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A B S T R A C T

Objective: To advance adaptive deep brain stimulation for tremor disorders, we investigated the feasibility of 
using machine learning to decode pre-movement oscillatory changes in thalamic local field potentials (LFPs) and 
scalp electroencephalography (EEG) signals. Our aim was to predict upcoming upper-limb movements based on 
these neural signals.
Approach: We recorded and analysed from 11 patients undergoing deep brain stimulation surgery for the 
treatment of tremor, employing machine learning models—including logistic regression, gradient-boosted de
cision trees, and convolutional neural networks—to distinguish rest periods from pre-movement periods.
Main results: We demonstrate that early neural correlates can predict movement onset, achieving above-chance 
decoding performance starting approximately 430 ms before movement initiation using thalamic LFP and 840 ms 
using EEG signals. Individualised, patient-specific decoders outperformed cross-patient models, reflecting inter- 
patient variability in neural modulatory patterns. Additionally, multiple frequency bands contributed indepen
dently to decoding performance, highlighting the importance of incorporating a spectrum of frequencies rather 
than relying solely on activity in any single canonical band.
Significance: These findings underscore the value of personalised, multi-band machine learning-based approaches 
for capturing the neural correlates preceding movement. They support the development of adaptive neuro
stimulation therapies through tailored models that account for patient-specific patterns in neural activity.

1. Introduction

Since receiving FDA approval for the treatment of essential tremor 
(ET) in 1997, deep brain stimulation (DBS) of the ventral intermediate 
nucleus (VIM) of the thalamus has established itself as an effective 
therapy for tremor disorders in patients with medication-refractory 
symptoms [1–3]. In a meta-analysis comprising 1714 ET patients, 
VIM-DBS improved tremor scores by a mean 61.3 % at 20 months 
follow-up, showing a significant therapeutic effect for tremor suppres
sion [4].

Despite its efficacy for managing tremor, VIM-DBS is associated with 

several adverse effects, including stimulation-induced side-effects that 
impact speech and postural stability, as well as a gradual loss of thera
peutic efficacy over time [5–12]. To address these challenges, 
non-continuous or adaptive DBS (aDBS) schemes have been proposed as 
a means to mitigate the side effects associated with stimulation and 
thereby increase DBS’s therapeutic window [13–16].

A critical aspect in the development of aDBS systems is the selection 
of appropriate feedback signals to guide the titration of stimulation. 
Various surrogate signals have been explored for driving aDBS in ET 
patients, including muscle activity recorded from surface electromyog
raphy [15,17,18], scalp electroencephalography (EEG) [19], and signals 
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recorded from intracranial electrodes [14,20,21]. However, there re
mains an interest in leveraging the modulatory patterns found in neural 
signals directly recorded from the implanted DBS electrodes themselves 
to avoid the need for supplementary implants or external devices [22]. 
By capturing the neural correlates of movement through local field po
tentials (LFPs) measured from the thalamus, it is possible to detect 
movement states and utilise this information to drive an aDBS system 
[23]. Prior studies have successfully implemented this aDBS approach in 
an acute clinical setting [24,21,25,26]

In the context of aDBS for patients with intention tremors (tremors 
that emerge during voluntary movements rather than at rest), the timing 
of stimulation is critically important. Early triggering of stim
ulation—ideally prior to or immediately at the onset of voluntary move
ment—holds strong therapeutic potential. Clinical and experimental 
observations [14,15] show that even with responsive DBS that switches 
on when tremor begins, patients typically experience a brief burst of 
tremor just after movement onset – before stimulation has had time to 
achieve its therapeutic effect. For instance, Opri et al. [14] reported that, 
in their cohort, aDBS triggered by movement onset still resulted in a 
short, visible burst of tremor. By initiating stimulation based on 
pre-movement (e.g., thalamic LFPs or cortical potentials) as opposed to 
movement-related signatures, one can potentially disrupt tremor-related 
oscillations before they fully develop. In contrast, reactive approaches 
that wait for tremor to appear before delivering stimulation cannot 
prevent this initial burst and may therefore offer less complete symptom 
relief. This pre-emptive strategy—intercepting neural processes that 
give rise to tremor—could reduce or even eliminate tremor episodes 
before they begin.

