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A B S T R A C T

Background: Precisely timed brain stimulation, such as phase-locked deep brain stimulation (PLDBS), offers a 
promising approach to modulating dysfunctional neural networks by enhancing or suppressing specific oscilla
tions. However, its clinical application has been hindered by the lack of user-friendly systems and the challenge 
of real-time phase estimation amid stimulation artifacts.
Material and method: In this work, we developed a clinically translatable PLDBS framework that enables real- 
time, cycle-by-cycle stimulation using standard amplifiers and a computer-in-the-loop system. Our approach 
integrates Kalman filter-based artifact suppression and non-resonant oscillators for accurate phase tracking. We 
tested this system in a small clinical trial (n = 4) targeting subthalamic nucleus (STN) stimulation at specific 
phases of cortical alpha and STN beta rhythms in patients with movement disorders during acute lead exter
nalization following deep brain stimulation surgery.
Result: The system delivered stimulation with over 90% accuracy, within ±π/2 for STN beta and ±π/4 for cortical 
alpha. Stimulations delivered at different STN beta phases led to a significant difference in evoked potentials in 
STN local field potentials in all participants. STN beta-triggered stimulation showed potential phase-dependent 
modulation of finger-tapping velocity and amplitude in Parkinson’s disease.
Conclusion: This study presents a flexible and stable pipeline for precise PLDBS with CE-marked devices and a 
computer-in-the-loop. Using this pipeline, we showed that PLDBS at different STN beta phases differentially 
modulates the evoked action potentials in the STN and motor behavior used to quantify bradykinesia, paving the 
way for further studies and clinical trials for PLDBS.

1. Introduction

Phase-locked neurostimulation [1,2] is an innovative neuro
modulation technique that harnesses the principles of synchronizing 
stimulation and neuronal oscillations to modulate brain activity for 

therapeutic purposes [3–7]. Phases of a neural oscillation indicate 
moment-to-moment fluctuations in neuronal excitability [8–10], sug
gesting that stimulation delivered at specific phases (Fig. 1A) can lead to 
more precise modulation of neuron population activities and, conse
quently, more pronounced physiological and behavioral effects [11–20]. 
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Targeting particular phases of neural oscillations with different stimu
lation modes, including transcranial magnetic stimulation [21], trans
cranial electrical stimulation [16,22,23], deep brain stimulation (DBS) 
[2,24,25], and acoustic stimulation [26,27], has shown potential in 
influencing neuronal rhythms and improving cognition [5,28,29], 
movement [30] and sleep [22,26,27]. These approaches show promise 
for therapeutic applications in disorders such as essential tremor [13,
31], Parkinson’s disease (PD) [32,33], and depression [34,35], by pre
cisely modulating brain network dynamics, which can subsequently 
influence behavior. While preclinical studies in movement disorders 
have indicated the efficacy of phase-targeted neuromodulation in bidi
rectionally regulating oscillatory dynamics (particularly subthalamic 
nucleus (STN) beta oscillations [32,33]) to potentially modify motor 
outcomes [36], critical gaps persist in translating these electrophysio
logical interventions into clinically viable behavioral modulation 
paradigms.

Achieving effective phase-locked neurostimulation requires over
coming two interdependent technical barriers: robust elimination of 
stimulation artifacts that obscure endogenous neural oscillations during 
stimulation and precise tracking of instantaneous phase dynamics [37]. 
Various methods have been proposed for artifact mitigation including 
bandpass filter [38–40], template subtraction [24,25,41], and blanking 
combined with interpolation [32,42–44]. In parallel, techniques such as 
phase inversion detection [45,46], phase-locked oscillators [14,47], 
analytic signal construction [23,48,49], state-space model [32,50,51] 
and resonant theory [52] have been employed for real-time phase esti
mation. Despite these advances, cycle-by-cycle phase-locked DBS 
(PLDBS) targeting neural signals near stimulation sites still faces chal
lenges [53]. Specifically, stable device-independent artifact removal 
methods remain elusive, and optimal approaches for accurate phase 
estimation in the presence of residual artifacts have yet to be 
established.

Here we aim to establish a framework allowing clinical testing of 
PLDBS, that integrates an effective artifact removal method with an 
optimized real-time phase estimation algorithm, ensuring reliable 

continuous cycle-by-cycle phase tracking. To achieve this, we have:1) 
compared different methods required for real-time phase estimation and 
artifact suppression in simulation, 2) evaluated different factors 
contributing to the potential variability in the performance of PLDBS; 
and 3) demonstrated the feasibility of the proposed method and hard
ware pipeline for PLDBS in patients and provided pilot data showing 
phase-specific effect of PLDBS. This pipeline we proposed is compatible 
with commonly used amplifiers. Using a computer-in-the-loop for real- 
time signal processing, we evaluated its real-time phase estimation ac
curacy and stability in cycle-by-cycle PLDBS targeting cortical and 
subthalamic oscillations in human patients. Moreover, our results sug
gest that PLDBS at different STN beta phases differentially modulates 
evoked resonant neural activity (ERNA) in the STN, a modulation- 
responsive electrophysiological biomarker reflecting basal ganglia- 
thalamocortical circuit reorganization in PD [54–56], and motor 
behavior related to bradykinesia, underscoring its potential for clinical 
application and paving the way for further studies and clinical trials.

2. Material and methods

2.1. Real-time artifact removal method

We first reviewed several stimulation artifact removal methods, 
including template subtraction, interpolation, and sampling, as 
described in Supplementary Materials (Supp Table 1).

