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ABSTRACT

Objective: To advance adaptive deep brain stimulation for tremor disorders, we investigated the feasibility of
using machine learning to decode pre-movement oscillatory changes in thalamic local field potentials (LFPs) and
scalp electroencephalography (EEG) signals. Our aim was to predict upcoming upper-limb movements based on
these neural signals.

Approach: We recorded and analysed from 11 patients undergoing deep brain stimulation surgery for the
treatment of tremor, employing machine learning models—including logistic regression, gradient-boosted de-
cision trees, and convolutional neural networks—to distinguish rest periods from pre-movement periods.

Main results: We demonstrate that early neural correlates can predict movement onset, achieving above-chance
decoding performance starting approximately 430 ms before movement initiation using thalamic LFP and 840 ms
using EEG signals. Individualised, patient-specific decoders outperformed cross-patient models, reflecting inter-
patient variability in neural modulatory patterns. Additionally, multiple frequency bands contributed indepen-
dently to decoding performance, highlighting the importance of incorporating a spectrum of frequencies rather
than relying solely on activity in any single canonical band.

Significance: These findings underscore the value of personalised, multi-band machine learning-based approaches
for capturing the neural correlates preceding movement. They support the development of adaptive neuro-
stimulation therapies through tailored models that account for patient-specific patterns in neural activity.

1. Introduction

several adverse effects, including stimulation-induced side-effects that
impact speech and postural stability, as well as a gradual loss of thera-

Since receiving FDA approval for the treatment of essential tremor peutic efficacy over time [5-12]. To address these challenges,

(ET) in 1997, deep brain stimulation (DBS) of the ventral intermediate
nucleus (VIM) of the thalamus has established itself as an effective
therapy for tremor disorders in patients with medication-refractory
symptoms [1-3]. In a meta-analysis comprising 1714 ET patients,
VIM-DBS improved tremor scores by a mean 61.3 % at 20 months
follow-up, showing a significant therapeutic effect for tremor suppres-
sion [4].

Despite its efficacy for managing tremor, VIM-DBS is associated with

non-continuous or adaptive DBS (aDBS) schemes have been proposed as
a means to mitigate the side effects associated with stimulation and
thereby increase DBS’s therapeutic window [13-16].

A critical aspect in the development of aDBS systems is the selection
of appropriate feedback signals to guide the titration of stimulation.
Various surrogate signals have been explored for driving aDBS in ET
patients, including muscle activity recorded from surface electromyog-
raphy [15,17,18], scalp electroencephalography (EEG) [19], and signals
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recorded from intracranial electrodes [14,20,21]. However, there re-
mains an interest in leveraging the modulatory patterns found in neural
signals directly recorded from the implanted DBS electrodes themselves
to avoid the need for supplementary implants or external devices [22].
By capturing the neural correlates of movement through local field po-
tentials (LFPs) measured from the thalamus, it is possible to detect
movement states and utilise this information to drive an aDBS system
[23]. Prior studies have successfully implemented this aDBS approach in
an acute clinical setting [24,21,25,26]

In the context of aDBS for patients with intention tremors (tremors
that emerge during voluntary movements rather than at rest), the timing
of stimulation is critically important. Early triggering of stim-
ulation—ideally prior to or immediately at the onset of voluntary move-
ment—holds strong therapeutic potential. Clinical and experimental
observations [14,15] show that even with responsive DBS that switches
on when tremor begins, patients typically experience a brief burst of
tremor just after movement onset — before stimulation has had time to
achieve its therapeutic effect. For instance, Opri et al. [14] reported that,
in their cohort, aDBS triggered by movement onset still resulted in a
short, visible burst of tremor. By initiating stimulation based on
pre-movement (e.g., thalamic LFPs or cortical potentials) as opposed to
movement-related signatures, one can potentially disrupt tremor-related
oscillations before they fully develop. In contrast, reactive approaches
that wait for tremor to appear before delivering stimulation cannot
prevent this initial burst and may therefore offer less complete symptom
relief. This pre-emptive strategy—intercepting neural processes that
give rise to tremor—could reduce or even eliminate tremor episodes
before they begin.

Achieving this, however, requires systems capable of decoding
movement onsets in real time, for instance by detecting neural correlates
present in the period leading up to movement initiation. Such early
detection of movement from neural signals has already been demon-
strated, and electrocorticography (ECoG) signals have been shown to
yield higher decoding performance than LFP signals recorded from the
subthalamic nucleus of Parkinson's disease (PD) patients [27]. However,
whether thalamic LFPs carry equally discriminable pre-movement pat-
terns in tremor patients remains unknown.

In this study, we hypothesise that it is possible to train machine
learning models to decode pre-movement neural signatures of volitional
upper-limb motor activity from both thalamic LFPs and scalp EEG with
above-chance accuracy at least several hundred milliseconds before
movement onset. To test this, we develop and implement multiple ma-
chine learning-based classification pipelines—ranging from feature-
based logistic regression and gradient-boosted trees to convolutional
neural networks that learn directly from raw oscillatory inputs. We

Table 1
Clinical and demographic patient information.
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compare the models’ decoding performance, determine how early
relative to movement onset oscillatory signatures can be detected, and
study the oscillatory features that drive the models’ predictions.

The remainder of this manuscript is structured as follows: we first
introduce the dataset, feature extraction pipelines, and classification
algorithms used in this study. We then present the decoding perfor-
mance achieved by these systems and document the neural correlates
that they rely on to make inferences. Finally, we discuss the trade-offs of
the different approaches and their implications for early movement-
driven aDBS in tremor disorders.

2. Methods
2.1. Participants and experimental protocol

Data were collected from 11 patients (5 female) undergoing DBS
surgery for tremor management. The cohort included nine patients with
ET, one with Orthostatic Tremor (OT), and one with tremor-dominant
Parkinson’s disease. Clinical information for each participant is pro-
vided in Table 1. All procedures were conducted in accordance with the
Declaration of Helsinki, with informed written consent obtained from all
participants prior to their inclusion in the study; and approved by the
relevant local ethics committees (SGH: MED IDREC Ref 18/SC/0436,
IRAS 249989; UHC: Ethics Committee of the Medical Faculty of the
University of Cologne No. 20-1054).