Achieving this, however, requires systems capable of decoding 
movement onsets in real time, for instance by detecting neural correlates 
present in the period leading up to movement initiation. Such early 
detection of movement from neural signals has already been demon
strated, and electrocorticography (ECoG) signals have been shown to 
yield higher decoding performance than LFP signals recorded from the 
subthalamic nucleus of Parkinson's disease (PD) patients [27]. However, 
whether thalamic LFPs carry equally discriminable pre-movement pat
terns in tremor patients remains unknown.

In this study, we hypothesise that it is possible to train machine 
learning models to decode pre-movement neural signatures of volitional 
upper-limb motor activity from both thalamic LFPs and scalp EEG with 
above-chance accuracy at least several hundred milliseconds before 
movement onset. To test this, we develop and implement multiple ma
chine learning-based classification pipelines—ranging from feature- 
based logistic regression and gradient-boosted trees to convolutional 
neural networks that learn directly from raw oscillatory inputs. We 

compare the models’ decoding performance, determine how early 
relative to movement onset oscillatory signatures can be detected, and 
study the oscillatory features that drive the models’ predictions.

The remainder of this manuscript is structured as follows: we first 
introduce the dataset, feature extraction pipelines, and classification 
algorithms used in this study. We then present the decoding perfor
mance achieved by these systems and document the neural correlates 
that they rely on to make inferences. Finally, we discuss the trade-offs of 
the different approaches and their implications for early movement- 
driven aDBS in tremor disorders.

2. Methods

2.1. Participants and experimental protocol

Data were collected from 11 patients (5 female) undergoing DBS 
surgery for tremor management. The cohort included nine patients with 
ET, one with Orthostatic Tremor (OT), and one with tremor-dominant 
Parkinson’s disease. Clinical information for each participant is pro
vided in Table 1. All procedures were conducted in accordance with the 
Declaration of Helsinki, with informed written consent obtained from all 
participants prior to their inclusion in the study; and approved by the 
relevant local ethics committees (SGH: MED IDREC Ref 18/SC/0436, 
IRAS 249989; UHC: Ethics Committee of the Medical Faculty of the 
University of Cologne No. 20–1054).

Patients underwent stereotactic neurosurgery for bilateral implan
tation of DBS leads targeting the VIM, Zona Incerta (ZI), or posterior 
subthalamic area (PSA) for the treatment of tremor. For research pur
poses, the DBS leads were temporarily externalised for up to seven days, 
allowing direct recording of neural signals before connecting them to the 
implantable pulse generator (IPG).

Four patients (S1–S4) were implanted with the Abbott Infinity DBS 
system (Abbott Laboratories, US), which uses eight-contact directional 
leads arranged in a 1–3-3–1 layout (two ring contacts at the ends and 
two central levels each split into three segments). The remaining seven 
patients (S5–S11) were implanted with Medtronic SenSight directional 
leads, also arranged in a 1–3–3–1 configuration (eight contacts per 
lead). LFPs were recorded in unipolar mode with either a TMSi Porti 
amplifier (TMSi, The Netherlands) at 2048 Hz and 22-bit resolution, or a 
TMSi SAGA amplifier at 4096 Hz and 24-bit resolution. An on-board 
digital sinc³ anti-aliasing filter (cut-off frequency of 553 Hz and 1.6k 
Hz, respectively) was automatically applied to all recorded signals. A 
wrist-worn electrode was used as a temporary hardware reference dur
ing data collection; however, none of our analyses relied on that wrist 
reference directly. Instead, to eliminate any residual common-mode or 

Table 1 
Clinical and demographic patient information.

