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What features of neural activity does the brain use to 
encode information about the external world? Ample 
evidence suggests that firing rates1,2 and temporal tun-

ing properties3,4 of individual neurons show robust correlations with 
external variables. These first-order features of neural activity could 
serve as neural codes that are read by downstream structures to sub-
sequently guide behavior5. Moreover, advances in in vivo multiunit 
recordings have allowed further appreciation for the role of neuro-
nal population dynamics in supporting internal representations6–8. 
The timescale at which population activity is organized may be crit-
ical. In particular, coincidental spiking at the timescale of a neuron’s 
membrane time constant (~10–30 ms for cortical neurons9) effec-
tively drives downstream receiver neurons5,10, can be parsed within 
network oscillations that pace firing of neuronal populations5 and 
can be rapidly stabilized through spike-timing-dependent plasticity 
(STDP)11,12. Indeed, millisecond-timescale coactivity is a hallmark 
of some neural codes13–15. Such short-timescale coactivity organizes 
the firing of neurons with related tuning to external variables, giv-
ing rise to robust population-based representations that are con-
gruent with those of their participating neurons14,16,17. In addition, 
millisecond-timescale coactivity could also play a primary role in 
encoding information. That is, groups of neurons may encode a 
variable as a function of their joint activity regardless of whether 
each neuron is individually tuned to this variable. While this type 
of emergent coactivity-based coding has been described for physi-
cally well-defined variables, such as specific sensory inputs and 
actions18–20, its possible cognitive function has not been explored.

Given the potential for rapid stabilization and retrieval of neural 
codes based on millisecond-timescale coactivity, such codes may 
support behavioral performance when animals must rapidly learn 
and flexibly retrieve salient information, a process we refer to here 
as ‘dynamic memory’. Converging evidence suggests a prominent 

role of the hippocampus for such rapid and flexible learning21–23, 
supporting models that frame the hippocampus as a fast learning 
system24. Moreover, neural activity in the hippocampus is orga-
nized into temporally precise coactivity patterns15,22,25. We therefore 
hypothesized that millisecond-timescale coactivity patterns in the 
hippocampus serve a primary role in encoding behaviorally rele-
vant information supporting dynamic memory. To test this hypoth-
esis, we developed a one-day, two-contingency discrimination 
task that we combined with multiunit recording of hippocampal 
CA1 neurons and causal optogenetic manipulation of intrahip-
pocampal synapses. Our findings demonstrate a role for emergent 
coactivity-based representations in encoding contingency informa-
tion and supporting dynamic memory retrieval.

Results
Mice learn and dynamically retrieve two new behavioral contin-
gencies every day. We first established a one-day behavioral para-
digm that recruits dynamic memory (Fig. 1). Mice were initially 
pretrained to collect a transiently available (5-s) drop of sucrose 
from a liquid dispenser after the presentation of an auditory cue 
(pretraining phase 1; Extended Data Fig. 1). Subsequently, ani-
mals experienced a new learning enclosure every day, which was 
defined by a new spatial topology, two new sets of wall-mounted 
LED displays and two newly positioned dispensers (pretraining 
phase 2; Extended Data Fig. 1). In this learning enclosure, animals 
encountered the following rule: immediately after tone presenta-
tion, one dispenser delivers a drop of sucrose solution, whereas the 
other dispenser simultaneously delivers a bitter (quinine) solution; 
both drops are transiently available. Importantly, the dispenser–
solution pairing was contingent on which of the two sets of LED 
cues was illuminated concurrently with the tone (Fig. 1a,b). When 
animals reached an average of 80% performance in this pretraining  
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Fig. 1 | Mice rapidly acquire and flexibly retrieve a one-day two-contingency memory. a, The two-learning contingency layout. a tone signaled that both 
outcome dispensers delivered a liquid drop, the identity of which (sucrose versus quinine) depended on the active set of LEDs. b, Schematic of an example 
learning enclosure. c, The three-stage task structure. Tone-defined trials occurred in learning and probe sessions, with drop outcomes only delivered during 
learning. Sleep/rest sessions were recorded before and after exploration and after learning. d, Example animal paths during trials in contingency X and 
contingency Y (correct paths, black; incorrect paths, red), which are overlaid on the overall animal path (gray) for one learning session. Black and blue/red 
circles represent the path starting points and the correct/incorrect ending points, respectively. e, Behavioral performance for contingency-defined correct 
dispensers during exploration and learning (n = 71 d, 15 mice). For each learning trial, a score of 1 indicates that mice successfully identified the correct 
(sucrose-delivering) dispenser, while a score of –1 indicates that mice opted for the incorrect (quinine-delivering) dispenser; behavioral performance is 
reported as the mean score per trial number across days across mice (see Methods). Because the correct dispenser in one contingency (for example, 
X) was the incorrect dispenser in the other (for example, Y), behavioral performance is shown with respect to the current contingency, with the y axis 
ranging from 1 (correct Y), to 0 (chance) to 1 (correct X). f, Behavioral performance during the memory probe test showing that animals identified the 
correct dispenser for a given contingency (mean performance, 0.12 ± 0.04). Left, color-coded raw data points represent individual mice; right, effect size 
for the difference against zero computed from 1,000 bootstrapped resamples, with the black dot representing the mean, the black ticks representing 95% 
confidence intervals and the filled curve representing the resampled mean difference distribution.
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phase, we then started the training phase, which included three 
stages every day (Fig. 1c). In the first stage, animals explored the 
new learning enclosure in two sessions, each with one of the two 
LED sets continuously illuminated, but without tone presentation 
or drop delivery, as well as another exploration session in a control 
(task-unrelated) enclosure (‘exploration’ stage; Fig. 1c and Extended 
Data Fig. 2a). In the second stage, animals learned to associate each 
LED set with the tone-triggered delivery of a selective drop out-
come at each dispenser over four sessions alternating between active 
LEDs (‘learning’ stage; Fig. 1c). We refer to these associations as 
LED-defined behavioral ‘contingencies’ (X and Y; Fig. 1a), with ani-
mals learning two new contingencies every day (Extended Data Fig. 
2b). During learning, mice rapidly developed a successful approach 
response to the correct (sucrose) dispenser over the incorrect (qui-
nine) dispenser in each contingency (Fig. 1d,e and Extended Data 
Fig. 2b). In the final stage conducted at the end of each day (1 h 
after the end of learning), memory for the newly learned contin-
gencies was tested in a probe session where the tone was presented 
without drop delivery while pseudorandomly switching between 
the two LED sets (‘probe’ stage; Fig. 1c). In these probe trials, mice 
continued to identify the correct dispenser (Fig. 1f and Extended 
Data Fig. 2c). Memory performance on a given day was unrelated 
to that on the previous day (Extended Data Fig. 3a) and held when 
averaging across all probe performances for each individual mouse 
(Extended Data Fig. 3b). Furthermore, while animals made more 
mistakes in the first probe trial following a switch in LEDs than in 
the other trials (Extended Data Fig. 3c), there was no deterioration 
of performance as the probe session progressed (Extended Data Fig. 
3d). Thus, mice successfully learned to discriminate two new behav-
ioral contingencies each day and flexibly retrieved a memory of this 
discrimination, providing a paradigm to study the neural substrates 
of dynamic memory.

Emergent millisecond-timescale coactivity discrimination of 
behavioral contingencies. To investigate whether an emergent 
coactivity code develops in our task, we monitored hippocampal 
CA1 neuronal ensembles during training days. We first trained 
a Bayesian classifier to decode the prevailing contingency on a 
trial-by-trial basis from the average firing rates of principal neu-
rons and short-timescale (25-ms) pairwise temporal correlations 
between neuronal spike trains. Shuffling temporal correlations 
across trials while preserving trial-by-trial average firing rates 

markedly impaired decoding of the ongoing contingency (Fig. 2a 
and Extended Data Fig. 4a). Moreover, contingency information in 
temporal correlations alone was drastically impaired when shift-
ing spikes to destroy short-timescale coactivity while maintain-
ing correlations due to slow fluctuations of population firing rate 
in each trial (Fig. 2b). Short-timescale correlations also had sig-
nificant explained variance for task contingencies (Fig. 2c). These 
results indicated the presence of contingency-related information in 
short-timescale coactivity beyond the information in single-neuron 
firing rates.

To investigate the task relevance of contingency-related coact-
ivity, we isolated coactivity patterns nested within 25-ms time 
windows26 separately in each contingency within the learning 
enclosure. We represented each pattern by a weight vector quan-
tifying the contribution of each neuron to the coactivity under-
pinning that pattern (Fig. 2d). These coactivity patterns differed 
from those extracted in the control enclosure (Fig. 2e,f), showing 
their spatial context-selective expression. In addition, some learn-
ing enclosure patterns discriminated the two contingencies, being 
selective to either X or Y (Fig. 2e,f and Extended Data Fig. 4b). To 
investigate the functional significance of such patterns, we com-
pared them to a matched group of learning enclosure patterns 
with high between-contingency similarity (Fig. 2e,f and Extended 
Data Fig. 4b). We refer to these as contingency-discriminating and 
contingency-invariant coactivity patterns, respectively. Neurons 
that contributed the most to a given pattern are henceforth referred 
to as ‘members’ of that pattern (see Methods).

We confirmed that members of the same contingency- 
discriminating, but not invariant, pattern were more correlated in 
one contingency than the other (Fig. 3a). Importantly, however, 
members of contingency-discriminating patterns were not indi-
vidually contingency selective (Fig. 3b and Extended Data Fig. 
4c) regardless of the membership threshold used (Extended Data  
Fig. 4d,e) and are hence separable from previously reported con-
textually modulated neurons27–29. Moreover, such coactivity-based 
contingency discrimination was not explained by differences in tem-
poral firing properties of individual member neurons between con-
tingencies (Fig. 3c–e). Furthermore, contingency-discriminating 
pattern members were not tuned to goal locations (Fig. 3f,g) and 
hence did not report trajectories to goals30. We also noted no dif-
ferences in the participation of neurons along the transverse axis 
of the CA1 to contingency-discriminating and invariant patterns  

Fig. 2 | CA1 coactivity-based discrimination of task contingencies. a, Data analysis with a bootstrap-coupled estimation (DaBEST) plot50 used to visualize 
the effect size of a Gaussian naive Bayesian classifier decoding contingencies during learning using a combination of Ca1 principal neuron firing rates 
and pairwise correlations. Top: raw data points for individual days (mean accuracy: actual = 66.5% ± 2.9%, shuffled correlations = 55.1% ± 1.7%, shuffled 
rates = 62.0% ± 2.5% and both shuffled = 48.3% ± 0.2%; N = 23 d from 10 mice). Bottom: effect size for the difference with respect to the left-most 
group (that is, ‘actual’) computed from 1,000 bootstrapped resamples; black dot, paired mean difference; black ticks, 95% confidence intervals; filled 
curve, resampled paired mean difference distribution. DaBEST plots are used from here onward (see Methods section “Statistics”). b, Decoding accuracy 
using 25-ms correlations compared to that with spikes shifted to maintain correlations due to slow population dynamics but destroy short-timescale 
coactivity (mean accuracy: actual = 62.8% ± 2.6% and shifted spikes = 50.8% ± 2.2%; N = 23 recording days). c, Explained variance for contingency 
using trial-by-trial pairwise correlations among all Ca1 principal neurons compared to shuffled pairwise correlations (mean explained variance: 
actual = 0.028 ± 0.000% and shuffled = 0.020 ± 0.000%; N = 19,852 neuron pairs; Wilcoxon test (two-sided), Z = 96651960.0 and P = 0.02). d, Example 
Ca1 coactivity patterns detected in one learning session. Each pattern is represented as a vector containing the contribution (weight) of each neuron’s 
spiking to the coactivity defining that pattern26. For each pattern, neurons with a weight above 2 s.d. of the mean were referred to as members (color 
coded). Shown is an example raster plot of the spike trains (top left, one neuron per row) along with the coactivity strength of one (dark blue) pattern over 
time (bottom left) and the vectors (right) of other coexisting patterns. Projecting such vectors onto neuron spike trains allowed tracking of the time course 
of each pattern’s strength (for example, bottom left dark blue time course of coactivity peaks for the left-most vector, with the member spiking shown 
in dark blue on the raster plot above; aU, arbitrary units). e, Example similarity matrices of patterns detected in the learning enclosure with contingency 
Y compared to patterns detected in sessions with the same contingency (within-contingency, left) or the other contingency (between-contingency, 
middle) or to patterns detected in the control enclosure (between-enclosure, right). f, Cosine similarity for contingency-discriminating and 
contingency-invariant patterns across conditions; contingency-discriminating: within-contingency = 0.60 ± 0.02, between-contingency = 0.46 ± 0.01 
and between-enclosure = 0.37 ± 0.02; contingency-invariant: within-contingency = 0.80 ± 0.02, between-contingency = 0.87 ± 0.01 and 
between-enclosure = 0.44 ± 0.02.
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(52.1% and 48.2% of pattern member neurons found in the proxi-
mal and distal CA1, respectively; Fisher’s exact test, odds ratio = 1.17 
and P = 0.55), no segregation by hemisphere (Extended Data Fig. 4f) 
and no differences in the participation of neurons from the deep or 
superficial CA1 pyramidal sublayer to contingency-discriminating 
compared to contingency-invariant patterns (39.9% and 28.4% 
of pattern member neurons, respectively; Fisher’s exact test, odds 
ratio = 1.44 and P = 0.20). However, we observed a trend toward 
contingency-discriminating coactivity pattern members firing at 
earlier theta phases compared to members of contingency-invariant 