Template subtraction assumes that the artifacts associated with each 
stimulation pulse follow a constant pattern. However, this assumption 
only applies when amplifiers with very high-sampling-rate (e.g. 44k Hz) 
and large dynamic ranges. In most cases, stimulation artifacts appear as 
random waveforms [41], making template subtraction ineffective. 
Beyond that, recently proposed methods such as blanking or irregular 
sampling [43] and interpolation depend on precisely knowing the 
stimulation artifact duration. The high-frequency components of 
square-waved stimulation pulses cause prolonged signal ringing after 
amplifier anti-aliasing filtering, representing its "impulse" response to 

Fig. 1. – Artifacts removal based on Kalman filter in simulation and real-test in participants. (A) Schematic illustration of phase definitions: rising (0◦), peak (90◦), 
falling (180◦), and trough ( − 90◦). (B) PSD analysis comparing the original signal with artifact-suppressed signals processed using either the Kalman filter (left) or 
irregular sampling (right). The analysis was performed across different parameter settings for estimated artifact durations (8 ms, 9 ms, etc.). (C) Representative 2-s 
cortical alpha-triggered PLDBS signals: processed signal using the Kalman filter (black) overlaid on the raw signal (orange; stimulation delivered at rising phase). (D) 
Representative 2-s STN beta-triggered PLDBS signals: processed signal using the Kalman filter (black) overlaid on the raw signal (dark green; stimulation delivered at 
falling phase).
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the stimulation pulse. Thus, the type of frontend circuit, the 
analog-to-digital converter technology, and the digital filtering tech
nique influence the stimulation artifact duration and temporal shape, 
making removing it extremely challenging to mitigate with standard 
methods [57].

The Kalman filter [58,59] reduces uncertainty in the estimated signal 
by combining direct measurements with estimations based on a model, 
following Bayesian principles. It employs a "blanking" mechanism, 
where the confidence in the measurements is set low when stimulation 
artifacts are present. During these periods, the signal estimation is 
instead driven by a model. This study proposes using the Kalman filter 
for artifact removal with a second-order autoregressive (AR) model 
based on past data points. Unlike simpler interpolation techniques that 
either skip or replace artifacts with preset values, the Kalman filter 
adapts to variations in the signal, providing a more precise reconstruc
tion of underlying neural activity. We evaluated the performance of the 
Kalman filter in artifact suppression and compared it against irregular 
sampling (blanking).

2.2. Real-time phase estimation method

Several methods for phase estimation used in previous studies were 
considered, including zero-crossing (ZC), phase-locked oscillators, 
causal Hilbert transform (HT) methods such as endpoint-corrected HT 

(ecHT) [49] and autoregressive HT (arHT) [15,48,60,61], state space 
phase estimator (SSPE) [50], resonant oscillators (RO), non-resonant 
oscillators (NRO) [52,62] and OscillTrack [32], as detailed in supple
mentary materials (Supp Table 2). Some of these approaches have been 
compared in previous literature (Supp Fig. 1) [50–52,62]. NRO has been 
shown to outperform RO, ecHT, and phase-locked oscillators in neural 
oscillations, offering a broader targeted frequency band. SSPE also 
outperforms the HT and ZC approaches, showing greater tolerance to 
noise. However, no study has compared different methods and estab
lished a reliable pipeline for PLDBS scenarios, particularly when com
bined with stimulation artifact removal techniques.

We implemented ZC, arHT, NRO, SSPE, and OscillTrack in our study 
based on prior research. We compared their performance in a simulation 
model using real recordings and synthetic signals containing stimulation 
artifacts. Given that most of these models construct the analytic signal 
which allows us to extract the instantaneous amplitude and phase (with 
ZC modified to use a moving window), we additionally evaluated real- 
time amplitude estimation by computing the mean squared error be
tween the estimated amplitudes and the ground truth (Supp Table 3).

2.3. Simulink model

To identify a stable method for phase estimation under varying 
signal-to-noise ratios and stimulation artifacts, we implemented and 

Fig. 2. Performance evaluation of PLDBS using Kalman filtering and NRO analysis. (A) Simulation of real-time PLDBS system. Neural signals undergo three-stage 
processing: (1) Artifact removal via Kalman filtering with bandpass filtering, (2) Instantaneous phase estimation, and (3) Phase-triggered stimulation delivery. 
(B) Spectral characteristics of cortical alpha and STN beta oscillations. Peak frequencies (vertical bars) with corresponding filter bandwidths (dashed lines) 
demonstrate oscillation-specific spectral filtering. (C) Phase estimation performance comparison across five methods. NRO showed superior performance with 
minimal bias and reduced std. (D) Stimulation timing accuracy showed precise targeting simulation with cortical alpha and STN beta oscillations. 
Abbreviation: PLDBS: phase-locked deep brain stimulation, PSD: power spectral density, STN: subthalamic nucleus, ZC: Zero-crossing, NRO: Non-resonant oscillators, 
arHT: autoregressive Hilbert Transform, SSPE: state space phase estimator.
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tested the different methods using Simulink, a MATLAB-based modeling 
environment. The designed model incorporates several modules, 
including data input, artifact removal, preprocessing, phase estimation, 
and stimulation (adding stimulation artifacts). After initial artifact 
suppression, the signals undergo fourth-order Chebyshev Type I band
pass filtering to ensure narrow-band frequency isolation. Although the 
IIR bandpass filter introduces a non-linear phase response across fre
quency bands (Supp Fig. 2), it maintains an approximately linear phase 
response within the passband. It preserves most amplitude information, 
enabling the phase estimation method to retrieve the real-time phase 
(Supp Fig. 3) effectively. The conditioned signals are then processed 
through the mentioned phase tracking algorithms to compute instanta
neous phase dynamics. Finally, the model triggers phase-locked stimu
lation, where stimulation pulses are delivered at the target phase, with 
the stimulation artifacts added to the original input signal (Fig. 2A). The 
methodological configurations for phase estimation were derived from 
the previously proposed optimization framework [15,48,60,61].

2.4. Simulation input data and validation

Validation was performed using real recordings. The first dataset 
comprised 25-s eyes-closed resting-state electroencephalogram (EEG) 
recordings from the Pz electrode in a healthy participant, with robust 
cortical alpha oscillations (Fig. 2B, left). The second dataset consisted of 
60-s STN LFP recordings from a PD patient during OFF medication and 
OFF stimulation, exhibiting pathologically elevated beta-band syn
chrony (Fig. 2B, right), derived from our previously published paper 
[63]. Both clinical datasets were sampled at 4096 Hz and preprocessed 
through identical 2 Hz fourth-order Butterworth high-pass filtering. The 
local ethics committees approved the study, and all patients provided 
written informed consent according to the Declaration of Helsinki.

