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A B S T R A C T   

Neural oscillations are critical to understanding the synchronisation of neural activities and their relevance to 
neurological disorders. For instance, the amplitude of beta oscillations in the subthalamic nucleus has gained 
extensive attention, as it has been found to correlate with medication status and the therapeutic effects of 
continuous deep brain stimulation in people with Parkinson’s disease. However, the frequency stability of 
subthalamic nucleus beta oscillations, which has been suggested to be associated with dopaminergic information 
in brain states, has not been well explored. Moreover, the administration of medicine can have inverse effects on 
changes in frequency and amplitude. In this study, we proposed a method based on the stationary wavelet 
transform to quantify the amplitude and frequency stability of subthalamic nucleus beta oscillations and eval
uated the method using simulation and real data for Parkinson’s disease patients. The results suggest that the 
amplitude and frequency stability quantification has enhanced sensitivity in distinguishing pathological condi
tions in Parkinson’s disease patients. Our quantification shows the benefit of combining frequency stability in
formation with amplitude and provides a new potential feedback signal for adaptive deep brain stimulation.   

1. Introduction 

Local field potentials (LFPs) recorded in the nuclei of basal ganglia 
serve as indicators of synchronous changes in large populations of 
neurons at the mesoscopic scale (Brown and Williams, 2005; Buzsáki 
et al., 2012; Buzsáki, 2010; Averna et al., 2022; Little and Brown, 2014). 
In Parkinson’s disease (PD) patients, exaggerated neural synchronisa
tion has been found in the basal ganglia, indicating elevated power in 
the LFPs over beta frequencies, especially in the low-beta band (12–24 
Hz) (Brown and Williams, 2005). An increase in beta-band (8–35 Hz) 
power has primarily been related to bradykinetic and rigid symptoms in 

the dopamine-depleted condition (Little and Brown, 2014; Kühn et al., 
2009), whereas the peak frequency of beta activity (usually around 20 
Hz) has been found to correlate with the total score in part III (move
ment assessment) of the Unified Parkinson’s Disease Ratings Scale 
(UPDRS) (Kühn et al., 2006). 

Given the correlation of beta oscillations with the severity of symp
toms in PD, the instantaneous amplitude (IA; Fig. 1A) has been widely 
discussed. Previous studies have indicated that features extracted from 
oscillations around the peak frequency of beta activity (e.g., beta bursts 
(Tinkhauser et al., 2017a; Lofredi et al., 2023)) are good pathological 
markers of PD (Tinkhauser et al., 2017a; Lofredi et al., 2023; Bouthour 
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et al., 2019; Tinkhauser et al., 2017b) because of their characteristic 
relations to the severity of symptoms. Beta power has been calculated 
online and used as a feedback signal in adaptive deep brain stimulation 
(DBS) (Little et al., 2013; Little et al., 2016; He et al., 2023; He et al., 
2020).In the online estimation of beta power, the peak beta frequency is 
often first quantified. The recorded LFPs are then band-pass filtered 
around the peak beta frequency (Tinkhauser et al., 2017b; Little et al., 
2013), and the amplitude of the envelope of the filtered signal (Ampli
tude; Fig. 1B) is extracted. 

However, the amplitudes of peak beta oscillations are dynamic fea
tures that vary with time. These variations may result from fluctuations 
in the degree of synchronisation or the drift of the peak frequency. 
Unfortunately, the average power of a fixed frequency band does not 
reflect the drift of the peak frequency, and variations in the peak fre
quency have been considered as changes in synchronisation, which leads 
to a misunderstanding of the electrophysiological mechanism (Little and 
Brown, 2014; Darcy et al., 2022). In addition, some patients do not have 
a singular peak beta frequency but rather multiple peaks, which poses a 
challenge to real-time application (Darcy et al., 2022; Schmidt et al., 
2020). 

Although the instantaneous amplitude and instantaneous frequency 
(IF; Fig. 1A) obtained through an offline Hilbert transform both have 
important associations with the pathological mechanisms of PD (Averna 
et al., 2022), amplitude and frequency information might reflect inter
acting but different neuronal synchronisation activities of the sub
thalamic nucleus (STN) (Averna et al., 2022; Yeh et al., 2020). 
Discontinuities in the instantaneous frequency (Khawaldeh et al., 2022), 
referred to as phase slips, do not correlate with corresponding instan
taneous amplitude but rather are affected by dopaminergic conditions 
(Averna et al., 2022). This indicates that neural synchronisation activity 
manifests not only in amplitude changes but also in frequency changes 
in the absence of amplitude changes. We thus hypothesise that a joint 
indicator is needed to make an appropriate measurement of brain 

oscillatory activity in PD. 
In this paper, we propose an amplitude and frequency stability (AFS) 

quantification (AFS; Fig. 1B) based on stationary wavelet coefficients. 
The wavelet approach utilises a convolution process to generate co
efficients such that it is sensitive to both amplitude and frequency sta
bility. In contrast with the continuous wavelet transform, which is often 
used in offline analysis, the stationary wavelet transform (SWT) (Maiti 
and Bidinger, 1981) is designed for online implementation and can 
retain time invariance during transformation. The adoption of the SWT 
thus improves the performance of the method using the amplitude based 
on band-pass filtering (Amplitude; Fig. 1B), which is currently imple
mented in adaptive DBS. Furthermore, compared with the adoption of 
the frequency stability (FS) based on band-pass filtering (FS; Fig. 1B), 
the results are improved. 

