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SUMMARY
Every day we make decisions critical for adaptation and survival. We repeat actions with known conse-
quences. But we also draw on loosely related events to infer and imagine the outcome of entirely novel
choices. These inferential decisions are thought to engage a number of brain regions; however, the underly-
ing neuronal computation remains unknown. Here, we use a multi-day cross-species approach in humans
and mice to report the functional anatomy and neuronal computation underlying inferential decisions. We
show that during successful inference, the mammalian brain uses a hippocampal prospective code to
forecast temporally structured learned associations. Moreover, during resting behavior, coactivation of hip-
pocampal cells in sharp-wave/ripples represent inferred relationships that include reward, thereby ‘‘joining-
the-dots’’ between events that have not been observed together but lead to profitable outcomes. Computing
mnemonic links in this manner may provide an important mechanism to build a cognitive map that stretches
beyond direct experience, thus supporting flexible behavior.
INTRODUCTION

When making decisions, we often draw on previous experience.

We repeat actions that were profitable in the past and avoid

those that led to unwanted consequences. However, we can

also make decisions using information we have not directly

experienced, by combining knowledge from multiple discrete

items or events to infer new relationships. This ability to infer pre-

viously unobserved relationships is thought to be critical for flex-

ible and adaptive behavior.

Anatomical lesions in rodents and functional imaging in hu-

mans have started to uncover the macroscopic network of brain

regions supporting inferential decisions (Bunsey and Eichen-

baum, 1996; Hampton et al., 2006; Jones et al., 2012; Nicholson

and Freeman, 2000; Preston et al., 2004; Robinson et al., 2014;

Wimmer and Shohamy, 2012; Zeithamova et al., 2012a), high-

lighting the involvement of orbitofrontal, medial prefrontal, peri-

rhinal, and retrosplenial cortices, along with the hippocampus.

However, the mechanistic contribution of these regions and the

neuronal computation underpinning inference remain unclear.

A potential mechanism for inference involves chaining

together memories for discrete events at the time of choice. In

this scenario, an inferred outcome is predicted by internally
228 Cell 183, 228–243, October 1, 2020 ª 2020 The Author(s). Publis
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simulating the short-term consequences of each memory in

the chain. Retrieval mechanisms of this kind may be described

by a family of theories known as model-based reinforcement

learning (Daw et al., 2005) that involve a learned model of the

world. By constructing predictions for decision outcomes on

the fly, such mechanisms capture a hallmark of flexible deci-

sion-making. However, this comes with the computational cost

of searching through a potentially large number of memories.

To reduce the computational demand associated with infer-

ence, events that have not been encountered together in space

or time may be linked to form cognitive ‘‘short-cuts.’’ Together

with prior memories, such higher-order relationships may form

a ‘‘relational’’ or ‘‘cognitive map’’ of the world (Cohen and Ei-

chenbaum, 1993; O’Reilly and Rudy, 2001; Tolman, 1948). The

hippocampus has been attributed to holding a cognitive map

(O’Keefe and Nadel, 1978), with neuronal representations

observed in the spatially tuned activity of pyramidal cells during

exploration (Ekstrom et al., 2003; O’Keefe and Dostrovsky,

1971). In addition to representing space, the hippocampus sup-

ports memory for past experience (Squire, 1992) and mediates

associations between sequential events (Fortin et al., 2002;

Schendan et al., 2003). However, while the hippocampus is a

suitable candidate to hold internal maps, it remains unclear
hed by Elsevier Inc.
commons.org/licenses/by/4.0/).
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Figure 1. Inference Task Design and Behavioral Performance in Humans and Mice

(A) Three-stage inference task. Humans and mice learned to associate auditory cues (Xn) with visual cues (Yn) (‘‘observational learning’’); visual cues (Yn) with an

outcome (Zn) (‘‘conditioning’’), where the outcome was rewarding in set 1 (orange) and neutral in set 2 (green). In the ‘‘inference test’’, the auditory cues (Xn) were

presented in isolation and reward-seeking behavior quantified as a measure of inference from Xn to Zn.

(B) Virtual-reality environment usedwith humans (left), simulating the open-field arena usedwith mice (right schematic). Outcomes Zn were delivered to awooden

box (humans) or a liquid dispenser (mice).

(C and D) Top: timeline for the task in humans (C) andmice (D). Middle: example conditioning trials (schematic). Bottom: example inference test trials (schematic).

(C) Middle and bottom: a subset of conditioning trials and all inference test trials were performed inside a 7T scanner. Red square indicates the participant’s

response. (D) Middle and bottom: all conditioning and inference test trials were performed within the open-field. Red dotted line delineates outcome area around

the dispenser.

(E and F) Left of each panel: raw data points for set 1 (orange) and set 2 (green); black dot, mean; black ticks, ±SEM. Right of each panel: behavioral measures of

reward-seeking bias shown using bootstrap-coupled estimation (DABEST) plots (Ho et al., 2019). Effect size for the difference between set 1 and 2 (i.e., reward

seeking bias), computed from 10,000 bias-corrected bootstrapped resamples (Efron, 2000): black dot, mean; black ticks, 95% confidence interval; filled-curve,

(legend continued on next page)
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whether this brain region represents or computes cognitive

short-cuts to support inference.

One possibility is that memories for distinct experiences are

linked together or even fundamentally restructured during awake

rest and sleep (Buckner, 2010; Buzsáki, 2015; Diekelmann and

Born, 2010; Foster, 2017; Joo and Frank, 2018). During these

quiet periods, hippocampal local-field potentials (LFPs) are

characterized by sharp-wave/ripples (SWRs): short-lived,

large-amplitude deflections accompanied by high-frequency os-

cillations (Buzsáki, 2015; Csicsvari et al., 1999). During SWRs,

hippocampal cells fire synchronously and their temporally struc-

tured spiking can ‘‘replay’’ previous waking experience (Louie

and Wilson, 2001; Nádasdy et al., 1999; Wilson and McNaugh-

ton, 1994) to support memory and planning (Buzsáki, 2015; Fos-

ter, 2017; Joo and Frank, 2018). Growing evidence suggests

SWR activity also extends beyond replay of directly experienced

information. For instance, hippocampal SWR spiking can antic-

ipate upcoming experience (Dragoi and Tonegawa, 2011; Ólafs-

dóttir et al., 2015), reorder events according to a trained rule (Liu

et al., 2019), or even stitch together spatial trajectories (Gupta

et al., 2010; Wu and Foster, 2014). In this manner, we hypothe-

size that hippocampal SWR activity generates spiking motifs

that provide a cellular basis for novel higher-order relationships,

thus breaking the constraints imposed by direct experience.

Here, we investigate the neuronal computation underlying

inference in the mammalian brain using a cross-species

approach. We implement a multi-day inference task and deploy

brain recording technologies in both humans and mice to syner-

gize insights gained across species. Namely, we acquire near-

whole brain ultra-high field (7T) functional magnetic resonance

imaging (fMRI) in humans to identify where inference is

computed, before using this finding to inform optogenetic ma-

nipulations in mice to test causality.

Using human 7T fMRI and mouse in vivomultichannel electro-

physiology, we then obtain complementary signatures of infer-

ence at the macroscopic and cellular resolution, respectively.

By implementing the same analytical framework across species,

we show that during inferential choice the hippocampus fore-

casts mnemonic, temporally structured associations ‘‘on-the-

fly.’’ While this prospective code draws on learned experience,

in humans the inferred outcome is represented in the medial pre-

frontal cortex (mPFC) and the putative dopaminergic midbrain.

Next, during rest/sleep in mice, neuronal coactivations during

hippocampal SWRs increasingly represent inferred relationships

that include reward, thus ‘‘joining-the-dots’’ between discrete

events. These findings show that the hippocampus supports

inference by computing a prospective code to ‘‘look ahead’’

and predict upcoming experience, before extracting ‘‘logical’’

links between events in SWRs. In this manner, the hippocampus

may construct a cognitive map that stretches beyond direct
sampling-error distribution. (E) Humans exhibited significant reward-seeking bias

1’’ relative to ‘‘set 2’’) in response to visual cues during conditioning (p < 0.001) an

reward-seeking bias of one participant. (F) Mice showed significant reward-seekin

2’’) during visual cues in conditioning (p < 0.001; Figures S2A–S2F) and following a

point: average reward-seeking bias of one mouse on a given day. Both humans a

with Zn), compared to auditory cues Xn (indirectly paired with Zn).

See also Figure S1 and Table S4.
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experience (O’Keefe and Nadel, 1978; Tolman, 1948), creating

new knowledge to facilitate flexible future decisions.

RESULTS

Cross-Species Task Design and Behavioral
Performance
Wedesigned a three-stage task (Figure 1A) that leveraged a sen-

sory preconditioning paradigm (Brogden, 1939) while permitting

recordings of brain activity in humans and mice. To match the

paradigm across species, we trained human participants in a vir-

tual-reality environment simulating the open-field arena used

with mice (Figure 1B). The inference task was performed across

multiple days (Figures 1C and 1D). In the first stage, we exposed

subjects to pairs of sensory stimuli, with each pair n including an

auditory cue Xn that signaled contiguous presentation of a visual

cue Yn (Figure 1A; Xn/Yn ‘‘observational learning’’). In the sec-

ond stage, we re-exposed subjects to the visual cues Yn, each of

which now predicted delivery of either a rewarding (set 1 stimuli)

or neutral (set 2 stimuli) outcome Zn (Figure 1A; Yn/Zn ‘‘condi-

tioning’’). Rewarding outcomes were virtual silver coins for hu-

mans (exchangeable for a real monetary sum) and drops of su-

crose for mice. Neutral outcomes were (non-exchangeable)

woodchips for humans and drops of water for mice. In humans,

we included amany-to-onemapping between task cues (Figures

S1CandS1D), to further dissociate cue-specific representations.

Importantly, auditory cues Xn were never paired with outcomes

Zn, providing an opportunity to assess evidence for an inferred

relationshipbetween these indirectly related stimuli. Accordingly,

in the final stage, we presented auditory cues Xn in isolation,

without visual cues Yn or outcomes Zn, and we measured evi-

dence for inference from Xn to Zn by quantifying reward-seeking

behavior (Figures 1A, Xn/? ‘‘inference test’’, 1C, and 1D).

During the conditioning, both humans and mice were trained

to show higher levels of reward-seeking behavior during visual

cues Yn in set 1 relative to set 2. As expected, in response to

Yn, subjects successfully anticipated the relevant outcome Zn

prior to its delivery (Figures 1C–1F, S1A–S1F, and S2A–S2F).

During the inference test, both humans and mice showed

significantly greater reward-seeking behavior in response to

auditory cues Xn in set 1 relative to set 2 (Figures 1C–1F, S1A,

S1B, S2G, and S2H). Therefore, despite never directly experi-

encing outcome Zn in response to auditory cues Xn, both spe-

cies showed behavioral evidence for an inferred relationship be-

tween these stimuli.

The Hippocampus Is Engaged during Inference:
Macroscopic Network in Humans
To identify where inference is computed, we took advantage of

near-whole brain imaging in humans using 7T fMRI (Figure 2A)
(percentage of trials where participants wished to visit the wooden box in ‘‘set

d auditory cues during the inference test (p < 0.001). Each data point: average

g bias (percentage of time spent in the outcome area in ‘‘set 1’’ relative to ‘‘set

uditory cues in the inference test (p = 0.005; Figures S2G and S2H). Each data

nd mice showed greater reward seeking bias for visual cues Yn (directly paired



Figure 2. Macroscopic Inference Network in Humans and the Necessary Contribution of dCA1 to Inference in Mice

(A) 7T fMRI used to measure the BOLD signal during the inference task (Figure 1C).

(B) Significant right hippocampal BOLD signal during correct inference (‘‘correct’’ – ‘‘incorrect’’ inference: right, t21 = 4.15, p = 0.022; left, t21 = 2.80, p = 0.221;

Figure S3A; Table S1).

(C) Significant BOLD signal in auditory cortex during inference test trials (‘‘inference trials’’ – ‘‘conditioning trials’’: t21 = 14.76, p < 0.001).

(D) Psychological-physiological interaction showing differential co-activation with auditory cortex (seed region, C, Figure S3B) on correct versus incorrect

inference trials (hippocampus: t21 = 4.23, p = 0.015; and other regions: retrosplenial cortex: t21 = 3.88, p = 0.012; visual cortex: t21 = 4.77, p < 0.001; Table S2).

(E–J) In mice. Yellow, laser on; gray, laser off. (E) Schematic: ArchT-GFP viral injections, optic fibers, and tetrodes targeting dCA1 of CamKII-Cre mice for

ensemble recording and manipulation. (F) dCA1 (green) ArchT-GFP expression. Scale bar, 500 mm (left), 50 mm (right). (G) Raster plot showing photo-silencing of

spiking activity for an example dCA1 pyramidal cell from an ArchT-GFP mouse. (H) Light-induced changes in firing rate for simultaneously recorded dCA1

pyramidal cells in an example ArchT-GFP mouse (laser on: t30 = �10.86, p < 0.001; laser off – laser on: t30 = 10.88, p < 0.001). Rate changes expressed for each

cell as the differences between laser on and laser off firing over the sum (scores; center line, median; box limits, upper and lower quartiles; whiskers, 1.03 in-

terquartile range). (I and J) Left panel: schematic of light delivery. Bottom right panel: raw data points for set 1 (orange) and set 2 (green); black dot, mean; black

ticks, ± SEM. Top right panel: behavioral measures of reward seeking bias shown using DABEST plots, as in Figures 1E and 1F. (I) dCA1 light delivery during

auditory cues Xn in the inference test impaired reward-seeking bias in ArchT-GFPmice (set 1 – set 2: laser off p < 0.001; laser on p = 0.794; laser off – laser on: t54 =

2.25, p = 0.029; alpha set to 0.05; Figure S2I) but not in GFP control mice (set 1 – set 2: laser off p < 0.001; laser on p < 0.001; laser off – laser on: t46 =�0.85, p =

0.399; alpha set to 0.05). The significant reward-seeking biases (ArchT-GFP laser off; GFP control laser off and on) remained significant with Bonferroni correction

for four comparisons, alpha set to 0.013. A significant interaction was also observed between the ArchT-GFP and GFP control mice (group 3 laser interaction,

two-way ANOVA, F1,100 = 4.42, p = 0.038). (J) dCA1 optogenetic silencing during visual cues Yn, presented after the inference task was complete, did not impair

reward-seeking bias in ArchT-GFP mice (set 1 – set 2: laser off p = 0.003; laser on p < 0.001; laser off – laser on: t26 = �0.14, p = 0.891).