For each dataset, the instantaneous phase of the target oscillation 
was computed offline using the "gold standard" technique (i.e., offline 

Hilbert transform (oHT)), applied to the raw signal without artifacts. To 
systematically evaluate the phase-locking performance of different al
gorithms, we implemented a simulation framework that spanned the 
entire phase space (− 180◦–180◦, 45◦ increments). Two key metrics were 
used for evaluation: bias (absolute mean error between real-time deliv
ered phases and offline gold-standard target phases) and the std (stan
dard deviation of delivered phases) during each phase-locked 
stimulation simulation. 

bias=mean|φdelivery − φpredetermined
⃒
⃒

std= std
(
φdelivery

)

Further quantification included phase-specific accuracy, defined as 
the proportion of pulses delivered within incremental tolerance 
thresholds (0◦, 2◦, 5◦, 10◦, 15◦, 20◦, 25◦, 30◦, 45◦, 60◦), and calculated as: 

accuracy=
N|φdelivery − φpredetermined|<tolerance

Nall 

Since estimation errors may vary with the amplitude of the target 
oscillation [52], amplitude-dependent gating thresholds of 2 μV and 
5 μV were applied to the offline signal. The accuracy of the signal seg
ments above these thresholds was evaluated to determine potential 
improvements in stimulation accuracy.

2.5. PLDBS hardware implementation

Following computational validation, we implemented a closed-loop 
PLDBS system integrating CE-marked amplifiers (TMSi Saga, TMS In
ternational, Netherlands) and CE-marked stimulators (ISIS, Inomed 
Neurocare Ltd., Germany) with real-time processing via MATLAB and 
Lab Streaming Layer (Fig. 3A/5A). Signals (4096Hz unipolar sampling) 
underwent 2 Hz Butterworth high-pass filtering before Kalman filter- 
based artifact suppression and NRO phase estimation. Once the 

Fig. 3. PLDBS of cortical alpha oscillations. (A) The PLDBS system delivered electrical pulses to the STN based on alpha oscillations recorded from an EEG channel. 
(B) Individualized spectral profiles of the four patients. Vertical lines denote individualized alpha peak frequency with 3 Hz bandwidth filters (gray shaded area). (C) 
Phase-locked stimulation exemplar (Participant 4, Oz channel, left hemisphere targeting). Representative 2-s traces show stimulation timing at four quadrant alpha 
phases: trough (pink), rising (orange), peak (yellow-green), and falling (dark green). Wideband EEG with stimulation artifacts is shown in black. (D) Angular dis
tribution of stimulation phases for Participant 4. Circular histograms show phase concentration at targets (dashed lines) with mean vectors (black lines). (E) Phase 
estimation consistency across participants. In the figure, each point represents a participant’s phase-specific calculated value. A Friedman test revealed a significant 
phase-dependent effect in bias (left), while std (right) remained stable across target phases. (F) Targeting accuracy across phase quadrants. Overall system achieved 
81.24% ± 3.53% accuracy (±45◦ tolerance) with comparable performance across phases.
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difference between the estimated and target phases drops below a spe
cific threshold (set as 2◦), a trigger signal is sent to the neurostimulator 
via Labjack. This brief TTL pulse trigger signal enables the stimulator to 
deliver a single stimulation pulse.

Artifact detection is triggered at a 300 μV threshold. Based on pre
viously recorded data [63] and analysis results (Fig. 1B–Table 2), the 
Kalman filter estimates LFPs during the subsequent 9 ms. For real-time 
phase estimation, the NRO method, which outperformed others in 
simulations, was implemented. This method uses a linear oscillator 
model ẍ+ αẋ+ ω2x = s(tk), solved numerically to map the analytic 
input signal’s oscillator dynamics (amplitude/phase). We set αamplitude =

80, αphase = 10 following the methodology in Ref. [64], where αamplitude 

and αphase are the damping parameters for amplitude and phase esti
mation, respectively. A large αamplitude ensures stable amplitude tracking 
by providing strong damping, while a smaller αphase minimizes phase 
distortion. The oscillator frequency was set to ω = 5ϑ, with ϑ = 2π⋅ fpeak , 
where fpeak is the target oscillation frequency.

2.6. PLDBS test in human patients

The PLDBS system was tested in four patients (Table 1), including 
one with cervical dystonia and three with PD, all undergoing STN tar
geted DBS surgery. The implanted DBS systems were from two manu
facturers: Medtronic Inc. (USA) with octopolar directional leads 
(SenSight™ model 33005), and Boston Scientific (USA) with octopolar 
directional leads (Vercise™ model DB-2202). Electrodes were connected 
to temporary lead extensions and externalized through the temporal or 
frontal scalp. Recordings were performed in the OFF-dopaminergic 
medication state, four to six days postoperatively. Monopolar stimula
tion was applied using an ISIS neurostimulator, with a self-adhesive 
electrode placed on the participant’s back as the reference. Stimula
tion was triggered only when the signal amplitude, as estimated by the 
amplitude estimator, exceeded 0.5 μV, ensuring that activation occurred 
under physiologically meaningful conditions. The stimuli consisted of 
symmetric, constant-current, biphasic pulses (3 mA, 60 μs, with the 
negative phase delivered first). The local ethics committees approved 
the study, and all patients provided written informed consent according 
to the Declaration of Helsinki.

Patients remained in a resting seated state throughout the entire 
recording session. Pre-experimental contact optimization involved 25- 
pulse mapping (4 mA, 1–0.5 Hz) across STN channels, selecting con
tacts that elicited maximal ERNA amplitudes in adjacent recordings. A 
10-s calibration block was used to quantify fixed system delay (median 
value of time intervals between trigger onset and stimulation artifact 
appearance in LFP traces) and temporal jitter (the range of delay mea
surements across all pulses), which remained constant through all 

experiments. Multimodal recordings (STN-LFP and EEG, bilateral 
fingertip accelerometry) were synchronized throughout phase-locked 
protocols.

2.7. Cortical alpha-triggered PLDBS

Alpha oscillations are commonly observed in the parietal lobes via 
EEG recordings, especially with eyes closed, and are associated with 
rhythmic fluctuations in excitability [65,66]. To validate the PLDBS 
efficacy, we implemented cortical alpha-triggered PLDBS as a 
proof-of-concept demonstration (Fig. 3A). Before stimulation, partici
pants were asked to close their eyes while feedback channels exhibiting 
the highest alpha-band spectral power were selected from standard EEG 
(Fz, Cz, Pz, Oz). Individualized alpha peak frequencies were identified 
using power spectra density (PSD) analysis and extracted with 3 Hz 
bandwidth filters centered on the dominant frequency (Fig. 3B). The 
cortical alpha-triggered PLDBS protocol targeted four cardinal phase 
points: rising (0◦), peak (90◦), falling (180◦), and trough (− 90◦) see as 
Fig. 1A. Each phase condition was tested in duplicate 30-s stimulation 
trials (8 total blocks) administered in a randomized sequence, with 60-s 
inter-block washout intervals.