Patients underwent stereotactic neurosurgery for bilateral implan-
tation of DBS leads targeting the VIM, Zona Incerta (ZI), or posterior
subthalamic area (PSA) for the treatment of tremor. For research pur-
poses, the DBS leads were temporarily externalised for up to seven days,
allowing direct recording of neural signals before connecting them to the
implantable pulse generator (IPG).

Four patients (S1-S4) were implanted with the Abbott Infinity DBS
system (Abbott Laboratories, US), which uses eight-contact directional
leads arranged in a 1-3-3-1 layout (two ring contacts at the ends and
two central levels each split into three segments). The remaining seven
patients (S5-S11) were implanted with Medtronic SenSight directional
leads, also arranged in a 1-3-3-1 configuration (eight contacts per
lead). LFPs were recorded in unipolar mode with either a TMSi Porti
amplifier (TMSi, The Netherlands) at 2048 Hz and 22-bit resolution, or a
TMSi SAGA amplifier at 4096 Hz and 24-bit resolution. An on-board
digital sinc® anti-aliasing filter (cut-off frequency of 553 Hz and 1.6k
Hz, respectively) was automatically applied to all recorded signals. A
wrist-worn electrode was used as a temporary hardware reference dur-
ing data collection; however, none of our analyses relied on that wrist
reference directly. Instead, to eliminate any residual common-mode or

Patient Diagnosis Centre  DBS Surgical Sex Age Disease Duration Predominant Symptoms Before Surgery

D System Target [years] [years]

S1 ET SGH Abb VIM F 77 21 Tremor, gait ataxia, tremor worse on right, upper limb
and voice tremor

S2 ET SGH Abb VIM M 70 8 Tremor, upper limb, with right worse than left, lower
limb tremor

S3 ET SGH Abb VIM F 62 45 Tremor, upper limb tremor left worse than right, voice
tremor

S4 ET SGH Abb VIM M 70 5 Tremor, upper limb left worse than right

S5 ET UHC Med VIM/PSA F 58 15 Tremor in both hands, left hand worse than right

S6 ET UHC Med VIM/PSA M 72 10 Tremor in both hands (stronger in right hand), some head
tremor

S7 ET SGH Med VIM/ZI M 64 20 Tremor

S8 ET SGH Med VIM/ZI M 71 16 Tremor

S9 ET SGH Med VIM/PSA F 59 50 + Tremor

S10 PD UHC Med VIM/PSA M 68 6 Rigidity and tremor in right hand and arm

S11 oT UHC Med VIM/PSA F 61 9 Orthostatic and action tremor in both hands

Abbreviations: ET = Essential Tremor; PD = Parkinson’s disease; OT = Orthostatic Tremor; SGH = St. George’s Hospital; UHC = University Hospital Cologne; Abb =

Abbott Infinity DBS System; Med = Medtronic SenSight DBS System.
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motion-related artifacts (including potential contamination from wrist
movement or muscle activity), all LFP channels were re-referenced on-
line to the common average of all simultaneously recorded LFP chan-
nels. This common-average re-referencing ensured that any voltage
fluctuations specific to the wrist electrode (e.g. motion) were effectively
subtracted from the recorded signals prior to further processing.

Scalp EEG was recorded simultaneously using electrodes at Cz, C3,
C4, CPz, CP3, and CP4 (10-20 system), covering somatosensory,
sensorimotor, and motor areas. EEG signals were captured on the same
amplifiers (with identical on-board filtering) and sampled synchro-
nously with the LFPs. Surface EMG was recorded with bipolar electrodes
over the forearm flexor and extensor muscles; these EMG traces pro-
vided precise markers of upper-limb movement onset for temporal
alignment with the neural data.

During recording sessions, patients were instructed to perform a
series of upper limb motor tasks designed to elicit voluntary movement:
a rice pouring task (patients poured rice back and forth between two
cups for approximately 10 s before returning to rest), pegboard insertion
task (patients inserted pegs into a pegboard for approximately 10 s
before returning to rest), and foam ball gripping task (patients tightly
gripped a foam ball with one hand for approximately 5 s before
returning to rest). Each task was performed multiple times with rest
intervals to prevent fatigue. Instructions were standardised, and patients
were encouraged to perform movements at a comfortable pace, with
plenty of rest (at least 10 s between trials) in between. In total, a mean of
67.18 + 38.8 trials (cross-patient mean + std. deviation; min: 16, max:
112) were used for analysis.

All signals—including thalamic LFPs, scalp EEG, and surface
EMGs—were recorded using custom-developed software tailored for
electrophysiological data acquisition. Recorded data were digitised and
stored securely for offline processing and analysis.

2.2. Data pre-processing and labelling

EMG signals were recorded from bipolar electrodes placed over the
forearm flexor and extensor muscles to determine the timing of move-
ment initiation. For lateralised tasks (e.g., one-handed gripping), only
the EMG trace from the active arm was used. For bilateral tasks
(pegboard insertion, rice pouring), each arm’s EMG was processed
independently, and the earliest detected onset time—regardless of
which arm moved first—was taken as the movement initiation time.

Raw EMG traces were first high-pass filtered using a causal fourth-
order Butterworth filter implemented in a cascade of second-order sec-
tions with a cut-off frequency of 0.5 Hz. To minimise ringing artifacts
due to filter warm-up, the initial filter state was adjusted, and all
filtering was performed in a forward-only (causal) manner to preserve
the temporal integrity of the signals and mimic signal processing tech-
niques that could be applied during real-time use [28]. Following
high-pass filtering, the magnitude of the EMG signals was computed to
obtain an envelope of muscle activity, and z-scored to standardise the
amplitude across trials and participants. These processed EMG traces
were visually inspected to ensure clear delineation of movement initi-
ation, and traces that did not distinctly define and isolate movement
onset were discarded. This signal was then rectified and smoothed, and a
threshold (three times the standard deviation extracted from the base-
line period) detected the first point at which deviation from baseline
activity was detected (i.e. movement initiation). These timings were
subsequently reviewed manually to ensure movement initiation was set
at the earliest possible time point. This manual labelling of the move-
ment onset served as the ground truth for subsequent analyses.

To prevent the introduction of unwanted phase lags between the
movement signals and the neural signals, identical high-pass filtering
(causal fourth-order Butterworth filter with a cut-off frequency at
0.5 Hz) was applied to the thalamic LFP and cortical EEG signals [28].
This approach ensured temporal alignment across different kinds of
signals. Additionally, to eliminate power line interference and
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harmonics, notch filters were applied at 50 Hz, 100 Hz, and 150 Hz
using a causal filter design implemented in cascaded second-order
sections.