See also Table S4.
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to measure the blood oxygen level dependent (BOLD) signal

during the inference test and conditioning trials. We used two

independent analyses. First, by comparing correct and incor-

rect trials in the inference test, we observed significantly higher

BOLD signal in the hippocampus during correct trials (Figures

2B and S3A; Table S1), consistent with animal lesion studies

and previous human imaging (Bunsey and Eichenbaum, 1996;

Gilboa et al., 2014; Preston et al., 2004). Second, by taking
the auditory cortex as a seed, a region showing elevated

BOLD signal across all inference test trials (Figures 2C and

S3B), we identified brain regions that co-activate with auditory

cortex differentially across correct and incorrect trials. Again,

we observed a significant effect in the hippocampus, along

with a broader network including retrosplenial and visual

cortices (Figure 2D; Table S2). These results suggest hippo-

campal activity is modulated during correct inference, together
Cell 183, 228–243, October 1, 2020 231
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with brain regions important for memory and the processing of

relevant sensory cues.

The Hippocampus Is Required for Inferential Choice:
Optogenetic Silencing in Mice
We next used these findings in humans to guide neuronal

silencing in mice, leveraging the cellular and temporal precision

of optogenetic tools (Deisseroth, 2011) to test the causal contri-

bution of hippocampal activity at the time of inferential choice.

We transduced pyramidal cells of the dorsal hippocampal CA1

(dCA1) with the yellow light-driven neural silencer Archaerho-

dopsin-T fused with the green fluorescent protein reporter

(ArchT-GFP). Optic fibers were subsequently implanted, target-

ing bilateral dCA1 with light to suppress neuronal spiking during

sensory cue presentation (Figures 2E–2H). Suppressing dCA1

spiking impaired inference: light delivery during auditory cues

Xn in the inference test (50% of test trials for both set 1 and 2)

prevented ArchT-GFP mice from expressing significant

reward-seeking bias to Xn cues in set 1 relative to set 2 (Figure 2I).

dCA1 light delivery did not impair the reward-seeking bias inGFP

control mice (Figure 2I). Furthermore, light delivery during the vi-

sual cues Yn, presented after the inference task was complete,

did not impair anticipatory reward-seeking behavior of ArchT-

GFP mice (Figure 2J). Thus, dCA1 is necessary for inference

while dispensable for visual discrimination and first-order

conditioning.

Selective Hippocampal Spiking Response to Task Cues:
in Mice
Using in vivo electrophysiology to record dCA1 ensembles in

mice, we observed neurons with increased spiking during either

the auditory, visual, or outcome cue in both set 1 and set 2 (Fig-

ure 3A). To identify neurons showing preferential firing to Xn, Yn,

or Zn, we applied a general-linear model (GLM) to spiking activity

monitored during each task cue, with the obtained regression

weights indicating the response magnitude of each neuron (Fig-

ures 3B and 3C). We observed largely non-overlapping neuronal

ensembles representing the different task cues (Figures 3D–3F).

This suggests dCA1 has the capacity to selectively represent

each of the discrete sensory cues and outcomes experienced

in the inference task.

The Hippocampus Computes a Prospective Code during
Inference: in Humans and Mice
We asked whether the hippocampus represents the learned and

inferred relationships between task cues. First, we assessed ev-

idence formodulation of hippocampal activity during inference in

both humans and mice. As reported above, in humans, we

observed an increase in the hippocampal BOLD signal during

correct versus incorrect inference (Figures 2B and 4A). Similarly,

in mice, we observed significant modulation of dCA1 spiking on

correct versus incorrect inference trials, after controlling for vari-

ance attributed to speed and set (Figure 4B). These findings

show modulation of neuronal activity in the mammalian hippo-

campus during correct inferential choice.

We next investigated the hippocampal computation that

serves inference. In the spatial domain, spiking activity in the

medial temporal lobe can sweep ahead of an animal’s location
232 Cell 183, 228–243, October 1, 2020
(Gupta et al., 2013; Johnson and Redish, 2007; Mehta et al.,

2000) and predict subsequent behavior (Ferbinteanu and Sha-

piro, 2003; Pastalkova et al., 2008; Pfeiffer and Foster, 2013;

Singer et al., 2013; Wood et al., 2000). We reasoned that if similar

predictive activity serves inferential choice in the cognitive

domain, the hippocampus should draw on mnemonic relation-

ships to prospectively represent visual cues Yn in response to

auditory cues Xn in the inference test, thereby chaining Xn to

outcome Zn.

To test this, we measured hippocampal representations in hu-

mans and mice during each auditory cue Xn in the inference test

and during each visual cue Yn in the conditioning. We then de-

ployed the same analytical framework across species, applying

representational similarity analysis (RSA) (Kriegeskorte et al.,

2008; McKenzie et al., 2014; Nili et al., 2014) to both voxels (hu-

mans) and neurons (mice) (Figures 4C and 4D). We observed

similar results in humans and mice: when the correct outcome

was inferred behaviorally, hippocampal activity during the cur-

rent auditory cue Xn showed higher representational similarity

with the associated visual cue Yn, compared to the non-associ-

ated (cross-set) visual cues Ym (Figures 4E–4H, S3C, and S3D).

This set-selective discrimination in the hippocampal code was

not explained by the temporal proximity between inference test

trials and re-conditioning trials (Figures S1A andS1B). Therefore,

at the time of inferential choice, presentation of Xn elicited repre-

sentations of the expected Yn cues in a set-specificmanner. This

suggests hippocampal activity represents learned associations

to predict the short-term future, thereby engaging a prospective

code to ‘‘look ahead’’ within the current spatial context.

Notably, inmice, these results did not reflect the animal’s loca-

tion (Figure S4). In humans, where we controlled for value by

including multiple visual cues Yn for each outcome Zn (Fig-

ure S1D), hippocampal activity during Xn was not explained by

the associated value of Yn (Figures S3G–S3I). During inference,

the hippocampus therefore appears to draw on memories to

forecast the learned consequence of sensory cues (Xn/Yn).

The Hippocampal Prospective Code Preserves Learned
Temporal Statistics: in Mice
To assess whether this prospective code preserves the statistics

inherent to the observational learning, we took advantage of the

high temporal resolution of in vivo electrophysiology. Taking the

neuronal ensembles that selectively represent either Xn or Yn

cues (Figures 3C–3F), we assessed the temporal order of spiking

activity for pairs of Xn and Yn neurons upon presentation of Xn

during the inference test. For within-set XnYn neuronal pairs,

neurons representing Yn were significantly more likely to spike

after neurons representing Xn (Figures 5 and S5), preserving

the temporal relationship between cues Xn and Yn experienced

during observational learning despite no further presentation of

Yn cues at this stage. Thus, during inference, hippocampal activ-

ity represents a prospective code that reflects mnemonic recall

for learned temporal statistics.

The mPFC and Midbrain Represent the Inferred
Outcome: in Humans
Having shown that both the human and mouse hippocampi

represent the intermediary visual cue Yn in response to the



Figure 3. dCA1 Neuronal Representation of Inference Task Cues in Mice

(A) Top and middle rows: Raster plots and peri-stimulus time histograms for 6 example neurons, each showing firing response to one of the 6 task cues (Xn, Yn,

and Zn) (Figure 1A). Bottom row: heatmap showing the average Z scored firing rate (Hz) of 60 example neurons in response to task cues, ordered according to the

preferred cue on the y axis.

(B) For each recorded neuron, the average Z scored firing rate across each trial was filtered by the ‘‘decision point’’ (Figure S4) and regressed onto a GLM that

modeled all task cues and the mouse’s average speed. GLM for an example neuron is shown.

(C) For each cue, the regressionweights from all neuron-specific GLMs are shown for an example recording day. Neuronswith regression weightsmore than 2 SD

from the group mean were assigned to a cue-specific ensemble and color-coded for visualization (orange, set 1; green, set 2).

(D) UpSet plot (Lex et al., 2014) showing the number of neurons within and shared across each cue-specific ensemble. Only a minority of neurons contributed to

more than one cue-specific ensemble.

(E and F) Average Z scored firing rate of neurons in the Xn,Yn, and Zn ensembles in response to each task cue. (E) For an example recording day, the average

response of each neuron allocated to a cue-specific ensemble is shown. (F) Across all recording days, the average response of all neurons in a given cue-specific

ensemble is shown (mean ± SEM).

See also Table S4.
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Figure 4. Hippocampal Prospective Memory Code during Correct Inference in Humans and Mice

(A and B) During auditory cues Xn in the inference test, the BOLD signal (humans; A) and the Z scored firing rate of each dCA1 neuron (mice; B) were regressed

onto the behavioral performance (correct versus incorrect inference) using a GLM. During Xn, the extracted regression weights (mean ± SEM) were significantly

positive for correct versus incorrect inference (humans: t21 = 4.04, p < 0.001; mice: t99 = 10.24, p < 0.001).

(C and D) In humans (C) and mice (D) hippocampal activity patterns during auditory cues in the inference test and during visual cues in conditioning were

compared using RSA to establish a cross-stimulus representational similarity matrix (RSM). In mice, data were filtered by the ‘‘decision point’’ on each trial.

(E and F) Average RSMs in humans (E) and mice (F), for the model (predicted results) and the data (observed results), split by behavioral performance in the

inference test. Rank-transformed and scaled between (0 to 1) for visualization.

(G and H) In both humans (G) and mice (H), hippocampal activity during correctly inferred auditory cues Xn in the inference test significantly predicted the

associated visual cue Yn, ([average within association XnYn correlations, RSM main diagonal] – [average between association XnYm correlations, RSM off-

diagonals]; correct and incorrect inference; humans: Z21 = 2.24, p = 0.013 and Z21 = 0.71, p = 0.238; mice: Z17 = 3.00, p = 0.001 and Z17 = 0.39, p = 0.348; mean ±

SEM). In both species, the group mean was compared against a null distribution generated by permuting the identity labels of cues Xn (correct and incorrect

inference; humans: p = 0.005 and p = 0.620; mice: p < 0.001 and p = 0.417; alpha set to 0.05). All statistical tests for correctly inferred trials remained significant

with Bonferroni correction to account for two comparisons (correctly and incorrectly inferred), alpha set to 0.025.

See also Figures S3 and S4 and Table S4.
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auditory cue Xn during inference (Figures 4 and 5), we asked

where in the brain this prospective memory code (Xn / Yn) is

translated into a representation of the inferred outcome Zn. We

capitalized on the many-to-one mapping between task cues in
234 Cell 183, 228–243, October 1, 2020
humans, where representations of Yn and Zn could be dissoci-

ated (Figures S1C and S1D). In response to Xn, there was no

evidence for representation of the inferred outcome Zn in the

human hippocampus (Figures 6A, 6B, and S6A–S6C), with



Figure 5. dCA1 Neuronal Spike Timing Supports a Prospective Code during Inference in Mice

(A and B) During inference, we assessed the spike time relationships between neuronal ensembles representing cues Xn and Yn (Figures 3C and 3D). The cross-

correlogram for spike counts in each pair of XnYn cells showed the spiking probability of neuron Yn relative to neuron Xn. Shown: example cell pair for set 1 (A) and

set 2 (B) where neuronal ensembles representing cues Xn and Yn fire sequentially, preserving the learned temporal dynamics of task cues. Right panel: change in

joint probability of XnYn spiking relative to baseline (average joint probability 50 ms prior to Xn spikes).

(C and D) During cues Xn in the inference test we estimated the Z scored spike-triggered average for neurons in ensembles Yn (shown in C) or Ym (shown in D),

within a 200-ms window relative to spikes in neurons representing Xn. DABEST plots used to compare the difference in the mean Z scored spike-triggered

average for both Yn and Ym, ‘‘after’’ minus ‘‘before’’ spikes in Xn: black dot, mean; black ticks, 95% confidence interval; filled-curve, sampling-error distribution.

Yn, but not Ym, neurons typically fired after Xn neurons (‘‘after’’ – ‘‘before’’ Xn spike discharge: red within-set neuronal pairs shown in C, X1Y1 and X2Y2, p <

0.001; gray cross-set neuronal pairs shown in D, X1Y2 and X2Y1, p = 0.983; Figure S5). Thus, despite the absence of Yn cues, spiking across XnYn cell pairs

preserved the learned temporal statistics from the observational learning stage.

See also Figure S4 and Table S4.
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analogous findings in mice (Figures 6C and 6D). This result con-

trasts with our data recorded in mice during the conditioning

stage where dCA1 ensembles show robust responses to the

experienced outcome Zn (Figure 3). This suggests that inferential

decisions are not supported by a mechanism whereby Xn ac-

quires the value of Yn during encoding (Figures S3G–S3I, 6A,

and 6B), or by a mechanism whereby mnemonic information is

recirculated within the medial temporal lobe to represent the in-

ferred outcome within the hippocampus (Kumaran, 2012; Ku-

maran andMcClelland, 2012) (Figures 6A, 6B, and S6C). Instead,

during inference, the hippocampus uses a prospective code to

forecast the learned consequences of sensory cues (Xn/Yn).

To identify where this prospective code is translated into a rep-

resentation of the inferred outcome, we took advantage of near-

whole brain imaging in humans. Using an RSA searchlight to

sweep through the entire imaged brain volume (Figures S6D
and S6E), we identified regions showing significant representa-

tional similarity between auditory cues Xn and inferred outcomes

Zn. When the correct outcome was inferred during the inference

test, activity patterns in both mPFC and midbrain showed signif-

icant representational similarity with the inferred outcome Zn

(Figures 6E–6G), even when restricting analyses to neutral

cues alone (Figures 6H–6J). Notably, representation of Zn was

conditional on the cues that predicted Zn (Figures 6E and

S6B), suggesting the inferred outcome is computed online ac-

cording to a model of the task. Moreover, by representing

value-neutral sensory features, the processing specificities of

mPFC and putative dopaminergic midbrain regions may go

beyond reward or direct reinforcement, consistent with record-

ings in rodents (Sadacca et al., 2016; Stalnaker et al., 2019;

Takahashi et al., 2017). To detail the interaction between

mPFC, midbrain, and dCA1 ensembles during inference, further
Cell 183, 228–243, October 1, 2020 235



Figure 6. Inferred Outcomes Are Represented in mPFC and Midbrain

(A–D) In humans (A and B) and mice (C and D) hippocampal activity patterns during auditory cues Xn in the inference test were compared with activity patterns

during outcome Zn in conditioning using RSA. In mice, time bins with SWRs were excluded. Activity patterns during Xn in the inference test, but not Zn in

conditioning, were filtered by the ‘‘decision point’’ on each trial, such that representations of Zn were spatially decoupled from representations of Yn. Hippo-

campal activity in humans and mice did not significantly predict activity associated with the relevant outcome Zn ([average within association XnZn correlations,

RSM main diagonal] – [average between association XnZm correlations, RSM off-diagonals]; correct and incorrect inference; humans, conditional on inter-

mediary cues: Z21 = �0.06, p = 0.526, and Z21 = �0.75, p = 0.772; mice: Z17 = �0.87, p = 0.808; and Z17 = 0.44, p = 0.331; mean ± SEM), including when

comparing the group mean against a null distribution generated by permuting the identity labels for cues Xn (correct and incorrect inference; humans: p = 0.464,

and p = 0.868; mice: p = 0.829 and p = 0.176). See Figure S6C for results in humans unconditional on intermediary cues. By contrast, robust dCA1 representation

of Zn was observed in mice during experience of outcome Zn in conditioning trials (Figure 3).