Patient 
ID

Diagnosis Centre DBS 
System

Surgical 
Target

Sex Age 
[years]

Disease Duration 
[years]

Predominant Symptoms Before Surgery

S1 ET SGH Abb VIM F 77 21 Tremor, gait ataxia, tremor worse on right, upper limb 
and voice tremor

S2 ET SGH Abb VIM M 70 8 Tremor, upper limb, with right worse than left, lower 
limb tremor

S3 ET SGH Abb VIM F 62 45 Tremor, upper limb tremor left worse than right, voice 
tremor

S4 ET SGH Abb VIM M 70 5 Tremor, upper limb left worse than right
S5 ET UHC Med VIM/PSA F 58 15 Tremor in both hands, left hand worse than right
S6 ET UHC Med VIM/PSA M 72 10 Tremor in both hands (stronger in right hand), some head 

tremor
S7 ET SGH Med VIM/ZI M 64 20 Tremor
S8 ET SGH Med VIM/ZI M 71 16 Tremor
S9 ET SGH Med VIM/PSA F 59 50 + Tremor
S10 PD UHC Med VIM/PSA M 68 6 Rigidity and tremor in right hand and arm
S11 OT UHC Med VIM/PSA F 61 9 Orthostatic and action tremor in both hands

Abbreviations: ET = Essential Tremor; PD = Parkinson’s disease; OT = Orthostatic Tremor; SGH = St. George’s Hospital; UHC = University Hospital Cologne; Abb =
Abbott Infinity DBS System; Med = Medtronic SenSight DBS System.

F.U. Rodriguez Plazas et al.                                                                                                                                                                                                                  Neurocomputing 674 (2026) 132899 

2 



motion-related artifacts (including potential contamination from wrist 
movement or muscle activity), all LFP channels were re-referenced on
line to the common average of all simultaneously recorded LFP chan
nels. This common-average re-referencing ensured that any voltage 
fluctuations specific to the wrist electrode (e.g. motion) were effectively 
subtracted from the recorded signals prior to further processing.

Scalp EEG was recorded simultaneously using electrodes at Cz, C3, 
C4, CPz, CP3, and CP4 (10–20 system), covering somatosensory, 
sensorimotor, and motor areas. EEG signals were captured on the same 
amplifiers (with identical on-board filtering) and sampled synchro
nously with the LFPs. Surface EMG was recorded with bipolar electrodes 
over the forearm flexor and extensor muscles; these EMG traces pro
vided precise markers of upper-limb movement onset for temporal 
alignment with the neural data.

During recording sessions, patients were instructed to perform a 
series of upper limb motor tasks designed to elicit voluntary movement: 
a rice pouring task (patients poured rice back and forth between two 
cups for approximately 10 s before returning to rest), pegboard insertion 
task (patients inserted pegs into a pegboard for approximately 10 s 
before returning to rest), and foam ball gripping task (patients tightly 
gripped a foam ball with one hand for approximately 5 s before 
returning to rest). Each task was performed multiple times with rest 
intervals to prevent fatigue. Instructions were standardised, and patients 
were encouraged to perform movements at a comfortable pace, with 
plenty of rest (at least 10 s between trials) in between. In total, a mean of 
67.18 ± 38.8 trials (cross-patient mean ± std. deviation; min: 16, max: 
112) were used for analysis.

All signals—including thalamic LFPs, scalp EEG, and surface 
EMGs—were recorded using custom-developed software tailored for 
electrophysiological data acquisition. Recorded data were digitised and 
stored securely for offline processing and analysis.

2.2. Data pre-processing and labelling

EMG signals were recorded from bipolar electrodes placed over the 
forearm flexor and extensor muscles to determine the timing of move
ment initiation. For lateralised tasks (e.g., one-handed gripping), only 
the EMG trace from the active arm was used. For bilateral tasks 
(pegboard insertion, rice pouring), each arm’s EMG was processed 
independently, and the earliest detected onset time—regardless of 
which arm moved first—was taken as the movement initiation time.

Raw EMG traces were first high-pass filtered using a causal fourth- 
order Butterworth filter implemented in a cascade of second-order sec
tions with a cut-off frequency of 0.5 Hz. To minimise ringing artifacts 
due to filter warm-up, the initial filter state was adjusted, and all 
filtering was performed in a forward-only (causal) manner to preserve 
the temporal integrity of the signals and mimic signal processing tech
niques that could be applied during real-time use [28]. Following 
high-pass filtering, the magnitude of the EMG signals was computed to 
obtain an envelope of muscle activity, and z-scored to standardise the 
amplitude across trials and participants. These processed EMG traces 
were visually inspected to ensure clear delineation of movement initi
ation, and traces that did not distinctly define and isolate movement 
onset were discarded. This signal was then rectified and smoothed, and a 
threshold (three times the standard deviation extracted from the base
line period) detected the first point at which deviation from baseline 
activity was detected (i.e. movement initiation). These timings were 
subsequently reviewed manually to ensure movement initiation was set 
at the earliest possible time point. This manual labelling of the move
ment onset served as the ground truth for subsequent analyses.