As the amplitude and FS are not correlated all the time, the objective 
of our work is to provide a quantification (i.e., the AFS) for considering 
amplitude changes and additional FS information in neural signals. We 
evaluate the correlation between the AFS and motor symptoms in PD. In 
the present study, the quantification of AFS was first illustrated using 
simulated signals derived from actual recordings and then applied to 
actual signals to assess how AFS in STN LFPs varied across various brain 
conditions (ON vs OFF dopaminergic medication and ON vs. OFF stim
ulation). In addition, we showed that the ability of AFS to reflect path
ological information is insensitive to peak frequency drifts. 
Furthermore, we examined the importance of including FS in the context 
of PD and introduced a novel potential feedback signal for adaptive DBS. 

2. Materials and methods 

2.1. Neural recordings of Parkinson’s disease 

In total, 34 PD patients (58 hemispheres) were included in this study. 
Local filed potential signals were recorded for 17 patients (32 

Fig. 1. Amplitude and frequency stability (AFS) and amplitude or frequency stability (FS) based on band-pass filtering. 
(A) A segment of low-beta band filtered LFPs, in which the instantaneous amplitude (IA) and the instantaneous frequency (IF) obtained using an offline Hilbert 
transform are two independent measures of synchrony. (B) AFS, amplitude, and FS based on band-pass filtering at low beta. In a comparison of the grey area vs. the 
blue area, the amplitude based on band-pass filtering estimation method has a higher amplitude in the blue area than in the grey area; however, the AFS has the 
opposite result due to lower FS in the blue region. (C) KLD serving as a measurement of pairwise differences. The distributions of the dynamic amplitude based on 
band-pass filtering (left), AFS (middle), and FS (right) during ON/OFF medication conditions are presented, and the results are presented as an illustrative example of 
the visualisation of distributions averaged across all patients. To mitigate participant-based variations, all of the dynamics are normalised to the [0,1] range and are 
presented in units of hemisphere for visual representation. IA: instantaneous amplitude. IF: instantaneous frequency. AFS: amplitude and frequency stability. FS: 
frequency stability. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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hemispheres) in both ON and OFF dopaminergic medication statuses 
and for 17 PD patients (26 hemispheres) in both ON and OFF DBS sta
tuses (130-Hz continuous stimulation). All of the patients provided 
informed consent, and the study was approved by local ethics 
committees. 

2.2. ON/OFF medication recordings 

Bipolar LFPs of STNs were recorded in 17 patients (four females) 
with advanced PD who underwent the bilateral implantation of DBS 
electrodes for clinical treatment before and after taking levodopa. The 
patients were 56.33 ± 6.872 years old. The subthalamic LFPs were 
recorded during an observation period after electrode implantation and 
before the implantation of an implantable pulse generator. The clinical 
details of the patients are summarised in Table 1. In addition, preoper
ative UPDRS Part III scores were obtained. All of the data were previ
ously published in ref. (Nie et al., 2021a) for patients 1–10 and in 
ref. (Khawaldeh et al., 2022) for patients 11–17. 

2.3. ON/OFF DBS recordings 

ON/OFF DBS recordings were collected for 17 patients (60.28 ±
5.727 years old, five females) who had DBS electrodes implanted in the 
STN. The clinical details of the patients are summarised in Table 1. In 
addition, preoperative UPDRS Part III scores were recorded for patients 
in OFF/ON medication states. All of the data of all patients were pre
viously published in refs. (Wiest et al., 2020a; Wiest et al., 2020b; Wiest 
et al., 2023). 

2.4. Signal preprocessing 

All recordings underwent the same preprocessing. Artefacts, 

including large baseline shifts and muscle movement artefacts, were 
rejected through visual inspection. Subsequently, segments with no 
apparent artefacts were selected for further analysis. For each recording, 
there was a segment of the raw signal having a minimum length of 100 s. 
The recordings were then filtered through a low-pass filter at 90 Hz and 
a high-pass filter at 2 Hz and resampled at 384 Hz to ensure that the 
decomposition frequency band met the requirement of the SWT. The 
new sampling frequency was chosen such that the low-beta oscillations 
were situated in the fourth layer of stationary wavelet coefficients. 
Although the present study primarily focused on the low-beta band, 
other oscillations were also examined. The bands of the sixth, fifth, 
third, and second layers of stationary wavelet coefficients respectively 
corresponded to the theta (3–6 Hz), alpha (6–12 Hz), high-beta and low- 
gamma (24–48 Hz), and high-gamma (48–96 Hz) frequency bands of 
brain oscillations. An adaptive notch filter centred at 50 Hz was used to 
remove the line noise before the SWT. Channel selection on left and right 
side was based on previously published data, ensuring consistency in 
channel selection before and after treatment for each individual. All 
preprocessing procedures were implemented using the EEGLAB toolbox 
(version 2019.1) and customed scripts in MATLAB (version 9.8; Math
Works, Inc., Natick, MA, USA). 

2.5. Amplitude based on band-pass filtering 

In the study of PD, the amplitudes of beta oscillations extracted using 
a band-pass filter (amplitude; Fig. 1B) have been widely investigated 
(Tinkhauser et al., 2017a; Tinkhauser et al., 2017b; Little et al., 2013; 
Fabus et al., 2021). We extracted the amplitudes of beta oscillations 
using a band-pass filter, adopting a method akin to that used in adaptive 
brain stimulation and burst analysis (Tinkhauser et al., 2017b; Little 
et al., 2013). Here, the amplitudes were extracted from the raw signal by 
correcting for the direct-current drift, then band-pass filtering followed 

Table 1 
Patient clinical details.  