(E–J) In humans, searchlight RSA with multiple regression (Figures S6D and S6E) was used to identify regions showing representational similarity between

auditory cues Xn in the inference test and outcomes Zn in conditioning. During correctly inferred cues Xn, both the mPFC (F) and putative dopaminergic midbrain

(legend continued on next page)

ll
OPEN ACCESS

236 Cell 183, 228–243, October 1, 2020

Article



ll
OPEN ACCESSArticle
multi-brain-site recordings in animal models will be required, as

illustrated during exposure to outcome Z1 (Figure S6H).

Hippocampal SWRs Nest Mnemonic Short-Cuts for
Inferred Relationships: in Mice
Using data acquired during inferential choice in both humans

andmice, we showed evidence for a prospective retrieval mech-

anism that forecasts learned associations, thus indirectly relating

cues Xn and Zn (Figures 4, 5, and 6). However, complementary

mechanisms may directly link Xn to Zn. One candidate mecha-

nism involves using multiple memories to internally simulate

and cache statistics of the environment (Sutton, 1991). In the

spatial domain, temporally compressed simulations of previous

experience occur in hippocampal SWRs during periods of awake

immobility (rest) and sleep (Buzsáki, 2015; Foster, 2017; Joo and

Frank, 2018). SWR-related activity could extend beyond direct

experience by recombining and recoding mnemonic information

(Buzsáki, 2015; Diekelmann and Born, 2010; Lewis and Durrant,

2011; Shohamy and Daw, 2015; Zeithamova et al., 2012b).

Accordingly, we tested whether hippocampal SWR activity

effectively ‘‘autocompletes’’ the firing associations representing

unobserved (yet logical) relationships between cues Xn and Zn.

While non-invasive methods can provide a macroscopic index

for memory reactivation, accessing the unique electrophysiolog-

ical profile of SWRs (Buzsáki, 2015) requires invasive methods.

The following analyses were therefore restricted to electrophys-

iological recordings in mice.

For each recording day (Figures 1D and S1B), we calculated

the probability that SWRs nest spikes from neuronal triplets,

where each cell provides a (non-overlapping) representation of

one of the task cues Xn, Yn, or Zn (Figures 7A and 7B). When

comparing early versus late days, the probability that awake

SWRs jointly represent all three cues (Xn, Yn, and Zn) signifi-

cantly increased for set 1 but not for set 2 (Figure 7C). This result

suggests that reward-related activity is prioritized in hippocam-

pal SWRs, consistent with work investigating replay of previous

experience in SWRs (Singer and Frank, 2009).

This result did notmerely reflect simulation of an internal model

of the inference task (X1/Y1/Z1), because the probability that

SWRs co-represent X1 and Z1 together with the visual cue from

the alternative set, Y2, similarly increased (Figure 7D). Indeed,

regardless of the intermediary visual cue Yn, the probability that

SWRsco-represent theauditory cueX1 togetherwith the logically

associated outcome Z1 increased with behavioral experience of

the task (Figures 7E and S7B). Furthermore, with the recorded

ensemble of neurons at hand, the probability that a given awake

SWR represents the inferred relationship (X1, Z1) in the absence

of the intermediary cue (Y1) also increased with experience (Fig-

ure 7F). These results suggest SWRs represent a mnemonic

short-cut for inferred relationships that include reward.

These findings cannot be explained by a mere increase in

SWRs representing reward (Z1) as the observed increase in rep-
(G) regions showed significant representation of the associated Zn, conditional on

mPFC: t21 = 5.09, p = 0.003; G,midbrain: t21 = 5.56, p < 0.001; thresholded at p < 0

as shown in the model RSM in (H) (I: mPFC: t21 = 4.60, p = 0.006; J, midbrain: t2
Figures S6F and S6G; thresholded at p < 0.01 uncorrected for visualization purp

See also Figure S4 and Tables S3 and S4.
resentation of set 1 cell pairs, X1Z1, was significantly greater

than equivalent changes in the cross-set cell pairs, X2Z1 (Figures

7E and 7F). Moreover, unlike cross-set cell pairs, the increase in

probability that a given awake SWR represents co-activity for the

inferred relationship (X1, Z1) occurred over and above any

change in activity for cells representing either X1 or Z1 cues (Fig-

ures 7G and S7C). Comparable results were observed during off-

line periods of sleep but with lower fidelity (Figures S1B, S7D,

and S7E), as reported for replay of spatial firing patterns during

awake rest versus sleep (Karlsson and Frank, 2009). Together,

these findings suggest that the hippocampal representation of

profitable (rewarding) yet unobserved relationships increases in

SWRs, thus supporting a direct mnemonic short-cut for inferred

relationships.

During awake SWRs, we further assessed the spike time rela-

tionshipsbetweenXnandZncells. Past studies investigating rep-

resentation of spatial trajectories in hippocampal SWRs report

evidence for replay in a temporally reversed order (Csicsvari

et al., 2007; Diba and Buzsáki, 2007; Foster and Wilson, 2006;

Gupta et al., 2010). Despite cues Xn and Zn never being directly

experienced together, here we found that cells representing Z1

fired significantly earlier than cells representing X1 (Figure 7H).

Cell pairs representing cues from neutral set 2 (X2 and Z2)

showed no such temporal bias (Figure 7H). Thus, cell pairs that

included reward representation (X1 and Z1) exhibited reverse

firing (Z1/ X1) relative to the inferred direction (X1/ Z1).

Consistent with evidence suggesting that hippocampal replay

coordinates reward responsive neurons with the dopaminergic

midbrain during quiet wakefulness but not sleep (Gomperts

et al., 2015), we did not observe offline reverse firing of the in-

ferred relationship (Figures S7F and S7G). This suggests that

waking memories may serve reverse sequential firing in awake

SWRs to assign credit or allow updates to environmental cues

that are logically linked but not directly experienced with reward.

DISCUSSION

Here, we use a cross-species approach to uncover how the

mammalian brain computes inference, a cognitive operation

central to adaptive behavior. Across a multi-day inference task,

we reveal a cellular-level description of the underlying computa-

tion, alongside a macroscopic readout of this process.

Our study shows that during inference, the hippocampus en-

gages a prospective code that preserves the learned temporal

statistics of the task. In addition, during rest/sleep in mice, hip-

pocampal SWRs show increased coactivation of neurons repre-

senting inferred relationships that include reward. Thus, during

rest/sleep the hippocampus appears to ‘‘join-the-dots’’ between

discrete items that may be profitable. We propose this mecha-

nism provides a means to build a cognitive map that stretches

beyond direct experience, creating new knowledge to facilitate

future decisions.
sensory cues that predicted the outcome as shown in the model RSM in (E) (F,

.01 uncorrected for visualization purposes only). This result held for cues in set 2

1 = 3.37, p = 0.027; peak-level FWE corrected using small-volume correction;

oses only).
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Figure 7. Hippocampal Spiking Represents Inferred Relationships during SWRs

(A and B) In mice. Top: mean ripple-band (135–250 Hz) dCA1 oscillations during awake rest in the inference task. Bottom: co-firing of example X1Y1Z1 (A) and

X2Y2Z2 (B) neuronal triplets across SWRs during early and late recording days.

(C–G) From early to late days (recording days 1–4 versus 5–8; Figure S1B), we estimated the normalized probability of SWRs co-representing neuronal triplets/

doublets during awake rest in the inference test. The effect size for the difference between early and late days is shown using a DABEST plot: black dot, mean;

black ticks, 95% confidence interval; filled-curve, sampling-error distribution. Tukey’s post hoc multiple comparison test was used to assess the difference in

group means following ANOVA.

(C) From early to late days, we observed a significant interaction in the probability of SWRs representing set 1 (X1Y1Z1) versus set 2 (X2Y2Z2) neuronal triplets (set

3 day interaction, two-way ANOVA: F(1,1573) = 28.14, p < 0.001). Tukey’s post hoc test showed a significant increase in SWRs representing set 1 (X1Y1Z1) triplets

(legend continued on next page)
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This process of ‘‘joining-the-dots’’ between logically related

events is consistent with evidence that SWR spiking is not only

determined by prior experience (Buzsáki, 2015; Foster, 2017;

Joo and Frank, 2018). Rather, the intrinsic connectivity of the hip-

pocampus (Somogyi and Klausberger, 2017), self-generated se-

quences (Dragoi and Tonegawa, 2011), forward planning (Ólafs-

dóttir et al., 2015; Pfeiffer and Foster, 2013), structural

knowledge (Liu et al., 2019), and stitching together of spatial tra-

jectories (Gupta et al., 2010; Wu and Foster, 2014) all play a role.

Here, hippocampal SWR spiking represents a non-spatial, sec-

ond-order mnemonic link between items not experienced

together, over and above simulating an internal model that draws

on direct experience. The reported increase in SWRs nesting in-

ferred relationships suggests hippocampal spiking activity dur-

ing SWRs may build higher-order relationships to integrate

knowledge into a coherent schema (Tse et al., 2007). This new

understanding of hippocampal SWRs may explain why sleep/

rest facilitates behavioral readouts of insight and inferential

reasoning in humans (Coutanche et al., 2013; Ellenbogen et al.,

2007; van Kesteren et al., 2010; Lau et al., 2011; Wagner et al.,

2004; Werchan and Gómez, 2013).

Consistent with studies showing that reward-related activity

influences the spatial content of SWRs (Pfeiffer and Foster,

2013; Singer and Frank, 2009), our findings suggest SWR con-

tent can be skewed toward events that are more salient, have

greater future utility, and/or generate larger reward-prediction

errors. The spiking content reported here may further be priori-

tized toward active inferential choice, because correct inference

in response to X1, but not X2, requires mice to elicit a purposeful

action toward the dispenser. While distinct memories encoded

close in time are represented by overlapping ensembles (Cai

et al., 2016), here, we controlled for this by presenting cues

from set 1 and 2 in a randomly interleaved manner during the re-

conditioning and inference test, thus matching the temporal

proximity of within- and between-set cues.

Changes in neuronal coactivation in hippocampal SWRs are

suitable to influence wide-spread cortical and subcortical tar-

gets, directly or via intermediate relay regions (Battaglia et al.,

2011; Buzsáki, 2015; Joo and Frank, 2018). This may explain

how the putative dopaminergic midbrain acquires a representa-

tion of the inferred outcome (Zn) in response to a preconditioned
(p < 0.001). Compared to a null distribution generated by permuting the identity la

increase in SWRs representing set 1 (X1Y1Z1) triplets (p = 0.002).

(D) From early to late days we observed a significant interaction in the probability

cells were from the opposite set (set3 day interaction, two-way ANOVA: F(1,900) =

representing X1Y2Z1 triplets (p < 0.001). Compared to a null distribution generate

again observed a significant increase in SWRs representing X1Y2Z1 (p = 0.014).

(E and F) From early to late days we observed a significant interaction in the prob

(X1Z1) versus set 2 (X2Z2), both regardless of Yn neurons (E) and in the absence o

0.001; F, F(1,1716) = 45.8, p < 0.001). Tukey’s post hoc test showed a significant inc

result was not explained by a mere increase in SWRs representing Z1 as the inte

versus cross-set (X2Z1) pairs (set 3 day interaction, two-way ANOVA: E, F(1,260)
(G) To further control for amere increase in SWRs representing Z1 cues in (F), we c

SWRswith Xn spikes, while holding Zn spikes fixed. From early to late days the pro

but not X2 and Z1, increased relative to the respective null distribution (X1Z1: p

(H) Inter-spike intervals for Xn and Zn neuron pairs. Across all neuron pairs, the pe

test with alpha set to 0.05). The percentage of pairs where Z2 fired before X2 did

orange; set 2 in green. The effect for set 1 remained significant with Bonferroni c

See also Table S4.
cue (Xn), which cannot be accounted for by temporal difference

learning algorithms (Sadacca et al., 2016). Specifically, hippo-

campal SWR spiking may broadcast value information to relate

reward information received at the end of a sequence to earlier

events (Foster et al., 2000; Sutton, 1988). Consistent with this hy-

pothesis, reverse replay in awake SWRs occurs during reward-

motivated spatial behavior (Diba and Buzsáki, 2007; Foster

and Wilson, 2006; Gupta et al., 2010), while our data show an in-

verted temporal order in non-spatial inferred relationships. SWR-

nested spiking may therefore facilitate retrospective credit

assignment or value updating of sensory cues represented by

the mPFC and midbrain, even if those cues are not directly

paired with an outcome. Such cross-region coordination may

explain why functional coupling observed between hippocam-

pus and mPFC during post-encoding rest predicts measures

of memory integration in humans (Schlichting and Preston,

2016). In this manner, SWR-related hippocampal training signals

may alleviate the computational cost of inference by building a

model or ‘‘cognitive map’’ of the external world that spans mul-

tiple brain regions.

In addition to this SWR-related mechanism during rest/sleep,

we show in mice that dCA1 pyramidal neurons are necessary for

inferential choice. Moreover, during inference in both humans

and mice, the hippocampus represents a veridical copy of

learned associations in temporal sequence (Xn/Yn). These

findings were not explained by mere spatial location, yet these

temporally structured mnemonic associations may be analo-

gous to spatial sequences of place cells (e.g., McNaughton

et al., 1983; Mehta et al., 2000). Sequential firing of this kind

may be a necessary requirement for a brain region evolved to

support memory (Buzsáki and Moser, 2013).

Previous studies suggest that during learning, memories for

past overlapping events can be evoked and associated with

newly encountered information to link memories across experi-

ences (Nagode and Pardo, 2002; Schlichting et al., 2014; Shoh-

amy and Wagner, 2008; Zeithamova and Preston, 2010; Zeitha-

mova et al., 2012a). This integrative encoding may even assign

value to stimuli not directly paired with an outcome (Wimmer

and Shohamy, 2012), alleviating the need to recall intermediary

cues at the time of choice. However, previous studies have not

differentiated between representation of the intermediary (Yn)
bels of ensemble neurons (Figures 3C and 3D), we again observed a significant

of SWRs representing X1Y2Z1 versus X2Y1Z2 triplets, where the identity of Ym

33.97, p < 0.001). Tukey’s post hoc test showed a significant increase in SWRs

d by permuting the identity labels of ensemble neurons (Figures 3C and 3D), we

ability of SWRs representing neuronal pairs for the inferred relationship in set 1

f Yn neurons (F) (set3 day interaction, two-way ANOVA: E, F(1,285) = 24.04, p <

rease in SWRs representing set 1 (X1Z1) pairs (E, p < 0.001; F, p < 0.001). This

raction remained significant when comparing SWRs representing set 1 (X1Z1)

= 5.14, p = 0.024; F, F(1,1642) = 18.08, p < 0.001).

ompared the groupmean against a null distribution generated by permuting the

bability of SWRs showing coactivity between neurons representing X1 and Z1,

< 0.001; X2Z1: p = 0.193; Figure S7C).

rcentage of pairs where Z1 fired before X1 was significant (p < 0.001, binomial

not differ from 50% (p = 0.101, Binomial test with alpha set to 0.05). Set 1 in

orrection for two comparisons (set 1 and set 2) and alpha at 0.025.
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and inferred cues (Zn) during inferential choice, leaving the un-

derlying mechanism ambiguous. Here, in humans, we dissociate

representations of the intermediary (Yn) and inferred cues (Zn) by

using a many-to-one mapping between cues. At the time of

choice, this paradigm shows evidence for hippocampal repre-

sentation of the intermediary cue (Yn), but not the inferred

outcome (Zn) or value associated with Yn. We also show that

mouse hippocampal dCA1 is necessary for inference. Together,

these results suggest inferential choice is supported by a hippo-

campal mechanism where mnemonic sequences are recalled

‘‘on-the-fly.’’ This mechanism may further depend upon extra-

hippocampal regions representing the relevant sensory cues.