patterns (Extended Data Fig. 4g). Overall, these findings identify an 
emergent, short-timescale neural coactivity-based discrimination 
of behavioral contingencies in the hippocampal CA1.

We next asked whether contingency-discriminating coact-
ivity patterns relate to contingency learning. When we tracked 
the strength of each pattern (Fig. 2d) over time, we found that 
contingency-invariant patterns began increasing in strength during 
the initial exploration of the new learning enclosure on each day 
before animals experienced task contingencies; their strength further 
increased and subsequently plateaued during learning (Fig. 4a and 
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Extended Data Fig. 5a,b). Conversely, contingency-discriminating 
coactivity was more stable during exploration but markedly increased 
during contingency learning (Fig. 4a and Extended Data Fig. 5a,b). 
Pattern strengthening during learning reflected increased tempo-
ral correlations between members’ activity rather than changes in 
their average firing rates (Extended Data Fig. 5c,d). Furthermore, 
the cofiring of contingency-invariant pattern members increased 
during sharp-wave/ripples (SWRs) in post-exploration compared 
to pre-exploration sleep and increased again in the sleep session 
after learning, while contingency-discriminating pattern mem-

bers only increased their SWR cofiring after contingency learning 
(Fig. 4b,c). Thus, the distinction between contingency-invariant 
and contingency-discriminating pattern members was not equiv-
alent to the difference between the previously described ‘rigid’ 
and ‘plastic’ cells31. Moreover, our findings did not simply reflect 
representations of rewarded/aversive locations27 because pattern 
strength was calculated outside of dispenser locations, nor were 
these findings a simple reflection of the animal’s differential behav-
ior across the two contingencies (that is, heading toward a given 
dispenser; Extended Data Fig. 5e). Importantly, the reinstatement 
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Fig. 3 | Discrimination of task contingencies is an emergent property of neural coactivity. a, Mean temporal correlations among members of a 
given contingency-invariant and contingency-discriminating pattern in the same contingency (that is, the contingency in which the patterns were 
detected) and the opposite contingency. The following mean Pearson correlation values were obtained: contingency-invariant members, same 
contingency = 0.100 ± 0.005 and opposite contingency = 0.096 ± 0.006; contingency-discriminating members, same contingency = 0.052 ± 0.003 and 
opposite contingency = 0.033 ± 0.002. b, Mean firing rates of contingency-discriminating and contingency-invariant members; contingency-discriminating, 
same contingency = 2.06 ± 0.14 Hz and opposite contingency = 1.93 ± 0.15 Hz; contingency-invariant, same contingency = 2.28 ± 0.15 Hz and opposite 
contingency = 2.31 ± 0.15 Hz. c, Interspike intervals of contingency-discriminating pattern member neurons in the same contingency and the opposite 
contingency (two-way repeated-measures aNOVa; no main effect of contingency, F(1) = 0.549, P = 0.458, η2 = 8 × 10–6; main effect of interval, 
F(98) = 373.0, P = 0.000, η2 = 0.520; no contingency: interval interaction, F(98) = 0.738, P = 0.976, η2 = 0.001). d, Z-scored firing rates during tone and 
drop delivery of contingency-discriminating pattern member neurons in the same contingency and the opposite contingency (two-way repeated-measures 
aNOVa; no main effect of contingency, F(1) = 4.97 × 10–25, P = 1.00, η2 = 1.19 × 10–29; main effect of time, F(117) = 14.4, P = 2.52 × 10–269, η2 = 0.040; no 
contingency:time interaction, F(117) = 0.92, P = 0.716, η2 = 0.003). e, Spike-phase coherence to theta oscillations of contingency-discriminating pattern 
member neurons is indistinguishable across contingencies; mean coherence, same contingency = 0.186 ± 0.007 and opposite contingency = 0.188 ± 0.007. 
Similarly, the theta phase preference of contingency-discriminating neuron firing is indistinguishable across contingencies (mean theta phase preference 
with respect to theta peak, same contingency = 156 ± 6° and opposite contingency = 146 ± 6°; Watson–Wheeler test, W(2) = 0.44 and P = 0.801).  
f,g, Contingency-discriminating pattern member firing rates (z scored) are indistinguishable at correct and incorrect dispensers (f) (normalized mean, 
correct = –0.2 ± 0.4 and incorrect = –0.4 ± 0.5) and are not modulated by distance from goal location (g). Linear regression of rate against distance from 
sucrose dispenser; r = –0.02 and P = 0.41.
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of contingency-discriminating patterns during memory retrieval 
predicted trial-by-trial performance; these patterns were stronger 
before correct behavioral responses than before incorrect behavioral 
responses to tone presentation (Fig. 4d and Extended Data Fig. 5f). 
This contingency-selective and performance-related reinstatement 
of CA1 coactivity was not associated with a firing rate bias of mem-
ber neurons or animal running speed (Extended Data Fig. 5g,h) and 
was notably absent when animals performed at chance (that is, when 
correct and incorrect trials were equivalent; Extended Data Fig. 5i). 
By contrast, the strength of contingency-invariant patterns was not 
related to trial-by-trial memory performance (Fig. 4d). Moreover, 
while there was contingency-related information in longer (1-s) 
timescale coactivity (Extended Data Fig. 5j), the reinstatement of 
second-timescale contingency-discriminating coactivity during 
the probe session did not predict memory performance (Extended 
Data Fig. 5k). These findings show that CA1 neuronal spiking is 
gradually organized during learning to form millisecond-timescale 
coactivity patterns representing newly learned contingencies, which 
are subsequently reinstated on a trial-by-trial basis during dynamic 
memory retrieval.

Distinct spatial tuning of contingency-discriminating and invari-
ant coactivity patterns. During exploration of a new environment, 
CA1 neurons with overlapping place fields can form spatially tuned 
coactivity patterns17,32. To investigate the spatial tuning of coactivity 
patterns during contingency learning, we computed for each detected 
pattern the spatial map corresponding to the time course of its acti-
vation strength as well as the individual firing rate maps of each 
of its member neurons. Contingency-discriminating coactivity was 
markedly less spatially coherent than contingency-invariant coact-
ivity (Fig. 5a–d and Extended Data Fig. 6). This was concomitant 
with the less spatially coherent firing of contingency-discriminating 
pattern members than their contingency-invariant counterparts 
(Extended Data Fig. 7a,b), with contingency-discriminating  

members also exhibiting a trend toward more place fields within a 
given session than contingency-invariant members (Extended Data  
Fig. 7c). Moreover, while members of a given contingency-invariant 
pattern had overlapping firing fields, members of a given 
contingency-discriminating pattern were markedly less spatially 
correlated (Fig. 5a,b,e and Extended Data Fig. 6). This weaker spa-
tial overlap was observed regardless of the membership threshold 
used (Extended Data Fig. 7d,e) and was robust to differences in 
temporal correlation among members’ spike trains (Extended Data 
Fig. 7f). In addition, while contingency-invariant coactivity was 
spatially biased toward the place fields of their member neurons, 
this bias was significantly weaker for contingency-discriminating 
patterns (Extended Data Fig. 7g,h). This finding was corroborated 
by a separate analysis showing lower place field similarity of neu-
ron pairs with high explained variance for contingency than neuron 
pairs with low explained variance (Extended Data Fig. 7i). Finally, 
we found no evidence that contingency discrimination by a given 
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Fig. 4 | Contingency-discriminating patterns develop with learning 
and predict probe performance. a, Time course of pattern strength. 
Contingency X-discriminating and contingency Y-discriminating patterns 
were pooled, and the coactivity strength of each pattern was quantified in 
exploration/learning sessions of its preferred contingency. Dashed lines 
represent mean pattern strength in the control enclosure. Linear regression 
of strength against time during exploration (contingency-invariant, 
r = 0.17 and P = 4.22 × 10–6; contingency-discriminating, r = 0.09 
and P = 0.003) and learning (contingency-invariant, r = 0.15 and 
P = 2.17 × 10–8; contingency-discriminating, r = 0.19 and P = 1.80 × 10–

17). Slopes of contingency-invariant patterns were steeper than 
those of contingency-discriminating patterns during exploration 
(slope = 0.0036 ± 0.0007 and 0.0019 ± 0.0006 units per min, 
respectively; Mann–Whitney U-test (two-sided), U = 1279.0 and P = 0.03), 
but not during learning (slope = 0.0032 ± 0.0009 and 0.0032 ± 0.0005 
units per min, respectively; Mann–Whitney U-test (two-sided), 
U = 1441.0 and P = 0.21). Error bars represent s.e.m. across patterns. 
b,c, Contingency-discriminating and contingency-invariant pattern 
member correlations during SWRs in sleep before and after exploration 
(b) and before and after contingency learning (c). The mean SWR 
correlation for contingency-invariant members was 0.045 ± 0.012 during 
pre-exploration, 0.071 ± 0.008 during post-exploration (pre-learning) 
and 0.116 ± 0.007 during post-learning. The mean SWR correlation 
for contingency-discriminating members was 0.070 ± 0.015 during 
pre-exploration, 0.045 ± 0.006 during post-exploration (pre-learning) and 
0.068 ± 0.007 during post-learning. d, Mean pattern strength before an 
animal’s choice during probe trials in sessions where animals performed 
above chance; contingency-discriminating, correct = 0.13 ± 0.02 and 
incorrect = 0.08 ± 0.02; contingency-invariant, correct = 0.20 ± 0.04 and 
incorrect = 0.19 ± 0.04.
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coactivity pattern reflects contingency-gated spatial remapping of its 
member neurons. In fact, the spatial map of an individual member 
of either pattern type was on average more similar across sessions 
of different contingencies than sessions of the same contingency  
(Fig. 5f,g and Extended Data Fig. 7j), even when matching the spa-
tial coherence of contingency-discriminating pattern members to 
that of their contingency-invariant counterparts (Extended Data  
Fig. 7k). Moreover, members of the same contingency-discriminating 
pattern were as spatially correlated with each other across sessions 
of their preferred contingency as they were across sessions of the 
opposite contingency (Extended Data Fig. 7l). Overall, these find-
ings show that contingency-invariant coactivity provides robust 
place representations by binding spatially congruent neurons. By 
contrast, contingency-discriminating patterns stitch together neu-
rons irrespective of their spatially correlated activity, giving rise to 
spatially discontiguous coactivity consistent with a specialization in 
representing ongoing behavioral contingency.