2.8. STN beta-triggered PLDBS

Beta oscillations in STN have been associated with bradykinesia and 
rigidity in PD, and STN beta-triggered PLDBS may more effectively 
modulate these pathological rhythms [67–69]. We implemented STN 
beta-triggered PLDBS in four participants (Fig. 5A). The feedback 
channel was selected based on the contact exhibiting the highest ERNA 
amplitude during contact optimization. Participant-specific beta peak 
frequencies were derived from resting-state PSD analyses (OFF stimu
lation) and extracted using a 5 Hz bandwidth filter (Fig. 5B). Consistent 
with prior studies [36,70], STN beta-triggered PLDBS targeted two 
antithetical oscillation phases: rising (0◦ or 20◦) and falling (180◦ or 
− 160◦). Each phase condition underwent triplicate 30-s stimulation 
trials (6 total blocks), administered in a randomized sequence, with 60-s 
inter-block washout intervals. Because the dual-phase paradigm is 
constrained by system latency parameters (~10 ms jitter), correspond
ing to 30–50 % of beta-cycle durations (18–30Hz, 33–55 ms/cycle), 
achieving higher phase resolution within the beta band was not feasible.

2.9. In-vivo validation

Post hoc signal processing employed the same Kalman filter for 
artifact removal and used oHT as the golden standard to assess PLDBS 
targeting precision. Performance was evaluated using the same metrics 
as in simulations: bias and std. Phase-specific accuracy was quantified in 
two ways: per-target-phase participant means and population-level 
cross-participant averages. Different phase-locking tolerances were 
applied based on the oscillation type (cortical alpha-triggered-PLDBS: 
±45◦; STN beta-triggered PLDBS: ±90◦). Consistent with the simula
tion approach, amplitude-gating thresholds were used to assess the ef
fect of signal amplitude on accuracy.

2.10. ERNA modulation with PLDBS

Stimulation phases may bidirectionally modulate beta oscillation 
amplitudes [32,33,71], but whether these effects relate to stimulation 

Table 1 
Clinical information.

Gender Diagnose Handedness DBS 
system

Cortical 
Alpha

STN 
beta

1 Male CD Left Boston 10Hz 25Hz
2 Male PD Left Medtronic 6Hz 15Hz
3 Female PD(Tremor) Right Medtronic 9Hz 18Hz
4 Male PD 

(Bradykinesia)
Right Medtronic 10Hz 19Hz

Note: Participant 2 exhibited dominant 6Hz theta activity during eyes-closed 
across all EEG channels, prompting theta-band (6 ± 1.5Hz) PLDBS imple
mentation; Participant 3 demonstrated prominent 7 Hz resting tremor with bi- 
frequency alpha peaks (7Hz/9Hz), requiring selective 9 Hz alpha targeting. 
Participants’ gender information was collected through a baseline question
naire, which was completed face-to-face by a trained research assistant at 
enrollment. Gender options included male, female and other. Abbreviation: CD: 
Cervical dystonia, PD: Parkinson’s disease, DBS: Deep brain stimulation, STN: 
Subthalamic nucleus.

Table 2 
Kalman filter outperforms irregular sampling with matched parameters.

Estimated artifacts 
durations/ms

8 9 10 11 12

Irregular sampling 409.91 % 14.56 % 13.52 % 11.41 % 10.84 %
Kalman filter 36.18 % 5.21 % 5.56 % 5.62 % 5.84 %
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artifacts remains unresolved. Thus, we investigated phase-dependent 
modulation of ERNA (a candidate electrophysiological biomarker for 
neuromodulation treatment efficacy, mechanistically linked to STN 
neuronal firing dynamics [54]) and implemented a standardized feature 
extraction pipeline based on established frameworks [56,72]. ERNA 
waveforms were quantified using a custom MATLAB algorithm imple
menting multiscale peak detection. Signals containing less than two 
definable peak-trough pairs were excluded via automated quality con
trol. ERNA amplitude was quantified as the absolute difference between 
the first positive peak and subsequent negative trough. Per-block ERNA 
amplitudes were calculated as the mean of valid pulse responses 
occurring within ±45◦ and ±90◦ tolerance in cortical alpha-triggered 
PLDBS and ±90◦ tolerance in STN beta-triggered PLDBS.

2.11. Finger-tapping task with STN beta-triggered PLDBS

Participant 4, who showed predominant bradykinesia and rigidity, 
completed a finger-tapping protocol to assess the potential motor 
modulation effects of PLDBS. As an active control, 130Hz continuous 
DBS (cDBS) was applied first in two 15-s trials, with OFF recordings 
before and after serving as baselines (Fig. 7A, top). The PLDBS protocol 
consisted of two OFF-control blocks and six phase-locked stimulation 
blocks (Fig. 7A, bottom), each separated by a 3-min washout. Control 
blocks included pre- and post-15-s trials, while stimulation blocks 
delivered 60-s trains followed by 15-s finger-tapping under active 
PLDBS. Phase targeting alternated rising and falling oscillation phases (3 
trials each) in a randomized order. The kinematic analysis focused on 
the axis of maximal acceleration amplitude, considering only 
accelerometer-discernible tapping peaks. Velocity was derived from the 
reciprocal inter-peak intervals (1 /Δt), while tapping amplitude was 

quantified by peak-to-peak accelerometric magnitude.

