal-directed but not habitual movements (Figure 7E). Thus the framework is consistent with an

observation that blocking dopaminergic transmission slows responses to reward-predicting cues

early in training, but not after extensive training, when the responses presumably became habitual

(Choi et al., 2005). Analogously, the DopAct framework is consistent with an impairment in Parkin-

son’s disease for goal-directed but not habitual choices (de Wit et al., 2011) or voluntary but not

cue driven movements (Johnson et al., 2016). The difficulty in movement initiation in Parkinson’s

disease seems to depend on whether the action is voluntary or in response to a stimulus, so even

highly practiced movements like walking may be difficult if performed voluntarily, but easier in

response to auditory or visual cues (Rochester et al., 2005). Such movements performed to cues

are likely to engage the habit system, because responding to stimuli is a hallmark of habitual behav-

iour (Dickinson and Balleine, 2002).

Finally, let us discuss a feature of the DopAct framework related to the dynamics of competition

between systems during action planning. Such competition is illustrated in the right display of

Figure 11A, where after a reversal, the faster habit system initially prepared an incorrect action, but

later the slower goal-directed system increased the intensity of the correct action. Analogous behav-

iour has been shown in a recent study, where human participants were extensively trained to make

particular responses to given stimuli (Hardwick et al., 2019). After a reversal, they tended to pro-

duce incorrect habitual actions when required to respond rapidly, but were able to produce the cor-

rect actions given sufficient time.

Mechanisms of habitual behaviour
Since the mechanisms of habit formation in the DopAct framework fundamentally differ from a the-

ory widely accepted by a computational neuroscience community (Daw et al., 2005), this section is

dedicated to comparing the two accounts, and discussing the properties of the habit system in the

framework.

An influential theory suggests that two anatomically separate systems in the brain underlie goal-

directed and habitual behaviour and a competition between them is resolved according to uncer-

tainty of the systems (Daw et al., 2005). The DopAct framework agrees with these general principles
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but differs from the theory of Daw et al., 2005 in the nature of computations in these systems, and

their mapping on brain anatomy. Daw et al., 2005 proposed that goal-directed behaviour is con-

trolled by a cortical model-based system that learns the transitions between states resulting from

actions, while habitual behaviour arises from a striatal model-free system that learns policy according

to standard reinforcement learning. By contrast, the DopAct framework suggests that goal-directed

behaviour in simple lever-pressing experiments does not require learning state transitions, but such

behaviour can be also supported by a striatal goal-directed system that learns expected rewards

from actions in a way similar to standard reinforcement learning models. So in the DopAct frame-

work it is the goal-directed rather than habit system that learns according to reward prediction error

encoded by dopaminergic neurons. Furthermore, in the DopAct framework (following the model by

Miller et al., 2019) habits arise simply from repeating actions, so their acquisition is not directly

driven by reward prediction error, unlike in the model of Daw et al., 2005.

The accounts of habit formation in the DopAct framework and the model of Daw et al., 2005

make different predictions. Since the theory of Daw et al., 2005 assumes that a system underlying

habitual behaviour learns with standard reinforcement learning, it predicts that striatal neurons sup-

porting habitual behaviour should receive reward prediction error. However, the dopaminergic neu-

rons that have been famously shown to encode reward prediction error (Schultz et al., 1997) are

located in VTA, which does not send major projections to the dorsolateral striatum underlying habit-

ual behaviour. These striatal neurons receive dopaminergic input from SNc (Haber et al., 2000), and

it is questionable to what extent dopaminergic neurons in SNc encode reward prediction error.