To prevent the introduction of unwanted phase lags between the 
movement signals and the neural signals, identical high-pass filtering 
(causal fourth-order Butterworth filter with a cut-off frequency at 
0.5 Hz) was applied to the thalamic LFP and cortical EEG signals [28]. 
This approach ensured temporal alignment across different kinds of 
signals. Additionally, to eliminate power line interference and 

harmonics, notch filters were applied at 50 Hz, 100 Hz, and 150 Hz 
using a causal filter design implemented in cascaded second-order 
sections.

The movement onset times defined from the EMG signals were used 
to segment the LFP and EEG data into epochs corresponding to indi
vidual movement trials. For participants who performed multiple 
movement-related tasks (gripping, rice pouring, and pegboard inser
tion), the epochs from all tasks were combined for the decoding analysis.

2.3. Time-resolved characterization of oscillatory activity

To train decoders that detect pre-movement periods, we imple
mented a feature-extraction pipeline (Fig. 1) that captures time-resolved 
oscillatory activity. Time series signals were first segmented into over
lapping trailing windows (1 s and 2 s), from which features were 
extracted and then concatenated. By providing both window lengths as 
separate inputs, the classifier can learn which timescale best captures 
pre-movement signatures. Feature vectors were produced every 20 ms 
(i.e. a 50 Hz update rate).

To maintain full causality—that is, to ensure no future samples in
fluence current estimates—each window ends at the current time point 
and only uses data from the past. Immediately after extracting each 
feature vector, we standardised it using a running (causal) z-score: for 
each feature dimension, we subtract the mean and divide by the stan
dard deviation computed over the previous 10 s of data. This trailing 
window ensures that, at time t, all statistics (mean and σ) are based 
solely on samples up to t, preventing any leakage of future information 
[29].

At each time point, this procedure yields a normalised vector 
comprising several features that reflects oscillatory dynamics.

2.4. Power in canonical frequency bands

For each time window of electrophysiological data, we first applied a 
Hann taper w[n] to the time-domain signal x[n] to reduce edge artifacts 
and then computed its DFT X[k]. The log-power spectrum is given by 

L[k] = log
(
|X[k] |2

)

From L[k] we extracted, for each canonical band B, the mean log- 
power μB = 1

|B|
∑

k∈BL[k] in bands theta (4–8 Hz), alpha (8–12 Hz), low 
beta (13–20 Hz), high beta (20–30 Hz), gamma (30–60 Hz, 60–80 Hz, 
80–100 Hz), and high-frequency activity (100 – 200 Hz, 200–500 Hz).

2.5. Time-domain statistics

We extracted time-domain statistics to capture the characteristics of 
the signal directly from its temporal representation. The primary time- 
domain features included the first four statistical moments of the 
signal distribution, as well as the Hjorth parameters.

The first four statistical moments are: 

• Mean (First Moment): Average value of the signal over time. Pro
vides a measure of the central tendency, the overall level of activity 
within the signal, as well as a measure of low-frequency activity. 
μx = 1

N
∑N− 1

n=0 x[n].
• Variance (Second Moment): Computed as a Hjorth parameter 

(Activity, see below). σ2
x = 1

N
∑N− 1

n=0 (x[n] − μx )
2
.

• Skewness (Third Moment): Quantifies the asymmetry of the sig
nal's amplitude distribution, detecting deviations from normality in 

the signal's amplitude. Skewness = 1
N
∑N− 1

n=0

(
x[n]− μx

σx

)3
.

• Kurtosis (Fourth Moment): Describes the "tailedness" or “peaked
ness” of the signal distribution. High kurtosis indicates the presence 
of infrequent, significant deviations from the mean, potentially 
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associated with transients or bursts in the signal. Kurtosis =

1
N
∑N− 1

n=0

(
x[n]− μx

σx

)4
.