ID Gender Age DBS Target Prep-op UPDRS III OFF (Med) Prep-op UPDRS III ON (Med) 

Med-1 M 58 Bilateral STN 47 15 
Med-2 F  Bilateral STN 46 20 
Med-3 M 60 Bilateral STN 42 25 
Med-4 M 64 Bilateral STN 49 19 
Med-5 M 60 Bilateral STN 37 10 
Med-6 M 58 Bilateral STN 45 14 
Med-7 F 60 Bilateral STN 37 12 
Med-8 M 50 Bilateral STN 52 24 
Med-9 M 65 Bilateral STN 23 7 

Med-10 M 38 Bilateral STN 24 10 
Med-11 M 57 Bilateral STN 54 14 
Med-12 M 48 Bilateral STN 72 16 
Med-13 F 58 Bilateral STN 56 16 
Med-14 F 61 Bilateral STN 35 4 
Med-15 M 54 Bilateral STN 53 19 
Med-16 M 58 Bilateral STN 43 25 
Med-17 M 54 Bilateral STN 38 9 

DBS-1 M 65 Bilateral STN 34 16 
DBS-2 M 60 Left STN 50 30 
DBS-3 F 63 Left STN 40 17 
DBS-4 M 64 Right STN 52 21 
DBS-5 M 53 Bilateral STN 23 12 
DBS-6 M 54 Bilateral STN 51 35 
DBS-7 M 58 Bilateral STN 41 16 
DBS-8 M 60 Bilateral STN 31 4 
DBS-9 F 64 Bilateral STN 29 6 

DBS-10 M 63 Bilateral STN 51 27 
DBS-11 M 47 Right STN 71 37 
DBS-12 M 53 Right STN 38 25 
DBS-13 F 69 Left STN 37 18.5 
DBS-14 M 61 Left STN 24 12 
DBS-15 M 61 Left STN 16 7 
DBS-16 F 64 Left STN 26 13 
DBS-17 F 66 Right STN 16 6 

Prep-op: preoperative. UPDRS-III: Part III motor score on the Unified Parkinson’s Disease Rating Scale. DBS: deep brain stimulation. Med: medication (levodopa). 
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by rectification, and finally smoothing with moving windows. The 
choice of the moving-window length (600 ms) was analysed with the 
AFS quantification proposed in this study, with other window lengths 
also tested (as detailed later). 

2.6. FS based on band-pass filtering 

Similar to the extraction of amplitudes, the FS was determined by 
applying a band-pass filter to beta oscillations (FS; Fig. 1B). FS is defined 
as the inverse of the standard deviation within a moving window of the 
instantaneous frequency obtained using a Hilbert transform. The win
dow length (600 ms) was consistent with amplitude based on band-pass 
filtering. 

2.7. Amplitude and frequency stability (AFS) quantification 

The quantification (AFS; Fig. 1B) methodology relies on the use of 
SWT. To estimate the quantification, a sliding window is applied to the 
stationary wavelet coefficients using the minimax criterion. This is a 
valuable means to represent the level of neural activity (Nie et al., 
2021b; Luo et al., 2018), which can be simplified as the weighted 
standard deviation within the window (Donoho and Johnstone, 1998; 
Donoho, 1995; Donoho and Johnstone, 1995): 

σ̂ ≈
1

0.6745
*Med

( ⃒
⃒Wjk

⃒
⃒
)

Thrsminimaxi =

⎧
⎪⎨

⎪⎩

0,N ≤ 32

0.3936 + 0.1829*
LogN

Log2
,N > 32  

AFS =
σ̂*Thrsminimaxi

ln(j + 1)
, j = 1,…, L  

where Wjk denotes stationary wavelet coefficients in the window, j de
notes the decomposition layer (which corresponds to several frequency 
bands: theta (3–6 Hz), alpha (6–12 Hz), low-beta (12–24 Hz), high-beta 
and low-gamma (24–48 Hz), and high-gamma (48–96 Hz)) (Baldazzi 
et al., 2020), and N is the number of samples in the window. As outlined 
in the previous section, the moving-window length (600 ms) was 
selected to achieve optimal performance in decoding the motor function. 
The results obtained in the testing of other lengths are presented in 
Supplementary Fig. 5. A comprehensive explanation of the calculation 
and implementation of the minimax criterion is presented in the Sup
plementary Materials (see Supplementary Fig. 1). The code has been 
published online: GuoooooXJ/AFSquantification: A method to jointly 
quantify amplitude and frequency stability information in neural signals 
(github.com). 

The stationary wavelet method was adopted for the following rea
sons. The continuous wavelet transform is effective in characterising 
neuronal activity in offline analysis (Tinkhauser et al., 2017a; Lofredi 
et al., 2023), but it cannot be used in real time because it is non-causal. 
Although both the wavelet packet and discrete wavelet transform are 
causal, their coefficient lengths become progressively shorter upon the 
decomposition of layers (Debnath and Shah, 2015). In this context, the 
SWT compensates for the translation invariance lost in the discrete 
wavelet transform through down-sampling. The SWT is thus an appro
priate choice for the quantification, as it may have the same length as the 
input signal in a real-time implementation setting (Maiti and Bidinger, 
1981), thus guaranteeing a more precise calculation of the standard 
deviation. 

2.8. Evaluation of the distinguishability of pathophysiological oscillatory 
patterns 

For each condition of interest (ON vs OFF medication, ON vs. OFF 

stimulation), we quantified the measures of synchrony (i.e., the ampli
tude, FS, and AFS) over time, and we used the Kullback–Leibler diver
gence (KLD) (Do and Vetterli, 2002) between dynamic distributions to 
capture the distinguishability of different conditions. This statistical 
measure quantifies the dissimilarity between probability distributions of 
sequences and is formally defined by 

DKL(P∣|Q) = −
∑

i∈X
P(i)ln

Q(i)
P(i)

Here, P(i) and Q(i) are probabilities in the distribution of the i-th bin. 
In simulated signals, the distributions P and Q represent different 
amplitude and FS parameters for different simulation data. In real re
cordings, the distributions P and Q represent situations before and after 
treatment, respectively (Fig. 1C, OFF/ON medication). To compare the 
disparity between two conditions within one hemisphere, the same bin 
number (20) was used for the two histograms, and the bin size was 
accordingly calculated as 

bin =
Max − Min

20  

where Max and Min encompass the entire range of the two conditions. 
This standardised approach ensures comparability across the specified 
conditions. 