Although such encoding has been reported (Zaghloul et al., 2009), studies which directly compared

the activity of VTA and SNc neurons demonstrated that neurons encoding reward prediction error

are significantly more frequent in VTA than SNc (Howe and Dombeck, 2016; Matsumoto and Hiko-

saka, 2009). So the striatal neurons underlying habitual behaviour do not seem to receive much of

the teaching signal that would be expected if habit formation arose from the processes of reinforce-

ment learning proposed by Daw et al., 2005. By contrast, the DopAct framework assumes that the

habit system learns on the basis of a teaching signal encoding how the chosen action differs from

the habitual one, so it predicts that SNc neurons should respond to non-habitual movements. It has

indeed been observed that the dopaminergic neurons in SNc respond to movements (Howe and

Dombeck, 2016; Schultz et al., 1983), but it has not been systematically analysed yet if these

responses preferentially encode non-habitual movements (we will come back to this key prediction

in the next section).

It is worth discussing how the habits may be suppressed if previously learnt habitual behaviour is

no longer appropriate. In the DopAct framework, old habits die hard. When the habitual behaviour

is no longer rewarded, the negative reward prediction errors do not directly suppress the behaviour

in the habit system. So, as mentioned at the end of the Results section, in order to reverse behav-

iour, the control cannot be completely taken over by the habit system, but the goal-directed system

needs to provide at least some contribution to action planning to initiate the reversal when needed.

Nevertheless, simulations presented in this paper show that for certain parameters the control of

habit system may be released when no longer required, and the model can reproduce the patterns

of behaviour observed in extinction experiments (Figure 8). However, simulations by Miller et al.,

2019 show that their closely related model can sometimes persist in habitual behaviour even if it is

not desired. Therefore, it is possible that there may exist other mechanisms that may help the goal-

directed system to regain control if habitual behaviour ceases to be appropriate. For example, it has

been proposed that a sudden increase in prediction errors occurring when environment changes

may attract attention and result in the goal-directed system taking charge of animals’ choices

(FitzGerald et al., 2014).

Finally, let us discuss the relationship of the DopAct framework to an observation that habits are

more difficult to produce in variable ratio schedules than variable interval schedules

(Dickinson et al., 1983). In the variable ratio schedules a lever press is followed by a reward with a

fixed probability p. By contrast in the variable interval schedule a lever press is followed by a reward

only if the reward is ’available’. Just after consuming a reward, lever pressing has no effect, and

another reward may become “available” as time goes on with a fixed probability per unit of time.

An elegant explanation for why habit formation depends on the schedule has been provided by

Miller et al., 2019, and a partially similar explanation can be given within the DopAct framework, as

we now summarize. Miller et al., 2019 noticed that reward rate as a function of action frequency
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follows qualitatively different relationships in different schedules. In particular, in the variable ratio

schedule the expected number of rewards per unit time is directly proportional to number of lever

presses, i.e. E rð Þ ¼ pa. By contrast, in the variable interval schedule, the reward rate initially increases

with the number of level presses, but beyond some frequency there is little benefit of responding

more often, so the reward rate is a nonlinear saturating function of action frequency. The model

selecting action intensity in the DopAct framework assumes a linear dependence of mean reward on

action intensity (orange Equation 3.2), so in the variable ratio schedule, it will learn q ¼ p, and then

predict mean reward accurately no matter what action intensity is selected. By contrast, in the vari-

able interval schedule the predictions will be less accurate, because the form of the actual depen-

dence of reward on action frequency is different to that assumed by the model. Consequently, the

reward uncertainty of the goal-directed system Sg is likely to be lower in the variable ratio than vari-

able interval schedule. This decreased uncertainty makes the goal-directed system less likely to give

in to the habit system, resulting in less habitual behaviour in the variable ratio schedule.

Experimental predictions
We start with describing two most critical predictions of the DopAct framework, testing of which

may validate or falsify the two key assumptions of the framework, and next we discuss other predic-

tions. The first key prediction of the DopAct framework is that the dopaminergic neurons in the habit

system should respond to movements more, when they are not habitual, e.g. at an initial phase of

task acquisition or after a reversal (Figure 11C). This prediction could be tested by monitoring the

activity of dopaminergic neurons projecting to dorsolateral striatum in a task where animals are

trained to perform a particular response for sufficiently long that it becomes habitual, and then the

required response is reversed. The framework predicts that these dopaminergic neurons should

have higher activity during initial training and in a period after the reversal, than during the period

when the action is habitual.