The movement onset times defined from the EMG signals were used
to segment the LFP and EEG data into epochs corresponding to indi-
vidual movement trials. For participants who performed multiple
movement-related tasks (gripping, rice pouring, and pegboard inser-
tion), the epochs from all tasks were combined for the decoding analysis.

2.3. Time-resolved characterization of oscillatory activity

To train decoders that detect pre-movement periods, we imple-
mented a feature-extraction pipeline (Fig. 1) that captures time-resolved
oscillatory activity. Time series signals were first segmented into over-
lapping trailing windows (1s and 2s), from which features were
extracted and then concatenated. By providing both window lengths as
separate inputs, the classifier can learn which timescale best captures
pre-movement signatures. Feature vectors were produced every 20 ms
(i.e. a 50 Hz update rate).

To maintain full causality—that is, to ensure no future samples in-
fluence current estimates—each window ends at the current time point
and only uses data from the past. Immediately after extracting each
feature vector, we standardised it using a running (causal) z-score: for
each feature dimension, we subtract the mean and divide by the stan-
dard deviation computed over the previous 10 s of data. This trailing
window ensures that, at time t, all statistics (mean and o) are based
solely on samples up to t, preventing any leakage of future information
[29].

At each time point, this procedure yields a normalised vector
comprising several features that reflects oscillatory dynamics.

2.4. Power in canonical frequency bands

For each time window of electrophysiological data, we first applied a
Hann taper w(n] to the time-domain signal x[n] to reduce edge artifacts
and then computed its DFT X[k]. The log-power spectrum is given by

L{k] = log (|[K] )

From L[k] we extracted, for each canonical band B, the mean log-
power pz = > 5L[k] in bands theta (4-8 Hz), alpha (8-12 Hz), low
beta (13-20 Hz), high beta (20-30 Hz), gamma (30-60 Hz, 60-80 Hz,
80-100 Hz), and high-frequency activity (100 — 200 Hz, 200-500 Hz).

2.5. Time-domain statistics

We extracted time-domain statistics to capture the characteristics of
the signal directly from its temporal representation. The primary time-
domain features included the first four statistical moments of the
signal distribution, as well as the Hjorth parameters.

The first four statistical moments are:

e Mean (First Moment): Average value of the signal over time. Pro-
vides a measure of the central tendency, the overall level of activity
within the signal, as well as a measure of low-frequency activity.
foe = N oo XI11-

Variance (Second Moment): Computed as a Hjorth parameter
(Activity, see below). 62 = 15N (x[n] — . ).

Skewness (Third Moment): Quantifies the asymmetry of the sig-

nal's amplitude distribution, detecting deviations from normality in
3

the signal's amplitude. Skewness = %Eﬁ:’;& sy

Ox

Kurtosis (Fourth Moment): Describes the "tailedness" or “peaked-
ness” of the signal distribution. High kurtosis indicates the presence
of infrequent, significant deviations from the mean, potentially
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Fig. 1. Feature-Extraction Pipeline for Real-Time Pre-Movement Decoding. Raw LFP and EEG signals are first pre-processed (high-pass and notch filtering) and then
segmented into two overlapping trailing windows (1 s and 2 s), updated every 20 ms. Within each window, we compute spectral, time-domain, autoregressive, and
cepstral features. Each feature set is normalised using causal running (10 s) z-scores, then concatenated into a single feature vector. These vectors—computed entirely
from past data at each 20 ms step—serve as inputs to classifiers that detect pre-movement periods in real time.

associated with transients or bursts in the signal. Kurtosis =
4

1N-N-1 [ x[n]—p,

NZn=0 Ox :

The Hjorth parameters are a set of three descriptors useful in the
analysis of non-stationary signals, such as LFP, EEG, or MEG data, and
provide a compact representation of the signal's dynamic properties:

e Activity: Corresponds to the variance of the signal, representing the
overall signal power / energy content. Activity = 62

Mobility: Defined as the square root of the variance of the first de-

rivative of the signal divided by the variance of the signal itself. It

quantifies the mean frequency or the rate of change in the signal,

with higher mobility indicating faster signal fluctuations. Mobility =

Var(Ax)
Var(x) *

Complexity: Measures the signal's waveform complexity relative to
a pure sine wave, calculated as the ratio of the mobility of the first
derivative of the signal to the mobility of the signal itself. It reflects
the degree of variability in the frequency content of the signal, with
higher values indicating more complex, non-sinusoidal waveforms.

Complexity = %fx) v:arr((A;;)’
whereAx[n] = x[n] — x[n—1], and AZx[n] = Axn] —Ax[n—1].

Together, these time-domain features provided a comprehensive char-
acterization of the electrophysiological signals, capturing essential as-
pects of the signal's amplitude, variability, and temporal structure. They
are commonly used in various signal processing applications, including
brain-computer interfaces, cognitive state monitoring, and the identifi-
cation of pathological activity such as epileptic seizures [30-32].

2.6. Other features

We also extracted autoregressive (AR) parameters and cepstral co-
efficients to capture additional signal dynamics.

For the autoregressive parameters, we employed AR modelling to
describe a signal as a linear combination of its 10 previous values,

estimated by solving the Yule-Walker equations, which relate the
autocorrelation function of the signal to the AR coefficients.

The cepstral coefficients were derived by taking the inverse Fourier
transform of the logarithm of the signal's frequency spectrum. This
technique can reveal periodic structures in the frequency domain. The
cepstrum was segmented into 10 bands, and the average power within
these bands computed.

2.7. Classification pipeline and evaluation of decoding performance

To train classifiers capable of detecting pre-movement periods, as
shown in Fig. 2, we labelled time windows ending within 500 ms prior
to movement initiation as belonging to the pre-movement period. Win-
dows ending within the interval [-4, —2] seconds relative to movement
initiation were labelled as the rest period. Our classifiers were trained to
distinguish between these two periods based on the features extracted
from the corresponding electrophysiological timeseries.

The performance of the classifiers was evaluated using a leave-one-
trial-out cross-validation scheme (LOTO-CV). In each iteration, one
trial was reserved as validation data (which remains unseen by the
classifier during training) to benchmark the classifier's out-of-sample
performance, while the remaining trials were used to train the classi-
fier—setting its parameter values and weights. This process was
repeated iteratively, with each trial serving as the validation set once
and as part of the training data in all other iterations. This approach
ensures that all trials are used once for out-of-sample testing, providing
an estimate of the classifier's generalization performance.