2.12. Statistics

A few statistical tests have been used to evaluate the potential factors 
contributing to the variability of the error of real-time phase estimation 
and PLDBS: (1) Cortical alpha-phase analysis: A Friedman test was 
employed to compare phase accuracy (bias and std) across four cortical 
alpha phases—peak, trough, rising, and falling. This is to evaluate 
whether the phase estimation accuracy is dependent on the actual target 
phase. Here, each observation is the average bias or the std of each target 
phase for each participant. (2) STN beta-phase performance: A Wilcoxon 
signed-rank test was used to compare bias and std between the rising vs. 
falling phases. Due to the small sample size (n = 4), the exact test was 
performed without normal approximation. Each participant contributed 
one observation per phase. (3) Stimulation error-amplitude correlations: 
Pearson correlation analysis was performed to assess whether the error 
of the phase-estimation correlate with the corresponding amplitude of 
the target oscillation, on a per-participant basis. In these tests, each 
observation is each individual target phase detection (or the error of 
each stimulation pulse). The Pearson correlation coefficient (R value) 
was reported to quantify the strength and direction of the correlation. 
(4) Amplitude-gating efficacy: A mixed-effects model was applied to 
evaluate the influence of the target phase and amplitude threshold on 
stimulation performance (bias and std). Linear mixed-effects models 
were fitted using maximum likelihood estimation. For bias and std, fixed 
effects included stimulus phase, amplitude threshold, and their inter
action term. Random intercepts for subjects were incorporated to ac
count for repeated measurements. Each participant contributed one bias 
and std for each phase-threshold pairing, resulting in 12 observations per 

Fig. 4. Amplitude-dependent phase targeting optimization. (A) Phase estimation/targeting error reduced with the increase of instantons amplitude of the target 
oscillation (cortical alpha) for all the four target phases for Participant 4. Each data point represents a single stimulation pulse, with its phase error and the cor
responding amplitude at triggering time. Pearson correlation analysis was performed to assess this relationship on a per-patient basis. A similar negative correlation 
pattern was consistently observed across all participants. (B) Thresholding efficacy analysis. Bias remained consistent when applying amplitude-dependent gating 
thresholds of 2 μV and 5 μV, while std significantly decreased with higher thresholds, independent of stimulation phase. (C) System-wide accuracy improvement. 
Amplitude gating (5 μV threshold) enhanced phase-locking precision from 81.24% to 88.13% (±45◦ tolerance). (***: P < 0.001).
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participant (4 phases × 3 thresholds) in EEG-triggered PLDBS and 6 
observations per participant (2 phases × 3 thresholds) in LFP-triggered 
PLDBS. Statistical tests have also been used to test the effect of PLDBS: 
(5) Stimulation induced ERNA amplitude: One-way ANOVA (for cortical 
alpha with 4 target phases) or unpaired t-test (for STN beta with 2 target 
phases) were used to evaluate whether stimulation delivered at different 
phases modulate the ERNA amplitude. These tests were performed for 
each participant separately, which was motivated by well-documented 
inter-subject variability in phase-dependent neural responses [68,
73–76]. In these tests, one observation was the ENRA amplitude of each 
stimulation pulse. To control for inflated statistical power due to the 
large sample size (as each ERNA following a stimulation pulse was 
treated as one sample), further testing was performed by applying the 
same One-way ANOVA or unpaired t-test on randomly selected 
sub-samples (100 trials per condition). This was repeated 1000 times for 
each participant, the mean and standard deviation of the p-values were 
reported. (6) Movement modulation: Unpaired t-tests were used to 
compare finger-tapping performance between cDBS ON and OFF con
ditions. For PLDBS, a one-way ANOVA with post-hoc comparisons and a 
correction of the corresponding p-values for multiple comparisons was 
performed to evaluate differences across rising, falling, and OFF stim
ulation phases. To optimize statistical power given the limited sample 
size, we analyzed all valid tapping events as independent observations. 
Unpaired t-tests were employed because individual trials were not 
temporally matched across experimental conditions, precluding paired 
analysis. Trials with missing responses or artifacts were excluded prior 
to analysis.

All analyses were conducted using custom MATLAB scripts. Corre
lations are reported as Pearson’s R (95 % confidence interval), and all 
data are presented as mean ± SD. Post hoc multiple comparisons were 
conducted using Tukey’s HSD procedure with a family-wise error rate 
controlled at α = 0.05.

3. Results

3.1. Kalman filter outperforms irregular sampling in reducing stimulation 
induced artifacts in the neural recordings

The Kalman filter effectively reduced stimulation artifacts in both 
simulated and real-time testing scenarios. In simulations with matched 
parameters for estimated artifact durations, the Kalman filter demon
strated superior performance compared to irregular sampling methods, 
particularly when the artifact duration was underestimated (Fig. 1B). 
Specifically, when analyzing beta-band amplitude, the Kalman filter 
with a predefined 9 ms artifact duration achieved 94.79% artifact sup
pression (relative error = 5.21%), consistently outperforming irregular 
sampling (Table 2). Furthermore, real-time implementation confirmed 
that the Kalman filter developed in this study effectively mitigates 
stimulation artifacts (Fig. 1 CD), demonstrating its utility in enhancing 
signal quality for real-time phase estimation.

3.2. NRO following Kalman filter artifact removal provide stable 
performance for real-time phase estimation

Fig. 2A illustrates the PLDBS simulation pipeline using real re
cordings, where recorded neural signals were processed in real-time for 
oscillation phase/amplitude estimation, followed by phase-triggered 
stimulation. Comparative analysis of estimation bias across different 
methods against oHT identified NRO and OscillTrack as the most ac
curate (Fig. 2C (left), Table 3). For stability metrics (Fig. 2C (right), 
Table 3), NRO and SSPE demonstrated superior artifact robustness, 
exhibiting lower std. In addition, both NRO and OscillTrack demon
strated good performance in amplitude estimation (Supp Table 3). Given 
its optimal phase-tracking precision and robustness to artifacts, NRO 
was selected as the final phase/amplitude estimation method for the 
PLDBS implementation.

Stimulation accuracy in PLDBS using the Kalman filter and NRO was 

Fig. 5. PLDBS of STN beta oscillations. (A) Based on beta oscillations, the PLDBS system uses an LFP channel to deliver electrical pulses to the STN. (B) Individualized 
beta spectral profiles. Vertical lines indicate patient-specific beta peak frequencies with 5 Hz bandwidth filters (gray-shaded areas). (C) Phase-locked stimulation 
exemplars (Participant 4). Representative 2-s traces demonstrate quadrant-specific timing at rising (orange) and falling (dark green) phases. Raw LFP with stimu
lation artifacts are shown in black (left STN). (D) Angular targeting precision. Circular distributions show phase concentration (dashed lines) at rising and falling with 
mean resultant vectors (black lines) for Participant 4. (E) Cross-participant phase consistency. Bias and std did not differ significantly between the two target phases 
(Wilcoxon signed-rank test). Each participant contributed one observation per phase. (F) LFP-triggered PLDBS demonstrated precise phase-targeting across par
ticipants within a ±90◦ tolerance.
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evaluated next. For cortical alpha oscillations, stimulation accuracy 
reached 94.63% within a ±15◦ tolerance((Fig. 1D). Similarly, for STN 
beta oscillations, accuracy was 93.24% within a ±45◦ tolerance 
(Fig. 1D). Notably, when the amplitude of the target oscillation exceed 
2 μV, STN-beta-triggered PLDBS achieved an even higher accuracy of 
95.42% within a ±30◦ tolerance.