2.9. Generation and verification of simulated signals 

2.9.1. Signal generation 
Simulated signals were obtained by adjusting the frequency 

component, amplitude, and phase of a real signal from case Med-16 in 
Table 1. Notably, the simulated signals in this study were focused within 
the low-beta band. The process, as illustrated in the Supplementary 
Materials (Supplementary Fig. 2), involved simulating signals by 
modifying two key parameters, namely the amplitude k and the standard 
deviation of the instantaneous frequency n (Averna et al., 2022; Lowet 
et al., 2017). These manipulations allow for the systematic exploration 
and analysis of the effects of the amplitude and FS on the simulated 
signals within the target frequency band. 

2.9.2. AFS, amplitude, and FS of the simulated signals 
We performed two tests using a simulated signal with varying 

amplitude or FS. In comparing the ability of AFS quantification and the 
amplitude-based method to capture parameter changes, we generated 
two simulation signals having the same length (48 s). The two simula
tion signals were obtained from the same real signal, which was band- 
pass filtered over a low-beta band. We normalised the band-pass 
filtered signal in the range of [− 1,1] to ensure that only the variable, 
either the amplitude or FS, was modified. The frequency-simulation 
signal had a FS n varying from 1 to 0.2, whereas the amplitude- 
simulation signal had an amplitude k varying from 1 to 5. We then 
used correlations between the indicators and corresponding parameter 
sequences (k or n) to assess the ability to capture amplitude or frequency 
information. Finally, the KLD was adopted to quantify the difference 
before and after parameter changes. 

2.10. Comparisons of AFS under different conditions 

After demonstrating the effects and sensitivity of the AFS quantifi
cation in identifying changes in amplitude and FS for simulated signals, 
we applied the quantification to real signals recorded under ON/OFF 
medication and ON/OFF stimulation to distinguish characteristics under 
different conditions. OFF medication data were recorded at least 12 h 
after the withdrawal of medication, whereas OFF stimulation data were 
recorded 5 min after turning off DBS. Medication was not strictly 
controlled during the recording of ON/OFF stimulation, and the results 
are thus considered as the combined results of clinical treatment. 
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2.11. Distinguishing conditions using the broadband AFS and broadband 
amplitude or FS based on band-pass filtering 

The AFS, amplitude, and FS based on band-pass filtering were 
calculated for STN LFPs from each hemisphere under conditions of ON/ 
OFF levodopa medication and ON/OFF continuous 130-Hz DBS. We 
adopted the KLD to quantify the dissimilarity between two conditions. 
Continuous 36-s segments (corresponding to the shortest recording after 
preprocessing) were selected from all of the signals. In addition, by 
extending our analysis beyond the low-beta band, we made calculations 
on other frequency bands, namely the theta (3–6 Hz), alpha (6–12 Hz), 
high-beta and low-gamma (24–48 Hz), and high-gamma (48–96 Hz) 
bands. The results are presented in the Supplementary Fig. 4. The se
lection of the window length presented a nuanced challenge. We thus 
tested various window lengths ranging from 0.3 to 1.4 s and chose the 
window length that provided the best performance in terms of decoding 
motor functions (i.e., 600 ms). 

2.12. Distinguishing conditions using the broadband AFS and peak 
frequency power 

As mentioned, the heterogeneity of the frequency distribution and 
dynamic drift of the peak frequency leads to errors in the estimation of 
power within a fixed frequency band. Previous studies have introduced 
the individualised peak frequency in calculating the beta power. To 
verify the adaptability of AFS quantification to drifts of the peak fre
quency, we compared the results calculated on segmented data and the 
whole data set for ON/OFF levodopa medication. 

For the whole data set (having a duration of 36 s), the differences in 
the peak frequency of low-beta oscillation are defined as 

Peak PSDOff − On = log
(

PSDOff
peak − PSDOn

peak

)

Here, PSD refers to the power spectral density in the low-beta band. 
The peak frequency power was measured over the individually defined 
peak frequency and the adjacent bin on either side of the peak frequency 
(i.e., over a 5-Hz band) in OFF-med recordings. The same narrow band 
was used in the calculation of the peak frequency power for the ON-med 
recordings (Kühn et al., 2006). 

We hypothesise that the AFS is less sensitive to variations in the peak 
frequency, and therefore, the AFS is more robust in differentiating the 
effect of medication even on data in short time windows. To test this 
hypothesis, we randomly subsampled the low-beta bandpass filter signal 
100 times, where each subsample comprised 3 s of data for each hemi
sphere in each medication condition. The peak frequency in all of the 
secondary segments was kept the same as that in the whole data set, and 
the peak power was measured as previously described but with a power 
spectral density for a period of 3 s. We then examined the correlations 
between medication-induced changes in the AFS or peak power with 
symptom alleviation for each subsample of data. The percentage of time 
in which the correlation was significant was quantified. As the time scale 
of a peak frequency drift may vary, other data lengths (i.e., 1, 2, and 4 s) 
were tested. In addition, considering that a shorter window length might 
be used for shorter segments, we tested window lengths ranging from 
0.1 to 1.1 s and chose the length that had the highest proportion of 
significant correlations in the whole data set (250 ms). 

2.13. Statistics 

To investigate the effectiveness of the proposed quantification 
method in identifying changes in amplitude and FS, we examined the 
correlation between the parameter sequences of amplitude or FS and the 
corresponding mean values of the AFS quantification. 