CA3L → CA1 inputs are necessary for contingency-discriminating 
coactivity and dynamic memory retrieval. Finally, to address the 
functional role of contingency-discriminating coactivity, we sought 
to identify and manipulate a neural pathway necessary for their 
formation. CA1 coactivity could rely on synaptic inputs from the 
recurrently connected upstream hippocampal CA3 area33,34, and 
recent work suggests a critical mnemonic role of left CA3 (CA3L) 
inputs to the CA1 (refs. 35,36). Accordingly, we transduced CA3L 
pyramidal neurons of Grik4-Cre mice with the yellow light-driven 
proton pump Archaerhodopsin-3.0 (Fig. 6a,b); bilateral implanta-
tion of tetrodes and optic fibers further allowed for the simulta-
neous monitoring of, and light delivery to, CA1 ensembles. Light 
delivery targeting CA3L axons in the CA1 during learning mark-
edly reduced the power of theta-nested slow-gamma, but not 
mid-gamma, oscillations in the CA1 (Fig. 6c and Extended Data 
Fig. 8a–c), consistent with the suggestion that CA1 slow-gamma 
oscillations report incoming CA3 inputs37,38. While suppressing 
CA3L → CA1 inputs preserved both the organization of CA1 neu-
rons into coactivity patterns during learning and the reinstatement  

strength of such patterns during memory retrieval (Extended 
Data Fig. 8d,e), this intervention altered the information content 
of CA1 coactivity. First, the distribution of between-contingency 
pattern similarity and pattern strength ratio was shifted  
toward contingency invariance (Fig. 6d,e and Extended Data  
Figs. 8f and 9). Second, this manipulation reduced the explained 
variance for contingencies in short-timescale pairwise correlations 
(Extended Data Fig. 8g). Third, Bayesian decoding of contingen-
cies using such short-timescale coactivity was markedly impaired 
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Fig. 5 | Contingency-discriminating CA1 coactivity is spatially 
discontiguous. a,b, Example coactivity strength maps and corresponding 
firing rate maps of individual members for a contingency-invariant 
(a) and a concomitantly recorded contingency-discriminating 
(b) pattern across all sessions. Note that the right-most member 
of the contingency-invariant pattern is also a member of the 
contingency-discriminating pattern. Maximum firing rate (in Hz) or 
maximum coactivity strength (aU) are shown above each firing rate map 
or pattern strength map, respectively. c, Principal neuron spike trains 
and coactivations along two animals’ paths (red and charcoal) for the 
contingency-invariant (blue) and contingency-discriminating (orange) 
patterns shown in a and b. Members are indicated by the color-coded 
assembly weight vectors and spike times in the raster plots (note the 
shared member is indicated in green). The line above each raster is color 
coded as in the path plots. d, Contingency-discriminating coactivity 
is less spatially coherent than that of contingency-invariant patterns 
(mean spatial coherence, contingency-invariant = 0.64 ± 0.02 and 
contingency-discriminating = 0.51 ± 0.02). e, Contingency-discriminating 
member neuron firing fields are less spatially overlapping (mean 
spatial correlation, contingency-invariant = 0.57 ± 0.02 and 
contingency-discriminating = 0.30 ± 0.03). f,g, Spatial correlation of 
individual contingency-invariant (f) and contingency-discriminating 
(g) pattern members across sessions of the same (within) contingency 
or opposite (between) contingencies (mean spatial correlation: 
contingency-invariant, within-contingency = 0.64 ± 0.01 and 
between-contingency = 0.80 ± 0.01; contingency-discriminating, 
within-contingency = 0.49 ± 0.02 and between-contingency = 0.61 ± 0.02).
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with CA3L → CA1 input suppression (Extended Data Fig. 8h). At 
the behavioral level, suppressing CA3L → CA1 inputs selectively 
during learning had no effect on ongoing performance (Extended 
Data Fig. 8i), but reduced memory performance to chance levels 
in the subsequent probe test 1 h after learning, during which there 
was no input suppression (Fig. 6f). This latent memory impairment 
was seen when mice had to flexibly retrieve two contingencies (Fig. 
6f and Extended Data Fig. 8j–l), but not when retrieving only one 
contingency (Extended Data Fig. 8m). Moreover, flexible memory 

retrieval of the two contingencies was preserved after suppressing 
right CA3 inputs to the CA1 (Extended Data Fig. 8n–u). Together, 
these findings show that short-timescale CA1 coactivity-based con-
tingency information necessitates CA3L inputs and is required for 
the dynamic retrieval of two-contingency memory.

Discussion
In this study, we report a coactivity-based hippocampal code for 
dynamic memory retrieval of short-lived behavioral contingencies.  
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Encoding information as an emergent property of coactivity among 
multiple neurons (Extended Data Fig. 10a) allows for the effec-
tive discrimination of newly encountered contingencies every 
day without committing individual neurons to represent such 
short-lived cognitive variables. The emergent nature of this code 
points to short-timescale coactivity as a primary feature of neural 
activity that is used to encode information and guide cognition 
rather than only playing secondary roles, such as organizing or 
stabilizing single-neuron rate-based codes. In particular, our find-
ings show that millisecond-timescale coactivity is highly suited 
for mnemonic processing of short-lived information; it is rapidly 
formed and readily reinstated to support flexible memory retrieval. 
Millisecond-timescale neural coactivity may preferentially exhibit 
STDP11,12,39 to rapidly stabilize the code in memory. By contrast, 
while second-timescale coactivity contained contingency informa-
tion in our task, its reinstatement during dynamic memory retrieval 
was not predictive of trial-by-trial performance. Second-timescale 
coactivity may exhibit slower plasticity and may hence be more 
suited for stable representation of long-lived contingencies.

Our findings also provide new insights into the role of corre-
lated neural activity in guiding contextual behavior. Spatial remap-
ping, where patterns of spatial correlations between hippocampal  
principal cells disambiguate distinct spatial contexts, has been pro-
posed as a neural basis for contextual learning23. In this study, we 
observed that contingency-discriminating coactivity is not a reflec-
tion of spatial remapping. Instead, our findings are consistent with 
the view that spatial remapping may be a specific instance of a 
more general phenomenon of ‘temporal remapping’, in which the 
short-timescale temporal correlation structure of neurons differs 
across distinct contexts23. Indeed, in tasks where animals must dis-
ambiguate different spatial reference frames, millisecond-timescale 
coactivity is a robust correlate of moment-by-moment behavioral 
discrimination of different contexts, both in networks that show 
spatial remapping22 and in those that do not25. This is also consis-
tent with a reader-centric view of neural codes5, because down-
stream reader/actuator neurons can detect temporal but not spatial 
correlations among their input neurons. Notably, one prediction 
from this coding scheme is that downstream receiver neurons ‘read’ 
the incoming information, represented as an emergent property 
of the collective activity of multiple neurons, by disambiguating 
the relevant patterns of millisecond input coincidence from the  
myriad of other inputs they receive5. Such decoding may be imple-
mented by a ‘reader’ network40 or even a single reader neuron41  
(see also Extended Data Fig. 10b).

Our findings further establish that to ‘write’ a millisecond coact-
ivity code for learned contingencies in memory, CA3L → CA1 inputs 
are necessary. Whether this is related to lateralization in informa-
tion content, processing and/or plasticity35,42 of CA3 → CA1 inputs 
remains to be investigated. Nevertheless, we show that distinct 
types of coactivity patterns show qualitatively distinct functional 
plasticity. While contingency-invariant patterns develop during 
exploration and are reactivated in SWRs during offline (sleep/rest) 
periods following spatial exploration, contingency-discriminating 
patterns show robust increases in strength during learning and are 
reactivated offline in SWRs after contingency learning. Thus, both 
invariant and discriminating patterns show a signature of previ-
ously described plastic cells31, albeit in different behavioral stages. 
This is consistent with a division of labor among hippocampal 
coactivity patterns, with contingency-invariant patterns reflecting 
unsupervised learning about the spatial structure of the environ-
ment and contingency-discriminating patterns supporting flex-
ible memory-guided behavior. Altogether, our findings open new  
perspectives for future empirical and modeling studies to elucidate 
the mechanisms for writing and reading coactivity-based infor-
mation and to relate coding schemes across multiple timescales of 
population activity.

How can the code be written and read? The hippocampus is 
embedded in a wider network of cortical and subcortical struc-
tures that may mediate or modulate the formation of the emergent 
coactivity code we describe here (writing) and its subsequent use 
by downstream neurons (reading) to select contingency-specific 
behavior. Below we outline hypotheses about possible mechanisms 
for both writing and reading processes.

We show a necessity of CA3L → CA1 inputs during learning 
for the expression of an emergent coactivity code for short-lived 
behavioral contingencies, which opens a window into the genera-
tive mechanisms at play. Left hemisphere-originating CA3 inputs in 
mice exhibit more robust long-term plasticity35,42, including STDP42, 
and are preferentially involved in long-term memory compared to 
right CA3 inputs35,36. Such a difference in plasticity may provide 
part of the mechanism by which contingency-discriminating pat-
terns are strengthened during learning. The dynamic memory task 
we assess here necessitates the rapid acquisition and stabilization 
of contingency information (within 30 trials in each contingency 
across ~3 h) as well as its rapid and flexible retrieval in the memory 
probe test (1 h after learning, with frequent pseudorandom switches 
in contingency). Such rapid mnemonic processing may be prefer-
entially coded by short-timescale coactivity, because STDP mecha-
nisms are more likely to rapidly stabilize neuronal cofiring within 
shorter (tens of milliseconds) windows than within longer (1-s) win-
dows11,12,39. Indeed, we show that shorter-timescale (25-ms) but not 
longer-timescale (1-s) coactivity is reinstated to predict performance 
(Fig. 4d and Extended Data Fig. 5k). However, it is also possible 
that other plasticity mechanisms are at play (including non-synaptic 
ones). While STDP might stabilize millisecond-timescale coactivity 
patterns, what processes generate such contingency-discriminating 
coactivity in the first place? Neurons in the dentate gyrus, two syn-
apses upstream of the CA1, have been implicated in pattern separa-
tion processes that may be necessary for contextual behavior43 and 
can do so through differences in millisecond-timescale coactivity25. 
Moreover, there is evidence for a left dominance in the expression 
of the activity marker cFos in the dentate gyrus during novel object 
exploration44. Importantly, while CA3 neurons in one hemisphere 
send commissural projections to the contralateral hemisphere33, 
the two hemispheres seem to retain functional differences in their 
projections to the CA1 (refs. 35,42), which we target directly. Such 
lateralization could, in part, result from a developmental lateraliza-
tion of factors involved in activity and plasticity45, which may be 
robust to any potential synchronizing effects of commissural pro-
jections. Therefore, it is plausible that a combination of lateralized  
processing of contextual information, starting as early as the pat-
tern separation circuits of the dentate gyrus, and lateralized plas-
ticity at CA3 → CA1 synapses contribute to the formation and 
stabilization of emergent contingency-discriminating patterns 
in the CA1, respectively. Given that contingency-discriminating 
patterns emerge during learning rather than spatial exploration  
(Fig. 4a), their formation is not simply a reflection of sensory differ-
ences between the two LED displays (which are also distinct during 
exploration sessions X0 and Y0), but instead relates to the different 
reward contingencies the animal must learn to discriminate. Indeed, 
recent evidence suggests that neural discrimination of distinct spatial 
contexts in the CA1, but not the dentate gyrus, is related to behav-
ioral discrimination of these contexts46, suggesting an additional 
gating of behaviorally relevant environmental differences between 
the dentate gyrus and CA1. How such behavioral contingency infor-
mation is conveyed to the CA1 is currently unclear and may involve 
inputs from the prefrontal cortex47. The finding described here 
that an emergent coactivity code in the hippocampal CA1 is neces-
sary for the dynamic retrieval of contingency discrimination will  
motivate subsequent empirical and modeling studies that elu-
cidate the cross-circuit interactions involved in generating such  
functional coactivity.
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How is the hippocampal coactivity code for contingencies 
decoded by downstream neurons in executive and motor areas to 
elicit appropriate behaviors in each contingency? Cortical neu-
rons have membrane time constants in the range of 10–30 ms  
(ref. 9), meaning that convergent input from neurons coactive at the 
25-ms timescale we investigated here can exhibit effective tempo-
ral summation in the downstream (reader) neuron’s dendrites and 
contribute to its spiking. Moreover, coincident synaptic activation 
within this time window is consistent with the initiation of active 
voltage-gated conductances in dendrites, which allows for their 
supralinear summation48. This may also serve as a mechanism  
for disambiguating different patterns of coactivity by a single reader 
neuron, where inputs that are preferentially spatially clustered on 
individual dendrites will be more likely to elicit such non-linearities 
than more dispersed inputs49, even when the mean synaptic 
weights of such inputs are indistinguishable (Extended Data 
Fig. 10b). This would allow for the selective reading of emergent 
coactivity, as reader neurons would not disambiguate the firing of  
individual members of contingency-discriminating coactivity pat-
terns, only their synchronous activity. Other single-neuron and 
network-based coactivity reading mechanisms have also been  
suggested40,41. For all of these cases, the fast (tens of milliseconds) 
nature of this code should allow for the quick processing of con-
tingency information, supporting rapid behavioral responses in 
dynamically changing environments. These outlined candidate 
mechanisms by which emergent coactivity codes could be read by 
downstream circuits may be tested in future ex vivo, in vivo and  
in silico studies.
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Methods
Animals. These experiments used adult male C57BL/6J mice (n = 4; Charles 
River Laboratories) and transgenic hemizygous Grik4-Cre mice51 (n = 11; 
Jackson Laboratories; C57BL/6-Tg(Grik4-cre)G32-4Stl/J; 006474; RRID: IMSR_
JAX:006474). Animals were preselected based on their propensity to cover a novel 
open field and to approach a sucrose-baited dispenser within this open field. 
Animals were housed with their littermates up until the start of the experiment 
with free access to water in a dedicated housing facility with a 12-h light/12-h dark 
cycle (lights on at 7:00), 19–23 °C ambient temperature and 40–70% humidity. 
All mice were held in individually ventilated cages with wooden chew sticks and 
nestlets. Food was available ad libitum before the experiments (see below), and 
water was available ad libitum throughout. Mice were 4–7 months old at the time 
of testing. Experimental procedures performed on mice were in accordance with 
the Animals (Scientific Procedures) Act, 1986 (United Kingdom), with final ethical 
review by the Animals in Science Regulation Unit of the UK Home Office.