The second key prediction follows from a central feature of the DopAct framework that the

expectation of the reward in the goal-directed system arises from forming a motor plan to obtain it.

Thus the framework predicts that the dopaminergic responses in the goal-directed system to stimuli

predicting a reward should last longer if planning actions to obtain the reward takes more time, or if

an animal is prevented from making a response. One way to test this prediction would be to optoge-

netically block striatal neurons expressing D1 receptors in the goal-directed system for a fixed

period after the onset of a stimulus, so the action plan cannot be formed. The framework predicts

that such manipulation should prolong the response of dopaminergic neurons in that system.

Another way of testing this prediction would be to employ a task where goal-directed planning

becomes more efficient and thus shorter with practice. The framework predicts that in such tasks the

responses of dopaminergic neurons in the goal-directed system during action planning should get

briefer with practice, and their duration should be correlated with reaction time across stages of task

acquisition.

The DopAct framework also predicts distinct patterns of activity for different populations of

dopaminergic neurons. As already mentioned above, dopaminergic neurons in the habit system

should respond to movements more, when they are not habitual. When the movements become

highly habitual, these neurons should tend to more often produce brief decreases in response

(Figure 7C, right). Furthermore, when the choices become mostly driven by the habit system, then

dopaminergic neurons in the goal-directed system should no longer signal reward prediction error

after stimulus (Figure 7C, right). By contrast, the dopaminergic neurons in the valuation system

should signal reward prediction error after stimulus even once the action becomes habitual

(Figure 7B).

Patterns of prediction errors expected from the DopAct framework could also be investigated

with fMRI. Models developed within the framework could be fitted to behaviour of human partici-

pants performing choice tasks. Such models could then generate patterns of different prediction

errors (dv, dg, dh) expected on individual trials. Since prediction errors encoded by dopaminergic neu-

rons are also correlated with striatal BOLD signal (O’Doherty et al., 2004), one could investigate if

different prediction errors in the DopAct framework are correlated with BOLD signal in different

striatal regions.

In the DopAct framework dopaminergic neurons increase the gain of striatal neurons during

action planning, only in the goal-directed but not in the habit system. Therefore, the framework
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predicts that the dopamine concentration should have a larger effect on the slope of firing-Input

curves for the striatal neurons in the goal-directed than the habit system. This prediction may seem

surprising, because striatal neurons express dopaminergic receptors throughout the striatum

(Huntley et al., 1992). Nevertheless, it is consistent with reduced effects of dopamine blockade on

habitual movements (Choi et al., 2005) that are known to rely on dorsolateral striatum (Yin et al.,

2004). Accordingly, the DopAct framework predicts that the dopaminergic modulation in dorsolat-

eral striatum should primarily affect plasticity rather than excitability of neurons.

Directions for future work
This paper described a general framework for understanding the function of dopaminergic neurons

in the basal ganglia, and presented simple models capturing only a subset of experimental data. To

describe responses observed in more realistically complex tasks, models could be developed follow-

ing a similar procedure as in this paper. Namely, a probabilistic model could be formulated for a

task, and a network minimizing the corresponding free-energy derived, simulated and compared

with experimental data. This section highlights key experimental observations the models described

in this paper are unable to capture, and suggests directions for developing models consistent with

them.

The presented models do not mechanistically explain the dependence of dopamine release in

ventral striatum on motivational state such as hunger or thirst (Papageorgiou et al., 2016). To

reproduce these activity patterns, it will be important to extend the framework to describe the com-

putations in the valuation system. It will also be important to better understand the interactions

between the valuation and goal-directed systems during the choice of action intensity. In the pre-

sented model, the selected action intensity depends on the value of the state estimated by the valu-

ation system, and conversely, the produced action intensity influences reward and thus the value

learned by the valuation system. In the presented simulations the parameters (e.g. learning rates)

were chosen such that the model learned to select action intensity giving highest reward, but such

behaviour was not present for all parameter values. Hence it needs to be understood how the inter-

actions between the valuation and goal-directed systems need to be set up so the model robustly

finds the action intensity giving the maximum reward.