Thus, while our findings are not contradictory to previous human

fMRI studies, by dissociating representations of Yn from Zn at

the time of inference, we propose the hippocampus draws on

learned experience, while other downstream circuits may use

the hippocampal output to reinstate an integrated or overlapping

neural code.

Usingnear-wholebrain imaging inhumans,weshow thatduring

inferential choice the inferred outcome (Zn) is represented in

mPFC and midbrain, even when the corresponding outcome is

neutral. This highlights a division of mnemonic labor between the

hippocampuson theonehand, and themPFCand (putative dopa-

minergic) midbrain on the other: whereas the hippocampus draws

on learned sequences (Xn/Yn), the hypothetical inferred

outcome (Zn), rewarding or neutral, is represented in the mPFC

and midbrain, potentially inherited by integrative encoding or

spiking activity during SWRs. Inference therefore involves amem-

ory recallmechanism that spansmultiplebrain regions.Thisdiffers

from computational models that propose associative information

is integrated locally within the medial temporal lobe via recurrent

loops (Kumaran, 2012), but is consistent with evidence showing

representation of intermediary cues in the medial temporal lobe

at the time of choice (Koster et al., 2018). Moreover, our findings

support evidence suggesting the mPFC uses an abstract model

of the environment to guide behavior (Hampton et al., 2006), while

themidbrainsupports learningof relationships that extendbeyond

those associated with direct reinforcement (Langdon et al., 2018;

Sadaccaetal., 2016;Sharpeetal., 2017;Stalnakeretal., 2019;Ta-

kahashi et al., 2017). Retaining both veridicalmnemonic recall and

allowing inference for higher-order relationships provides the

comprehensive cognitive flexibility necessary for adaptive

mammalian behavior in an ever-changing environment.

The inference task was implemented across multiple days and

may therefore generalize to everyday examples of inference

where individuals draw upon information learned across days,

weeks, or even years. While training demands in rodents made

this multi-day paradigm inevitable, we note that our results

could, in part, reflect the consequence of this schedule. For

example, by conducting each task stage on a separate day,

we mitigated against the formation of overlapping neuronal co-

des for distinct memories encoded close in time. Our task design

also lends toward using more mature or consolidated memories:

evidence in rodents suggests memories are rapidly generated in

both hippocampus and mPFC, gradually becoming quiescent in

hippocampus with consolidation in mPFC (Kitamura et al., 2017;

Preston and Eichenbaum, 2013; Squire et al., 2015). If training

demands allowed the inference task to be performed within
240 Cell 183, 228–243, October 1, 2020
1 day, the inferred outcome may be represented in both the hip-

pocampus and mPFC, rather than mPFC and midbrain, as

observed here. Notably, our paradigm differs from several

studies investigating inferential reasoning in humans within one

day (Koster et al., 2018; Preston et al., 2004; Schlichting et al.,

2014; Wimmer and Shohamy, 2012; Zeithamova et al., 2012a).

Unveiling the precise temporal dependency of the computation

supporting inference will require further work.

Recording and manipulating neural dynamics will help estab-

lish an understanding of the mechanisms underlying adaptive

and maladaptive behavior (Deisseroth, 2014). However, cellular

recordings and causal manipulations are normally performed us-

ing invasive methods in animal models where it is difficult to

translate the identified mechanisms into an understanding of hu-

man behavior. In attempt to overcome this explanatory gap, here

we use a cross-species approach to take advantage of comple-

mentary tools available in humans andmice. Despite differences

between the mouse and the human brain, a cross-species

approach remains justified by the preserved homology of

mammalian neural circuits. However, there are inevitable limita-

tions associated with comparing data across species. When

investigating aspects of higher-order cognition, perhaps the

greatest limitation resides in our inability to verbally communi-

cate with animals. While humans received explicit instructions

and comprehension was monitored throughout, mice had to

reveal task rules via trial and error, with no social obligation to

cooperate. Despite keeping the experimental paradigm the

same across mice, their behavior was more variable. The differ-

ence in our ability to instruct/train humans and mice also led to

differences in task design, where humans were able to learn a

many-to-one mapping between cues to permit dissociation of

neuronal representations. Nevertheless, by implementing a

comparable task in humans and mice, and acquiring data in an

iterative manner, we show how results from one species can

guide the course of investigation in the other. We propose this

cross-species approach provides a foundation for innovative

multidisciplinary investigation of brain functions, in both physio-

logical and pathophysiological conditions.

In summary, our study reveals the functional anatomy and

neuronal computation underlying inferential reasoning in the

mammalian brain. We implement a cross-species approach in

humans and mice to integrate data from whole-brain imaging,

cellular-level electrophysiology, and optogenetic manipulations

of the same behavior. In doing so, we reveal a holistic description

of the neural computation underlying inference in themammalian

brain. We identify a critical role for the hippocampus, which en-

gages a prospective memory code during inferential choice and

represents a cognitive short-cut for inferred relationships that

include reward in rest/sleep. By unveiling these neuronal mech-

anisms, we show how the brain can generate new knowledge

beyond direct experience, thus supporting high-level cognition.
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Buzsáki, G., and Moser, E.I. (2013). Memory, navigation and theta rhythm in

the hippocampal-entorhinal system. Nat. Neurosci. 16, 130–138.

Cai, D.J., Aharoni, D., Shuman, T., Shobe, J., Biane, J., Song, W., Wei, B.,

Veshkini, M., La-Vu, M., Lou, J., et al. (2016). A shared neural ensemble links

distinct contextual memories encoded close in time. Nature 534, 115–118.

Cohen, N.J., and Eichenbaum, H. (1993). Memory, Amnesia, and the Hippo-

campal System (MIT Press).

Coutanche, M.N., Gianessi, C.A., Chanales, A.J.H., Willison, K.W., and

Thompson-Schill, S.L. (2013). The role of sleep in forming a memory represen-

tation of a two-dimensional space. Hippocampus 23, 1189–1197.
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Replay and time compression of recurring spike sequences in the hippocam-

pus. J. Neurosci. 19, 9497–9507.

Nagode, J.C., and Pardo, J.V. (2002). Human hippocampal activation during

transitive inference. Neuroreport 13, 939–944.

Nicholson, D.A., and Freeman, J.H., Jr. (2000). Lesions of the perirhinal cortex

impair sensory preconditioning in rats. Behav. Brain Res. 112, 69–75.

Nili, H., Wingfield, C., Walther, A., Su, L., Marslen-Wilson, W., and Kriege-

skorte, N. (2014). A toolbox for representational similarity analysis. PLoS Com-

put. Biol. 10, e1003553.

O’Keefe, J., and Dostrovsky, J. (1971). The hippocampus as a spatial map.

Preliminary evidence from unit activity in the freely-moving rat. Brain Res.

34, 171–175.

O’Keefe, J., and Nadel, L. (1978). The Hippocampus as a Cognitive Map (Clar-

endon Press).

O’Reilly, R.C., and Rudy, J.W. (2001). Conjunctive representations in learning

and memory: principles of cortical and hippocampal function. Psychol. Rev.

108, 311–345.
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Bacterial and Virus Strains

rAAV2-CAG-flex-ArchT-GFP UNC Vector Core N/A

rAAV2-CamKII-ArchT-GFP UNC Vector Core N/A

rAAV2-CAG-flex-GFP UNC Vector Core N/A

rAAV2-CamKII-GFP UNC Vector Core N/A
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CaMKII-Cre mice The Jackson Laboratory https://www.jax.org

Stock #005359; RRID: IMSR_JAX:005359
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Version: 2016b

Psychtoolbox-3 Psychtoolbox developers http://psychtoolbox.org

Version: 3.0.13

SPM FIL Methods group, University College

London (UCL)

https://www.fil.ion.ucl.ac.uk/spm

Version: SPM 12

RSA Toolbox Nili et al., 2014 http://www.mrc-cbu.cam.ac.uk/

methods-and-resources/toolboxes/

Unity Unity Technologies, CA United States https://unity.com/Version: 5.5.4

Intan RHD2000 Intan Technologies, Los Angeles http://intantech.com/products_RHD2000.html

Version: RHD2164

KlustaKwik K. Harris https://github.com/klusta-team/klustakwik/

Kilosort via SpikeForest Magland et al., 2020; Pachitariu

et al., 2016
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Other
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7 Tesla Magnetom MRI scanner Siemens N/A

1-channel transmit and a 32-channel

phased-array head coil

Nova Medical, USA N/A

Arduino microcontroller development board Arduino online store https://store.arduino.cc/usa/Product: Arduino
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Adafruit Motor/Stepper/Server Shield for

Arduino v2

Adafruit online store https://www.adafruit.com/Product: Adafruit

Motorshield V2

12um tungsten wires California Fine Wire https://calfinewire.com/Product: M294520

Optic fibers Doric lenses, Québec, Canada http://doriclenses.com/Product: MFC_200/230-
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Head-stage amplifier Intan Technologies, Los Angeles https://www.intantech.com
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, David

Dupret (david.dupret@bndu.ox.ac.uk).

Materials Availability
This study did not generate new unique reagents.

Data and Code Availability
The data and code used in this study will be made available via the MRC BNDU Data Sharing Platform (https://data.mrc.ox.ac.uk/)

upon reasonable request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mouse subjects
24 mice were included in the study (age of 4-6 months, 24 males) (Table S4). Mice were heterozygous for the transgene expressing

the Cre recombinase under the control of the CaMKIIa promoter and maintained on a C57BL/6J background (Jackson Laboratories;

CamIIa-Cre B6.Cg-Tg(Camk2a-cre)T29-1Stl/J, stock number 005359, RRID: IMSR_JAX:005359) or were wild-types with a C57BL/

6J background (Charles River, UK). Animals had free access to water in a dedicated housing facility with a 12/12 h light/dark cycle

(lights on at 07:00h). Animals were housed with their littermates up until the start of the experiment, during which they were housed

alone. Food was available ad libitum before the experiments (see below). All experiments involving mice were conducted according

to the UK Animals (Scientific Procedures) Act 1986 under personal and project licenses issued by the Home Office following ethical

review.

Human subjects
22 healthy human volunteers participated in the study (mean age of 22.8 ± 0.74 years, 4 males). All experiments involving humans

were approved by the University of Oxford ethics committee (reference number R43594/RE001). All participants gave informed writ-

ten consent.

METHOD DETAILS

Mouse inference task environment
During both the pre-training and the inference test protocols (see below), mice were allowed to explore a square-walled open-field

enclosure (46 cm width, 38 cm high-walls) within which they were presented with a range of different sensory stimuli controlled via a

single-boardmicrocontroller (ArduinoMega 2560 Rev3). Two speakers placed above the open-field were used to deliver the auditory

cues (Xn) which constituted pure tones (frequency: 10KHz and 2KHz). Two LED panels were affixed to walls of the open-field which

when illuminated served as visual cues (Yn): an L-shaped set of green LEDs with main strip spanning the width of one wall, and a

circular set of orange LEDs affixed to a different wall (Figure 1B). A liquid dispenser/aspirator fitted with an infra-red beam detecting

lick events was used to deliver/remove the outcome (Zn) which constituted either a drop of 15% sucrose solution (reward; set 1) or a

drop of water (neutral; set 2). The outcome cues (Zn) were only available for 10 s before being automatically aspirated by the

dispenser.

Human inference task environment
The virtual reality (VR) environment simulating the open-field enclosure used for mice was coded using Unity 5.5.4f1 software (Unity

Technologies, CA United States) and included a square-walled room with no roof. To help evoke the experience of 3D space and aid

orientation within the VR environment, each wall of the environment was distinguished by color (dark green, light green, dark gray or

light gray), illumination (twowalls were illuminated while the other twowere in shadow) and by the presence of permanent visual cues.

The permanent visual cues included clouds in the sky, a vertical black stripe in the middle of the light green wall, a horizontal black

strip across the light gray wall, and a wooden box situated in one corner of the environment. A first-person perspective was imple-

mented and participants could control their movement through the virtual space using the keyboard arrows (2D translational motion)

and the mouse-pad (head tilt). Movement through the environment elicited the sound of footsteps.

Within the VR environment participants were exposed to a range of different sensory stimuli. Auditory cues (Xn) constituted 80

different complex sounds (for example, natural sounds or those produced by musical instruments) that were played over head-

phones. Four different visual cues (Yn) could appear on the walls of the environment, each of which had a unique color and pattern.

Two of the visual cues were always presented on the same wall, the assignment of which was randomized for each participant. The

two remaining visual cueswere ‘nomadic’, meaning that with each presentation they were randomly assigned to one of the four walls.

A wooden box situated in the corner of the environment served to deliver the outcome cues (Zn) which constituted either a rewarding
Cell 183, 228–243.e1–e9, October 1, 2020 e2
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silver coin or a neutral wood-chip. To harvest the value of a silver coin (20 pence) (reward) or woodchip (0 pence) (neutral), participants

were required to first collide with the wooden box which caused the wooden walls to disappear, and second collide with the coin or

wood-chip which was accompanied by a ‘collision’ sound. The outcome cues (Zn) were only available for 10 s. The cumulative total

value of harvested reward was displayed in the upper left corner of the computer screen.

Humans and mice: inference task overview
In the respective environments described above, both humans and mice performed an inference task. The task was adapted from

associative inference and sensory preconditioning tasks described elsewhere (Brogden, 1939; Preston et al., 2004; Robinson et al.,

2014) and involved 3 stages (Figures 1A, S1A, and S1B). First, in the ‘observational learning’ stage, subjects learned a set of asso-

ciations between auditory and visual cues via mere exposure. On each trial, an auditory and visual cue (Xn and Yn) were presented

serially and contiguously: auditory cue (mice: 10 s, humans: 8 s) followed by associated visual cue (mice: 8 s; humans: 8 s). Second, in

the ‘conditioning’ stage, subjects learned that half the visual cues predicted delivery of a rewarding outcome (‘set 1’), while the other

half predicted delivery of a neutral outcome (‘set 2’). On each trial a visual cue and outcome (Yn and Zn) were presented serially and

contiguously: visual cue (mice: 8 s; humans: 8 s) followed by outcome delivery (mice: 10 s available from liquid dispenser; humans: 6 s

available in wooden box). Finally, in the ‘inference test’ stage subjects were exposed to the auditory cues (Xn) in isolation. In response

to each auditory cue, subjects could infer the appropriate outcome using the learned structure of the task. This test thus provided an

opportunity to investigate inferential choice. In both species the 3 stages of the task were performed across at least 3 consecutive

days (see below).