During each iteration, we computed the area under the Receiver
Operating Characteristic curve (ROC-AUC; abbreviated AUC) for the
predictions made by the trained classifier on the validation data. This
metric was then averaged across all of the cross-validation folds to
obtain a single, cross-validated performance score. To account for class
imbalances—specifically, the longer duration of the rest period
compared to the pre-movement period—we adjusted the ROC curve by
differentially weighting samples based on the period from which they
were extracted. This weighting corrected for the larger number of
samples in the rest than in the pre-movement period. We performed this
procedure for each EEG/LFP channel individually, which provided a
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Fig. 2. Illustration of the trial labelling process. Movement initiation is determined based on the earliest point at which EMG activity deviates from baseline.

decoding performance score (AUC) for every channel. Then, the best-
performing channel from each hemisphere was chosen, and their fea-
tures concatenated into a single feature vector to train an individual
classifier. For EEG signals, the two best-performing channels were
chosen. This schema provided a single decoding performance datapoint
for each patient, driven by information from the most informative
channel from each hemisphere—following a data-driven approach that
dynamically selects channels based on their contributions to decoding
performance.

We implemented and benchmarked four following classification ar-
chitectures: logistic regression, gradient-boosted decision trees, con-
volutional neural network, and convolutional neural network with
manually extracted features.

2.8. Logistic regression

Logistic Regression (LR) is a simple yet powerful classification al-
gorithm that models the probability of a binary outcome using a linear
combination of input features. The logistic regression model computes a
linear combination of the features and applies the logistic (sigmoid)
function to produce an estimate of the probability that the input features
belong to the positive class p(y = 1 |features).

In our implementation, during each iteration of the leave-one-trial-
out cross-validation, we performed an internal three-fold cross-valida-
tion on the training data to determine the optimal level of regularization
(i.e. the L2 penalty term). During training, sample weights were adjusted
to correct for class imbalance by giving more weight to samples from the
minority class. Using these selected hyperparameters, a final logistic
regression model was trained on the training data and evaluated on the
validation trial for the current fold. We used Python’s scikit-learn
implementation of LR [33].

2.9. Gradient-boosted decision trees

Gradient-Boosted Decision Trees (GBDT) is an ensemble learning
method that builds a predictive model by sequentially combining mul-
tiple decision trees learners, with each new tree aiming to correct the
errors of the preceding ensemble. This iterative process is guided by
gradient descent optimization, minimizing the negative log-likelihood.

In our implementation, we tuned the GBDT model to find the optimal
hyperparameters, including the number of trees, learning rate, and tree

depth, through an internal cross-validation procedure at each iteration
of the leave-one-trial-out scheme. We utilised a grid search to explore a
range of hyperparameter values, selecting the combination that yielded
the best cross-validated performance on the training split of the data.
Once the optimal hyperparameters were determined, the GBDT model
was trained on the entire training set of the current fold and evaluated
on the validation trial. Sample weighting was applied during training to
account for dataset imbalance.

Our primary motivation for benchmarking GBDTs alongside logistic
regression was to assess the potential benefits of capturing non-linear
relationships between features and labels. If significant non-linear re-
lationships existed in the data, GBDTs were expected to better capture
and leverage these patterns compared to the linear logistic regression
model. We used the Python LightGBM implementation of GBDTs [34].

2.10. Convolutional neural network

Convolutional neural networks (CNN) are deep learning models that
automatically learn hierarchical feature representations from raw input
data through multiple layers of convolutional filters. Unlike the feature-
based methods described above, CNNs take minimally pre-processed
electrophysiological time series as input, without relying on manually
extracted features [35].

In our CNN architecture (Fig. 3A), the input time series were pro-
cessed through a cascade of 6 convolutional layers interleaved with
Swish non-linear activation functions [36], batch normalization layers
(to correct for scaling differences and improve training stability), and
pooling layers to reduce the dimensionality of activations as the signals
flow through the network. The convolutional filters are trained to
extract relevant information content from the signals pertinent to the
classification task. The training process involved the use of adaptive
moment estimation (Adam), an adaptive gradient descent algorithm that
iteratively adjusted the filter coefficients to minimise the cross-entropy
loss between the model's predictions and the true labels.

At each stage of the network, the processed signals (referred to as
"activations") were filtered, scaled, combined, and passed through non-
linear activation functions. After the final convolutional layer, descrip-
tive statistics were computed from the activations, producing scalar
features that were input into a fully connected linear classification layer
that yielded the final output logits.
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Fig. 3. Convolutional neural network architectures CNN and FeatCNN. For the CNN (Panel A), pre-processed electrophysiological time series signals are processed
through a cascade of convolutional filters. Activations are filtered, scaled, combined, and passed through non-linear activation functions as they progress through the
layers of the network. Final activations are summarised using descriptive statistics, which serve as input features for a linear classifier, producing the final logit. The

FeatCNN combines manually extracted features into the feature vector (Panel B).

2.11. Convolutional neural network with manually extracted features
(FeatCNN)

To combine the strengths of both learned and hand-crafted repre-
sentations, we designed a hybrid model (FeatCNN) that retains the same
convolutional backbone as our pure CNN but also incorporates manually
extracted features. In FeatCNN, the time-series input was first passed
through the six-layer convolutional network—each convolutional filter
trained end-to-end from random initialization, just as in the standalone
CNN. Once the convolutional layers generate their activation outputs,
these learned features were concatenated with the handcrafted feature
vector (which includes band-power measures, Hjorth parameters,
autoregressive coefficients, and cepstral coefficients). Handcrafted fea-
tures were computed prior to downsampling the signals to 512 Hz. The
merged feature set was then fed into the final fully connected layers for
classification (Fig. 3B).

Because FeatCNN has access to both learned and handcrafted fea-
tures, backpropagation drives its convolutional filters to capture pat-
terns that complement—rather than simply duplicate—the information
provided by the handcrafted features. In contrast, the pure CNN must
discover relevant discriminative patterns directly from the time series,
without handcrafted guidance. Training both architectures from scratch
(i.e., with random weight initialization) ensured a fair comparison: in
the CNN, filters must learn every useful signal characteristic, whereas in
FeatCNN, the convolutional filters learn only those residual or orthog-
onal features that are not already encoded in the handcrafted set. By
evaluating these two models, we were able to determine whether sup-
plying handcrafted features alongside learned ones improved decoding.