The AFS quantification was then applied to real neural recordings to 
further explore its discriminative ability in distinguishing different 
brains. We examined the correlations between symptom alleviation and 

indicators calculated from the amplitude and FS obtained through band- 
pass filtering and the AFS, and we assessed the improvement achieved 
using the AFS in a paired t-test. The superiority of the AFS was quantified 
as an increase in distinguishability relative to that of the amplitude 
obtained through band-pass filtering (for a sample size of 32, with two 
abnormal samples removed). 

In examining the adoption of the AFS quantification and peak fre
quency power on the medication set, we analysed the correlations 
(sample size of 32, with two abnormal samples removed) with symptom 
alleviation in 100 subsamples. In general, the sensitivity of AFS quan
tification to the peak frequency drift may be reflected by comparing the 
correlation proportions in all of the subsamples with the peak frequency 
power itself. Furthermore, we conducted a paired t-test (sample size of 
100) between the AFS and peak frequency power to examine the r values 
in the correlations with symptom alleviation. 

On the DBS dataset, we conducted a paired t-test to compare the 
abilities of the AFS, amplitude, and FS obtained through band-pass 
filtering in distinguishing conditions. 

The statistical analyses were conducted using custom scripts in 
MATLAB. The alleviation of clinical symptoms was assessed using the 
UPDRS part III score, which is denoted as UPDRS OFF–ON. Correlations 
were examined using Pearson’s correlation coefficient (R2) because of 
the linear correlation coefficient for each hemisphere. The significance 
of the correlations was expressed as 95% confidence intervals calculated 
through linear regression. To control for multiple comparisons in one 
figure, we applied the false discovery rate (FDR) correction procedure, 
which controls for the expected proportion of falsely rejected hypothe
ses (Zhang et al., 2023). Considering the small sample numbers, Wil
coxon rank-sum tests were conducted as paired sample tests. In this 
paper, all of the data are given as the mean ± standard deviation unless 
mentioned otherwise. 

3. Results 

3.1. Changes in the instantaneous amplitude and FS captured by the AFS 

In real recordings, the instantaneous amplitude and instantaneous 
frequency are correlated and usually vary concurrently, making it 
difficult to establish whether the AFS captures changes in both. This 
section considers simulated oscillations in the low-beta band. The two 
simulated signals were generated from the same real signal, and we 
independently simulated the instantaneous amplitude n and the FS k on 
them. The time-frequency spectra provided us with an overview of these 
changes (Fig. 2AD). The offline Hilbert transform was subsequently used 
to extract the instantaneous amplitude and instantaneous frequency of 
the two simulated signals (Fig. 2BE). 

AFS and amplitude based on band-pass filtering identified the 
amplitude change in the simulated signal with similar performance, as 
shown in Table 2 and Fig. 2C. In contrast, the amplitude obtained 
through band-pass filtering was limited in terms of detecting changes in 
FS, whereas the AFS had high sensitivity to variations in the FS (Fig. 2F). 
The variances in indicators for different parameter settings, quantified 
by the KLD, are presented in Table 2. A higher KLD for the AFS indicates 
the superiority of the AFS in discriminating parameter changes in the 
simulated signal. In terms of the correlation between the parameter 
sequence and the two indicators, Table 2 shows that only the AFS was 
significantly correlated (R2 = 0.524,p = 0) with the change in FS. 

3.2. Better correlation of AFS quantification with symptom alleviation 

As previously mentioned, in real LFP recordings, the amplitude and 
FS might change at the same time (Averna et al., 2022; Tinkhauser et al., 
2017a; Yeh et al., 2020; Engel et al., 2018). It was found that the AFS 
was highly correlated with the amplitude obtained through band-pass 
filtering (Fig. 3A). However, the amplitude may not reflect changes in 
FS, in which case the AFS quantification is superior (Fig. 3A, grey area). 
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In this section, we explore whether these additional frequency stabilities 
might allow the AFS to reflect more pathological information. 

The ability of the AFS to follow the amplitude and FS were first 
investigated for real recordings. Among the complete dataset, the mean 
value of AFS correlated with the amplitude (R2 = 0.997, p < 0.0001; 
Fig. 3Bi) and FS (R2 = 0.278,p < 0.0001; Fig. 3Bii) based on the band- 
pass filtering of low-beta oscillation. 

We then examined the AFS, amplitude, and FS obtained through 
band-pass filtering and their differences between ON and OFF levodopa 
conditions (KLD OFF–ON). In general, AFS had greater distinguishability 
(KLD = 13.68 ± 16.43) than the amplitude (KLD = 11.05 ± 14.60) and 
FS (KLD = 1.16 ± 2.42) based on band-pass filtering across both 
hemispheres (Fig. 1C). Furthermore, across both hemispheres, the KLD 
of AFS correlated with symptom alleviation (R2 = 0.229, p = 0.0137; 
Fig. 3D). However, the KLD of the low-beta amplitude was not signifi
cantly correlated with symptom alleviation (R2 = 0.0645, p = 0.1606; 
Fig. 3Ci) or FS (R2 = 0.0836, p = 0.1933; Fig. 3Cii). Beyond the low- 

beta band, we extended the analysis to other frequency bands, such as 
theta (3–6 Hz), alpha (6–12 Hz), high-beta and low-gamma (24–48 Hz), 
and high-gamma (48–96 Hz) bands, as shown in the Supplementary 
Materials (Supplementary Fig. 4). However, we did not observe corre
lations between clinical scores and either changes in amplitude or 
changes in AFS in these bands. 