To match task difficulty and avoid ceiling effects in human task performance, in the observational learning stage we scaled the

number of associative memories learned by human subjects relative to mice. Consequently, between auditory and visual cues there

was a one-to-one mapping in mice and a many-to-one mapping in humans (Figure S1C). In addition, in mice we included one visual

cue per set, while in humans we included two visual cues per set (Figure S1D). Therefore, in total mice learned two auditory-visual

associations in the observational learning stage and two visual-outcome associations in the conditioning stage, while humans

learned eighty auditory-visual associations in the observational learning stage and four visual-outcome associations in the condition-

ing stage. At the start of the experiment the pairings between auditory, visual and outcome cues were randomly assigned for each

human participant and for each mouse.

Mouse pre-training protocol
Mice were preselected by assessing their propensity to lick drops of sucrose solution delivered at a liquid dispenser when food

restricted to 90% their free-feeding body weight. Selected mice were then fed ad libitum up until day 4 of the pre-training.

During the pre-training, mice first completed the observational learning stage, conducted across 6 consecutive days (Figures S1B

and S1F). Each day the mice were placed in the open-field environment for 20 separate sessions, each lasting �8-10 minutes. Each

session included 6 trials where an auditory cue (Xn) was followed by presentation of the associated visual cue (Yn), from either set 1 or

2. The inter-trial interval (ITI) was �1.5 minutes. On day 1, each session included cues from either set 1 or set 2 (‘blocked’), while on

days 2-6, sessions could include cues from either set 1 or 2 (‘blocked’), or both set 1 and 2 presented in a pseudo-random order

(‘mixed’). On each day of training, cues from set 1 and 2 were presented equally often. Trials were triggered only when the animal

was moving. To prepare for the next stage of the task (conditioning), across the final 3 days of the observational learning stage

mice were food restricted to reach 90% their free-feeding body weight.

After the observational learning stage, the conditioning was conducted across 4-5 consecutive days (Figures S1B and S1F). Each

day themice were placed in the open-field environment for 20 separate sessions, each lasting�8-10minutes. Each session included

6 trials where a visual cue (Yn) was presented followed by the associated outcome (Zn), a drop of sucrose for set 1, or a drop of water

for set 2. The ITI was �1.5 minutes. On day 1 of the conditioning stage, each session included cues from either set 1 or set 2

(‘blocked’), while on day 2-4/5 of the conditioning stage, each session included cues from either set 1 or 2 (‘blocked’), or from

both set 1 and 2, presented in a pseudo-random order (‘mixed’). Trials were triggered only when the animal wasmoving. The animal’s

propensity to visit the dispenser was assessed and the number of cues presented from set 1 and 2 adjusted accordingly. Thus, mice

that were prone to approach the dispenser received additional set 2 trials, while mice that were less inclined to approach the

dispenser received additional set 1 trials. Across mice, the ratio of set 1 to set 2 trials delivered during conditioning did not predict

subsequent performance on the inference test (r22 = �0.06, p = 0.816).

Human pre-training protocol
On the first day of the experiment participants performed the observational learning during which participants were required to learn

at least 40 (out of 80 total) auditory-visual associations (Figures S1C and S1E). This training occurred within the VR environment and

was divided into 8 sub-sessions. In each sub-session, participants controlled their movement within the VR environment and were

presented with 20 trials in which 10 different auditory-visual associations were each presented twice, in a random order. The ITI was

5 s. Participants were given the choice to repeat the sub-session if they so wished. After the sub-session, learning of auditory-visual

associations was monitored outside the VR environment, using an observational learning test coded in MATLAB 2016b using Psy-

chtoolbox (version 3.0.13). On each trial of the observational learning test, 1 auditory cue (Xn) from the sub-session was presented,

followed by presentation of 4 different visual cues. Participants were instructed to select the visual cue (Yn) associated with the
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auditory cue (Xn), using a button press response within 3 s and were only given feedback on their average performance at the end of

the test. Each auditory cue in the sub-session was presented 2 times. Participants were required to repeat this training in the VR envi-

ronment (including the observational learning test) until they obtained at least 50% accuracy for auditory-visual associations in the

sub-session. In total, 3 participants were unable to reach this learning criteria of 50% accuracy and were excluded after the first

training day.

After obtaining at least 50% accuracy on the observational learning test for each sub-session, participants were given a master

test. Themaster test had the same format as the observational learning test, except that it included all 80 auditory cues, each of which

was presented 3 times. Training on the observational learning stage was terminated when participants reached 50% accuracy on the

master test. If participants failed to reach 50% accuracy, training in the VR environment was repeated for those sub-sessions with

poor performance.

On the second day of the experiment participants underwent the conditioning, where they learned that 2 of the 4 visual cues were

associatedwith a virtual silver coin (later converted to amonetary reward of 20p per coin) on 80%of trials. The remaining 2 visual cues

were associated with a virtual wood-chip, a neutral outcome of no value (0p per chip) on 100% of trials. Training occurred within the

VR environment and on each trial, participants were presented with a visual cue (Yn) followed by delivery of the rewarding monetary

coin or neutral wood-chip (Zn) to a wooden box. Participants were instructed to only look in the wooden box after the visual cue was

presented and instructed to leave the wooden box before the next trial. The inter-trial interval ITI was 2 s.

Performance during the VR conditioning training was monitored using a conditioning test coded in MATLAB 2016b using Psy-

chtoolbox (version 3.0.13). On each trial of the conditioning test, participants were presented with a still image of a visual cue before

being asked to indicate the probability of reward using a number line. Participants were given 3 s to respond and were only given

feedback on their average performance at the end of the test. Participants were required to repeat the VR conditioning training

and conditioning test until they performed the test with 100% accuracy (Figure S1E).

On day 3 of the experiment, before entering theMRI scanner, participants repeated the conditioning test. Participants then entered

the 7TMRI scanner and performed the fMRI scan task (see below and Figure S1A). Immediately after exiting the scanner, participants

were given a surprise observational learning test, equivalent to the master test performed on day 1.

Mouse inference test protocol
After mice completed the training protocol (observational learning and conditioning stages) we implemented an inference test on up

to 8 consecutive recording days (Figure S1B). On each test day we first reconditioned mice to show a reward-seeking bias to visual

cues (Yn) in set 1 relative to those in set 2, across two consecutive sessions of at least 12 trials presented in a pseudo-random order.

During this reconditioning, reward-seeking behavior was quantified as time spent in the outcome area during the visual cues (Yn),

prior to outcome delivery (Figure 1D), for set 1 (Y1) minus set 2 (Y2) (i.e., difference from zero). All mice included in the analysis ex-

hibited a reward-seeking bias during the reconditioning, as defined by requiring fewer reconditioning sessions to show a bias than 2

standard deviations from the group average. In total, two mice were excluded from the study as their number of trials required to

achieve reward-seeking bias during reconditioning exceeded 2 standard deviations from the mean.

Mice then proceeded to the inference test where auditory cues (Xn) were presented in isolation for a total of 10 s, followed by an ITI

of at least 30 s. Auditory cues (Xn) from set 1 and set 2 were presented in a pseudo-random order, with 26 trials per day. During the

inference test, reward-seeking behavior was quantified as the time spent in the outcome area in the 20 s period after the offset of the

auditory cues (Figure 1D). The reward-seeking bias was quantified as the difference in reward-seeking behavior for set 1 and set 2

against zero: X1- X2. After each block of inference test trials (8-10 trials), mice were removed from the open-field to rest, before being

given a brief block of reconditioning trials (Figure S1B). This interleaved paradigm (reconditioning-test-reconditioning-test etc.) was

designed tominimize extinction effects in response to the auditory cues. Finally, at the end of each test day, mice were re-exposed to

the observational learning stage (Figures 1A and S1B).

The location of mice implanted with tetrodes was tracked using 3 LED clusters attached to the Intan board (see below) connected

to the microdrive (McNamara et al., 2014); mice implanted with optic fibers only were tracked by contrast against the floor of the

open-field (Imetronic, France). For both approaches the location of the animal was captured at 25 frames per second using an over-

head camera.

Human inference test protocol
The inference test was incorporated into the fMRI scan task which included two different trial types: inference test trials and recon-

ditioning trials (Figures 1C andS1A). For both types of trials, participants viewed a short video taken from the VR training environment.

The videos were presented via a computer monitor and projected onto a screen inside the scanner bore. On each trial the duration of

the video was determined using a truncated gamma distribution with mean of 7 s, minimum of 4 s and maximum of 14 s. During re-

conditioning trials, the video of the VR environment orientated toward a visual stimulus displayed on one of the four walls. At the end

of the video, participants were presented with a still image of the associated outcome for that visual cue (Figure 1C). During the infer-

ence test trials, the video of the VR environment was accompanied by an auditory cue, played over MR compatible headphones (S14

inset earphones, Sensimetrics). Visual cues were not displayed during these trials. At the end of the video, participants were pre-

sentedwith a question asking ‘Would you like to look in the box?’, with the options ‘yes’ or ‘no’ (Figure 1C). Participants were required

to make a response within 3 s using an MR compatible button box and their right index or middle fingers. No feedback was given. To
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control for potential confounding effects of space, each video involved a trajectory constrained to a 1/16 quadrant of the VR envi-

ronment, evenly distributed across the different visual and auditory cues. Across conditioning trials, each visual cue was presented

16 times, once in each possible spatial quadrant. Across inference test trials, each of the 80 possible auditory cues was presented

once, and for each set of auditory cues Xn (determined by the associated visual cues Yn) the spatial quadrant of the accompanying

videos were evenly distributed across all quadrants. The fMRI scan task was evenly divided across 2 scan blocks, each of which

lasted 15 minutes.

Mouse surgical procedures
All surgical procedures were performed under deep anesthesia using isoflurane (0.5%–2%) and oxygen (2 l/min), with analgesia pro-

vided before (0.1 mg/kg vetergesic) and after (5 mg/kg metacam) surgery.

For optogenetic manipulations (n = 15 mice), viral injections were targeted bilaterally to dCA1 using stereotaxic coordinates

(�1.7mm and �2.3mm anteroposterior from bregma, ± 1.7 mm lateral from bregma, and �1.1 mm ventral from the brain surface;

400 nL per site). The adeno-associated viral (AAV) vectors were delivered at a rate of 100 nl/min using a glass micropipette,

lowered to the target site and held in place for 4 mins after virus delivery before being withdrawn (McNamara et al., 2014). rAAV2-

CAG-FLEX-ArchT-GFP was used for the Cre-dependent expression of ArchT-GFP under CAG promoter in the dCA1 pyramidal neu-

rons of CamKII-Cre mice and rAAV2-CamKII-ArchT-GFP was used for the expression of ArchT-GFP under CamKII promoter in the

dCA1 neurons of C57BL/6J mice. For the control experiments we used corresponding AAVs encoding GFP only: rAAV2-CAG-FLEX-

GFP in CamKII-Cre mice or rAAV2-CamKII-GFP in C57BL/6J mice. All viruses are from E.S. Boyden (available at UNC Vector Core).

For electrophysiological recordings (n = 10mice), mice were implanted with a microdrive containing 12-14 independently movable

tetrodes that either all targeted the pyramidal layer of bilateral CA1 in the hippocampus (n = 6) (van de Ven et al., 2016) or three brain

regions: the pyramidal layer of hippocampal CA1, the medial prefrontal cortex and the ventral tegmental area (triple-site dCA1-

mPFC-VTA recordings; Figure S6H). The distance between neighboring tetrodes inserted in a given brain region of each hemisphere

was 0.4 mm. Tetrodes were constructed by twisting together four insulated tungsten wires (12 mm diameter, California Fine Wire)

which were briefly heated to bind them together into a single bundle. Each tetrode was attached to a 6mm longM1.0 screw to enable

independent manipulation of depth. The microdrive was implanted under stereotaxic control with reference to bregma. For hippo-

campal dCA1, tetrodes were implanted by first identifying central coordinates �2.0 mm anteroposterior from bregma, ± 1.7 mm

lateral from bregma as references to position each individual tetrode contained in the microdrive, and initially implanting tetrodes

above the pyramidal layer (�-1 mm ventral from brain surface). A similar approach was used for tetrodes aimed at the medial pre-

frontal cortex using central coordinates +1.7 mm anteroposterior from bregma, ± 0.3 mm lateral from bregma, and an initial�1.5 mm

ventral from brain surface; and at the ventral tegmental area using central coordinates �3.2 anteroposterior from bregma, ± 0.5 mm

lateral from bregma, and an initial �3.8 mm ventral from brain surface. Following the implantation, the exposed parts of the tetrodes

were covered with paraffin wax, after which the drive was secured to the skull using dental cement. For extra stability, four stainless-

steel anchor screws were inserted into the skull before the drive was implanted. Two of the anchor screws, inserted above the cer-

ebellum, were attached to 50 mm tungsten wires (California FineWire) and further served as a ground and reference electrodes during

the recordings.

For optogenetic manipulations, optic fibers (230 mm diameter, Doric Lenses, Canada) were incorporated into a microdrive de-

signed to bilaterally deliver light to the dCA1 pyramidal cell layer using stereotaxic coordinates (�2.0 mm anteroposterior from

bregma, ± 1.7 mm lateral from bregma, and�1.1 mm ventral from the brain surface). Implantation occurred 2 weeks after dCA1 viral

injections.

Mouse in vivo light delivery
Optical dCA1 stimulation was performed in both ArchT-transduced mice (to optogenetically silence pyramidal neurons) and GFP-

transduced control mice using a diode-pumped solid-state laser (Laser 2000, Ringstead) that delivers yellow light (561nm; �5-7

mW output power) to the optic fibers implanted above the dCA1 pyramidal cell layer. Using synchronous transistor-transistor logic

(TTL) pulses, light was delivered to dCA1 simultaneous with the presentation of either the auditory cues in the inference test (10 s

duration; Figure 2I), or with presentation of visual cues presented after both training and the inference test were complete (8 s dura-

tion; Figure 2J). Notably, optogenetic suppression of dCA1 neuronal spiking during presentation of these additional visual cues could

not affect learning or performance on the inference test.

Mouse in vivo multichannel data acquisition
During the training protocol mice were gradually accustomed to being connected to the recording system. On the morning of each

recording day, single-unit spiking activity together with the electrophysiological profile of the local field potentials (LFPs) were used to

adjust the position of each tetrode relative to either the dCA1 pyramidal cell layer, mPFC or VTA. Tetrodes were then left in position for

�1.5-2 h before recordings started. At the end of each recording day, tetrodes were gently raised by�500 mm to avoid possible me-

chanical damage to their target structure overnight.