The Hjorth parameters are a set of three descriptors useful in the 
analysis of non-stationary signals, such as LFP, EEG, or MEG data, and 
provide a compact representation of the signal's dynamic properties: 

• Activity: Corresponds to the variance of the signal, representing the 
overall signal power / energy content. Activity = σ2

x
• Mobility: Defined as the square root of the variance of the first de

rivative of the signal divided by the variance of the signal itself. It 
quantifies the mean frequency or the rate of change in the signal, 
with higher mobility indicating faster signal fluctuations. Mobility =

̅̅̅̅̅̅̅̅̅̅̅̅̅
Var(Δx)
Var(x)

√

.
• Complexity: Measures the signal's waveform complexity relative to 

a pure sine wave, calculated as the ratio of the mobility of the first 
derivative of the signal to the mobility of the signal itself. It reflects 
the degree of variability in the frequency content of the signal, with 
higher values indicating more complex, non-sinusoidal waveforms. 

Complexity =

̅̅̅̅̅̅̅̅̅̅̅̅̅
var(Δ2x)

Δx

√

/

̅̅̅̅̅̅̅̅̅̅̅̅
var(Δx)
var(x)

√

,

whereΔx[n] = x[n] − x[n − 1], and Δ2x[n] = Δx[n] − Δx[n − 1].
Together, these time-domain features provided a comprehensive char
acterization of the electrophysiological signals, capturing essential as
pects of the signal's amplitude, variability, and temporal structure. They 
are commonly used in various signal processing applications, including 
brain-computer interfaces, cognitive state monitoring, and the identifi
cation of pathological activity such as epileptic seizures [30–32].

2.6. Other features

We also extracted autoregressive (AR) parameters and cepstral co
efficients to capture additional signal dynamics.

For the autoregressive parameters, we employed AR modelling to 
describe a signal as a linear combination of its 10 previous values, 

estimated by solving the Yule-Walker equations, which relate the 
autocorrelation function of the signal to the AR coefficients.

The cepstral coefficients were derived by taking the inverse Fourier 
transform of the logarithm of the signal's frequency spectrum. This 
technique can reveal periodic structures in the frequency domain. The 
cepstrum was segmented into 10 bands, and the average power within 
these bands computed.

2.7. Classification pipeline and evaluation of decoding performance

To train classifiers capable of detecting pre-movement periods, as 
shown in Fig. 2, we labelled time windows ending within 500 ms prior 
to movement initiation as belonging to the pre-movement period. Win
dows ending within the interval [-4, − 2] seconds relative to movement 
initiation were labelled as the rest period. Our classifiers were trained to 
distinguish between these two periods based on the features extracted 
from the corresponding electrophysiological timeseries.

The performance of the classifiers was evaluated using a leave-one- 
trial-out cross-validation scheme (LOTO-CV). In each iteration, one 
trial was reserved as validation data (which remains unseen by the 
classifier during training) to benchmark the classifier's out-of-sample 
performance, while the remaining trials were used to train the classi
fier—setting its parameter values and weights. This process was 
repeated iteratively, with each trial serving as the validation set once 
and as part of the training data in all other iterations. This approach 
ensures that all trials are used once for out-of-sample testing, providing 
an estimate of the classifier's generalization performance.

During each iteration, we computed the area under the Receiver 
Operating Characteristic curve (ROC-AUC; abbreviated AUC) for the 
predictions made by the trained classifier on the validation data. This 
metric was then averaged across all of the cross-validation folds to 
obtain a single, cross-validated performance score. To account for class 
imbalances—specifically, the longer duration of the rest period 
compared to the pre-movement period—we adjusted the ROC curve by 
differentially weighting samples based on the period from which they 
were extracted. This weighting corrected for the larger number of 
samples in the rest than in the pre-movement period. We performed this 
procedure for each EEG/LFP channel individually, which provided a 