Surgical procedures. All surgical procedures were performed under deep 
anesthesia using isoflurane (0.5–2%) and oxygen (2 liter min–1), with analgesia 
provided before (0.1 mg kg–1 Vetergesic) and after (5 mg kg–1 Metacam) surgery. For 
optogenetic manipulations, AAV5-EF1a-DIO-Arch3.0-eYFP viral vector injections 
(2 × 500 nl) were performed unilaterally in the dorsal CA3 on either the left or 
right hemispheres (CA3L, five animals or CA3R, six animals) of Grik4-Cre mice 
using stereotaxic coordinates (site 1: −1.7 mm anteroposterior, ±1.5 mm lateral 
and −2.1 mm ventral from bregma; site 2: −2.3 mm anteroposterior, ±2.3 mm 
lateral and −2.3 mm ventral from bregma). The viral vector was delivered at a rate 
of 100 nl min−1 using a glass micropipette. For electrophysiological recordings, 
mice were subsequently implanted 4–6 weeks later with a microdrive with 12–14 
independently movable tetrodes (combined with two optic fibers for optogenetic 
manipulations; Doric Lenses) targeting the dorsal CA1 bilaterally52.

Behavior. After a recovery period of at least 1 week following surgical 
implantation, mice were familiarized daily to the experimental paradigm, including 
handling, connection to the recording system and exploration of various open 
fields. Mice were maintained at 90–95% of their free-feeding body weight. Every 
day, animals explored the same (triangular) open field (the ‘control enclosure’; 
equilateral triangle, 45-cm sides) and a new open field (45-cm outer width), 
wherein they were trained in the following three task phases.

Pretraining phase 1 involved conditioning mice to collect transiently available 
drops of 15% sucrose solution from a single liquid dispenser following a 10-s 
tone (Extended Data Fig. 1). Sucrose was initially available for 20 s before the 
drop was automatically aspirated by the dispenser. Over multiple pretraining 
sessions, the drop availability was gradually reduced in 5-s intervals every time 
the mouse successfully collected sucrose three times consecutively until a 5-s 
availability period was reached. To encourage full coverage across the open field 
and discourage behavioral persistence at the sucrose dispenser, tones were only 
delivered after the mouse had moved away from the dispenser to explore the open 
field. Pretraining phase 1 continued until mice successfully obtained reward on 
more than 80% of trials while uniformly exploring the open field; this typically 
required 5–7 d. All mice actively covered the open-field enclosure and approached 
the dispenser following tone presentation.

Next, for pretraining phase 2, mice experienced two pairs of wall-mounted 
LED displays and two identical liquid dispensers in a new spatial configuration 
of the learning enclosure each day (Extended Data Fig. 1). One dispenser 
delivered sucrose and the other delivered quinine (0.02 mM), and both drops were 
simultaneously available for 5 s following a 10-s tone. The identity of the dispenser 
delivering sucrose versus quinine solution could be inferred from the currently 
illuminated set of LEDs, but was not directly indicated by the LED locations (for 
example, Fig. 1b). The LEDs, therefore, defined a given task contingency (X or 
Y; Fig. 1a). On a given day of phase 2 of pretraining, mice initially explored the 
control enclosure for one session (~15–20 min), followed by exploration of the new 
learning enclosure for two sessions with only one of the two different sets of LEDs 
being continuously illuminated in each exploration session. Mice were allowed to 
rest in a sleep box before and after exploring the enclosure (~20 min per sleep/rest 
session). Subsequently, a total of six learning sessions (three of each contingency; 
~15–25 min per session) were conducted in a pseudorandom order (for example, 
X-Y-Y-X-Y-X), with 15 tone presentations (thus 15 trials; intertrial interval of 
~1–2 min) in each session. Sessions of the same contingency were never presented 
three times in a row. Sucrose and quinine were delivered simultaneously after 80% 
of tone presentations in each session, with the remaining 20% of tone presentations 
being non-reinforced (no sucrose or quinine delivered). After at least 3 d (and up 
to 7 d) of pretraining phase 2, animals reached an average performance of at least 
80% correct choices on a given day and thus were ready for the third phase, that is 
the training phase.

All behavioral and electrophysiological data quantified in this study are from 
the training phase (Fig. 1c). Here, the procedure was identical to pretraining phase 
2 except that (1) only two learning sessions of each contingency were presented 
in alternation (Fig. 1c; X-Y-X-Y) in a new configuration of the learning enclosure 
each day, and (2) a memory probe session was carried out 1 h after the final 
learning session of the day, with an intervening sleep session in between the last 

learning session and the probe. In this probe session, 24 trials were presented 
under extinction (that is, non-reinforced trials where neither sucrose nor quinine 
was delivered after the tone); 12 trials were presented in each LED-defined 
contingency, with pseudorandom transitions between the two sets of LEDs 
defining contingency X and Y while the animal was in the learning enclosure, and 
with the restriction that either two or five trials were delivered in succession while 
a given set of LEDs was active before the LEDs were switched. The first probe trials 
for a given recording day were equally likely to be of contingency X or Y. Probe 
sessions lasted 30 min in total, with trials within a given contingency occurring at 
a rate of one trial per min (with an additional minute delay between the last trial in 
one contingency and the first trial of another). Only probe sessions where animals 
covered at least 50% of the enclosure and completed at least four trials (that is, 
visited at least one dispenser for at least four trials) were included in probe analyses 
(48 of 71 d satisfied these criteria). Note that animals were allowed to rest/sleep in 
the sleep box after every session, although only three sessions were recorded: (1) 
pre-exploration, sleep before the first exploration session; (2) post-exploration/
pre-learning, sleep after the last exploration session and (3) post-learning, sleep 
after the last learning session (Fig. 1c).

In addition to these two-choice discrimination training days, mice also 
performed ‘one-contingency training days’ where we tested learning and  
memory retrieval of a single behavioral contingency (as opposed to two  
behavioral contingencies as described above). Here, the task structure was identical 
to that of training days, but one dispenser always delivered sucrose and the other 
always delivered quinine regardless of the currently illuminated set  
of LED displays.

To quantify behavioral performance during the learning stage in each training 
day, we first identified for each tone trial which dispenser the animal approached 
within the 5-s period of reward availability. To quantify behavioral performance 
during the probe stage, we identified for each tone trial which dispenser the 
animal preferred to visit (that is, spent more time within a 5-cm vicinity of the 
dispenser) during the period from tone onset to 10 s after tone offset (that is, a 
20-s period). For both learning and probe stages, we next classified each tone 
trial as being correct or incorrect depending on whether the animal had opted 
for the sucrose-delivering or the quinine-delivering dispenser, respectively. We 
finally scored behavioral performance during learning (for example, Fig. 1e) and 
memory performance during probe sessions (for example, Fig. 1f) by calculating 
the difference between the number of correct trials and the number of incorrect 
trials divided by the total number of completed trials. A score of 1 thus indicates 
that mice always visited the correct (sucrose-delivering) dispenser, while a score of 
–1 indicates that mice always visited the incorrect (quinine-delivering) dispenser. 
Note that during learning trials, because the correct dispenser in one contingency 
(for example, X) was the incorrect dispenser in the other (for example, Y), we 
display behavioral performance (for example, Fig. 1e) with respect to the current 
contingency, with the y axis ranging from 1 (correct Y) to 0 (chance) to 1 (correct 
X). A similar behavioral score was calculated for the exploration session (Fig. 1e) 
on the basis of the total number of visits to each dispenser (because there were no 
trials during exploration). To give equal weighting to trials in each contingency 
during the probe, the overall probe score for a given day was the mean of means for 
contingencies X and contingency Y (that is, (mean score in Y trials + mean score 
in X trials)/2). Data collection could not be performed blind to the conditions of 
the experiments because the experimenter had to be aware of which condition they 
had to expose each mouse to on a given day (light ON versus light OFF) and on a 
given session (which open-field arena/session type).

In vivo ensemble recordings and light delivery. On the morning of each 
recording day, optimal positioning within the CA1 pyramidal layer was performed 
using the local field potential (LFP) signals obtained from each tetrode51 in search 
of multiunit spiking activity. Tetrodes were then left in position for ~1.5 h before 
commencing recordings. Tetrodes were raised at the end of each recording day to 
avoid possible mechanical damage overnight. Optical interrogation was performed 
during learning using a diode-pumped solid-state laser (Laser 2000, Ringstead) 
that delivers yellow light (561 nm, ~18-mW output power) to the optic fibers 
implanted bilaterally above the CA1 pyramidal cell layer to suppress CA3 → CA1 
inputs in Arch3.0-expressing Grik4-Cre mice. Mice were accustomed to light 
delivery before training. During training, light was delivered for 3-min periods five 
times per learning session, with a 2-min light OFF gap between each light delivery. 
Trials occurred during the light ON epochs, and at least 1 min after the onset of 
each light pulse to allow sufficient time for axonal suppression36. Note that for the 
quantification of behavioral effects of input suppression, we compared light ON 
days to light OFF days from the same animals to provide a within-subject control.