3.3. Real-time EEG-triggered PLDBS for precise alpha phase targeting

Following a bench test using constant 20 Hz oscillations to validate 
the system, we conducted cortical alpha-triggered PLDBS in a clinical 
experiment (Fig. 3A). All participants exhibited strong alpha peaks in 
EEG recordings (Fig. 3B). Comparisons with oHT analyses confirmed 
accurate phase targeting across all participants (Fig. 3CD, Supp Fig. 4). 
The performance of phase estimation and PLDBS remained stable across 
all target phases (Fig. 3E), as evidenced by a lack of effect of the target- 
phase on the bias (P = 0.0628,χ2(3) = 8.1,Kendalĺ s W = 0.675) or the 
std (P = 0.9004,χ2(3) = 0.9,Kendalĺ s W = 0.075) with none of the tests 
survived correction for multiple comparisons. The overall stimulation 
accuracy across all participants was 81.24% ± 3.53% (Fig. 3F) with ±
45◦ tolerance: rising: 78.47% ± 15.48%, peak: 81.66% ± 11.14%, fall
ing: 80.56% ± 12.18%, trough: 81.77% ± 9.78%.

PLDBS accuracy was primarily constrained by system latency 
(hardware/software jitter plus delay) and oscillation amplitude. Trigger 
precompensation with pre-triggering signals mitigated fixed 25-ms de
lays, while residual ~10-ms jitter limited phase resolution to 4-phase 
(alpha) and 2-phase (beta) distinctions. Phase estimation errors were 
significantly correlated with oscillation amplitude across all target 

phases and participants (Fig. 4A, an example from Participant 4, Trough: 
P < 0.0001,R = − 0.1993, Rising: P < 0.0001,R = − 0.2447, peak: P <

0.0001,R = − 0.3164, Falling: P < 0.0001,R = − 0.3259; Supp Fig. 7). 
Applying amplitude-dependent gating thresholds of 2 μV and 5 μV to the 
offline signal resulted in minimal changes in bias but a notable reduction 
in std (Fig. 4B). The boxplots illustrate the effects of amplitude threshold 
(0, 2 and5 μV) on response bias and std across four stimulation phases: 
Trough, Rising, Peak, and Falling. For bias, a linear mixed-effects model 
revealed no significant main effect of threshold (β = − 0.38,SE = 0.72,
t(40) = − 0.53, P = 0.597) and no significant phase × threshold 
interaction (all P > 0.83), indicating that changes in threshold did not 
systematically influence directional bias across phases. For std, the 
model revealed a significant main effect of amplitude threshold (β = −

1.72, SE = 0.47, t(40) = − 3.65, P < 0.001), with higher thresholds 
generally associated with lower phase delivery variability. No signifi
cant phase × threshold interaction was observed (all P > 0.5), sug
gesting that the variability-reducing effect of higher thresholds was 
consistent across all stimulation phases. With an amplitude threshold of 
5 μV, the average stimulation accuracy within a ±45◦ tolerance across 
the four targeted phases improved from 81.24% to 88.13% (Fig. 4C).

3.4. Real-time STN LFP-triggered PLDBS for precise beta phase targeting

To further explore the clinical potential of the PLDBS system, we 
conducted experiments using STN beta-triggered PLDBS (Fig. 5A). Most 
stimulation pulses were successfully delivered at the intended target 
phases (Fig. 5CD, Supp Fig. 5). Phase estimation bias (P = 0.625,W = −

4.0, median difference = − 28.53) and std (P > 0.999, W = 0.0,

Fig. 6. Differential effect of stimulation phase on ERNA amplitudes. (A) Cortical alpha-triggered PLDBS (±45◦ tolerance) elicited significant phase-dependent 
modulation of ERNA amplitudes across four phase windows in Participants 1, 2, and 3, but not in Participant 4. (B) When comparing cortical alpha-phase win
dows (rising vs. falling, ±90◦ tolerance), Participants 1 and 2 exhibited significant differences, while Participants 3 and 4 showed no modulation. (C) Significant STN 
beta-phase-dependent modulation emerged in all participants. (*: P < 0.05, *** : P < 0.001 , **** : P < 0.0001).
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median difference = 0.6459) remained stable across the two target 
phases (Fig. 5E). The delivery accuracy reaches 92.64% ± 1.753% 
(Fig. 5F)with ±90◦ tolerance. Similarly to cortical alpha-triggered 
PLDBS, estimation error in STN beta-triggered PLDBS significantly 
correlated with target oscillation amplitude at each phase (an example 
from Participant 4, rising: P < 0.0001, R = − 0.1483, falling: P =

0.0009, R = − 0.07218; Supp Fig. 8). The weak correlation coefficients 
suggest stable phase targeting across phases. When applying amplitude- 
dependent gating thresholds of 2 μV and 5 μV, a linear mixed-effects 
model revealed that bias was not significantly influenced by amplitude 
threshold (β= − 0.39, SE= 6.50, t(20)= − 0.06,P= 0.952) and no 
interaction was found (β = 0.42,SE = 9.20,t(20) = 0.05,P = 0.964). For 
std, the model showed a significant main effect of amplitude threshold 
(β = − 0.97, SE = 0.46, t(20) = − 2.12, P = 0.046), with higher 
thresholds associated with reduced variability. There was no significant 
phase × threshold interaction (β = 0.651,SE = 0.644,t(20) = 1.01,P =

0.324), indicating that the thresholding effect was robust across phases.