Fig. 1. Feature-Extraction Pipeline for Real-Time Pre-Movement Decoding. Raw LFP and EEG signals are first pre-processed (high-pass and notch filtering) and then 
segmented into two overlapping trailing windows (1 s and 2 s), updated every 20 ms. Within each window, we compute spectral, time-domain, autoregressive, and 
cepstral features. Each feature set is normalised using causal running (10 s) z-scores, then concatenated into a single feature vector. These vectors—computed entirely 
from past data at each 20 ms step—serve as inputs to classifiers that detect pre-movement periods in real time.
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decoding performance score (AUC) for every channel. Then, the best- 
performing channel from each hemisphere was chosen, and their fea
tures concatenated into a single feature vector to train an individual 
classifier. For EEG signals, the two best-performing channels were 
chosen. This schema provided a single decoding performance datapoint 
for each patient, driven by information from the most informative 
channel from each hemisphere–following a data-driven approach that 
dynamically selects channels based on their contributions to decoding 
performance.

We implemented and benchmarked four following classification ar
chitectures: logistic regression, gradient-boosted decision trees, con
volutional neural network, and convolutional neural network with 
manually extracted features.

2.8. Logistic regression

Logistic Regression (LR) is a simple yet powerful classification al
gorithm that models the probability of a binary outcome using a linear 
combination of input features. The logistic regression model computes a 
linear combination of the features and applies the logistic (sigmoid) 
function to produce an estimate of the probability that the input features 
belong to the positive class p(y = 1 |features).

In our implementation, during each iteration of the leave-one-trial- 
out cross-validation, we performed an internal three-fold cross-valida
tion on the training data to determine the optimal level of regularization 
(i.e. the L2 penalty term). During training, sample weights were adjusted 
to correct for class imbalance by giving more weight to samples from the 
minority class. Using these selected hyperparameters, a final logistic 
regression model was trained on the training data and evaluated on the 
validation trial for the current fold. We used Python’s scikit-learn 
implementation of LR [33].

2.9. Gradient-boosted decision trees

Gradient-Boosted Decision Trees (GBDT) is an ensemble learning 
method that builds a predictive model by sequentially combining mul
tiple decision trees learners, with each new tree aiming to correct the 
errors of the preceding ensemble. This iterative process is guided by 
gradient descent optimization, minimizing the negative log-likelihood.

In our implementation, we tuned the GBDT model to find the optimal 
hyperparameters, including the number of trees, learning rate, and tree 

depth, through an internal cross-validation procedure at each iteration 
of the leave-one-trial-out scheme. We utilised a grid search to explore a 
range of hyperparameter values, selecting the combination that yielded 
the best cross-validated performance on the training split of the data. 
Once the optimal hyperparameters were determined, the GBDT model 
was trained on the entire training set of the current fold and evaluated 
on the validation trial. Sample weighting was applied during training to 
account for dataset imbalance.

Our primary motivation for benchmarking GBDTs alongside logistic 
regression was to assess the potential benefits of capturing non-linear 
relationships between features and labels. If significant non-linear re
lationships existed in the data, GBDTs were expected to better capture 
and leverage these patterns compared to the linear logistic regression 
model. We used the Python LightGBM implementation of GBDTs [34].

2.10. Convolutional neural network

Convolutional neural networks (CNN) are deep learning models that 
automatically learn hierarchical feature representations from raw input 
data through multiple layers of convolutional filters. Unlike the feature- 
based methods described above, CNNs take minimally pre-processed 
electrophysiological time series as input, without relying on manually 
extracted features [35].

In our CNN architecture (Fig. 3A), the input time series were pro
cessed through a cascade of 6 convolutional layers interleaved with 
Swish non-linear activation functions [36], batch normalization layers 
(to correct for scaling differences and improve training stability), and 
pooling layers to reduce the dimensionality of activations as the signals 
flow through the network. The convolutional filters are trained to 
extract relevant information content from the signals pertinent to the 
classification task. The training process involved the use of adaptive 
moment estimation (Adam), an adaptive gradient descent algorithm that 
iteratively adjusted the filter coefficients to minimise the cross-entropy 
loss between the model's predictions and the true labels.

At each stage of the network, the processed signals (referred to as 
"activations") were filtered, scaled, combined, and passed through non- 
linear activation functions. After the final convolutional layer, descrip
tive statistics were computed from the activations, producing scalar 
features that were input into a fully connected linear classification layer 
that yielded the final output logits.