The models do not describe how the striatal neurons distinguish whether dopaminergic predic-

tion error should affect their plasticity or excitability, and for simplicity, in the presented simulations

we allowed the weights to be modified only when reward was presented. However, the same dopa-

minergic signal after a stimulus predicting reward may need to trigger plasticity in one group of

striatal neurons (selective for a past action that led to this valuable state), and changes in excitability

in another group (selective for a future action). It will be important to further understand the mecha-

nisms which can be employed by striatal neurons to appropriately react to dopamine signals

(Berke, 2018; Mohebi et al., 2019).

The models presented in this paper described only a part of the basal ganglia circuit, and it will

be important to include also other elements of the circuit. In particular, this paper focussed on a sub-

set of striatal neurons expressing D1 receptors, which project directly to the output nuclei and facili-

tate movements, but another population expressing D2 receptors projects via an indirect pathway

and inhibits movements (Kravitz et al., 2010). Computational models suggest that these neurons

predominantly learn from negative feedback (Collins and Frank, 2014; Mikhael and Bogacz, 2016;

Möller and Bogacz, 2019) and it would be interesting include their role in preventing unsuitable

movements in the DopAct framework.

The basal ganglia circuit also includes a hyperdirect pathway, which contains the subthalamic

nucleus. It has been proposed that a function of the subthalamic nucleus is to inhibit non-selected

actions (Gurney et al., 2001), and the hyperdirect pathway may support the competition between

actions that is present in the framework. The subthalamic nucleus has also been proposed to be

involved in determining when the planning process should finish and action should be initiated

(Frank et al., 2007). For simplicity, in this paper the process of action planning has been simulated

for a fixed interval (until time t ¼ 2 in Figures 7 and 11). It will be important to extend the framework

to describe the mechanisms initiating an action. If actions were executed as soon as a motor plan is

formed, the increase in the habit prediction error would be briefer than that depicted in Figure 7C.

In such an extended model the valuation and goal-directed systems would also need to be modified

to learn to expect reward at a particular time after the action.
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The presented models cannot reproduce the ramping of dopaminergic activity, observed as ani-

mals approached rewards (Howe et al., 2013). To capture these data, the valuation system could

incorporate synaptic decay that has been shown to allow standard reinforcement learning models to

reproduce the ramping of prediction error (Kato and Morita, 2016).

It has been also observed that dopaminergic neurons respond not only to unexpected magnitude

of reward, but also when the type of reward differs from that expected (Takahashi et al., 2017). To

capture such prediction errors, the framework could be extended to assume that each system tries

to predict multiple dimensions of reward or movement (cf Gardner et al., 2018).

Finally, dopaminergic neurons also project to regions beyond basal ganglia, such as amygdala,

which plays a role in habit formation (Balleine et al., 2003), and cortex, where they have been pro-

posed to modulate synaptic plasticity (Roelfsema and van Ooyen, 2005). It would be interesting to

extend the DopAct framework to capture dopamine role in learning and action planning in these

regions.

Materials and methods
This section describes details of simulations of models developed within the DopAct framework for

two tasks: selecting action intensity and choice between two actions. The models were simulated in

Matlab (RRID:SCR_001622), and all codes are available at MRC Brain Network Dynamics Unit Data

Sharing Platform (https://data.mrc.ox.ac.uk/data-set/simulations-action-inference).

Selecting action intensity
We first describe the valuation system, and then provide details of the model in various simulated

scenarios.