We found that the medication distinguishability was significantly 
higher for the AFS than for the amplitude (Cohen′s D = 0.23878, p =

0.0175; Fig. 3F) or FS (Cohen′s D = 1.0195, p < 0.0001; Fig. 3F) only. 
However, increases in the amplitude did not correlate with symptom 
alleviation (R2 = 0.0325, p = 0.3236; Fig. 3Fi), and neither did in
creases in FS (R2 = 0.0628,p = 0.1667; Fig. 3Fii), suggesting that it was 
not a simple combination of amplitude and FS that drove the correlation 
between the AFS and motor symptoms of PD. The results obtained for 
different window lengths confirmed that the correlation between the 
AFS and symptom alleviation was in general better than that between 
the amplitude based on band-pass filtering and symptom alleviation. 

3.3. AFS insensitivity to peak frequency changes 

In the context of PD, studies have mostly focused on the relationship 
between symptom alleviation and peak beta power rather than broad
band beta power (Kühn et al., 2006; Tinkhauser et al., 2017a; Lofredi 
et al., 2023; Tinkhauser et al., 2017b). As shown by previous studies and 
our results, if the individual peak frequency band is considered, the 
power of peak low-beta oscillation correlates with symptom alleviation 
(R2 = 0.221, p = 0.0374; Fig. 4A) (Kühn et al., 2006). To achieve this 
result, the peak frequency was first identified in the average PSD in the 
low-beta frequency range. The peak low-beta power was calculated with 
a 5-Hz frequency band around the peak frequency and then correlated 
with UPDRS OFF–ON. 

Nevertheless, the peak frequency might vary across time (Fig. 4B; the 
peak frequency drift is visualised from the peak frequency of the PSD in 
the 2-s sliding window with a step of 0.5 s), and more than one peak 
might exist in the beta band in the PSD in some cases (Darcy et al., 

Fig. 2. AFS effectively capturing both the amplitude and FS. 
(A) and (D) depict the power spectra of the simulated signals for the two tests. There are increases in the amplitude alone (A) and FS only (D) at 48 s. The top and 
bottom graphs in (B) and (E) show the results of the offline Hilbert transform for the instantaneous amplitude (IA) and instantaneous frequency (IF). (C) and (F) 
compare the results for the amplitude based on band-pass filtering (black lines) and the AFS (blue lines). (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 

Table 2 
Ability of the indicators to capture amplitude and FS changes.   

Amplitude based on band-pass filter AFS 

Amplitude simulation 
Correlation (R2) 0.992 0.958 

KLD 32.24 49.77  

FS simulation 
Correlation (R2) 0.00062 0.524 

KLD 0.198 12.24 

The R2 value represents the correlation between the amplitude parameter n / FS 
parameter k and the amplitude based on band-pass filtering or the AFS. Together 
with the KLD between the indicators before and after simulation, the results 
imply that both indicators can differentiate the amplitude-simulated signal but 
only the AFS can distinguish the FS-simulated signal.  
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2022). The peak frequency power limited by a narrow band failed to 
identify and track such variations. When using stationary wavelets to 
quantify the AFS as we propose, there is no need to select the individual 
peak frequency. Instead, the fourth-layer stationary wavelet coefficients 
were selected as the broadband for all patients in the AFS. This approach 
may be less susceptible to peak frequency drifts because it covers a wider 
frequency range. 

To investigate the sensitivity of the AFS to peak frequency changes, 
we calculated the correlation proportions defined in the Methods sec
tion. In a segment session, 100 sub-datasets were generated. We found 
that 66% of the subsampled data revealed a significant correlation be
tween an AFS change and symptom alleviation. However, only 33% of 
the subsamples showed a significant correlation between a change in the 
peak frequency power and symptom alleviation. Furthermore, r values 
obtained using the AFS were significantly higher than those obtained 
using the peak frequency power  
(0.388 ± 0.082(AFS) vs.0.309 ± 0.076(Peak PSD), Cohen′s D = 0.502,
p < 0.0001; Fig. 4C). Likewise, for other segment lengths, changes in the 
AFS were superior in characterising medication-induced differences 
(Supplementary Fig. 5B). 

To determine the cause of the discrepancy between the peak power 

marker and the AFS marker, we selected the subsample that had the 
most difference among the 100 sub-datasets. The AFS marker correlated 
with symptom alleviation (R2 = 0.182, p = 0.0296; Fig. 4D), whereas 
the peak frequency did not (R2 = 0.0338, p = 0.3141; Fig. 4D). At the 
individual level, the peak frequency was less effective at representing 
changes due to its narrow frequency range. This is evident in cases in 
which several peaks existed within the beta band and peak power failed 
to follow the changes effectively, but the AFS difference remained clear 
(peak PSD Off − On, AFS KLD = 20.0925; Fig. 4E). This suggests that the 
AFS is insensitive to drifts in the peak frequency as long as they fall in a 
broad range (12–24 Hz in this study). 

3.4. Better distinguishability of stimulation effects through AFS 
quantification than through amplitude or FS quantification 

In this section, we examine the abilities of the different quantifica
tions to distinguish ON/OFF stimulation conditions (Fig. 5A). The AFS 
(KLD = 10.00 ± 14.72) had greater distinguishability (Cohen′s D =

0.104, p = 0.0061;Cohen′s D = 0.805, p < 0.0001; Fig. 5B) than the 
amplitude (KLD = 8.34 ± 13.56) and FS (KLD = 0.939 ± 3.25) based on 
band-pass filtering. 