For both convolutional network architectures, the electrophysio-
logical time series signals were downsampled to 512 Hz from the orig-
inal sampling rates (2048 Hz or 4096 Hz) before being passed to the
network. We trained each CNN in a leave-one-trial-out cross-validation
(LOTO-CV) framework: in each fold, all windows from a single move-
ment trial were held out as the test set, and the remaining trials formed
the training set. Within each training set, we applied manifold mixup
augmentation in the logit space to encourage smoother decision
boundaries and improve generalization [37]. To correct for the class
imbalance between the relatively short pre-movement windows and the
longer rest windows, we used weighted sampling so that pre-movement
samples were oversampled during training. Each network was trained
for a fixed 150 epochs per LOTO fold without early stopping. Neural
network architectures were implemented in Python using PyTorch [38].

3. Results
3.1. Decoding of pre-movement periods

We evaluated the performance of four classification models—LR,
GBDT, CNN, and FeatCNN—in distinguishing rest periods from pre-
movement periods using thalamic LFPs and scalp EEG signals.

Fig. 4A illustrates the area under the Receiver Operating Charac-
teristic curve (AUC) values for each model using LFP and EEG data.
Higher AUC values indicate better decoding performance. Mean AUC
values and the corresponding 95 % confidence intervals are presented in
Table 2.

Paired t-tests were conducted to compare model performance (AUC)
across patients. Normality of the paired differences was assessed with
the Shapiro-Wilk test; no strong deviations were detected (all psnapiro >
0.05). p-values were corrected for multiple comparisons using the False
Discovery Rate (FDR) procedure. For the LFP-driven models, GBDTs
significantly outperformed the other models. Specifically, the compari-
son between LR and GBDT (p = 0.002), between CNN and GBDT
(p = 0.035), and between FeatCNN and GBDT (p = 0.033) indicated
significant differences. No significant differences were found among the
other three models (LR, CNN, and FeatCNN).

For the EEG-driven models, GBDTs also showed superior perfor-
mance compared to LRs (p = 0.0003). However, differences between
GBDT and CNN (p = 0.13) and between GBDT and FeatCNN (p = 0.03)
were not statistically significant after correcting for multiple compari-
sons. No significant differences were observed among the other three
models (LR, CNN, and FeatCNN).

To determine the earliest timepoint at which movement onset could
be predicted, we trained logistic regression models using a sliding 500
ms window, shifted in 25 ms increments from —2.25 s up to 1.5 s relative
to movement onset. This yielded AUC values at each time step,
providing a time-resolved measure of the model's ability to distinguish a
given period from the resting baseline (see Fig. 4B). We chose LR for this
analysis because it is substantially faster to train than more complex
classifiers such as GBDTs—an important consideration when fitting a
separate model for every 25 ms step across all folds—and it offers
straightforward interpretability of feature contributions. In practice,
more sensitive classifiers (e.g., GBDTs) may detect movement onset
slightly earlier than LR, but likely by only some milliseconds; thus, our
LR-based earliest window serves as a conservative benchmark for early
prediction of movement.

Statistical analyses revealed that, for LFP-driven models, the first
time-window at the AUC was statistically significant above chance
(paired t-test, p < 0.05) was [-0.93 s, -0.43 s], ending at 430 ms before
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Fig. 4. Decoding performance of different models for detecting pre-movement periods based neural oscillatory data. (A) Model performance: area under the receiver
operating characteristic curve (AUC) values for each of four classification model for distinguishing rest from pre-movement periods using LFP and EEG data. The
boxplots represent the distribution of AUC values across participants; individual dots outside the whiskers denote patients that are outliers. (B) Time-resolved
decoding performance: Plots showing the time-resolved AUC values for logistic regression models trained to detect pre-movement periods at various time win-
dows relative to movement initiation (t = 0 s; vertical dashed line). The top subplot displays the cross-participant average EMG trace, indicating the timing of muscle
activation. The middle (LFP data) and bottom (EEG data) subplots illustrate the progression of cross-patient AUC values over time (solid black lines represent the
mean AUC, and the grey shaded areas indicate +1 cross-patient standard deviation). The shaded yellow region indicates the 500 ms region during which decoding
performance reaches significant above chance level (AUC = 0.5), and the vertical yellow line indicates the end of this period, which is taken as the time point at
which above-chance performance is achieved (C) Pre-movement decoding vs. decoding of movement execution: comparison of AUC values for GBDT models trained
to detect pre-movement periods (from -500 ms to 0 ms relative to movement onset) versus movement execution periods (0 ms to 500 ms) using LFP data. All LFP
channels are compared individually. This comparison assesses the model’s effectiveness for decoding neural activity immediately before movement initiation versus
during movement execution. (D) Comparison between signal modalities: AUC values for GBDT models utilizing LFP and EEG data, illustrating the difference in
decoding performance between the two neural signal modalities, highlighting the relative effectiveness of invasive (LFP) versus non-invasive (EEG) recordings in
detecting pre-movement neural states.

was also significant, with a t-statistic of 9.02 and a p-value below 0.001,
and an average relative AUC increase of 14.5 %.

We assessed whether there was a consistent difference in decoding
performance when using LFP signals from the thalamus versus EEG

Table 2
Mean AUC value [95% CI] for decoding the [-500 ms, 0] pre-movement period
with different models. Higher values indicate better decoding performance.

LR GBDT CNN FeatCNN signals recorded from the scalp. Paired t-tests revealed no significant
LFP  0.64 [0.60, 0.68 [0.65, 0.64 [0.60, 0.65 [0.61, differences in AUC values between LFP and EEG signals across all
0.67] 0.70] 0.68] 0.68] models. The uncorrected p-values were 0.55 for LR, 0.47 for GBDT, 0.80
BEG 8'221[0'59’ g'gf] [0-65, 8'22][0'61’ 3.66347!][0‘62, for CNN, and 0.87 for FeatCNN. The AUC values for GBDT models using

LFP and EEG data are depicted in Fig. 4D. Although fixed-window AUCs
did not differ significantly between LFP and EEG, time-resolved analyses

movement initiation. For EEG-driven models, the earliest significant
window was [-1.32's, -0.84 s], ending at 840 ms before movement
initiation. We therefore report 430 ms (for LFP) and 840 ms (for EEG) as
the earliest timepoints at which movement initiation can be predicted
with above-chance accuracy.