The valuation system was based on the standard temporal difference model (Montague et al.,

1996). Following that model we assume that the valuation system can access information on how

long ago a stimulus was presented. In particular, we assume that time can be divided into brief inter-

vals of length I. The state of the environment is represented by a column vector s
�
v with entries cor-

responding to individual intervals, such that sv;1 ¼ 1 if the stimulus has been present in the current

interval, sv;2 ¼ 1 if the stimulus was present in the previous interval, etc. Although more realistic gen-

eralizations of this representation have been proposed (Daw et al., 2006; Ludvig et al., 2008), we

use this standard representation for simplicity.

Figure 12A lists equations describing the valuation system, which are based on temporal differ-

ence learning but adapted to continuous time. According to Equation 12.1, the estimate of the value

of state s converges in equilibrium to v ¼ w
�
s
�
v, where w

�
denotes a row vector of parameters

̇ = ̅ − (12.6)

(12.7)

̇ = ̅ −

̇ = + − −

∆ = − ̅

̇ ̅ = ̅ + ̅ − ̅

̇ = ̅

̇ = −

(12.1)

(12.2)

(12.3)

(12.4)

(12.5)

A) B)

Figure 12. Description of the valuation system. (A) Temporal difference learning model used in simulations of

action intensity selection. (B) A simplified model used in simulations of choice between two actions.
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describing how much reward can be expected after stimulus appearing in a particular interval. Equa-

tion 12.2 describes the dynamics of the prediction error in the valuation system, which converges to

a difference between total reward (r þ v) and the expectation of that reward made at a previous

interval (vt�I ), as in the standard temporal difference learning (Sutton and Barto, 1998). The weight

parameters are modified proportionally to the prediction error as described by Equation 12.3, where

av is a learning rate, and e
�
are eligibility traces associated with weights w

�
, which describe when the

weights can be modified. In basic reinforcement learning e
� ¼ s

�T

v , i.e. a weight can only be modified

if the corresponding state is present. Equation 12.4 describes the dynamics of the eligibility traces,

and if one ignored the first term on the right, it would converge to e
� ¼ s

�T

v . The first term on the right

of Equation 12.4 ensures that the eligibility traces persist over time, and parameter l describes what

fraction of the eligibility traces survives from one interval to the next (Ludvig et al., 2008). Such per-

sistent eligibility traces are known to speed up learning (Sutton and Barto, 1998). The first term on

the right of Equation 12.4 includes an eligibility trace from time t � I � 3t , that is from a time slightly

further than one interval ago, to avoid the influence of transient dynamics occurring at the transition

between intervals. It is also ensured in the simulations that parameters w
�
do not become negative,

as the desired reward value v computed by the valuation system should not be negative. Thus if any

element of w
�
becomes negative, it is set to 0. Finally, Equation 12.5 describes the dynamics of the

reward signal r, which follows the actual value to reward r0. This dynamics has been introduced so

that the reward signal rises with the same rate as the value estimate (the same time constant is used

in Equations 12.1 and 12.5), and these quantities can be subtracted to result in no prediction error

when the reward obtained is equal to that predicted by the valuation system.

In simulations involving selection of action intensity, the time represented by the valuation system

was divided into intervals of I ¼ 0:2. The stimulus was presented at time t ¼ 1, while the reward was

given at time t ¼ 2, thus the valuation system represented the value of 5 time intervals (i.e. vectors

w
�
, s
�
v and e

�
had 5 elements each). The parameters controlling retention of eligibility trace was set to

l ¼ 0:9. The state provided to the actor was equal to s ¼ 1 from time t ¼ 1 onwards. We assumed

that the intensity of action executed by the agent was equal to the inferred action intensity plus

motor noise with standard deviation sa ¼ 1 (this random number was added to action intensity at

time t ¼ 2). During intervals in which rewards were provided (from t ¼ 2 onwards) the parameters

were continuously updated according to Equations 6.8-9. In simulations the learning rates were set

to: av ¼ 0:5, ag ¼ 0:05, ah ¼ 0:02, aSg ¼ 0:05, aSh ¼ 0:1. The time constants were set to: t ¼ 0:05,

t d ¼ 0:02, and the differential equations were solved numerically using Euler method with integra-

tion step 0.001. The model parameters were initialized to: vi ¼ q ¼ 0:1, h ¼ 0, Sg ¼ 1 and Sh ¼ 100.