Multichannel ensemble recordings were conducted during the inference test protocol. The signals from the electrodes were ampli-

fied, multiplexed and digitized using a single integrated circuit located on the head of the animal (RHD2164, Intan Technologies; gain

x1000) (McNamara et al., 2014). The amplified and filtered (0.09Hz to 7.60kHz) electrophysiological signals were digitized at 20 kHz
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and saved to disk along with the synchronization signals from the animal’s position tracking, the presentation of each type of sensory

cue, the licks events, and the laser activation. To track the location of the animal, three LED clusters were attached to the headstage

and captured at 25 frames per second by an overhead color camera.

Mouse spike detection and unit isolation
The electrophysiological data was subsequently bandpass filtered (800Hz to 5kHz) and single extracellular discharges detected

through thresholding the root-mean square (RMS) power spectrum using a 0.2 ms sliding window. Detected spikes of the individual

electrodes were combined per tetrode. To isolate spikes putatively belonging to the same neuron, spike waveforms were first up-

sampled to 40 kHz and aligned to their maximum trough. Principal component analysis was applied to these waveforms ± 0.5 ms

from the trough to extract the first 3–4 principal components per channel, such that each individual spike was represented by 12

waveform parameters. For all main analyses, an automatic clustering program (KlustaKwik, http://klusta-team.github.io) was run

on the principal component space and the resulting clusters were manually recombined and further isolated based on cloud shape

in the principal component space, cross-channel spike waveforms, auto-correlation histograms and cross-correlation histograms

(Harris et al., 2000; van de Ven et al., 2016). All sessions recorded on the same day were concatenated and clustered together. Clus-

ters were only included for further analysis if they showed stable cross-channel spike waveforms across the entire recording day, a

clear refractory period in the auto-correlation histogram, and well-defined cluster boundaries. For a small subset of our data (Figures

2G, 2H, and S6H), we applied an automated clustering pipeline using Kilosort (https://github.com/cortex-lab/KiloSort) via the Spike-

Forest sorting framework (https://github.com/flatironinstitute/spikeforest) (Magland et al., 2020; Pachitariu et al., 2016). To apply Kil-

oSort to data acquired using tetrodes, the algorithm restricts templates to channels within a given tetrode bundle, while effectively

masking all other recording channels. The resulting clusters were manually curated to check all clusters and remove spurious cells

using metrics derived from the waveforms and spike times, and then verified by the operator. This procedure was cross-validated

using several datasets and verified against manual curation, by computing confusionmatrices to validate that clusters obtained auto-

matically were also obtained with the previous method. In total, 1586 neurons were included in the analyses.

Human fMRI data acquisition
The fMRI scan task was performed inside a 7 Tesla Magnetom MRI scanner (Siemens) using a 1-channel transmit and a 32-channel

phased-array head coil (Nova Medical, USA) at the Wellcome Centre for Integrative Neuroimaging Centre (University of Oxford). To

acquire fMRI data a multiband echo planar imaging (EPI) sequence was used to acquire 50 1.5 mm thick transverse slices with no

interslice gap and resulting isotropic voxels of 1.53 1.53 1.5 mm3 resolution, repetition time (TR) = 1.512 s, echo time (TE) = 20 ms,

flip angle = 85�, field of view 192 mm, and acceleration factor of 2. To increase SNR in brain regions for which we had prior hypoth-

eses, we restricted the fMRI sequence to a partial volume, thus increasing the number of measurements acquired. The partial volume

covered occipital and temporal cortices. For each participant, a T1-weighted structural image was acquired to correct for geometric

distortions and perform co-registration between EPIs, consisting of 176 0.7 mm axial slices, in-plane resolution of 0.7 3 0.7 mm2,

TR = 2.2 s, TE = 2.96 ms, and field of view = 224 mm. A field map with dual echo-time images was also acquired (TE1 = 4.08 ms,

TE2 = 5.1 ms, whole-brain coverage, voxel size 2 3 2 3 2 mm3).

QUANTIFICATION AND STATISTICAL ANALYSIS

Mouse electrophysiology analysis: inference task
To identify ensembles of neurons representing the six different cues included in the task (Xn, Yn, Zn), we first filtered the data by the

‘‘decision point’’ of the mouse. The ‘‘decision point’’ of the mouse was defined as the latest time bin in the trial of interest where the

speed of themousewas below 5cm/s prior to visiting the outcome area (Figure S4). By excluding data acquired in time bins occurring

after the ‘‘decision point’’ of the mouse, we eliminated epochs when the mouse was located at, or approaching, the liquid dispenser.

In this manner, we controlled for the spatial location of the mice on each trial.

After filtering the data by the ‘‘decision point’’, we then visualized the firing response of different dCA1 neurons to each of the task

cues (Xn, Yn, Zn; Figure 3A). The instantaneous spike discharge of each neuron was assessed within time bins that spanned a ± 10 s

window from onset of each cue. For the peristimulus time histograms, the time bin for estimating the firing rate (Hz) for each neuron

was 150 ms. For the heatmap, the time bin for estimating the average Z-scored firing rate for each neuron was 100 ms (Figure 3A).

Across all recorded neurons, within each trial we filtered the data by the ‘‘decision point’’ before estimating the Z-scored firing rate

of each neuron during each 100 ms time bin spanning each trial. For each neuron, the Z-scored firing rate across time bins was then

averaged for each trial, and the responses across all trials stacked and regressed onto a GLM indicating the identity of the sensory

cues presented on each trial (Figure 3B). To control for differences in running speed across trials, we included a dummy variable in the

model, indicating the standardized average speed per trial, again filtered by the ‘‘decision point’’ (Figure 3B). For each neuron, this

analysis provided a regression weight indicating the extent to which the firing rate of the neuron in question changed in response to

each sensory cue. To identify ensembles of neurons representing a given task cue, we selected neurons with a positive beta weight

above 2 standard deviations from the mean regression coefficient, calculated across all recorded neurons for that cue (Figures 3C

and 3D).
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To assess whether successful inferential choice was associated with modulation of hippocampal dCA1 spiking activity, for each

recorded neuron we estimated the average Z-scored spike discharge in each 100 ms time bin spanning a 30 s period peristimulus to

presentation of each auditory cue Xn in the inference test. For each 100ms time bin, we then regressed the firing rate vector onto

behavioral performance (‘1’ for correct inference and ‘0’ for incorrect inference), while accounting for both the speed of the mouse

and the set of the auditory cues (set 1 or 2) across trials. Each general linear model (GLM) thus yielded a regression weight reflecting

the difference in Z-scored firing rate for correct versus incorrect trials, for a given neuron. For each temporal bin, we then estimated

the average regression weight across all recorded neurons, indicating the extent to which dCA1 spiking activity was modulated by

behavioral performance (correct versus incorrect inference) through time (Figure 4B).

To assess the representational similarity of dCA1 ensemble firing patterns in response to the six cues included in the inference task,

we first established the average Z-scored firing rate of each neuron in 100 ms time bins spanning all trials. For each cue, we then

averaged the response of each neuron, before stacking the response across neurons to generate a population vector (Figure 4D).

For each task cue, separate population vectors were generated for correct and incorrect trials. A representational similarity matrix

(RSM) was then generated for both correct and incorrect trials, using the Pearson correlation coefficient obtained by correlating

the population vector for each cue with the population vector for all other cues (Figure 4F). To estimate the representational similarity

between auditory and visual cues on each recording day, the average between-association correlation coefficient (RSM off-diago-

nals: X1 versus Y2, and X1 versus Y2) was subtracted from the average within-association correlation coefficient (RSM main-diag-

onal: X1 versus Y1, and X2 versus Y2) (Figure 4H). Summary statistics were tested at the group level using two approaches: (1) a one-

sidedWilcoxon signed-rank test across recording days; (2) a one-sided permutation test where the null distribution was generated by

estimating the group average 10,000 times, after permuting the identity of all auditory cues in the RSM on each iteration. Correct and

incorrect trials were kept separate for this permutation test. For visualization of the group average RSM (Figure 4F), the average cor-

relation coefficient was estimated for each auditory-visual pair for each recording day to give a 4x4 matrix.

During presentation of auditory cues Xn in the inference test we used a spike-triggered average to assess the temporal relationship

in spiking discharge between pairs of neurons representing Xn and Yn cues (Figures 5C and 5D). Taking ensembles of neurons rep-

resenting Xn and Yn cues (as defined in Figures 3C and 3D), a 200mswindowwas defined around each Xn spike during thewithin-set

auditory cue. For each pair of Xn andYn neurons, spike counts for eachYn neuron (Yn, within set: Figure 5C; Ym, cross-set: Figure 5D)

were summedwithin each 1ms bin of the 200mswindow, before estimating the Z-scored average firing rate for each 1ms bin across

all possible Xn spikes in the pair. Those pairs of Xn and Yn neuronswhere the Yn neurons fired less than 20 spikes across all Xn spikes

were excluded from the analysis. For visualization purposes only (Figures 5C and 5D), a moving average was applied to the spike-

triggered average, using bin size of 5 ms. An equivalent analysis was performed to assess spike counts in Xn neurons in response to

spikes in Yn neurons (Figure S5).

Mouse electrophysiology analysis: rest/sleep
SWR events were detected as described previously (McNamara et al., 2014; van de Ven et al., 2016). The LFP signal from the tetrode

with the highest number of recorded dCA1 pyramidal neurons was band-pass filtered (135-250 Hz), and the signal from a ripple-free

reference tetrode was subtracted to eliminate common-mode noise (such as muscle artifacts). Next the power (root mean square) of

the processed signal was calculated. SWR detection was applied to periods of immobility (instantaneous speed below 1.5cm/s), and

the threshold for SWR event detection set to 7 standard deviations above the background mean power.

To determine whether triplets of neurons were coactive during SWRs, we estimated the joint-firing probability during SWRs re-

corded during periods of quiet wakefulness in the inference test (Figure 7) or during periods of long immobility in the sleep/rest ses-

sion (Figures S7A and S7D–S7G). To control for differences in firing rate across triplets, the joint-firing probability was normalized by

the average firing rate of the triplet. Across recording days, we computed the difference in joint-firing probabilities during SWRs that

occurred early (recording days 1:4) and late (recording days 5:8) in the inference test (Figure S1B). To assess joint-firing of neurons

across Xn, Yn and Zn ensembles (as defined in Figures 3C and 3D), we estimated all possible triplets, and then computed the co-

activation probability as follows:

bpearly =
�
nearly

�
Nearly

��
fearly and bplate = ðnlate =NlateÞ=flate
where n (n ) is the number of SWRs during the inference tes
early late t (Figure 7) or during the rest session (Figures S7D and S7E) during

early (late) recording days in which all neurons in the triplet were active; Nearly (Nlate) is the total number of SWRs during the inference

test (Figure 7) or during the rest session (Figures S7D and S7E) during early (late) recording days; fearly (flate) is the average of themean

firing rate of neurons in the triplet during early (late) recording days. We then tested whether the difference in these probabilities p̂diff =

p̂late - p̂early, was consistently different from zero, estimating the effect size for the difference by computing 10,000 bootstrapped re-

samples. Triplets of neurons that were not coactive in any SWRs were not included in the analysis. To assess evidence for increased

representation of a cognitive short-cut in SWRs (Xn, Zn), the above analysis was applied to either douplets of neurons regardless of

neurons representing Yn (Figure 7E), or to triplets of neurons where the joint-firing of neurons Xn and Zn was considered only in

absence of spiking activity in neurons representing Yn (Figures 7F and 7G). To estimate the inter-spike interval between pairs of neu-

rons (Figure 7H, S7F, and S7G), we took only the first spike in the ripple for each neuron, before taking the difference in spike time

across both neurons in the pair (i.e., Zn - Xn).
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To further illustrate coactivation of neuronal pairs during SWRs (Figure S7B), we used a second approach reported previously

(McNamara et al., 2014). In brief, this involved first estimating the instantaneous firing rate counts within each SWRs, before calcu-

lating the correlation coefficient between the instantaneous firing rate counts for each cell pair. Between early and late recording

days, we tested the difference in correlation coefficients between cell pairs against zero. To estimate the effect size for the difference

we computed 10,000 bootstrapped resamples. Notably, this approach did not allow for analysis of triplets, nor permit control for

spiking activity in neurons representing Yn.

Human fMRI preprocessing and GLMs
Pre-processing of MRI data was carried out using SPM12 (https://www.fil.ion.ucl.ac.uk/spm/). Images were realigned to the first vol-

ume, corrected for distortion using field maps, normalized to a standard EPI template and smoothed using an 8-mm full-width at half

maximum Gaussian kernel. To remove low frequency noise from the pre-processed data, a high-pass filter was applied to the data

using SPM120s default settings. For each participant and for each scanning block, the resulting fMRI data was analyzed in an event-

related manner using four different GLMs, one designed for univariate analyses, a second designed for assessing functional connec-

tivity using a psychophysiological interaction (PPI), and a third and fourth designed formultivariate analyses. All GLMswere applied to

data from both scan task blocks. In addition to the explanatory variables (EVs) of interest (described below), in all GLMs 6 additional

scan-to-scan motion parameters produced during realignment were included as nuisance regressors to account for motion-related

artifacts in each task block.

The first GLM, used to analyze univariate BOLD effects (Figures 2B and 2C), included 14 EVs per block. Of the 14 EVs, 8 accounted

for trials in the inference test, divided according to performance of the subject (correct or incorrect inference), before being further

divided according to the 4 possible auditory-visual associations. An additional 4 explanatory variables accounted for conditioning

trials, divided by the 4 different visual cues. The onset of events within these first 12 EVs were locked to the onset of the video pre-

sented in each trial. The 2 final EVs accounted for the onset of questions presented during inference test trials, and the onset of out-

comes presented during conditioning trials. To decorrelate the first 12 EVs from the final 2, the duration of onsets for the first 12 EVs

was set using a box-car function to 4 s, the minimum duration of the video, whereas the duration of onsets for the final 2 EVs was set

to the duration of the outcome/question. All EVs were then convolved with the hemodynamic response function.

The secondGLM, used to assess functional connectivity using aPPI (Figure 2D), included 3EVsper block, describing physiological,

psychological andPPI regressors. The physiological regressor was defined from the fMRI time-course extracted froma seed region in

the auditory cortex (see ROI definition below). The psychological regressor contrasted trials with correct versus incorrect inference

during the inference test. ThePPI regressorwasconstructedbyextracting anddeconvolving the time-course from the auditory cortex,

multiplying it by the psychological regressor and then convolving the output with the hemodynamic response function (HRF). To ac-

count for additional unwanted variance, task relevant EVs included in the first GLM described above were also included.