We compared the decoding performance of GBDT models trained to
detect pre-movement periods ([-500 ms, 0]) with those trained to detect
movement execution periods ([0, 500 ms]) using LFP data. Shown in
Fig. 4C, for LFP-driven models, the AUC values for movement execution
were significantly higher than for pre-movement decoding. A paired t-
test yielded a t-statistic of 14.12 and a p-value less than 0.001, with an
average AUC increase of 15.3 % when comparing movement execution
to pre-movement decoding. For EEG-driven models, the AUC difference

indicated earlier detectability with EEG, consistent with distinct tem-
poral profiles of premotor signals across modalities.

3.2. Cross-patient variability in modulatory patterns

Regardless of their architecture, classification models leverage
changes in the information content of electrophysiological signal-
s—often manifested as synchronization or desynchronization of activity
in canonical frequency bands—to drive decoding performance. To
visualise the average modulatory patterns across patients, we computed
cohort-level time-frequency decompositions (see Fig. 5). These were
calculated using resonator IIR filters with a quality (Q) factor of 20,
rectified, and smoothed using a 250 ms kernel. Baseline corrections
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Fig. 5. Cohort-level time-frequency decomposition of oscillatory activity time-locked to movement initiation. For each patient, the channel yielding the highest pre-
movement decoding accuracy was selected, and the resulting spectrograms were averaged across patients. (Top) LFP signals recorded from the ventral intermediate
nucleus (VIM) of the thalamus via externalised DBS leads. (Bottom) EEG signals. (Right) Patients are stratified into two groups based on their individual pre-
movement decoding ROC-AUC scores. Upper subplots show time-frequency decompositions for the top-performing half of patients; lower subplots show the bot-

tom half.

were applied using values extracted from the rest period ([-4, —2] sec-
onds relative to movement initiation). Additionally, we computed the
average time-frequency decompositions separately for the top and bot-
tom 50th percentile performers based on decoding accuracy to explore
potential differences in modulatory patterns associated with classifica-
tion performance.

To investigate the specific modulatory patterns associated with the
pre-movement period, we computed modulation indices for individual
frequency bands. The modulation index for a specific band was calcu-
lated by comparing the power spectral density (PSD) estimates in that
band during the pre-movement period with those during the rest period,
averaged across trials:

trial band trial,  band
1 PSD ‘pre—movement PSD, rest

PS. Dmal band

rest

Mlyng =

Nyrials ‘trial

Modulation indices for each subject and band, along with the mean
and 95 % confidence intervals, are depicted in Fig. 6A for both LFP and
EEG signals. A negative modulation index corresponds to desynchroni-
zation (decreased oscillatory activity) in the respective band during the
pre-movement period compared to rest, while a positive modulation
index indicates synchronization (increased oscillatory activity). Fig. 6B
shows time-frequency decompositions from individual patients, illus-
trating the variability in modulatory patterns observed across the
cohort.

To assess the generalizability of modulatory patterns across patients,
we trained logistic regression models under different training conditions
and compared their out-of-sample performance. Specifically, we evalu-
ated three training scenarios:

1. Patient-Specific Training: Models were trained exclusively on data
from the patient of interest.
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Fig. 6. Cross-patient variability in the observed modulatory patterns. (A) Modulation indices for each band. Each dot represents an individual patient, and the blue
bars represent the cross-patient mean and 95 % confidence intervals. Negative modulation indices represent desynchronization (decreased activity) during the pre-
movement periods, whereas positive indices represent synchronization (increased activity) relative to rest. (B) Individual time-frequency decomposition for a se-
lection of patients, showcasing various modulatory patterns that are present in the dataset.

2. Combined Training: Models were trained on data from the patient
of interest supplemented with data from other patients.

3. Cross-Patient Training: Models were trained exclusively on data
from other patients, without including any data from the patient of
interest.

We then evaluated the performance of these models on the patient-
specific test data. For both LFP and EEG signals, including data from
other patients during training led to a degradation in decoding perfor-
mance compared to patient-specific training (paired t-tests, p < 0.001 in
both cases; see Fig. 7). Furthermore, models trained exclusively on data
from other patients performed significantly worse than those trained on

combined data (LFP: p = 0.011; EEG: p = 0.0017). These results suggest
that modulatory patterns associated with pre-movement periods exhibit
substantial inter-patient variability, limiting the generalizability of
models across patients.

3.3. Contribution of oscillatory features to decoding

To elucidate the relative contribution of specific bands to decoding
performance, we trained LR models using features extracted exclusively
from individual canonical bands, as opposed to using all canonical bands
simultaneously to drive the regression model. This approach allowed us
to quantify the impact of each frequency band on decoding performance,
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EEG

Fig. 7. Patient-specific decoding performance under three training schemes: (1) trained solely on the patient’s own data, (2) trained on the patient’s data plus other
patients’ data, and (3) trained exclusively on other patients’ data. Including data from other patients during training reduced test-set AUC, demonstrating limited

cross-patient generalizability of movement-related modulatory patterns.

benchmarked against an all-band model.

Fig. 8 presents the differences in AUC scores between models trained
on individual bands with respect to a model with features from all bands.
For every frequency band, relying on only a single band resulted in a
degradation in decoding performance. The average decrease in AUC was
of 18.8 % + 8.5 % (mean + standard deviation) compared to the all-
band model. The smallest performance loss was observed in the low
beta band (13-20 Hz), with an average AUC decrease of 15.25 % =+
9.9 %. The largest loss occurred in the high-frequency oscillation (HFO)
band (200-500 Hz), with an average decrease of 23.01 % =+ 6.22 %.

To assess whether different frequency bands made independent
contributions to decoding performance, we examined how well models
trained on individual bands predicted the performance of an all-band
model. In practice, we regressed the AUC values from single-band
models against the AUC values of the all-band model, as shown in
Fig. 9. In this framework, each single-band model’s AUC serves as an
independent variable, and the all-band model’s AUC is the dependent
variable. If a given frequency band contributes unique information, its
standalone AUC should explain a nontrivial portion of the variance in
the all-band model’s AUC, even after accounting for other bands.

Our linear regression analyses confirmed that certain bands made
statistically significant unique contributions. For example, the AUC from

Fig. 8. Impact of using individual frequency bands on decoding performance.
Distribution plots show the loss in decoding performance (AUC difference)
when models are trained using features from a single canonical frequency band
compared to a model using all bands. Negative values indicate lower AUC for
single-band models relative to the all-band model.