Multichannel data acquisition. Amplification, multiplexing and digitization of 
signals from the electrodes were performed using a single integrated circuit located 
on the head of the animal (RHD2164, Intan Technologies; gain ×1,000; http://
intantech.com/products_RHD2000.html). The amplified and filtered (0.09 Hz to 
7.60 kHz) electrophysiological signals were digitized at 20 kHz and saved to disk 
along with the synchronization signals (transistor–transistor logic digital pulses) 
reporting the animal’s position tracking, laser activation, tone presentation, sucrose 
and quinine drop delivery, drop removal and LED display illumination. To track 
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the location of the animal, three LED clusters were attached to the electrode casing 
and captured at 25 frames per second by an overhead color camera.

Spike detection and unit isolation. The electrophysiological signal was band-pass 
filtered (800 Hz to 5 kHz), and single extracellular discharges were detected 
through thresholding the RMS power spectrum using a 0.2-ms sliding window. 
Detected spikes of the individual electrodes were combined for each tetrode. 
To isolate spikes that putatively belonged to the same neuron, spike waveforms 
were first up sampled to 40 kHz and aligned to their maximal trough. Principal 
component analysis was applied to these waveforms ±0.5 ms from the trough to 
extract the first three to four principal components per channel such that each 
individual spike was represented by 12 waveform parameters. An automatic 
clustering program (KlustaKwik 2.0, https://github.com/kwikteam/klustakwik2/) 
was run on this principal component space, and the resulting clusters were 
manually recombined and further isolated based on cloud shape in the 
principal component space, cross-channel spike waveforms, autocorrelation and 
cross-correlation histograms52. An automated clustering was further performed 
using Kilosort 1.0 (ref. 53; https://github.com/cortex-lab/KiloSort) via the 
SpikeForest sorting framework54 (https://github.com/flatironinstitute/spikeforest), 
with units then automatically curated using metrics derived from the waveforms 
and spike times and verified by the operator. All sessions recorded on the same 
day were concatenated and clustered together. A cluster was only used for further 
analysis if it showed stable cross-channel spike waveforms, a clear refractory period 
in its autocorrelation histogram, well-defined cluster boundaries and an absence of 
refractory period in its cross-correlation histograms with the other clusters. This 
study includes a total of 1,124 CA1 principal neurons (853 on light OFF days and 
271 on light ON days). Only principal neurons isolated on light OFF days were 
used in Figs. 2 and 3 (and Extended Data Figs. 4–7), while Fig. 4 (and Extended 
Data Figs. 8 and 9) included analyses on all principal neurons. All data analysis 
(with the exception of SWR analysis) was conducted during active locomotion 
periods (when the animal was running at a speed of at least 2 cm s−1).

Neuronal pattern isolation and tracking. Firing patterns of coactive CA1 
principal cells were detected using a statistical framework based on independent 
component analysis26. Spikes discharged by each neuron were counted in 25-ms 
(or 1,000-ms where indicated) time bins and standardized (z scored, that is, the 
activity of each neuron was set to have a null mean and unitary variance) to 
avoid an analytical bias toward neurons with higher firing rates. The neuronal 
population activity was represented by a matrix in which each element represents 
the z-scored spike count of a given neuron within a given time bin. We extracted 
coactivity patterns from this matrix in a two-step procedure. First, the number 
of significant coactivation patterns embedded within the neuronal population 
was estimated as the number of principal components of the activity matrix 
with variances above a threshold derived from an analytical probability function 
for uncorrelated data. Second, we applied an independent component analysis 
to extract the coactivity patterns from projection of the data into the subspace 
spanned by the significant principal components (that is, each coactivity pattern 
was captured by an independent component). Pattern detection was performed 
using active periods (speed > 2 cm s−1) separately during the entire last session of 
contingency X, contingency Y (that is, X2 and Y2) or the exploration session of the 
control enclosure as appropriate. On average, we detected one coactivity pattern for 
every 5.5 ± 0.3 recorded neurons. To assess the enclosure or contingency specificity 
of coactivity patterns, we compared all patterns detected across enclosures or 
contingencies, respectively. This was performed as follows:

(1) We computed the cosine similarity between the weight vector representing 
a given pattern detected in one session (for example, X2) and the weight vectors 
representing each individual pattern detected in another task session (for example, 
Y2). By considering a pair of recording sessions this way, this procedure gives a 
matrix containing the cosine similarity values between each individual pattern 
detected in one session and each individual pattern detected in the other session. 
For each pattern, we thus identified its ‘maximum similarity’ value with a pattern 
(that is, ‘the best match’) of another session.

(2) Using this procedure, we obtained three distributions of maximum 
similarity values for the patterns detected: (i) between two sessions of the same 
contingency in the learning enclosure (for example, the within-contingency left 
matrix in Fig. 2e), (ii) between two sessions of opposing contingencies in the 
learning enclosure (for example, the between-contingency middle matrix in Fig. 
2e) and (iii) between a given task contingency in the learning enclosure versus the 
patterns detected in the control enclosure (for example, the between-enclosure 
right matrix in Fig. 2e).

(3) We next defined contingency-discriminating patterns as patterns 
with between-contingency similarity values below the 90th percentile of the 
between-enclosure similarity distribution.

(4) To investigate the properties of such contingency-discriminating patterns, 
we compared them to a matched group of patterns detected in the same session 
but characterized with the highest between-contingency similarity values. In other 
words, we selected the n patterns with the highest between-contingency similarity 
scores (with n being the number of contingency-discriminating patterns across 
all recordings). We therefore isolated n contingency-discriminating patterns (with 

the lowest between-contingency similarity values) and n contingency-invariant 
patterns (with the highest within-contingency discriminating values) in each 
contingency. Note that the total number of contingency-discriminating patterns 
before exclusions is 2n because there are two contingencies. Subsequently, all 
patterns that had a within-session maximum similarity below the 90th percentile of 
the between-enclosure similarity distribution were excluded from further analysis.

Because detected weight vectors were typically asymmetrical (Fig. 2d), 
the direction where weights were highest was assigned positive weights, and 
principal CA1 neurons whose weights were positive and exceeded 2 s.d. from the 
mean were defined as pattern members (mean of 6.0 ± 0.2% member neurons 
for each pattern from an average of 37.1 ± 4.2 neurons recorded per day). To 
assess the robustness of findings regarding member neurons isolated using this 
membership threshold, we further used a threshold of either 1 or 3 s.d. (Extended 
Data Figs. 4d,e and 7d,e). In total, the analyses shown in Figs. 2 and 3 included 67 
contingency-discriminating patterns (32 in contingency X and 35 in contingency 
Y), 152 member neurons (79 in contingency X and 73 in contingency Y) and 49 
contingency-invariant patterns (104 member neurons); all patterns detected on 
light OFF (151 in contingency X and 155 in contingency Y) and light ON (56 in 
contingency X and 52 in contingency Y) days were used in Fig. 4.

The activation strength A of each coactivity pattern at time t (for example,  
Fig. 2d) was computed as:

At = ZT
t PZt

Zt is a population vector carrying the z-scored rate of each neuron at time 
t, P is the projection matrix (outer product) of the corresponding independent 
component and T is the transpose operator. At is therefore the squared projection 
of Zt onto the component that represents the coactivity pattern. This projection 
represents the similarity between the independent component (representing all 
neurons recorded on that day) and the population rate at a given time bin of 25 ms 
(or 1,000 ms for patterns tracked at this window). The main diagonal of P was 
set to zero before calculating At to eliminate the contribution of single neurons 
to the coactivity pattern strength. The resulting value of At reflected expression 
strength of a particular coactivity pattern and was used in subsequent calculations 
of coactivity pattern emergence and spatial tuning. Therefore, the strength of a 
given pattern at any time point does not reflect only the small number of (member) 
neurons with the highest contribution to that pattern, but rather the entire weight 
vector representing all neurons. To determine whether pattern expression strength 
predicted memory probe performance, we calculated each pattern’s strength during 
the period of tone presentation but before the animal approached either dispenser 
and averaged these values during theta cycles across epochs preceding correct or 
incorrect choices. The same calculation was performed for member neuron firing 
rates. Strength change across contingencies (Extended Data Fig. 8f) was calculated 
for each pattern as the difference between mean strength (same contingency) and 
mean strength (opposite contingency) normalized (divided) by mean strength 
(same contingency), where the ‘same’ contingency is the contingency in which a 
pattern was detected.

Significant coactivation events were defined as time points when coactivation 
strength was more than 2 s.d. above the mean for the learning session in which 
the patterns were detected. Using this threshold, the mean coactivation rate was 
0.54 ± 0.02 Hz for contingency X and 0.52 ± 0.02 Hz for contingency Y. This 
quantification was used in Extended Data Fig. 7g,h and in example traces in Fig. 3 
and Extended Data Fig. 9. For all other pattern analyses, we used the raw  
coactivity strength.

Spatial maps. The recording arena was divided into bins of 1.5 × 1.5 cm to generate 
spike count maps (the number of spikes fired in each bin) for each unit, or pattern 
strength map for each coactivation pattern, and an occupancy map (time spent 
by the animal in each bin). Rates and occupancy were calculated only during 
active periods (that is, speed > 2 cm s−1), and bins visited less than a total of five 
times per session were excluded from subsequent analysis. All maps were then 
smoothed by convolution with a two-dimensional Gaussian kernel of a standard 
deviation equal to two bin widths. Finally, spatial rate maps were generated for 
each session individually by normalizing the smoothed spike count maps by the 
smoothed occupancy map. Spatial coherence reflects the similarity of the firing 
rate in adjacent bins and is the z-transform of the Pearson correlation (across 
all bins) between the rate in a bin and the smoothed rate of the same bin55. The 
same calculation was used on coactivity pattern strength to calculate pattern 
spatial coherence. The spatial correlation between maps of member neurons, 
or coactivation patterns, was calculated as the Pearson correlation coefficient 
from the direct comparison of the spatial bins between the smoothed place rate 
maps. This comparison was made between spatial maps of member neurons 
of the same patterns within the same session to assess the spatial similarity of 
members of the same coactivity patterns (for example, Fig. 3e) or between maps 
of the same member neuron across sessions to assess any possible member 
neuron contingency-dependent remapping (for example, Fig. 3f,g). To determine 
the degree to which pattern coactivations were biased by member firing fields, 
we calculated an infield coactivation score for each member as the spatial 
density of coactivations inside the member neuron’s firing field (spatial bins 
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within 70% of the peak firing rate bin) minus the outside-the-field coactivation 
density divided by the sum of those two values. To match the spatial tuning of 
contingency-discriminating and contingency-invariant pattern members, we used 
the 90th percentile of the contingency-invariant pattern member spatial coherence 
distribution as a threshold and only included contingency-discriminating pattern 
members with spatial coherence values above this threshold (note that this was 
only done for Extended Data Fig. 7k).

Decoding. To quantify information in spike time correlations and firing rates of 
CA1 principal neurons, we used a Gaussian naive Bayesian classifier to decode 
contingency on a trial-by-trial basis (across all learning trials) from pairwise 
Pearson correlations of two neurons’ spike trains and/or individual neuron firing 
rates. Uniform priors were used throughout. Because LED-defined contingencies 
were signaled to the animal throughout learning, we used activity across the 30-s 
epochs preceding tone onset, the 10-s tone and the 5-s reward availability period 
to ensure sufficient spikes were used for decoding. We only considered neuronal 
activity when the animal was at least 10 cm away from both dispensers and during 
active locomotion (speed > 2 cm s–1). Trials with less than 10 s satisfying these 
criteria were excluded from analysis. Decoding was performed using either a 
combination of individual firing rates and 25-ms pairwise temporal correlations 
(for example, Fig. 2a) or pairwise correlations alone (using 25-ms bins, for 
example, Fig. 2b, or using 1,000-ms bins, for example, Extended Data Fig. 5j). 
Decoding accuracy was then compared to the mean accuracy of a null distribution 
generated by randomly shuffling the contingency label across trials (that is, X 
versus Y) 100 times. In addition, we assessed whether contingency information 
was present in temporal spike correlations beyond the population firing rate in 
two ways. First, we shuffled 25-ms correlations relative to trial labels while keeping 
features representing average firing rates aligned with trial labels and requantified 
decoding accuracy (Fig. 2a). Second, we compared decoding accuracy using only 
25-ms pairwise correlations to that of using pairwise correlations between the 
same neurons but with spikes of each neuron shifted randomly by a value between 
–1,000 ms and 1,000 ms before binning. This allowed us to remove correlations 
due to short-timescale coincident activity while keeping coactivity associated with 
slower changes in population activity intact (Fig. 2b).