The third GLM, used to assess representational similarity between auditory and visual cues (Figures 4 and S3C–S3I), included a

unique EV for each trial included in EVs 1-12 from the first GLM. Tomaximize cross-voxel sensitivity in the BOLD response to different

cues, each unique EV was described by a delta function locked to the end of the video, 4 s after video onset to ensure adequate

decoupling from the response to the question or outcome. 2 additional EVs were included to account for the onset of all questions

(inference test trials) and the onset of all outcome presentations (conditioning trials), modeled in the sameway as in the first GLM. The

delta function for each EV was then convolved with the hemodynamic response function.

The fourth GLM, used to assess representational similarity between auditory and outcome cues (Figures 6 and S6A–S6G), included

a unique EV for each trial included in EVs 1-8 from the first GLM, and each trial included in the EV accounting for the onset of all out-

comes. All auditory cue unique EVs were modeled in the same way as in the third GLM. All outcome cue unique EVs were described

by a delta function locked to the onset of the outcome presentation. 2 additional EVs were included to account for the onset of all

questions (inference test trials) and the onset of all visual cues (conditioning trials), modeled in the same way as in the first GLM.

The delta function for each EV was then convolved with the hemodynamic response function.

Human univariate fMRI analysis
Using the output of the first GLM for univariate analysis, the following contrasts were assessed. First, tomeasure the univariate BOLD

response to all inference test trials, the fMRI BOLD signal during inference test trials (EVs 1-8) was contrasted against the fMRI BOLD

signal during conditioning trials (EVs 9-12) (Figure 2C). Second, to measure the univariate BOLD response to correct versus incorrect

inference, inference test trials where participants made the correct inference (EVs 1-4) were contrasted against those where partic-

ipants made the incorrect inference (EVs 5-8) (Figure 2B). This second contrast was also used to define the psychological regressor

implemented in the PPI described above (Figure 2D). The resulting contrast images for all participants were entered into a second-

level random effects ‘group’ analysis.

To visualize the time-course of the hippocampal response to inference (Figure 4A), we extracted the BOLD time series from the

preprocessed data of each participant using the hippocampal ROI (Figure S3A). The obtained signal was resampled with a resolution

of 300ms, divided into trials on the inference test, and at each time bin the signal was regressed against an EV indicating which trials

the participant made the correct versus incorrect inference while accounting for the delay in the haemodynamic response. For each

participant, the resulting regression weights were then estimated at each time bin and the average across all participants displayed

(Figure 4A).
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The output of the third and fourth GLMs were used to estimate the representational similarity in the BOLD response to different trials,

using the representational similarity analysis toolbox (RSA) (Nili et al., 2014). For each trial, a t-statistic map for the relevant EV was

estimated (comparing the response to that trial against the baseline).

Using the output t-statistic maps from the third and fourth GLM, activity patterns were extracted from a hippocampal ROI (Fig-

ure S3F) and the relative similarity between the response patterns elicited in different trials were assessed using Pearson correlations,

and expressed as a correlation coefficient (r). For each participant, the response patterns from trials during the inference test were

compared with the response patterns from trials during the conditioning phase, before being represented in a trial-by-trial cross-

stimulus representational similarity matrix (RSM) [response to inference test by response to conditioning trials] (Figure 4C). Note, un-

like a distance or a correlation matrix, this is not a symmetric matrix and the diagonals quantify the similarity of response patterns

between the conditioning and inference test. To test evidence for representation of auditory-visual or auditory-outcome associations,

for each participant 2 RSMs were estimated: one using trials where the correct inference was made during the inference test, and a

second using trials where the incorrect inference was made during the inference test (e.g., Figure 4E). Both ‘correct’ and ‘incorrect’

RSMs were then used to estimate the following summary statistics. First, the mean ‘within’ versus mean ‘between’ auditory-visual

association was estimated (Figure 4G). Second, we fitted a GLM with 2 EVs to the RSM, to obtain parameter estimates for auditory-

visual associations dependent upon (EV 1) or independent upon (EV 2) the value of the associated outcome (Figures S3G–S3I), or

obtain parameter estimates for auditory-outcome mappings conditional on (EV 1) or unconditional on (EV 2) sensory cues that pre-

dicted the outcome (Figures 6 and S6A–S6C). In both cases, summary statistics were tested at the group level using two approaches:

(1) a one-sidedWilcoxon signed-rank test across participants; (2) a one-sided permutation test where the null distribution was gener-

ated by estimating the group average 10,000 times, after permuting the identity of all auditory cues in the RSM on each iteration.

Correct and incorrect trials were kept separate for this permutation test. For visualization of the group average RSM (Figure 4E),

the average correlation coefficient was estimated for each auditory-visual pair for each participant to give a 4x4 matrix.

Using the output t-statistic maps from the third and fourth GLMs, we implemented searchlight RSA (Figures S3C, S6D, and S6E)

using a spherical searchlight defined using default settings (Nili et al., 2014): fixed volume of 100 nearest neighbor voxels relative to

the center voxel; variable radius with upper limit set to 15 mm to accommodate brain boundaries. The searchlight was swept across

each brain volume. Across t-statisticmaps (trials), the extracted voxels were correlated using Pearson correlations, and expressed as

a correlation coefficient (r). The RSM was then constructed using correctly inferred trials as described for the hippocampal ROI RSA

analysis above, and the resulting correlation coefficients were Fisher transformed. A summary statistic was then generated for each

searchlight sphere, using the RSM to estimate ‘within’ versus ‘between’ auditory-visual associations (Figures S3C–S3E), ‘within’

versus ‘between’ auditory-outcome associations conditional on the visual cue (Figures 6H–6J), or multiple regression (GLM; see

below) to compare different model RSMs (Figures 6E–6G). The summary statistic of interest was then mapped back to the central

voxel in the searchlight sphere and saved. The spherewas then shifted and the entire procedure repeated until complete for the entire

imaged volume. Across all spheres, this yielded a descriptive map per subject. Across the group, these subject maps were then

entered into a second-level random effects analysis.

To compare different model RSMs within the same searchlight sphere (Figures 6E–6G), we used multiple regression (GLM) to

compare the Z-scored RSMs across voxels. The GLM included 2 EVs to obtain parameter estimates for auditory-outcome associ-

ations that reflected the learned task structure (EV 1) or task-independent value (EV 2) (Figure S6B). For each EV, the regression

weight was used as the summary statistic and across all spheres this yielded two descriptive maps per subject, one for each EV.

Human fMRI statistics and ROI specification
From the first and second GLMs, we report results at the group-level using whole-brain family wise error (FWE) corrected statistical

significance. The cluster defining threshold was p < 0.01 uncorrected and the correct significance level defined as p < 0.05. For uni-

variate effects in the hippocampus, we use an anatomical hippocampal mask (Figure S3A) to extract the raw hippocampal BOLD

signal (Figure 4A) and to perform small-volume correction (SVC) for multiple comparisons with FWE peak-level correction at p <

0.05 (Figures 2B and S3D).

All ROIs were defined from contrasts that were orthogonal to the contrasts of interest. To define the seed region for the PPI (Fig-

ure 2D), we defined an ROI in bilateral auditory cortex using the contrast between inference test trials and conditioning trials, thresh-

olded at p < 0.001 uncorrected (Figures 2C and S3B). To define an independent hippocampal ROI for RSA, the univariate contrast

between correctly inferred and incorrectly inferred trials on the inference test (Figure 2B) was thresholded at p < 0.01 uncorrected

(Figure S3F). To define independent masks in medial prefrontal cortex and putative dopaminergic midbrain we used two previous

fMRI datasets, reporting functional maps for novel conjunctive representations in medial prefrontal cortex (Barron et al., 2013)

and reward prediction error signals in ventral tegmental area (Klein-Flügge et al., 2011) respectively (Figures S6F and S6G). These

functional masks were used to perform small-volume correction (SVC) for multiple comparisons with FWE peak-level correction

at p < 0.05 (Figures 6H and 6J).
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Supplemental Figures

Figure S1. In humans and Mice: Inference Task Design and Pre-training Performance, Related to Figure 1

In humans and mice: (A-B) Structure of the inference task in humans and mice. (A) In humans, the experiment was conducted across 3 days. Participants

completed observational learning on day 1, conditioning on day 2, and anMRI scan on day 3. During the MRI scan participants were presented with conditioning

trials (‘‘reconditioning’’) and inference test trials (Figure 1C), presented in a pseudorandom order. (B) In mice, the inference task was conducted across 18 days.

Observational learning was conducted across days 1-6, conditioning across days 7-10, and recordings across days 11-18. Each recording day started with a

sleep/rest block, after which mice performed conditioning trials (‘‘reconditioning’’). The inference test was delivered in 3 separate blocks that were interleaved by

(legend continued on next page)
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reconditioning blocks to minimize extinction effects. At the end of the final inference test, mice were given additional conditioning trials, before being re-exposed

to the observational learning. At the end of the recording day mice were recorded during a second sleep/rest block. The two sleep/rest periods were excluded

from recording days in mice implanted with optic fibers in the absence of tetrodes. (C) In humans (left) there was a many-to-one mapping between auditory and

visual cues. Inmice (right) there was a one-to-onemapping between auditory and visual cues. (D) In humans (left) there were four possible visual cues, two in set 1

and two in set 2, whichmapped onto two possible outcomes, amonetary reward or a neutral wood-chip. The silver coins or neutral wood-chips could be collected

from the wooden box in the corner of the room. In mice (right) there were two possible visual cues, one in set 1 and one in set 2, which mapped onto two possible

outcomes, a sucrose (rewarding) or water (neutral) drop delivered to the liquid dispenser. (E-F) Behavioral performance in humans and mice during the pre-

training observational learning and conditioning stages of the task (mean ± SEM). (E) In humans. Participants performed the observational learning task until they

showed accurate recall of at least 50% of all auditory-visual pairs (left). Participants performed the conditioning task until they reached 100% accuracy on all

visual-outcome associations (right). (F) In mice. The observational learning was conducted across 6 days. As expected, mice did not show a reward-seeking bias

for cues in set 1 or 2 during this stage of the pretraining (left). Reward-seeking during the observational learning was defined as the percentage time spent in the

outcome area in the 20 s period after the auditory cue (Xn) (Figure 1D). After day 3 of the observational learning the time spent in the outcome area following cues in

both set 1 and set 2 increased, coinciding with mice being food restricted to 90% their original body weight. The conditioning was conducted across 4 days,

during which reward-seeking bias for cues in set 1 compared to set 2 increased (right), indicating that mice learned to associate the visual cues (Yn) with the

relevant outcome cues (Zn). Reward-seeking during the conditioning pre-training was defined as the percentage time spent in outcome area during outcome (Zn)

availability.
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Figure S2. Behavior across All Mice during Conditioning and Inference Test, Related to Figures 1 and 2

In mice: (A-I) Data Analysis with Bootstrap-coupled ESTimation (DABEST) plots (Ho et al., 2019) used to visualize the effect size of behavioral measures of reward

seeking bias. Raw data points are shown for set 1 and set 2 in orange and green respectively, with mean ± SEM shown by black-dot and black-ticks respectively.

The effect size for the difference between set 1 and 2 (i.e., reward seeking bias) is shown as a sampling-error distribution, computed from 10,000 bias-corrected

bootstrapped resamples (Efron, 2000): black-dot, mean; black-ticks, 95% confidence interval; filled-curve, sampling-error distribution; yellow, laser On; gray,

laser Off. (A-H) Across recording days in all mice. (A-C) During visual cues (Yn) in conditioning, greater reward-seeking bias was observed for ‘set 1’ relative to ‘set

(legend continued on next page)
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2’, with reward-seeking bias defined as the percentage time spent in the outcome area (B, p < 0.001), or defined as time spent licking in anticipation of an outcome

(C, p < 0.001). Each data point shows the average reward-seeking bias of a single mouse on a given day. (D-F) After visual cues in conditioning, during the

outcome period (Zn), greater reward-seeking bias was observed for ‘set 1’ relative to ‘set 2’, with reward-seeking bias defined as the percentage of time spent in

the outcome area (E, p < 0.001), or defined as time spent licking the outcome (F, p < 0.001). Each data point shows the average reward-seeking bias of a single

mouse on a given day. (G-H) Following auditory cues (Xn) in the inference test, greater reward-seeking bias was observed for ‘set 1’ relative to ‘set 2’, with reward-

seeking bias defined as the percentage time spent in the outcome area (p < 0.001; with one data point at coordinates [1,2;0.56,0.35] off the display). (I) In ArchT-

GFP mice, dCA1 light delivery during auditory cues (Xn) in the inference test impaired reward-seeking bias observed for ‘set 1’ relative to ‘set 2’ (Figure 2I). This

effect was further observed using alternative measures of reward seeking bias shown here, where reward seeking bias is defined as the percentage of trials with

visit to outcome area following the auditory cue (laser Off p < 0.001; laser On p = 0.105; laser Off – laser On: t54 = 3.86, p < 0.001).
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Figure S3. Regions of Interest and RSA during the Inference Test in Humans, Related to Figures 2 and 4

In humans: (A) An anatomical ROI in the hippocampus. This ROI was used to correct for multiple comparisons across the hippocampal volume (Figure 2B). (B) An

ROI in auditory cortex was defined from a contrast comparing BOLD signal during inference test trials to conditioning trials (Figure 2C). This ROI was then used as

a seed region for a Psychological-Physiological Interaction analysis which identified brain regions that differentially co-activate with auditory cortex across

correct and incorrect trials in the inference test (Figure 2D). (C) During correctly inferred trials in the inference test, searchlight RSA was applied to fMRI data in

humans to identify brain regions showing representational similarity between auditory cues Xn and visual cues Yn. A model representational similarity matrix

(Figure 4E) that mapped the auditory-to-visual associations learned during the inference task was compared with the activity patterns across voxels extracted

from each searchlight, using a summary statistic estimated as follows: [average within association XnYn correlations from RSM main diagonal] – [average be-

tween association XnYm correlations from RSM off-diagonals]. (D) The searchlight analysis described in (C) revealed significant auditory-visual mappings in the

hippocampus (t21 = 4.76, p = 0.025; peak-level FWE corrected using small-volume correction method), as observed in Figure 4. (E) The searchlight analysis

described in (C) further revealed significant auditory-visual mappings in the visual cortex (t21 = 4.94, p = 0.012, FWEwhole-brain corrected at the cluster-level). T-

statistic maps are thresholded at p < 0.01 uncorrected for visualization purposes only. (F) In humans, RSA was applied to BOLD signal extracted from a region of

interest (ROI) in the hippocampus, defined from the univariate contrast reported in Figure 2B, thresholded at p < 0.01 uncorrected. (G) Applying RSA to hip-

pocampal activity we modeled the mappings from Xn in the inference test to Yn in conditioning, both independent of the value of the associated Zn (left), and

dependent upon the value of the associated Zn (right). We then used multiple regression to regress the data onto these two models, to assess evidence for

prospective representation of visual cues Yn over and above representation of the value associated with the visual cues. (H) Using multiple regression described

inG, during correct inference, activity patterns in the hippocampus significantly predictedmappings from Xn to Yn, independent of the value of the associated Zn

cues (correct and incorrect inference: Z21 = 2.01, p = 0.022 and Z21 = �1.07, p = 0.858; mean ± SEM). The group mean was further compared against a null

distribution generated by permuting the identity labels assigned to the auditory cues Xn (correct and incorrect inference: p = 0.006 and p = 0.854). (I) Using

multiple regression described inG, during correct inference, activity patterns in the hippocampus did not significantly predict mappings from Xn to Yn, dependent

upon the value of the associated Zn cues (correct and incorrect inference: Z21 = �0.39, p = 0.652 and Z21 = 1.23, p = 0.109; mean ± SEM). The group mean was

further compared against a null distribution generated by permuting the identity labels assigned to the auditory cues Xn (correct and incorrect inference: p = 0.839

and p = 0.070). Thus, during inferential choice hippocampal activity in humans prospectively represents visual cues Yn over and above representation of the value

of the associated Zn cues.
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Figure S4. InMouse dCA1, Representational Similarity between Activity Patterns for Xn andYn in Set 1 Is Not Explained by Spatial Trajectory,