Fig. 3. AFS quantification having better correlation than amplitude or FS based on band-pass filtering with symptom alleviation. (A) (i) Low-beta signal from the 
band-pass filter. (ii) Low-beta amplitude based on band-pass filtering. (iii) Low-beta FS based on band-pass filtering. (iv) Low-beta AFS from stationary wavelet (SW) 
coefficients. The grey area highlights where the signal has a different FS that cannot be captured by the amplitude based on band-pass filtering but is indicated in the 
quantification. (B) Ability of the AFS to follow the amplitude and FS in real recordings. In all recordings within the medication dataset, the mean value of the AFS 
correlated with the mean value of the amplitude 

(
R2 = 0.997, p < 0.0001

)
and FS 

(
R2 = 0.278, p < 0.0001

)
based on band-pass filtering. (C) (i) The distinguish

ability of amplitude based on band-pass filtering (R2 = 0.0645,p = 0.1606) did not show such a correlation. (ii) The distinguishability of the FS based on band-pass 
filtering also did not show such a correlation 

(
R2 = 0.0836, p = 0.2892

)
. (D) The ability to distinguish between different conditions in AFS was correlated (R2 =

0.229, p = 0.0137) with symptom alleviation. (E) AFS showed higher distinguishability than the amplitude (Cohen′s D = 0.23878, p = 0.0175) or FS 
(Cohen′s D = 1.0195, p < 0.0001) based on band-pass filtering only on the medication dataset. (F) Increases in distinguishability from the amplitude based on band- 
pass filtering to the AFS did not correlate (R2 = 0.0325, p = 0.3236) with symptom alleviation, and increases from FS showed no correlation 
(
R2 = 0.0628, p = 0.1667

)
. All of the correlations were corrected using the FDR. 
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4. Discussion 

Our findings suggest that the AFS excels in capturing joint informa
tion from the amplitude and FS within signals, surpassing the 

capabilities of measurements based on the amplitude or FS of low-beta 
alone. In addition, the AFS quantification showed more robust effects 
of medication and DBS treatment. Furthermore, the AFS may be useful 
in decoding other signals that contain distinct oscillations, such as 

Fig. 4. AFS insensitivity to peak frequency changes. 
(A) Overall, the peak low-beta power changes in the low-beta band exhibited a clear correlation with symptom alleviation (R2 = 0.221,p = 0.0320). (B) The peak 
frequency (thick red line) was defined in the PSD from the whole data set and normally within a range of ±2 Hz (thin black lines). However, the peak frequency 
varies across time, which is the peak drift (thick black line), and it can be beyond the peak frequency band. (C) By segmenting signals into shorter fragments (3 s), we 
generated 100 subsets of signals for all hemispheres. Among these 100 subsamples, the correlation with symptom alleviation indicated by r values shows an 
improvement (Cohen′s D = 0.502,p < 0.0001) from the peak frequency power (0.388 ± 0.082) to the AFS (0.309 ± 0.076). (D) One case in the subsample is presented 
to illustrate why a greater correlation with the AFS was detected in the datasets. In this case, the peak frequency power (right) was not correlated (R2 = 0.0338,p =

0.3141), whereas the AFS showed a clinically correlated difference between OFF and ON medications (R2 = 0.182,p = 0.0296). (E) For one subject in the case of 
(D), in the spectrum for one hemisphere, there were multiple peaks in the band (black square), and the peak power failed to capture the differences (peak PSD Off −
On = 0.4527); however, the AFS quantification difference was clear (AFS KLD = 20.0925). All of the correlations were corrected using the FDR. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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tremor-band oscillations (4 to 10 Hz, thalamic ventral intermediate 
nucleus) in patients suffering essential tremor (Scherer et al., 2022) and 
theta oscillations (3 to 6 Hz, globus pallidus internus) in patients 
suffering dystonia (Zhang et al., 2023). 

4.1. Superiority of AFS 

Both the amplitude and frequency provide valuable information for 
understanding the pathophysiological characteristics of neural activ
ities. The strength of AFS resides in its capacity to provide joint infor
mation on the amplitude and FS, as we showed first for simulation data 
and then for medication and stimulation effects in real patient data. The 
rationale behind the superiority of the AFS, relative to the amplitude or 
FS alone, is as follows. AFS quantification based on stationary wavelet 
coefficients was developed in the 1980s (Daubechies, 2010) and was 
shown to have potential in the analysis of periodic neural indicators 
(Pavlov et al., 2012). As both the amplitude and FS have an inverse 
relationship with medication in PD (Averna et al., 2022), the selection of 
the mother wavelet function (Luo et al., 2018; Nie et al., 2021c), 
resembling a ‘sinc’ function (refer to Supplementary Fig. 1A), is 
important, where higher FS (resulting in waveforms resembling a per
fect sine wave) and a higher amplitude correspond to greater wavelet 
coefficients. In addition, AFS quantification takes the median value of 
stationary wavelet coefficients, which is the optimal value with which to 
represent randomness in a signal (Donoho and Johnstone, 1998). The 
AFS is thus supposed to be more robust than simple smoothing against 
noise. In addition, there is no need to pre-select the peak frequency; 
instead, the determination of frequency bands relies on the inherent 
configuration, including the sampling frequency and number of layers, 
of the transform. 

4.2. Condition differences in the AFS 

Distinguishability is represented by the KLD, which is a non-negative 
metric (Broniatowski, 2023). The KLD is zero when two conditions (or 
distributions) are identical. The KLD of the amplitude based on band- 
pass filtering has a value of 0.1911 (i.e., a value near zero) before and 
after the FS simulation, whereas the KLD of the AFS is much larger than 
zero. We thus posit that the AFS contains frequency variations in the 
simulated signal that cannot be solely attributed to changes in ampli
tude. The present simulation experiment validated our hypothesis that 
the AFS captures fluctuations in both amplitude and FS. 