Explained variance. For each pair of neurons, the explained variance for task 
contingency was calculated using a trial-by-trial Pearson correlation on activity 
binned using 25-ms bins:

EV =

SSbetween contingency
SSTotal

=

nX(rX−rXY)2+nY(rY−rXY)2
∑n

i=0(rXn−rXY)−2
+
∑n

i=0(rYn−rXY)2

SS represents the sum of squares, nX and nY represent the number of trials 
in contingency X and contingency Y, respectively, and rX, rY and rXY represent 
temporal correlation values in X, Y and all trials respectively.

We compared this EV value with the mean of a null distribution generated 
by shuffling the contingency labels (that is, X versus Y) of trials. For decoding, 
we used activity across the 30-s epochs preceding tone onset, the 10-s tone and 
the 5-s reward availability window, only considering neuronal activity when the 
animal was at least 10 cm away from both dispensers and during active locomotion 
(speed > 2 cm s−1). Trials with less than 10 s satisfying these criteria were excluded 
from analysis. To assess the spatial congruence of high explained variance pairs, 
we calculated the spatial map correlation (see Spatial maps section) of each pair 
in the upper fifth percentile of the EV distribution that was temporally positively 
correlated in at least one contingency. We used the maximum spatial correlation 
across both contingencies (for example, if neurons had more spatially correlated 
place fields in contingency X than in contingency Y, then the value for contingency 
X was used). We compared such spatial correlation values to those from pairs 
of neurons in the lower fifth percentile (low explained variance pairs) that were 
positively temporally correlated in both contingencies (Extended Data Fig. 7i).

Local field potential analyses. Raw LFPs were down sampled from 20 kHz to 
1,250 Hz (order 8 Chebyshev type I filter was applied before decimation to avoid 
aliasing) and then decomposed using empirical mode decomposition (EMD56; 
https://pypi.org/project/emd/). To avoid mode mixing, we used the mask sift 
EMD procedure57 with sinusoidal masks with the following frequencies: 350, 
200, 70, 40, 30 and 7 Hz, which captured mid-gamma, slow-gamma and theta 
oscillations as isolated components. To determine individual theta cycles and 
theta phase, we first detected peaks and troughs of theta with absolute values 
higher than low-frequency component envelope (sum of all components with 
main frequencies below the theta signal), then a theta cycle was defined by pairs 
of supra-threshold troughs separated by at least 71 ms (∼14 Hz) and no more than 
200 ms (5 Hz) that surrounded a suprathreshold peak58. Theta phase was calculated 
by linear interpolating neighboring theta troughs, zero crossings and peaks. For 
nested-gamma analysis (Fig. 4c and Extended Data Fig. 8a,b,r), instantaneous 
envelopes and frequencies were calculated by means of the normalized Hilbert 
transform59. For the time course analysis shown in Fig. 4c and Extended Data Fig. 
8r, we adopted a bootstrap procedure to keep the speed distribution of each time 

bin virtually equal58. For each experiment, we used 60-s to 30-s prelaser stimulus 
windows as references for speed distribution. More specifically, we calculated 
the histogram (linearly spaced speed bins from 2 to 30 cm s−1) of instantaneous 
speed values for each theta cycle within that reference window; then, a bootstrap 
consisted of (1) subsampling theta cycles from that reference time window by 
randomly choosing 75% of the cycles in each speed bin (that is, maintaining the 
original speed histogram proportions) and (2) from all remaining time windows, 
for each theta cycle in the reference window, we randomly chose a cycle with 
matched speed (no more than 2.5% away from the reference cycle). One hundred 
such bootstraps were computed for each tetrode, then all tetrodes of each 
experiment were averaged. Figures show the mean across recording days.

SWR detection was carried out as follows. First, LFPs of each pyramidal 
CA1 channel were subtracted by the mean across all channels (common average 
reference). These re-referenced signals were then filtered for the ripple band (110 
to 250 Hz; fourth order Butterworth filter), and their envelopes (instantaneous 
amplitudes) were computed by means of the Hilbert transform. The peaks (local 
maxima) of the ripple band envelope signals above a threshold (five times the 
median of the envelope values of that channel) were regarded as candidate events. 
Further, the onset and offset of each event were determined as the time points at 
which the ripple envelope decayed below half of the detection threshold. Candidate 
events passing the following criteria were determined as SWR events: (1) ripple 
band power in the event channel was at least two times the ripple band power in 
the common average reference (to eliminate common high-frequency noise), (2) 
an event had at least four ripple cycles (to eliminate events that were too brief) 
and (3) ripple band power was at least two times higher than the supraripple 
band defined as 200–500 Hz (to eliminate high-frequency noise not spectrally 
compact at the ripple band, such as spike leakage artifacts). We classified tetrodes 
as either being in the deep or superficial sublayer of the CA1 pyramidal cell layer 
based on the mean peak amplitude of the SWR events across all sleep sessions. 
Positive values indicated that the tetrode was in the deep sublayer (that is, closest 
to the stratum oriens), while negative values indicated that the tetrode was 
located in the superficial sublayer (that is, closest to the stratum radiatum)60–62. 
To calculate pattern member firing correlations during sleep/rest SWRs, we used 
SWR events as activity bins and calculated the Pearson correlations between pairs 
of pattern members separately across each sleep session (that is, separately for 
pre-exploration, pre-learning and post-learning sleep sessions; only sessions where 
at least 200 SWR events were detected were included in this analysis).

Anatomical and histological analysis. All mice were anesthetized with 
pentobarbital following completion of the experiments and transcardially perfused 
with PBS followed by 4% paraformaldehyde/0.1% glutaraldehyde in PBS solution. 
Brains were extracted and kept in 4% paraformaldehyde for at least 24 h before 
slicing. Coronal sections (50-μm thick) were then made and stored in PBS-azide 
combined with DAPI to stain neuronal somata. All sections were mounted in 
Vectashield (Vector Laboratories, H-1000), and images of native eYFP fluorescence 
and DAPI fluorescence were captured with an LSM 880 (Zeiss) confocal 
microscope using ZEN software (Zeiss Black 2.3).

Statistical analyses. Data were analyzed in Python 3.6 (https://www.python.org/
downloads/release/python-363/) using the packages scikit-learn 0.23.2, statsmodels 
0.12.1, Numpy 1.18.1, Scipy 1.4.1, Matplotlib 3.1.2, Pandas 0.25.3 and Seaborn 
0.11.0. Error bars represent mean ± s.e.m. unless otherwise stated. Ns refer to 
recording days for behavioral preference figures and LFP analysis. For unit data, 
Ns refer to coactivity patterns, coactivity pattern members or all principal neurons 
as indicated. Where indicated, we also used mice as Ns for behavioral and unit 
data, with values averaged across days for a given mouse for behavioral data and 
across neurons/patterns for a given mouse for unit data. DABEST plots50 are used 
throughout the manuscript to visualize effect size by plotting the data against a 
mean (or paired mean) difference between the left-most condition and one or 
more conditions on the right (right y axis) and comparing this difference against 
zero using 1,000 bootstrapped resamples. Black dots indicate the mean difference 
or mean paired difference (as indicated on the right y axis label), black ticks depict 
error bars representing 95% confidence intervals and shaded areas represent kernel 
density estimates for visualizing the resampled mean (or paired mean) difference 
distribution. All P values were calculated as specified in the figure legends. For 
ANOVAs, type II sums of squares were used throughout, with degrees of freedom 
reported in parentheses after ‘F’ (for example, F(1) = …). Data distributions were 
assumed to be normal for ANOVAs, but this was not formally tested. No statistical 
methods were used to predetermine sample sizes, but our sample sizes are similar 
to those reported in previous publications (for example, see refs. 25,27,31,34,63). Neural 
and behavioral data analyses were conducted in an identical way regardless of 
the experimental condition from which the data were collected. See also the 
corresponding Reporting Summary.

A total of 15 mice were used in this study, where 5 animals were injected with 
an Archaerhodopsin-expressing construct in the left CA3 and 6 animals were 
injected with the same construct in the right CA3. Four mice did not receive  
CA3 injections.

The behavioral data in Fig. 1 (and Extended Data Figs. 2 and 3) are from light 
OFF training days (termed light OFF days throughout) from all 15 animals used 
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in this study (71 light OFF days). For behavioral quantification in Fig. 6 (and 
Extended Data Fig. 8), we used both light OFF and light ON days (separately as 
indicated) from 5 animals injected with an Archaerhodopsin-expressing construct 
in the left CA3 (33 light OFF days and 20 light ON days) and 6 animals injected 
in the right CA3 for behavioral experiments (18 light OFF days and 23 light ON 
days). Mice were randomly assigned to left versus right CA3-injected groups. 
Light OFF and light ON days were pseudorandomized and interleaved for each 
animal (ensuring the first day of training was always light OFF). A further 16 d 
of one-contingency learning were recorded (10 light OFF days and 6 light ON 
(CA3L-suppression) days; Extended Data Fig. 8m).

Electrophysiological unit data in Figs. 2–5 (and Extended Data Figs. 4–7) are 
from light OFF days from 10 animals (23 recording days; 4 (of 5) left CA3-injected 
animals, 2 (of 6) right CA3-injected animals and all 4 mice without CA3 
injections). Electrophysiological unit data from light ON days from 4 (of 5) left 
CA3-injected animals are used (8 recording days) and compared to all light OFF 
electrophysiological unit data in Fig. 4 (and Extended Data Figs. 8 and 9).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from the 
corresponding author upon request.