Fig. 2. Illustration of the trial labelling process. Movement initiation is determined based on the earliest point at which EMG activity deviates from baseline.
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2.11. Convolutional neural network with manually extracted features 
(FeatCNN)

To combine the strengths of both learned and hand-crafted repre
sentations, we designed a hybrid model (FeatCNN) that retains the same 
convolutional backbone as our pure CNN but also incorporates manually 
extracted features. In FeatCNN, the time-series input was first passed 
through the six-layer convolutional network—each convolutional filter 
trained end-to-end from random initialization, just as in the standalone 
CNN. Once the convolutional layers generate their activation outputs, 
these learned features were concatenated with the handcrafted feature 
vector (which includes band-power measures, Hjorth parameters, 
autoregressive coefficients, and cepstral coefficients). Handcrafted fea
tures were computed prior to downsampling the signals to 512 Hz. The 
merged feature set was then fed into the final fully connected layers for 
classification (Fig. 3B).

Because FeatCNN has access to both learned and handcrafted fea
tures, backpropagation drives its convolutional filters to capture pat
terns that complement—rather than simply duplicate—the information 
provided by the handcrafted features. In contrast, the pure CNN must 
discover relevant discriminative patterns directly from the time series, 
without handcrafted guidance. Training both architectures from scratch 
(i.e., with random weight initialization) ensured a fair comparison: in 
the CNN, filters must learn every useful signal characteristic, whereas in 
FeatCNN, the convolutional filters learn only those residual or orthog
onal features that are not already encoded in the handcrafted set. By 
evaluating these two models, we were able to determine whether sup
plying handcrafted features alongside learned ones improved decoding.

For both convolutional network architectures, the electrophysio
logical time series signals were downsampled to 512 Hz from the orig
inal sampling rates (2048 Hz or 4096 Hz) before being passed to the 
network. We trained each CNN in a leave-one-trial-out cross-validation 
(LOTO-CV) framework: in each fold, all windows from a single move
ment trial were held out as the test set, and the remaining trials formed 
the training set. Within each training set, we applied manifold mixup 
augmentation in the logit space to encourage smoother decision 
boundaries and improve generalization [37]. To correct for the class 
imbalance between the relatively short pre-movement windows and the 
longer rest windows, we used weighted sampling so that pre-movement 
samples were oversampled during training. Each network was trained 
for a fixed 150 epochs per LOTO fold without early stopping. Neural 
network architectures were implemented in Python using PyTorch [38].

3. Results

3.1. Decoding of pre-movement periods

We evaluated the performance of four classification models—LR, 
GBDT, CNN, and FeatCNN—in distinguishing rest periods from pre- 
movement periods using thalamic LFPs and scalp EEG signals.

Fig. 4A illustrates the area under the Receiver Operating Charac
teristic curve (AUC) values for each model using LFP and EEG data. 
Higher AUC values indicate better decoding performance. Mean AUC 
values and the corresponding 95 % confidence intervals are presented in 
Table 2.

Paired t-tests were conducted to compare model performance (AUC) 
across patients. Normality of the paired differences was assessed with 
the Shapiro-Wilk test; no strong deviations were detected (all pshapiro >

0.05). p-values were corrected for multiple comparisons using the False 
Discovery Rate (FDR) procedure. For the LFP-driven models, GBDTs 
significantly outperformed the other models. Specifically, the compari
son between LR and GBDT (p = 0.002), between CNN and GBDT 
(p = 0.035), and between FeatCNN and GBDT (p = 0.033) indicated 
significant differences. No significant differences were found among the 
other three models (LR, CNN, and FeatCNN).

For the EEG-driven models, GBDTs also showed superior perfor
mance compared to LRs (p = 0.0003). However, differences between 
GBDT and CNN (p = 0.13) and between GBDT and FeatCNN (p = 0.03) 
were not statistically significant after correcting for multiple compari
sons. No significant differences were observed among the other three 
models (LR, CNN, and FeatCNN).