3.5. Differential effect of stimulation phase on ERNA

The amplitude of the stimulation-induced ERNA in the STN may 
indicate the cortico-basal ganglia circuit state [55] and reflect 
DBS-mediated engagement of the basal ganglia indirect pathway [54]. 
Therefore, we analyzed two protocols to explore whether target-phase 
influences ERNA amplitudes: cortical alpha-triggered PLDBS and STN 
beta-triggered PLDBS. Significant effect of the target-phase on ERNA 
amplitude was observed in Participant 1 (F(3, 1690) = 28.53, P <

0.0001, R = 0.2195), Participant 2 (F(3, 1303) = 41.66, P < 0.0001,

R = 0.2195) and Participant 3 (F(3, 1221) = 3.742, P = 0.0108, R =

0.0875) under cortical alpha-triggered PLDBS, while no significant 
differences were found in Participants 4 (F(3,1910) = 2.42,P = 0.085,
R = 0.059) as shown in Fig. 6A. Repeated tests on randomly selected 
subsamples confirmed that the effects were robust in Participant 1 (P =

0.00586 ± 0.02763) and Participant 2 (P = 1.84× 10− 5 ± 0.00021), 
but not in Participant 3 (P = 0.42338 ± 0.28785) or Participant 4 (P =

0.4234 ± 0.2879). Similarly, unpaired t-tests comparing ERNA am
plitudes between rising and falling phases (Fig. 6B) revealed significant 
differences in Participant 1 (t(1035) = 4.416,P = 0.0007) and Partici
pant 2 (t(667) = 5.815,P < 0.0001), but not in Participant 3 (t(533) =

1.56, P = 0.1228)) or Participant 4 (t(903) = 0.4396, P = 0.6604)). 
Repeated tests on randomly selected subsamples confirmed that the ef
fect remained significant for Participant 2 (P = 0.01507 ± 0.0378), but 
not for other patients (Participant 1: P = 0.22692 ± 0.25048, Partici
pant 3: P = 0.38244 ± 0.28702, or Participant 4: P =

0.52812 ± 0.27852). Conversely, STN beta-triggered PLDBS demon
strated significant effect of the target-phase on ERNA in all participants, 
as assessed by within-subject unpaired t-tests (Fig. 6C; 1: t(3964) =

19.69, P < 0.0001; 2: t(2893) = 9.832, P < 0.0001; 3: t(2701) =

11.87,P < 0.0001; 4: t(3113) = 22.53,P < 0.0001.) Repeated tests on 
randomly selected subsamples further confirmed the robustness of these 
phase-dependent effects in Participant 1 (P =

0.0013529 ± 0.0092313), Participant 3 (P = 0.018049 ± 0.059673), 
and Participant 4 (P = 0.00019653 ± 0.0024821), while the effect in 
Participant 2 lying near the borderline (P = 0.067642 ± 0.15241).

Fig. 7. Differential effect of stimulation phase on finger-tapping task performance. (A) Experimental paradigms for cDBS (top) and PLDBS (bottom) protocols with 
finger-tapping tasks. For both paradigms, each block included a 60-s stimulation period (red arrows) followed by a 15-s finger-tapping task (black arrows). In the 
PLDBS protocol, stimulation pulses were phase-locked to the rising and falling phases of beta oscillations, each for three trials, with phase-targeting order pseu
dorandomized across trials. Two OFF-stimulation control blocks (pre- and post-intervention) were included to assess baseline effects. (B) Finger-tapping velocity was 
measured for each valid tap. A total of 106, 90, and 55 trials/taps were included in the analysis for the rising, falling, and OFF conditions, respectively. Velocity 
differed significantly between the rising and falling phases during PLDBS. Additionally, cDBS resulted in significantly higher tapping velocity compared to the OFF- 
stimulation condition, based on 77 and 53 trials, respectively. (C) Finger-tapping amplitudes (analyzed per valid tap) exhibited phase-dependent differences during 
PLDBS, whereas only a non-significant trend was observed between OFF and cDBS conditions. (*: P < 0.05, *** : P < 0.001).
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3.6. Differential effect of stimulation phase on bradykinesia

In Participant 4, we tested the effect of different stimulation condi
tions on motor performance during finger-tapping (Fig. 7A, Supp Fig. 6). 
Six blocks of PLDBS (in the order of Falling,Rising,Rising, Falling,Rising,
Falling and 1.25 min for each block) were delivered after 3 min of cDBS, 
with at least 5 min interval separating cDBS and PLDBS. During cDBS, 
we observed a significant increase in finger-tapping velocity (Fig. 7B, 
t(121) = 3.399, P = 0.0009) compared to the OFF-stimulation condi
tion, even though its effect on tapping amplitude was not significant 
(Fig. 7C, t(128) = 1.230, P = 0.2209). One-way ANOVA comparing 
rising phase PLDBS, falling phase PLDBS, and OFF-stimulation condi
tions revealed a significant effect of stimulation conditions on finger- 
tapping velocity (Fig. 7B, F(2, 238) = 3.394, P = 0.0352) and ampli
tude (Fig. 7C, F(2, 248) = 3.252, P = 0.043). Post-hoc analyses showed 
that PLDBS targeting the rising phase lead to slower and smaller tapping 
movements compared to PLDBS targeting the falling phase (velocity: 
mean difference = − 0.1707 P = 0.0268; amplitude: mean difference =

− 0.1355, P = 0.0306). However, neither PLDBS conditions showed 
significant differences from the OFF condition in either tapping velocity 
(rising vs OFF: P = 0.666; falling vs OFF: P = 0.381) or amplitude 
(rising vs OFF: P = 0.296; falling vs OFF: P = 0.4289), indicating phase- 
specific optimization without overall performance enhancement relative 
to baseline. Interestingly, the stimulation phase that elicited greater 
movement effects also exhibited larger ERNA amplitudes.

4. Discussion

In this study, we identified NRO for phase estimation combined with 
Kalman filter for artifact suppression for PLDBS. We established a system 
implementing these methods leveraging commonly used neuro
stimulation hardware with a computer-in-the-loop approach, allowing 
for continuous cycle-by-cycle PLDBS. Our results show that this system 
can precisely target four distinct phases of cortical alpha oscillations and 
two distinct phases of STN beta oscillations. Moreover, STN beta- 
triggered PLDBS revealed phase-dependent effects on ERNA in the 
STN and motor performance during a finger-tapping task.