Related to Figures 3, 4, 5, and 6

In mice: (A-D) Overlaid trajectory for an example mouse during visual cues (Yn) and auditory cues (Xn). Blue indicates the start of the trajectory and red indicates

the end of the trajectory. Left hand panels: complete trajectories during the cue. Right hand panels: trajectories filtered by the ‘‘decision point’’ of the mouse, as

applied in Figures 3, 4, 5, and 6. The ‘‘decision point’’ of themouse is defined as the time point where the speed of themouse was below 5cm/s prior to visiting the

outcome area on that trial (see STARMethods). Filtering the trial data by the decision point eliminated time periods where the mouse was at or near the dispenser,

thus controlling for spatial confounds in set 1. (A) Trajectories during visual cue Y1 from set 1. (B) Trajectories during visual cue Y2 from set 2. (C) Trajectories

during auditory cues Xn from set 1 and 2 for correctly inferred trials. (D) Trajectories during auditory cues Xn from set 1 and 2 for incorrectly inferred trials. (E)

Schematic showing birds-eye view of the open field used for the examplemouse shown inA-D. (F) The average representational similaritymatrices (RSMs) across

recording days for spatial trajectories during cues Xn and Yn, after filtering by the decision point and dividing the data by performance in the inference test. Rank-

transformed and scaled between [0 to 1] for visualization purposes. (G-H) The average representational similarity for ‘within set’ versus ‘between set’ spatial

trajectories across cues Xn and Yn, after filtering by the decision point and splitting by performance in the inference test. The groupmeanwas compared against a

null distribution generated by permuting the identity labels assigned to the auditory cues Xn. (G) Across both set 1 and 2, spatial trajectories during the auditory

cues Xn significantly predicted the trajectories for the associated visual cue Yn, ([within set XnYn correlation] – [between set XnYn correlation], ‘correct inference’

p = 0.014, ‘incorrect inference’ p = 0.687). (H) Across set 1 alone, spatial trajectories during the auditory cues Xn did not significantly predict the trajectories for the

associated visual cue Yn, ([within XnYn correlation] – [between XnYn correlation], ‘correct inference’ p = 0.957, ‘incorrect inference’ p = 0.151). (I) Across set 1

alone, the single-unit activity in neurons recorded from dCA1 during auditory cues Xn significantly predicted the activity patterns for the associated visual cue Yn

during correct but not incorrect inference ([within set XnYn correlation] – [between set XnYn correlation]). The group mean was compared against a null distri-

bution generated by permuting the identity labels assigned to the auditory cues Xn (‘correct inference’ p = 0.002, ‘incorrect inference’ p = 0.865). Given the

absence of significant spatial correlations for set 1 shown in H, this result shows that during correct inference, dCA1 ensemble activity predicted the associated

cue Yn over and above the spatial location of the animal.
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Figure S5. Spike Time Relationships between dCA1 Neurons during Inference, Related to Figure 5

In mice: (A-B) During the auditory cues Xn in the inference test we estimated the Z-scored spike-triggered average for neurons in ensembles Xn, within a 200-ms

window relative to the spike times of neurons in ensembles Yn. For each cell pair we assessed the difference in the mean Z-scored spike-triggered average for Xn

during the 100-ms interval ‘‘after’’ minus ‘‘before’’ spikes in Yn. The effect size for the difference (‘‘after’’ – ‘‘before’’, right-hand panel) was estimated by computing

10,000 bias-corrected bootstrapped resamples (Efron, 2000) and visualized using DABEST plots (Ho et al., 2019): black-dot, mean; black-ticks, 95% confidence

interval; filled-curve, sampling-error distribution; red, within-set cell pairs; gray, cross-set cell pairs. (A) For all within-set neuronal pairs (X1Y1 and X2Y2), the Z-

scored spike-triggered average for Xn was significantly higher during the 100 ms before Yn spike discharge (‘‘after’’ – ‘‘before’’ Yn neuron spike: p < 0.001),

showing that during presentation of the auditory cues Xn in the inference test, Xn neurons tend to spike before Yn neurons, thus preserving the temporal statistics

of cue presentation from the observational learning stage of the task (Figure 1A). (D) For all cross-set neuronal pairs (X1Y2 and X2Y1), there was no significant

temporal bias in the Z-scored spike-triggered average for Xmwhen comparing the 100ms ‘‘after’’ minus ‘‘before’’ spikes in Yn (‘‘after’’ – ‘‘before’’ Xn neuron spike:

p = 0.640).
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Figure S6. Representation of the Inferred Outcome in Humans and Triple-Site Recording of Neuronal Ensembles in dCA1, mPFC, and VTA in

Mice, Related to Figure 6

(A-G) In humans. (A) RSAwas assessed between auditory cues Xn during the inference test, and outcome cues Zn during the conditioning trials. (B) Usingmultiple

regression, representational similarity between the auditory cues Xn and outcome cues Zn was assessed using two models. The first model (left) mapped the

relationship between the auditory cues Xn and the associated outcomes Zn, conditional on the intermediary visual cues Yn (Figures 6A and 6B). The second

model (right) mapped relationships between the auditory cues Xn and the associated outcomes Zn, unconditional on the intermediary visual cues Yn. (C) RSAwas

applied to the BOLD signal extracted from the hippocampal ROI shown in Figure S3F. Using multiple regression to regress the data onto the two models

described in B, during the inference test we assessed evidence for representation of outcome cues Zn in the hippocampus. During both correctly inferred and

incorrectly inferred trials in the inference test, hippocampal activity did not significantly predict activity associated with the relevant outcome cues Zn, uncon-

ditional on intermediary visual cues Yn (correct and incorrect inference: Z21 = 0.91, p = 0.182 and Z21 = 0.84, p = 0.199). The group mean was further compared

against a null distribution generated by permuting the identity labels assigned to the auditory cues Xn (correct and incorrect inference: p = 0.199 and p = 0.289).

Results conditional on the intermediary visual cues Yn are shown in Figures 6A and 6B. (D-E) Searchlight RSA in humans was used to identify brain regions

showing representational similarity between auditory cues Xn and outcomes Zn for cues in both set 1 and 2 (D) and for cues in set 2 only (E), where Z2 represents a

(legend continued on next page)

ll
OPEN ACCESSArticle



neutral cue. (F-G) ROIs used to correct for multiple comparisons within themedial prefrontal cortex and VTA (Figures 6I and 6J). (F) An ROI in the medial prefrontal

cortex, defined from functionalmap showing evidence for novel conjunctive representations inmedial prefrontal cortex (Barron et al., 2013). (G) An ROI in the VTA,

defined from a functional map identifying midbrain activation to reward-prediction error (Klein-Flügge et al., 2011). (H) In mice. Upper: Schematic showing the 3

simultaneously recorded brain regions: medial prefrontal cortex (mPFC), hippocampal dCA1 and ventral tegmental area (VTA) (n = 4 mice). Lower: Heatmap

showing spiking activity of 3x30 example neurons recorded across themPFC, dCA1 and VTA. For each heatmap, each row shows the Z-scored firing rate (Hz) of a

given neuron within 100 ms bins, averaged across multiple trials in which sucrose is delivered to the outcome dispenser within the open field shown in Figure 1B.

For each brain region the y axis is organized to first show those neurons that show an increase in their spiking activity in response to sucrose delivery. This triple-

site recording shows that spiking activity in these three brain regions can be modulated in relation to experience of reward, and also illustrates how triple-site

recordings may be used in the future to investigate findings reported in humans at a cellular level (Figure 6).

ll
OPEN ACCESS Article



(legend on next page)

ll
OPEN ACCESSArticle



Figure S7. During SWRs, Hippocampal Co-firing Autocompletes Inferred Relationships, Related to Figure 7

In mice: (A) Upper: Example instantaneous speed (cm/s) during a rest/sleep session of a recording day (Figure S1B) when the mouse was in the ‘‘sleep box’’.

Middle: Example instantaneous speed (cm/s) during an inference test session (Figure S1B) when the mouse was in the open field (Figure 1B). Notably, the mouse

is more active during the inference test relative to the rest/sleep session shown in A. Lower: The distribution of instantaneous speed (mean ± SEM) recorded

across all mice during rest sessions and during the inference task. The proportion of time spent immobile (0-1cm/s) was greater during rest sessions, while the

proportion of time spent active (> 1cm/s) was greater during the inference task. (B) To further measure firing associations between hippocampal neurons during

SWRs (Figure 7), we used a second approach reported previously (Dupret et al., 2010; McNamara et al., 2014). In brief, this co-firing measure involved first

calculating for each cell the instantaneous firing rate counts within each SWR of a given recording session, before computing the Pearson correlation coefficient

between the instantaneous firing rate counts for each cell pair, across all SWRs of that recording session. Between early and late recording days, we then tested

the difference in pairwise co-firing for cue-defined cell pairs against zero and estimated DABEST plots as described in Figures 1E and 1F. Tukey’s post hoc

multiple comparison test was used to further assess the difference in group means following ANOVA. Upper: From early to late recording days we observed a

significant interaction in SWR co-firing for set 1 versus set 2 cell pairs (set x day interaction, two-way ANOVA: F(1,2005) = 13.68, p < 0.001). Tukey’s post hoc test

revealed a significant increase in SWRco-firing for set 1 cell pairs ([X1Y1, Y1Z1, X1Z1]: p = 0.040) and a significant decrease in set 2 cell pairs ([X2Y2, Y2Z2, X2Z2]:

p = 0.040). This result was not explained by a mere increase in the probability of SWRs representing Z1: the interaction remained significant when comparing the

SWR co-firing for set 1 and equivalent across-set ([X2Y1, Y2Z1, X2Z1]) cell pairs (two-way ANOVA: F(1,1965) = 13.93, p < 0.001), where Tukey’s post hoc test also

revealed a significant increase in SWR co-firing for set 1 cell pairs ([X1Y1, Y1Z1, X1Z1]: p = 0.015). Lower: From early to late recording days we observed a

significant interaction in SWR co-firing for set 1 versus set 2 cell pairs representing the inferred (but not directly observed) relationship (set 1: [X1Z1]; set 2: [X2Z2];

set x day interaction, two-way ANOVA: F(1,365) = 6.45, p = 0.012). However, Tukey’s post hoc test did not reveal a significant increase in SWR co-firing for set 1 cell

pairs ([X1Z1]: p = 0.235). Critically, unlike the analyses presented in Figure 7, the methodological approach implemented here did not control for SWR co-firing of

cells representing the intermediary visual cues Yn. (C) From early to late recording days we observed a significant increase in the probability of SWRs representing

neuronal pairs for the inferred relationship in set 1 (X1Z1) in the absence of Yn neurons (Figure 7F). To control for a mere change in SWRs representing task cues

from early to late recording days, we compared the group mean for both within-set (X1Z1 and X2Z2) and cross-set (X1Z2 and X2Z1) neuronal pairs against a null

distribution generated by permuting the SWRs in which Xn neuronal spikes occurred in each pair, while holding the relevant Zn neuronal spikes fixed and thus

preserving the average firing rate of both Xn and Zn cells. This analysis revealed a significant increase in probability of SWRs representing the inferred relationship

from set 1 (X1Z1, p < 0.001), but no significant change in the probability of SWRs representing all other neuronal pairs (X2Z2, p = 0.281; X1Z2, p = 0.934; X2Z1, p =

0.193). See also Figure 7G. (D-E) From early to late recording days, the normalized probability of SWRs co-representing neuronal triplets during periods of rest/

sleep sessions recorded in the ‘‘sleep box’’ at the beginning and end of the recording day (Figure S1B). The effect size for the difference between early and late is

shown using DABEST plots as described in Figures 1E and 1F. Tukey’s post hoc multiple comparison test was used to further assess the difference in group

means following ANOVA. (D) From early to late recording days we observed a significant interaction in SWRs representing set 1 (X1Y1Z1) versus set 2 (X2Y2Z2)

neuronal triplets (set x day interaction, two-way ANOVA: F(1,1106) = 15.86, p < 0.001). Tukey’s post hoc test revealed a significant increase in the probability of

SWRs representing set 1 (X1Y1Z1) neuronal triplets (p < 0.001). From early to late recording days there was no significant interaction in the probability of SWRs

representing set 1 (X1Y2Z1) versus set 2 (X2Y1Z2) neuronal triplets, where the identify of Yn cells were from the opposite set (set x day interaction, two-way

ANOVA: F(1,828) = 2.67, p = 0.102). However, Tukey’s post hoc test revealed a significant increase in the probability of SWRs representing set 1 (X1Y2Z1) neuronal

triplets (p = 0.024). (E) From early to late recording days there was no significant interaction in the probability of SWRs representing neuronal pairs for the inferred

relationship in set 1 (X1Z1) versus set 2 (X2Z2), regardless of Yn neurons (set x day interaction, two-way ANOVA: F(1,224) = 1.41, p = 0.237). However, Tukey’s post

hoc test revealed a significant increase in SWRs representing set 1 (X1Z1) neuronal pairs (p = 0.005). This result was not explained by a mere increase in SWRs

representing Z1 as a significant interaction was observed when comparing SWRs representing set 1 (X1Z1) versus across-set (X2Z1) neuronal pairs (set x day

interaction, two-way ANOVA: F(1,187) = 10.94, p = 0.001). Overall, during offline periods of rest/sleep the increase in SWRs co-representing X1Z1 neuronal pairs

showed less specificity than that observed for SWRs recorded in periods of quiet wakefulness during the inference test (Figures 7C–7F). (F-G) Inter-spike intervals

for Xn and Zn neuron pairs (see STAR Methods). Unlike SWRs recorded during awake rest in the inference test (Figure 7H), during periods of sleep/rest in the

‘‘sleep box’’ the number of neuron pairs where Z1 fired before X1was not significant (p = 0.195, Binomial test). Similarly, the number of neuron pairs where Z2 fired

before X2 did not differ from 50% (p = 0.519, Binomial test). Set 1 in orange; set 2 in green.
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