Code availability
The software used for data acquisition and analysis are available using the web links 
mentioned in the Methods.
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Extended Data Fig. 1 | Schematics of pretraining protocol. Schematics of pretraining phases 1 (left) and 2 (right). a, Schematic of example learning 
enclosures. b, Learning in pretraining phase 1 involved associating a tone with delivery of sucrose from one dispenser. In pretraining phase 2, animals 
learned two new LED-tone-outcome associations each day. c, In pretraining phase 1 animals initially explored the control enclosure and then experienced 
between 2-6 sessions of tone-defined trials. In pretraining phase 2, after exploring the control enclosure and the learning enclosure (with each LED set 
active in turn), tone-defined trials were presented in 6 learning sessions (3 in contingency X and 3 in contingency y) that were pseudo-randomly ordered 
each day. No probe tests were carried out in either pretraining phase.
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Extended Data Fig. 2 | Examples of enclosure set ups and animal paths across task stages and recording days. Enclosure set ups across distinct 
behavioral days. animal coverage represented in grey. a, Example coverage paths for pre-learning exploration of learning enclosures. b, Example animal 
paths during learning trials in contingency X and contingency Y. c, Example animal paths during probe trials in contingency X and contingency Y. Paths 
of the animal during trials (correct path: black; incorrect path: red) are overlaid onto overall coverage (grey) for a single learning session. Black circles 
represent path starting points; blue and red circles represent correct and incorrect end points, respectively.
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Extended Data Fig. 3 | Dynamics of memory performance. a, Lack of a relationship between performance on probe trials of a recording day and 
those of the previous day (Regression line shown in dark grey; light grey shaded area represents 95% confidence intervals). Linear regression of probe 
performance on day n against probe performance on day ‘n-1’: r = -0.155, P = 0.413. b, Behavioral performance during memory probe test, per mouse. 
Here the memory performance for each individual mouse is averaged across days, with each data point showing average performance for a single mouse 
(mean performance=0.10 ± 0.03). c, Probe performance (per mouse) is weaker during the first trial following a switch in LED displays (switch trials; Mean 
performance: -0.07 ± 0.11) compared to subsequent trials (non-switch trials; Mean performance: 0.16 ± 0.04). d, Probe performance does not change 
systematically across probe trials and hence no further learning is observed during memory retrieval. Linear regression of performance against trial 
number r = 0.030, P = 0.442.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Within- and between-contingency properties of coactivity patterns and their member neurons. a, a Gaussian Naive 
Bayesian classifier was trained to decode contingencies using a combination of Ca1 principal neuron firing rates and pairwise correlations. Shuffling 
rates, correlations or both impairs classifier performance. Data points represent individual mice. Mean accuracy; actual: 65.3 ± 4.3%, shuffled 
correlations: 55.0 ± 1.5%, shuffled rates: 61.2 ± 3.7%, both shuffled: 48.3 ± 0.2%; N = 10 mice. b, Cosine similarity of contingency-discriminating and 
contingency-invariant patterns across conditions per mouse. Contingency-discriminating: Within-contingency: 0.62 ± 0.03, between-contingency: 
0.47 ± 0.02, between-enclosure: 0.41 ± 0.04; Contingency-invariant: Within-contingency: 0.82 ± 0.02, between-contingency: 0.87 ± 0.01, 
between-enclosure: 0.49 ± 0.06. Note that N = 10 animals for contingency-invariant patterns but 9 animals for contingency-discriminating patterns 
as no such patterns could be detected in one animal. c, average firing rate of contingency-discriminating and contingency-invariant member neurons 
per mouse. Contingency-discriminating: Same contingency: 2.22 ± 0.33 Hz, opposite contingency: 2.09 ± 0.33 Hz; Contingency-invariant: Same 
contingency: 2.15 ± 0.41 Hz, opposite contingency: 2.20 ± 0.42 Hz. N = 9 animals for contingency discriminating and contingency invariant patterns as 
for one animal, none of the detected contingency-invariant patterns had ‘members’ (that is neurons with a weight of more than 2 standard deviations 
above the pattern weight vector mean). average firing rate of contingency-discriminating and contingency-invariant member neurons using (d) 1 
standard deviation (Contingency-discriminating: Same contingency: 2.00 ± 0.09 Hz, opposite contingency: 1.95 ± 0.09 Hz; Contingency-invariant: 
Same contingency: 2.38 ± 0.11 Hz, opposite contingency: 2.42 ± 0.11 Hz) or (e) 3 standard deviations as weight thresholds for defining pattern members 
(Contingency-discriminating: Same contingency: 1.93 ± 0.23 Hz, opposite contingency: 1.70 ± 0.22 Hz; Contingency-invariant: Same contingency: 
2.06 ± 0.25 Hz, opposite contingency: 1.93 ± 0.21 Hz). f, Proportion of principal neurons recorded from the Ca1 on the left or the right hemisphere 
that are members of contingency-discriminating patterns (Mean proportion: left hemisphere: 0.104 ± 0.017, right hemisphere: 0.087 ± 0.015) or 
contingency-invariant patterns (Mean proportion: left hemisphere: 0.129 ± 0.022, right hemisphere: 0.179 ± 0.033). g, Contingency discriminating pattern 
members showed a trend towards a preference for earlier phases of theta cycles compared to contingency invariant pattern members (Mean theta-phase 
preference, with respect to theta peak; contingency-discriminating pattern members: 156 ± 6°; contingency-invariant pattern members: 174 ± 5°; 
Watson-Wheeler test: W(2)=5.23, P = 0.073).
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Contingency discriminating and invariant coactivity patterns show distinct relationships to task phase and performance. 
a, Time-course of pattern strength changes with mice as Ns. Contingency X-discriminating and contingency y-discriminating patterns were pooled 
and the strength of all patterns of a given type in its preferred contingency were averaged per mouse and the mean value quantified in exploration/
learning sessions. Dashed lines represent mean pattern strength in Control enclosure. Linear regression of strength against time during Exploration 
(contingency-invariant: r = 0.27, P = 8.15×10-4; contingency-discriminating: r = 0.20, P = 0.02) and Learning (contingency-invariant: r = 0.19, P = 9.30×10-