In complex systems that involve oscillator interactions, amplitude 
and frequency variations are mathematically associated (Yeh et al., 
2020; Nelli et al., 2017; Munia and Aviyente, 2019). Nevertheless, it is 
worth noting that frequency changes in real recordings do not consis
tently align with changes in amplitude, as demonstrated by the occur
rence of the phase slip (Averna et al., 2022; Cagnan et al., 2015). In real 

records, information on the FS can still be used to decode motor func
tions. Fig. 3E illustrates that the KLDs of medication ON vs. OFF and 
stimulus ON vs. OFF for the AFS are much greater than those for the 
amplitude based on band-pass filtering or the FS. This highlights the 
importance of considering joint information (Nelli et al., 2017; Cagnan 
et al., 2015; Spampinato et al., 2021). KLDs of the AFS in the medication 
dataset correlated with symptom alleviation, implying that KLDs cap
ture more information for the decoding of motor functions. However, 
the better performance of the AFS relative to the amplitude and FS was 
not significantly associated with symptom relief. This indicates that the 
AFS is not only a linear combination of these two components but in
volves a non-linear function. In addition, there may be an interaction 
between the amplitude and FS during oscillations. Pathological in
vestigations into Parkinson’s disease have demonstrated that amplitude 
fluctuations might be affected by the resonance function between the 
STN and the ventral lateral thalamic network (Cagnan et al., 2014) and 
could be modulated by the stimulation at specific phases (Holt et al., 
2019; McNamara et al., 2022). 

Nevertheless, it is important to recognise that the KLD level differs 
among individual patients. One possible explanation is that each patient 
has his or her own induced beta reduction effects. In addition, while the 
two distributions had a consistent bin size of 20 in the present study, 
they differed in terms of the bin range. Given the comparable tendencies 
identified in the AFS (i.e., amplitude, frequency, and symmetry) in the 
KLD, we hypothesise that the changes observed relate to the effects of 
medications or stimulation. Nevertheless, there is still debate over the 
suitable range for segmentation. 

4.3. AFS and peak frequency drift 

Considerable attention has been devoted to investigating the 
importance of peak beta power as an indicator of parkinsonian symp
toms (Kühn et al., 2006; Tinkhauser et al., 2017a; Tinkhauser et al., 
2017b; Little et al., 2013). However, certain questions persist. First, 
some patients may exhibit more than one peak in a plot of the power 
spectra density, and the peak frequency may drift over time (Darcy et al., 
2022). In addition, a wide bandwidth of the pathological oscillation 
peak frequency might result in more noise from other frequency bands. 
In contrast, a narrow bandwidth may fail to capture drifts in the peak 
frequency as we showed in Fig. 4B. These peak frequency drifts may be 
caused by resonance between coupled oscillators (Chen et al., 2020), 
which implies neurons are synchronised yet have different matching 
frequencies. Although the methods for quantifying these drifts and the 
mechanisms underlying the drifts require additional investigation, we 
hypothesised that peak frequency drifts are reflected in FS changes. In 
light of these considerations, we found that peak frequency drifts may be 
misleading when assessing the association between the peak frequency 
power and symptom alleviation. As the AFS can capture FS over a broad 

Fig. 5. AFS in the stimulation set. 
(A) The KLD serves as a measurement of pairwise differences. The distributions of the indicator AFS (middle), amplitude (left), and FS (right) based on band-pass 
filtering are provided for ON/OFF stimulation conditions, with the results serving as an illustrative example of the visualisation of distributions averaged across all 
patients. To account for participant-specific differences, all of the indicators were standardised to the range [0,1] and displayed in hemisphere units for visual 
representation. (B) The AFS was more effective than the amplitude (Cohen′s D = 0.104,p = 0.0061) and FS (Cohen′s D = 0.805,p < 0.0001) from band-pass filtering 
in distinguishing the stimulation effect. 
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frequency range, it is insensitive to peak frequency drifts. 

4.4. Implications for adaptive DBS 

Beta activity has emerged as a highly suitable feedback signal for 
adaptive DBS because of its demonstrated clinical relevance and con
sistency (Yin et al., 2021). In addition, phase-dependent control has 
shown potential in precise neuromodulation (Cagnan et al., 2015; Holt 
et al., 2019; Fell and Axmacher, 2011; Lowet et al., 2015). FS infor
mation is less combined with power-based control (Averna et al., 2022) 
and is thus important to AFS quantification. As the SWT can be used in 
real-time implementation and considering FS within a signal, the 
adoption of quantification in adaptive DBS strategies is a flexible and 
adaptable approach that can potentially enhance the precision and ef
ficacy of DBS interventions. 

4.5. Limitations 

The proposed method is based on the implementation of the SWT 
through the cascading of low-pass and high-pass filters. Its online 
application has been highlighted. It is noted that the determination of 
frequency bands relies on the inherent configuration of the transform. 
Considering that these bands are defined in part by the sampling rate, 
their range is constrained. Consequently, here, we only compared 
broadband signals in an amplitude-based method and AFS quantifica
tion. However, the superiority of FS with respect to the amplitude based 
on band-pass filtering of the peak beta frequency requires exploration. 
The main issue is that a narrow-band signal has fewer frequency com
ponents, and the instantaneous FS might contain less state-dependent 
information. 

An additional limitation of our study is that the AFS was not studied 
on a daily living dataset including movement. A potential feedback 
signal in DBS should be immune to movement-related noise. In terms of 
methodology, we have incorporated a control chart approach into our 
algorithm to increase its robustness against noise. Further study on free- 
leaving data is expected to provide further insights. 

5. Conclusions 

In this study, we presented an AFS metric for combining amplitude 
and FS information. We showed that the broadband AFS can track 
changes in amplitude and FS, resulting in additional pathogenic infor
mation on medication or stimulation conditions, through simulation and 
the analysis of real recordings. Furthermore, even considering the beta 
peak power, the AFS is unaffected by peak drifts and maintains a link 
with motor performance. The AFS warrants further study to assess 
whether it can be quantified on a daily living dataset and help decode 
pathophysiological neural activities related to motor functions in the 
LFPs of a patient with PD. 
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