4.1. The stability and accuracy of the proposed PLDBS pipeline

The proposed system demonstrates robust phase stimulation capa
bility, enabling precise delivery of four distinct alpha-phase windows 
(~10 Hz, 81.24%) and two beta-phase windows (18–25 Hz, 92.64%), 
with ±45 ◦ tolerance and ±90 ◦ tolerance, respectively. Several factors 
influence stimulation accuracy. First, stimulation precision is better for 
PLDBS targeting cortical alpha compared to PLDBS targeting beta. The 
performance of real-time phase estimation of the proposed methods 
depends on spectral characteristics of the target oscillation and the 
recorded signal. The performance is better for oscillations with a nar
rower peak frequency band and larger amplitude in the power spectra 
density of the recorded signal. In Participant 3 who had tremor during 
the recording, we observed a 7 Hz activity in the EEG recordings which 
merged with the alpha activity (~10 Hz) in PSD. This broadened stim
ulation error distributions in EEG-triggered PLDBS (Supp Fig. 4) and 
reduced stimulation accuracy for EEG-based protocols but not for LFP- 
triggered PLDBS (Supp Fig. 5). Second, amplitude thresholding 
reduced phase error variability in both alpha-triggered PLDBS and STN- 
beta-triggered PLDBS though the effect was weaker for beta-PLDBS. 
Setting an amplitude thresholding can make sure that the stimulation 
is only delivered when meaningful oscillations are present.

4.2. The flexibility of the PLDBS system

The proposed PLDBS pipeline is flexible and can be easily integrated 
with different hardware. For instance, it could be effectively imple
mented using commercially available hardware, such as Neuro Omega Ta
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systems [24,43], even without requiring a computer-in-the-loop, instead 
relying on built-in driver software for real-time recording and stimula
tion control. Beyond DBS applications, this pipeline could be directly 
extended to cycle-by-cycle phase-locked transcranial magnetic stimu
lation (PLTMS), offering an opportunity to investigate the 
phase-dependent effects of mu-locked PLTMS [18,20,30,77]. Previous 
findings suggest a more consistent and shorter intertrial interval could 
strengthen the relationship between the EEG phase and motor-evoked 
potential amplitude [78]. Therefore, cycle-by-cycle PLTMS may offer 
more insight into this debate.

4.3. Potential target-phase-sepecific effects of PLDBS on ERNA and motor 
performance

Our findings revealed that DBS pulses phase-locked to different 
phases of STN beta changed the amplitude of ERNA (Fig. 6C). Notably, 
PLDBS targeting the beta phase with larger ERNA amplitude is also 
associated better motor outcome in the patient in terms of finger-tapping 
velocity/amplitude (Fig. 7BC). It has been proposed that ERNA is a 
subcortical neuronal circuit signature of DBS-mediated engagement of 
the basal ganglia indirect pathway network [54]. ERNA amplitude has 
been shown to correlate with clinical improvement during STN-DBS 
[79]. Here we propose that, in future studies, ERNA amplitude can be 
used to select the optimal target phase for PLDBS, which may be indi
vidualized for different patient, to maximize the clinical effect of PLDBS.

4.4. Limitations

While the PLDBS system demonstrates significant potential, several 
areas require further refinement. First, the computer-in-the-loop archi
tecture with USB connections between different device introduces 
inherent jitter and delays, limiting stimulation accuracy. Although our 
current implementation employed trigger precompensation (advance 
signal delivery) to mitigate fixed delays, residual jitter (~10 ms in 
dedicated stimulation/recording units) persisted as an irreducible 
constraint. Transitioning to embedded systems with more predictable 
and stable processing could enhance artifact detection, phase estimation 
precision, and overall simulation-aligned accuracy. Implementing inte
grated hardware platforms (e.g., Neuro Omega systems) may optimize 
temporal precision by minimizing inter-device communication 
latencies.

Second, while Kalman filtering provides robust stability, the current 
threshold-based detection method still allows some artifact contamina
tion, which can negatively impact AR model predictions. Enhanced 
approaches could combine Kalman filtering with real-time interpolation 
to improve robustness. Additionally, the artifact duration parameter (9 
ms) restricts the maximum frequency range that can be effectively tar
geted, necessitating more flexible algorithms; the SynchroStim artifact 
removal method could provide a robust approach to mitigating the 
problems caused by the stimulation pulse artifacts [80]. Further, the low 
sampling rates of implantable devices [81] create additional challenges, 
requiring optimized recording hardware that balances artifact minimi
zation with computational load [80].

Third, comparative algorithm testing for artifact suppression and 
real-time phase estimation was conducted exclusively in simulations due 
to constraints in available time with each patient during externalized 
DBS testing. Consequently, in real-time patient testing, we implemented 
only the algorithm demonstrating superior performance in simulation. 
Future studies are needed to directly compare different methods in pa
tients, ideally within real-world settings in chronically implanted 
individuals.

Lastly, the study’s small sample size limits conclusive assessments of 
the behavioral impact of PLDBS. While the initial results suggest that 
PLDBS targeting different phases may lead to different motor outcome, 
its effects at the current setting were weaker than cDBS, and the PLDBS 
did not change motor performance from baseline OFF condition in the 

patient tested in this study. Bursts of high frequency pulses delivered at 
each updated phase may further increase the effect of PLDBS, however, 
further testing will be required to test the hypothesis and confirm 
PLDBS’s therapeutic potential.

5. Conclusions

In this study, we compared different methods available required for 
phase-specific neuromodulation including real-time phase estimation 
and artifact suppression; evaluated different factors contributing to the 
potential variability of phase-targeting performance; and demonstrated 
the feasibility of the selected methods (NRO for phase estimation 
following Kalman filter for artifact suppression) and hardware pipeline 
for PLDBS in patients.The system effectively targets distinct cortical 
alpha and STN beta oscillation phases, demonstrating its precision and 
adaptability. STN beta-triggered stimulation revealed phase-dependent 
modulation of ERNA amplitudes and finger-tapping performance, sug
gesting its potential for motor symptom modulation. However, technical 
refinements are necessary to improve the system further. Transitioning 
to embedded hardware enabling simultaneous stimulation and faster 
processing could reduce jitter and delays, improving phase estimation 
accuracy. These findings underscore PLDBS’s clinical potential as a 
personalized neuromodulation approach.
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[8] Buzsáki G, Draguhn A. Neuronal oscillations in cortical networks. https://www.sc 
ience.org; 2004.
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