10

the low-beta (13-20 Hz) model alone explained 20 % of the variance in
the all-band model’s AUC (R? = 0.20, p < 0.05), while the gamma
(30-100 Hz) model explained 17 % (R* = 0.17, p < 0.05). These co-
efficients indicate that both low-beta and gamma bands carry informa-
tion not fully subsumed by the other bands. Notably, the low-beta and
gamma AUCs themselves were poorly correlated (R? = 0.05), implying
that they capture distinct neural signatures.

To evaluate whether combining these complementary bands
improved performance beyond their individual effects, we fit a multiple
regression using both low-beta and gamma AUCs as predictors of the all-
band AUC. This combined model accounted for 48 % of the variance (R?
= 0.48), a substantial increase over either band alone. The significant
increase in explained variance when both predictors are included in-
dicates that low-beta and gamma power provide complementary (i.e.,
nonredundant) information for decoding.

4. Discussion
4.1. Decoding performance is driven by a spectrum of frequencies

In this study, we investigated the relationship between modulations
in canonical frequency bands and the ability of our trained systems to
detect pre-movement periods. Our findings suggest that contributions
from different frequency bands are both individually relevant as well as
relatively independent, indicating that different frequency bands cap-
ture distinct neural dynamics associated with pre-movement periods. By
leveraging the complementary information from multiple frequency
bands, models can achieve superior decoding performance compared to
using any single band alone. Our results highlight the importance of
incorporating a spectrum of frequency bands in decoding models to
capture the complex neural signatures underlying motor preparation
and initiation. The additive contributions from different bands support
the notion that neural processes involved in movement are distributed
across multiple oscillatory activities.

These findings align with previous literature highlighting the
importance of multi-band analyses in decoding neural signals. In [39],
authors used microelectrodes recordings from the subthalamic nucleus
of PD patients to decode a proxy for motor performance. Consistent with
the findings shown here, they reported superior decoding performance
when models were trained on a broad spectrum of frequencies compared
to individual bands. Similarly, [40] and [24] emphasised the simulta-
neous contributions of multiple frequency bands in subthalamic and
thalamic LFPs, as evidenced by the weights assigned by machine
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Fig. 9. Scatter plots and best-fit linear regression lines showing the relationships between decoding performance (AUC values) of models trained on individual
frequency bands and the all-band model. (top) All-band model vs. low beta band model. (bottom) All-band model vs. gamma band model. (right) Low beta band

model vs. gamma band model.

learning algorithms to features from various bands. Khawaldeh et al.,
[41] further demonstrated that including a broad range of frequency
bands significantly improved the prediction of clinical movement
impairment scores in Parkinson's disease patients when compared to
using only the canonical beta band.

For the specific task studied here—the detection of periods leading
up to movement initiation—we find that utilising multiple frequency
bands simultaneously enhances decoding performance. These results
support the multi-band, machine learning-based approach to neural
decoding that has been proposed in the literature [29,42,43].

Our study also underscores the potential limitations of focusing
solely on canonical frequency bands or predefined biomarkers. The
variability in modulatory patterns across patients suggests that indi-
vidualised models, which account for patient-specific neural dynamics
across multiple frequency bands, offer better performance. This high-
lights the importance of data-driven approaches in developing adaptive
deep brain stimulation systems and other neurotechnological
interventions.

4.2. Inference-time computational cost

In the context of aDBS, signal processing pipelines that incorporate
machine learning-based components present translationally exciting
opportunities [43]. However, the computational environment within
which aDBS can be feasibly implemented outside of the clinic remains
constrained due to limitations in hardware resources and power con-
sumption [44]. Therefore, efforts to develop algorithms intended for
aDBS applications should take these considerations into account to
ensure that the systems are practical for real-world deployment.

Estimating the computational complexity of algorithms imple-
mented in high-level scripting languages such as Python or MATLAB is
non-trivial, as these implementations may differ significantly from
implementations optimised for the embedded systems that would be
used in implanted devices. Nonetheless, providing reference values for
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the computational requirements can offer valuable insights into the
feasibility of different algorithms in computationally constrained
environments.

To assess the computational demands of our models, we bench-
marked the time required to make a single inference-time pre-
diction—that is, to process time-series signals and produce a model
output. Benchmarks were performed on an idle server equipped with an
AMD EPYC 7402 CPU. Forward passes were run 1000 times, and the
median value across those runs was compute and is reported here. This
benchmarking provides an approximate measure of the computational
efficiency of each algorithm during real-time operation.

The feature extraction step, when using the full feature set, required
187 ms (ms) per prediction. Within this, the estimation of spectral
power features—which drive most of the performance of the feature-
based models (see 4.2) —took only 5 ms. The time estimates for the
forward pass of the different algorithms are outlined in Table 3.

When using the full feature set, which includes time-domain statis-
tics, autoregressive coefficients, cepstral coefficients, and spectral fea-
tures, the feature extraction step dominated the computational cost,

Table 3
Benchmarked time [in milliseconds] required for an inference-time prediction.
LR GBDT CNN FeatCNN

Full Feature Set
Manual Feature Extraction 187 187 N/A 187
Model Inference Time 0.06 0.2 1.0 1.25
Total Time 187.06 187.2 1.0 188.25
Spectral Feature Set Only
Manual Feature Extraction 5.0 5.0 N/A 5.0
Model Inference Time 0.06 0.2 1.0 1.25
Total Time 5.06 5.2 1.0 6.25

Abbreviations: LR = Logistic Regression; GBDT = Gradient-Boosted Decision
Trees; CNN = Convolutional Neural Network; FeatCNN = CNN with Manually
Extracted Features; N/A = Not Applicable.
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requiring 187 ms for each prediction. The LR and GBDT models had
minimal inference times of 0.06 ms and 0.2 ms, respectively, resulting in
total inference times of approximately 187 ms. In contrast, the CNN
model, which operates directly on the raw time-series data without
manual feature extraction, had a total inference time of 1.0 ms. The
FeatCNN model, which combines the CNN with manually extracted
features, requires both the feature extraction time (187 ms) and the CNN
inference time (1.25 ms), which led to a total inference time of
approximately 188 ms.