To simulate devaluation, the expectation of reward was set to 0 by setting vi ¼ q ¼ 0, as a recent

modelling study suggests that such scaling of learned parameters by motivational state is required

for reproducing experimentally observed effects of motivational state on dopaminergic responses

encoding reward prediction error (van Swieten and Bogacz, 2020).

In the simulations of Pavlovian-instrumental transfer, the valuation system was learning the values

of two states corresponding to the presence of the lever and the conditioned stimulus. Thus the

state vector s
�
v had 10 entries, where the first 5 entries were set to 1 at different intervals after ’lever

appearance’, while the other 5 entries were set to 1 at different intervals after conditioned stimulus.

Consequently, the vector of parameters of the valuation system w
�
also had 10 entries. The simula-

tions of the first stage (operant conditioning) consisted of 100 trials in which the model was trained

analogously as in the simulations described in the above paragraph. At this stage only first 5 entries

of vector s
�
v could take non-zero values, and hence only the first 5 entries of w

�
were modified. The

state provided to the actor was equal to s ¼ 1 when ’lever appeared’ that is from time t ¼ 1 onwards.

The simulations of the second stage (classical conditioning) consisted of 100 trials in which only the

valuation system was learning. At this stage, the conditioned stimulus was presented at time t ¼ 1,

and the reward r ¼ 1 was given at time t ¼ 2, thus sv;6 ¼ 1 for t 2 1; 1:2½ �; sv;7 ¼ 1 for t 2 1:2; 1:4½ �,
etc. The simulations of the third stage (testing) consisted of 60 trials in which only negative reward

accounting for effort r ¼ �a was given. On trials 21-30 and 41-50, both ’lever and conditioned stimu-

lus were presented’, that is sv;1 ¼ sv;6 ¼ 1 for t 2 1; 1:2½ �, etc., while on the other trials only the ’lever

was presented’. The model was simulated with the same parameters as described in the previous
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paragraph, except for modified values of two learning rates ag ¼ 0:015, ah ¼ 0:005, to reproduce the

dynamics of learning shown by experimental animals.

In all simulations in this paper, a constraint (or a ’hyperprior’) on the minimum value of the vari-

ance parameters was introduced, such that if Sg or Sh decreased below 0.2, it was set to 0.2.

Choice between two actions
Analogously, as in the previous section, we first describe the valuation system, and then provide the

details of the simulations.

In the simulations of choice, we used a simplified version of the valuation system, which for each

state j learns a single parameter wj (rather than the vector of parameters encoding the reward pre-

dicted in different moments in time). The equations describing this simplified valuation system are

shown in Figure 12B. According to Equation 12.6, the estimate of the value of state s converges in

equilibrium to v ¼ w
�
s
�
. Following reward delivery, parameters wj are modified according to Equation

12.7, where v is taken as the estimated value at the end of simulation of the planning phase on this

trial.

In order to simulate the actor, its description has been converted to differential equations in anal-

ogous way as in Figure 6C. At the end of the planning phase, Gaussian noise with standard devia-

tion sa ¼ 2 was added to all entries of the action vector (to allow exploration), and the action with

the highest intensity was ’chosen’ by the model. Subsequently, for the chosen action i the intensity

was set to ai ¼ 1, while for the other action it was set to ak 6¼i ¼ 0. For simplicity we did not explicitly

simulate the dynamics of the model after the delivery of reward r, but we computed the prediction

errors in the goal-directed and habit system in an equilibrium (orange Equation 9.6 and Equation

10.1), and updated the parameters. In simulations the learning rate in the valuation system was set

to av ¼ 0:5 on trials with dv>0, and to av ¼ 0:1 when dv � 0. Other learning rates were set to:

ag ¼ 0:1, ah ¼ 0:05, aS ¼ 0:01. The remaining parameters of the simulations had the same value as in

the previous section.
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