4; contingency-discriminating: r = 0.21, P = 4.92×10-4). Slopes of contingency invariant patterns showed a trend towards being higher than those of 
contingency discriminating patterns during exploration (slope = 0.0041 ± 0.0012 and 0.0025 ± 0.0015 units/minute respectively; Mann Whitney U 
test (two-sided): U = 25.0, P = 0.06) but not during learning (slope = 0.0038 ± 0.0015 and 0.0021 ± 0.0007 units/minute respectively; Mann Whitney 
U test (two-sided): U = 36.0, P = 0.24). N = 10 animals for contingency invariant patterns but 9 animals for contingency discriminating patterns as 
no such patterns were detected in one animal. b, Increases in contingency-invariant and contingency-discriminating pattern strengths plotted as 
a function of learning trials. Contingency X-discriminating and y-discriminating patterns were pooled, and the coactivity strength of each pattern 
was quantified in learning trials of its preferred contingency. Linear regression of strength against trials (contingency-invariant: r = 0.04, P = 0.020; 
contingency-discriminating: r = 0.13, P = 1.05×10-8). Shaded area represents variability (Standard error of the mean) across coactivity patterns. c, 
No changes in member neuron firing rates (z-scored) across learning trials. Linear regression of firing rate against trials (contingency-invariant: 
r = 0.0016, P = 0.94; contingency-discriminating: r = 0.0022, P = 0.94). Shaded area represents variability (Standard error of the mean) across coactivity 
pattern members. d, Temporal correlations (Pearson r values) amongst each member neuron of a pattern and other members in the same pattern 
between exploration and learning (Mean Pearson correlation: Contingency-invariant members: exploration: 0.037 ± 0.004, learning: 0.098 ± 0.005; 
contingency-discriminating members: exploration: 0.019 ± 0.003, learning: 0.052 ± 0.003). e, Z-scored contingency discriminating pattern strength 
in the same contingency and the opposite contingency during tone and drop delivery. This is the point when animals’ behavior is maximally different 
between contingencies, as animals head towards opposite dispensers (Fig. 1e and Extended Data Fig. 2b). Despite this, the normalized time course 
of coactivity pattern strength was indistinguishable across contingencies (Two way repeated measures aNOVa: No main effect of contingency: 
F(1)=1.5×10-26, P = 1.00, η2 = 9.39×10-31, Main effect of time: F(117)=3.41, P = 7.61×10-32, η2 = 0.025, No contingency:time interaction: F(117)=0.76, 
P = 0.98, η2 = 0.006). f, Pattern strength before the animal’s choice during probe trials, on days where overall probe performance was above chance, 
averaged per mouse. Contingency discriminating mean strength: correct: 0.14 ± 0.04, incorrect: 0.09 ± 0.05; contingency-invariant: correct: 0.23 ± 0.08, 
incorrect: 0.23 ± 0.09. N = 7 animals for both contingency-discriminating and contingency-invariant patterns reflecting the number of animals with 
recording days in which: 1) units were recorded and isolated; 2) animals performed above chance in the probe; 3) coactivity patterns of the indicated 
type were detected. g, Contingency-discriminating pattern member firing rate is indistinguishable before correct vs incorrect probe trials on days where 
overall probe performance was above chance. Mean member rate: correct: 2.32 ± 0.26 Hz, incorrect: 2.15 ± 0.26 Hz. h, Mouse running speed before 
correct and incorrect trials. Mean speed: correct: 6.90 ± 0.28 cm.s-1, incorrect: 6.58 ± 0.43 cm.s-1. i, Contingency-discriminating coactivity patterns are 
indistinguishable before correct trials compared to incorrect trials on days when the animal’s overall probe performance is not above chance level. Mean 
strength: correct: 0.086 ± 0.019, incorrect: 0.090 ± 0.023. j, Decoding accuracy using 1000 ms pairwise correlations compared to shuffled controls. (Mean 
accuracy; actual: 75.7 ± 2.1%, shuffled: 48.8 ± 0.2%; N = 23 recording days). k, Contingency-discriminating coactivity patterns, detected across 1000 ms 
windows, are not stronger before correct compared to incorrect choices on memory probe trials, on days where overall probe performance was above 
chance. Mean strength: correct: 0.017 ± 0.006, incorrect: 0.016 ± 0.004.
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Extended Data Fig. 6 | Example pattern activation and member firing rate maps. Example pattern activation maps and corresponding place maps of 
pattern member neurons for (a) a contingency-invariant and a concomitantly recorded (b) contingency-discriminating coactivity pattern across all 
sessions. Note that the right most member of the contingency-invariant pattern is also a member of the contingency-discriminating pattern. Further 
examples of coactivity pattern and strength maps and member rate maps for (c) contingency invariant and (d) contingency discriminating patterns. Maps 
are shown for the session in which these patterns were detected. Maximum firing rate (in Hz) or maximum coactivity strength (aU) are shown above each 
firing rate map or pattern strength map, respectively.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Spatial firing properties of coactivity pattern members. Spatial coherence of contingency-invariant pattern members 
is higher than that of contingency-discriminating pattern members (a) in the learning (Mean spatial coherence: contingency-invariant: 
0.79 ± 0.01, contingency-discriminating: 0.66 ± 0.02) and (b) in the control enclosures (Mean spatial coherence: contingency-invariant: 
0.71 ± 0.02, contingency-discriminating: 0.60 ± 0.02). c, Cumulative distribution of spatial firing field numbers for contingency-discriminating 
and contingency-invariant pattern members. (Mean field number: contingency-invariant: 1.59 ± 0.07, contingency-discriminating: 1.79 ± 0.09; 
Kolmogorov-Smirnov test (two-sided): D = 0.15, P = 0.08. Member neuron firing fields are less spatially overlapping for contingency-discriminating than 
contingency-invariant patterns using (d) 1 standard deviation (Mean spatial correlation: contingency-invariant: 0.39 ± 0.01, contingency-discriminating: 
0.17 ± 0.01) or (e) 3 standard deviations (Mean spatial correlation: contingency-invariant: 0.64 ± 0.04, contingency-discriminating: 0.46 ± 0.07) as 
weight thresholds for defining pattern members. f, Pairwise spatial correlations of contingency-discriminating pattern members are lower than those of 
contingency-invariant pattern members regardless of the degree of temporal correlation between the member neurons. Two-way aNOVa: main effect of 
pattern type (F(1)=27.0, P = 3.87×10-7, η2 = 0.073) and temporal correlation (F(4)=9.3, P = 4.12×10-7, η2 = 0.102). No pattern type: temporal correlation 
interaction (F(4)=1.7, P = 0.14, η2 = 0.019). g, Example coverage traces (gray) with overlaid spiking activity (dots) of a member of a contingency-invariant 
(left) and a member of a contingency-discriminating (right) coactivity pattern. Spikes during a co-activation event of a given pattern are marked 
in blue (contingency-invariant) or orange (contingency-discriminating), while the remaining spikes are marked in dark green. Spatial firing field of 
the member neuron is indicated by light green shading. h, Infield versus outfield co-activation score for member neurons of contingency-invariant 
and contingency-discriminating patterns (Mean score: contingency-invariant: 0.56 ± 0.04, contingency-discriminating: 0.18 ± 0.05). i, Pairwise 
spatial correlations of high explained variance and low explained variance principal cell pairs. Mean spatial correlation: High explained variance pairs 
(N = 993): 0.134 ± 0.010, low explained variance pairs (N = 369): 0.204 ± 0.014; Mann Whitney U test (two-sided): U = 155648.0, P = 9.69×10-6. j, 
Matrices showing mean spatial correlations of members of contingency invariant (left) and contingency-discriminating (right) patterns across all 
sessions. k, Spatial correlation of each contingency discriminating pattern member neuron across sessions of the same contingency or of opposite 
contingencies showing only member neurons with spatial coherence matching that of contingency-invariant pattern members (Mean spatial correlation: 
within-contingency 0.58 ± 0.02, between-contingency: 0.72 ± 0.02). l, Spatial correlations between members of the same contingency-invariant (left) or 
contingency-discriminating (right) patterns across sessions. For both pattern types spatial correlations amongst pairs of neurons of the same coactivity 
patterns were higher during the learning stage than during the exploration stage further reflecting the development of these patterns with learning. Spatial 
correlations amongst members of the same contingency discriminating or those of contingency-invariant patterns were lowest in the control enclosure 
and highest in the last learning sessions, confirming the enclosure-selectivity of hippocampal maps. Key to x-axis labels: first letter denotes contingency 
in which pattern was detected, subsequent letters denote session in which spatial maps of members were computed (for example X-y2 are the spatial 
maps of members of coactivity patterns detected in contingency X, plotted in session y2; that is second learning session of contingency y). Mean 
spatial correlation: contingency-invariant: X-X2 & y-y2 (pooled): 0.605 ± 0.015, X-y2 & y-X2: 0.543 ± 0.018, X-X1 & y-y1: 0.438 ± 0.021, X-X0 & y-y0: 
0.230 ± 0.023, X-Control & y-Control: 0.114 ± 0.021; contingency-discriminating: X-X2 & y-y2: 0.297 ± 0.027, X-y2 & y-X2: 0.200 ± 0.025, X-X1 & y-y1: 
0.191 ± 0.026, X-X0 & y-y0: 0.086 ± 0.023, X-Control & y-Control: 0.023 ± 0.024.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Behavioral and neural effects of silencing left or right hemisphere originating CA3-CA1 inputs. a, Example LFP trace 
containing theta-nested mid and slow gamma oscillations (top; raw trace and theta component as black and magenta traces, respectively) along with 
its time-frequency representation (bottom) (b) Example of the selective effect of Ca3L → Ca1 input suppression on the slow but not the mid gamma 
oscillations. Shown are Hilbert-spectra as a function of ongoing theta phase for pre, during and post light delivery in a representative session (colors 
represent the same scale in all three panels). Theta cycles were subsampled to maintain instantaneous speed distributions across panels. c, Firing 
rate of Ca1 principal neurons is increased by light delivery (Mean normalized (z-scored) firing rate: light OFF epochs: -0.011 ± 0.002, light ON epochs 
(1 minute after light onset): 0.004 ± 0.002; right, example raster plot during light ON period for one light ON epoch in a single recording day). d, The 
ratio of detected coactivity patterns to Ca1 principal neurons is unaltered by Ca3L → Ca1 input suppression (Mean pattern-to-neuron ratio: Light OFF 
days: 0.20 ± 0.01, Light ON days: 0.20 ± 0.02). e, Reinstatement strength of all coactivity patterns is unaltered by Ca3L → Ca1 input suppression (Mean 
probe:learning pattern strength ratio: Light OFF: 0.59 ± 0.02, Light ON: 0.63 ± 0.04). Results in panels e and d show that input suppression does not 
alter the overall organisation of Ca1 neurons into coactivity patterns nor the cross-session stability of such coactivity. f, The strength of coactivity 
patterns detected in the Ca1 under Ca3L → Ca1 input suppression is less sensitive to contingencies compared to light OFF days (Mean pattern 
strength change across contingencies: Light OFF days: 0.22 ± 0.01, Light ON days: 0.15 ± 0.02). g, Explained variance for contingency is higher in light 
OFF days compared to days with Ca3L → Ca1 input suppression. Mean normalised explained variance (standard deviations from mean): Light OFF 
days: 0.36 ± 0.01 (N = 19852 neuron pairs), Light ON days (N = 5696 neuron pairs): 0.10 ± 0.02; Mann Whitney U test (two-sided): U = 51962023.0, 
P = 9.36×10-21. h, Ca3L → Ca1 input suppression impairs Gaussian naïve Bayesian decoding accuracy using short-timescale (25 ms) correlations (Mean 
normalised decoding accuracy (standard deviations from mean): Light OFF days (N = 23 days): 1.80 ± 0.33, Light ON days (N = 8 days): 0.75 ± 0.45). i, 
Ca3L → Ca1 input suppression does not impair performance during learning trials. Mean performance: Light OFF: 0.90 ± 0.02 (n = 31 days), Light ON: 
0.86 ± 0.02 (n = 20 days); Mann Whitney U test (two-sided): U = 240.0, P = 0.09. j, Comparison of mean probe performance on light OFF and light 
ON (Ca3L → Ca1 input suppression) days averaged per animal. (Mean performance: Light OFF days: 0.15 ± 0.07, Light ON days: -0.02 ± 0.08). Effect 
of Ca3L → Ca1 input suppression on performance on (k) the first trial following a switch in LED displays (‘switch’ trials; Mean performance: Light OFF 
days: 0.18 ± 0.17, Light ON days: -0.21 ± 0.16) and on (l) subsequent trials (‘non-switch’ trials: Light OFF days: 0.18 ± 0.12, Light ON days: 0.01 ± 0.11). m, 
Suppressing Ca3L inputs to Ca1 during learning does not impair memory performance in probe trials when each LED set signals the same contingency 
(same dispenser-sucrose and dispenser-quinine pairing) throughout all learning sessions (‘One-contingency training days’; Mean performance: Light 
OFF days: 0.57 ± 0.11, Light ON days: 0.54 ± 0.14). n, Schematic of Ca3R → Ca1 optogenetic suppression protocol. Ca3R neurons were transduced with 
archaerhodopsin 3.0 in Grik4-Cre mice (n = 6) and their axonal projections in the Ca1 targeted bilaterally during learning trials with yellow 561nm-light 
delivery from implanted optic fibres. Ca3R → Ca1 input suppression during learning of the two-contingency task does not impair performance in probe 
trials, when taking (o) all (Mean performance: Light OFF: 0.06 ± 0.03, Light ON: 0.05 ± 0.08), (p) switch (Mean performance: Light OFF: -0.16 ± 0.12, 
Light ON: -0.01 ± 0.17) or (q) non-switch trials (Mean performance: Light OFF: 0.12 ± 0.05, Light ON: 0.17 ± 0.09). r, Suppression of Ca3R → Ca1 input 
reduces the power of theta-nested slow gamma oscillations to a similar extent as with Ca3L → Ca1 input suppression without affecting mid gamma 
oscillations. Two-way repeated measures aNOVa: Slow gamma: Main effect of light (F(1)=64.2, P > 0.001, η2 = 0.592), no main effect of Ca3 hemisphere 
(F(1)=0.571, P = 0.457, η2 = 0.005) on normalised gamma power; Mid gamma: No main effect of light (F(1)=1.22, P = 0.281, η2 = 0.029), no main effect of 
Ca3 hemisphere (F = 0.226, P = 0.639, η2 = 0.005) on normalised gamma power. s, SWR frequency increases with suppression of either Ca3L → Ca1 or 
Ca3R → Ca1 inputs (mean frequency: Light OFF days: 152 ± 1 Hz, Light ON days (left): 156 ± 2 Hz, Light ON days (right): 155 ± 2 Hz. t, awake sharp-wave 
ripple (SWR) duration is reduced by suppression of either Ca3L → Ca1 or Ca3R → Ca1 inputs (mean duration: Light OFF days: 39 ± 1 ms, Light ON days 
(left): 35 ± 1 ms, Light ON days (right): 36 ± 1 ms). This reduction is therefore not sufficient to explain the selective impairment of memory performance 
after suppressing Ca3L → Ca1 but not Ca3R → Ca1 inputs. u, Incidence rates of awake SWRs during suppression of either Ca3L → Ca1 or Ca3R → Ca1 
inputs (mean incidence rate: Light OFF days: 0.039 ± 0.006 Hz, Light ON (left) days: 0.059 ± 0.012 Hz, Light ON (right) days: 0.080 ± 0.027 Hz). We did 
not observe a reduction in awake SWR incidence rates, unlike a previous study using bilateral silencing of Ca3 neurons in rats63. Possible co-occurrence 
of SWR generating processes in the Ca3 across hemispheres may explain why unilateral silencing does not impair the incidence rate of Ca1 SWRs. 
Nevertheless, the reduction in SWR duration seen when silencing unilateral Ca3 inputs from either hemisphere suggests that input from the Ca3 on both 
hemispheres is needed for the full expression of a given Ca1 SWR.
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Extended Data Fig. 9 | Example coactivation maps and raster plots of principal neuron activity with or without left CA3-CA1 silencing. Example 
coactivity patterns during (a) light OFF and (b) Ca3L → Ca1 input suppression (light ON) days across both learning contingencies (sessions X2 and y2). 
Top of each panel depicts strength maps for several representative coactivity patterns, while below example coactivations for the left most pattern are 
shown in more detail. all coactivations (defined as coactivity strength above 2 standard deviation of mean strength in preferred contingency; displayed as 
coloured dots) are superimposed on coverage maps in each contingency (bottom left). Raster plots show the time-courses of neuronal firing (members 
color-coded orange or blue to denote contingency discriminating or contingency invariant pattern, respectively) and coactivation strengths for four 
separate paths (color-coded) across each contingency (bottom right) are plotted.
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Schematic representation of emergent coactivity coding and a potential single-neuron reading mechanism. a, Top: Schematics 
contrasting a hypothetical rate code(adrian, 1) (left) and emergent coactivity code (right) for disambiguating contingencies. Bottom: Emergent coactivity 
code for contingencies with temporal windows indicated by dashed rectangles aligned to spikes from neuron 1 (left) or neuron 4 (right) showing that 
neurons 1, 2 and 3 are more coactive for contingency Y while neurons 4, 5 and 6 are more coactive for contingency X. b, a hypothetical ‘reader’ neuron 
can disambiguate distinct patterns of coactivity, for example by supralinear summation of one set of coactive inputs (for example from upstream neurons 
1, 2 and 3), but only linear/sublinear summation of another (from upstream neurons 4, 5 and 6). Such non-linearities could result from the preferential 
activation of voltage-gated dendritic conductances, for example through clustering of synaptic inputs on dendritic branches (Stuart and Spruston, 48). The 
membrane time-constant (~10-30 ms in forebrain pyramidal neurons (Koch et al., 9)) constrains a reader neuron’s integration time-window, and hence this 
mechanism is particularly suited for short-timescale coactivity. Note that the converse may be true for another reader neuron, with inputs from neurons 4, 
5, and 6 preferentially exhibiting supralinear summation and hence preferentially driving activity in this alternative neuron. Vm: membrane potential.
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Data exclusions No mice were excluded. Inclusion criteria for well-isolated single units were used as published in previous studies and described in the 

methods section. Only recording days where mice covered a minimum of 50% of the open field were considered for analyses. Only probe 

sessions where animals covered at least 50% of the enclosure and completed at least 4 trials (i.e. visited at least one dispenser for at least 4 

trials) were included in probe analyses.

Replication The behavioural experiments were performed independently across mice (n=15) and recording days (n=71 light OFF training days; 43 light ON 

training days; 10 one-contingency learning light OFF days; 6 one-contingency learning light ON days). The electrophysiological analyses were 

performed independently across 853 neurons in light OFF days and 271 neurons in light ON days; 151 coactivity patterns in light OFF 

contingency X and 155 coactivity patterns in light OFF  contingency Y, 56 coactivity patterns in light ON contingency X and 52 coactivity 
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Laboratory animals These experiments used adult male C57BL/6J mice (Charles River Laboratories, UK) or transgenic heterozygous Grik4-cre mice (The 

Jackson Laboratories; C57BL/6-Tg(Grik4-cre)G32-4Stl/J, stock number 006474, RRID: IMSR_JAX:006474; maintained on a C57BL/6J 

background). Mice were housed with their littermates until the surgical procedure with free access to food and water in a room with 

a 12/12h light/dark cycle, 19–23°C ambient temperature and 40–70% humidity. All mice held in IVC's, with wooden chew stick and 

nestlets. Mice were 4-7 months old at the time of testing.

Wild animals No wild animals were used in the study. 
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