When using only the spectral feature set, the feature extraction time
was significantly reduced to 5 ms. Under this configuration, the total
inference times for the LR and GBDT models decreased to approximately
5 ms, whereas the CNN's inference time remained at 1.0 ms, as it does
not rely on manual feature extraction. The FeatCNN model's total
inference time reduces to approximately 6.25 ms.

4.3. Limitations

This study benchmarked the ability to decode upper-limb move-
ments in the milliseconds preceding movement initiation using multiple
machine learning algorithms and feature sets. While the findings pro-
vide proof-of-feasibility, several limitations must be acknowledged.

4.3.1. Sample size and inter-patient variability

The relatively small cohort (n =11) limited statistical power and
generalisability. Marked heterogeneity in modulatory patterns across
patients contributed to variability in decoding performance, and
patient-specific models consistently outperformed cross-patient de-
coders. This heterogeneity likely reflects a combination of factors,
including differences in lead placement within VIM/ZI/PSA and indi-
vidual functional neuroanatomy. While cross-patient decoding is an
important translational goal, particularly for reducing calibration
burden in adaptive DBS systems, the present dataset was insufficient to
support robust feature alignment or domain-adaptation strategies aimed
at compensating for inter-patient variability. Mapping patient-specific
oscillatory features into a common representational space likely re-
quires larger cohorts, accounting for explicit anatomical localisation of
recording contacts, and dedicated transfer-learning or normalisation
frameworks. In the absence of these prerequisites, cross-patient models
in this study primarily served to illustrate the degree of patient speci-
ficity in pre-movement neural signatures, rather than to propose a
deployable solution. The limited number of trials per patient, con-
strained by the acute postoperative recording window (mean + SD =
67.2 + 38.8 trials; range: 16-112), restricted the feasibility of learning
invariant representations across individuals. Larger, multi-centre data-
sets will be essential for developing and validating cross-patient
decoding schemes that can support generalisable aDBS
implementations.

4.3.2. Model interpretability

While we employed established algorithms (logistic regression,
gradient-boosted decision trees, convolutional neural networks), model
interpretability was limited. The absence of significant correlations be-
tween single-band modulation indices and decoding accuracy suggests
that non-linear or distributed neural relationships may be driving clas-
sification. Future work incorporating explainable machine learning
methods and feature attribution techniques could provide deeper insight
into the neural mechanisms of movement preparation and initiation.

4.3.3. Real-time validation

All analyses were conducted offline, albeit using a signal processing
pipeline compatible with online application (forward-only filtering and
causal normalisation). The absence of true real-time testing means we
cannot report operational metrics such as sensitivity, specificity, and
false-trigger rates in a streaming clinical environment. Such tes-
ting—particularly in freely moving patients—remains necessary for
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assessing clinical feasibility and ensuring safety when developing
adaptive DBS schemes.

4.3.4. Multimodal integration

We analysed thalamic LFPs and scalp EEG independently, but our
dataset was too limited to reliably characterise the potential benefit of
integrating subcortical and cortical signals. Prior work has shown that
connectivity within the thalamo-cortical network relates both to voli-
tional movement and to tremor expression. Increased coherence be-
tween the thalamus and motor cortex is associated with increased
tremor severity [45,46], and measures of connectivity between these
structures are modulated around the onset of volitional movement [47].
These observations support a physiological model in which
cortico-cerebellar drive routed through VIM/PSA facilitates movement
when appropriately timed, but can also contribute to pathological os-
cillations within the cerebello-thalamo-cortical loop. Future studies with
larger cohorts should test multimodal fusion (e.g., combining cortical
EEG with thalamic LFPs) to leverage these cortico-subcortical in-
teractions and potentially enhance both the robustness and lead time of
pre-movement decoding.

4.3.5. Task specificity

The experimental tasks used to elicit movements were specific and
may not encompass the full range of motor activities encountered in
daily life. This could limit the applicability of our models to more
naturalistic settings. Expanding the repertoire of tasks and incorporating
more ecologically valid movement paradigms could improve the models'
relevance and utility in real-world scenarios.

4.3.6. Decoding performance and translational implications

Although decoding performance was statistically above chance for
both pre-movement and execution phases, absolute values remain
modest in a subset of patients. We do not claim these are sufficient for
immediate clinical deployment. Instead, our findings should be inter-
preted as an early translational step: identifying patient-specific pre-
movement neural correlates and demonstrating their feasibility for
decoding in a constrained postoperative setting. Moving toward a
robust, anticipatory aDBS system will require (i) larger, more diverse
datasets collected under naturalistic conditions, (ii) rigorous real-time
evaluation, (iii) optimisation of feature extraction and classification to
maximise reliability, and (iv) exploration of alternative recording sites,
such as motor cortex ECoG, which in some contexts outperforms
subcortical LFPs for early movement decoding [27]. By establishing the
presence and variability of these early correlates, this study provides an
important foundation for future development of early movement-based
aDBS strategies for tremor disorders.

4.4. Conclusion

We have shown that thalamic LFPs recorded from externalized DBS
leads in tremor patients contain reliable pre-movement signals, enabling
above-chance decoding of impending upper-limb actions. In our cohort,
patient-specific classifiers detected movement onset as early as 430 ms
before EMG onset using thalamic LFPs—and 840 ms before EMG onset
using scalp EEG. Individualized, patient-specific decoders outperformed
cross-patient models, reflecting the inter-subject variability in thalamic
oscillatory patterns; this finding confirms that a ‘“one-size-fits-all”
approach will likely fail to capture the unique spectral fingerprints of
each patient’s tremor network. We also found that no single canonical
band suffices: combining features across multiple frequency bands
improved decoding accuracy, highlighting that oscillations at different
frequencies carry complementary information.

Taken together, our results highlight three contributions: (1) a
validation that thalamic LFPs—available from clinically implanted DBS
leads—can potentially serve as a real-time, pre-movement biomarker in
ET and other tremor disorders; (2) a demonstration that patient-specific,
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multi-band decoders are needed to accommodate individual differences
in recorded thalamic signals; and (3) a benchmarking of classical (lo-
gistic regression, GBDTs) versus deep-learning architectures, establish-
ing a baseline for future, more refined algorithms. These insights
contribute towards the development of personalized, pre-emptive aDBS
systems that initiate stimulation before tremor emerges. More broadly,
our work illustrates how invasive LFP sensing and EEG can accelerate
the development of adaptive neurostimulation and brain-machine in-
terfaces in clinical practice.
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