To determine the earliest timepoint at which movement onset could 
be predicted, we trained logistic regression models using a sliding 500 
ms window, shifted in 25 ms increments from –2.25 s up to 1.5 s relative 
to movement onset. This yielded AUC values at each time step, 
providing a time-resolved measure of the model's ability to distinguish a 
given period from the resting baseline (see Fig. 4B). We chose LR for this 
analysis because it is substantially faster to train than more complex 
classifiers such as GBDTs—an important consideration when fitting a 
separate model for every 25 ms step across all folds—and it offers 
straightforward interpretability of feature contributions. In practice, 
more sensitive classifiers (e.g., GBDTs) may detect movement onset 
slightly earlier than LR, but likely by only some milliseconds; thus, our 
LR-based earliest window serves as a conservative benchmark for early 
prediction of movement.

Statistical analyses revealed that, for LFP-driven models, the first 
time-window at the AUC was statistically significant above chance 
(paired t-test, p < 0.05) was [–0.93 s, –0.43 s], ending at 430 ms before 

Fig. 3. Convolutional neural network architectures CNN and FeatCNN. For the CNN (Panel A), pre-processed electrophysiological time series signals are processed 
through a cascade of convolutional filters. Activations are filtered, scaled, combined, and passed through non-linear activation functions as they progress through the 
layers of the network. Final activations are summarised using descriptive statistics, which serve as input features for a linear classifier, producing the final logit. The 
FeatCNN combines manually extracted features into the feature vector (Panel B).
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movement initiation. For EEG-driven models, the earliest significant 
window was [–1.32 s, –0.84 s], ending at 840 ms before movement 
initiation. We therefore report 430 ms (for LFP) and 840 ms (for EEG) as 
the earliest timepoints at which movement initiation can be predicted 
with above-chance accuracy.

We compared the decoding performance of GBDT models trained to 
detect pre-movement periods ([–500 ms, 0]) with those trained to detect 
movement execution periods ([0, 500 ms]) using LFP data. Shown in 
Fig. 4C, for LFP-driven models, the AUC values for movement execution 
were significantly higher than for pre-movement decoding. A paired t- 
test yielded a t-statistic of 14.12 and a p-value less than 0.001, with an 
average AUC increase of 15.3 % when comparing movement execution 
to pre-movement decoding. For EEG-driven models, the AUC difference 

was also significant, with a t-statistic of 9.02 and a p-value below 0.001, 
and an average relative AUC increase of 14.5 %.

We assessed whether there was a consistent difference in decoding 
performance when using LFP signals from the thalamus versus EEG 
signals recorded from the scalp. Paired t-tests revealed no significant 
differences in AUC values between LFP and EEG signals across all 
models. The uncorrected p-values were 0.55 for LR, 0.47 for GBDT, 0.80 
for CNN, and 0.87 for FeatCNN. The AUC values for GBDT models using 
LFP and EEG data are depicted in Fig. 4D. Although fixed-window AUCs 
did not differ significantly between LFP and EEG, time-resolved analyses 
indicated earlier detectability with EEG, consistent with distinct tem
poral profiles of premotor signals across modalities.

3.2. Cross-patient variability in modulatory patterns

Regardless of their architecture, classification models leverage 
changes in the information content of electrophysiological signal
s—often manifested as synchronization or desynchronization of activity 
in canonical frequency bands—to drive decoding performance. To 
visualise the average modulatory patterns across patients, we computed 
cohort-level time-frequency decompositions (see Fig. 5). These were 
calculated using resonator IIR filters with a quality (Q) factor of 20, 
rectified, and smoothed using a 250 ms kernel. Baseline corrections 

Fig. 4. Decoding performance of different models for detecting pre-movement periods based neural oscillatory data. (A) Model performance: area under the receiver 
operating characteristic curve (AUC) values for each of four classification model for distinguishing rest from pre-movement periods using LFP and EEG data. The 
boxplots represent the distribution of AUC values across participants; individual dots outside the whiskers denote patients that are outliers. (B) Time-resolved 
decoding performance: Plots showing the time-resolved AUC values for logistic regression models trained to detect pre-movement periods at various time win
dows relative to movement initiation (t = 0 s; vertical dashed line). The top subplot displays the cross-participant average EMG trace, indicating the timing of muscle 
activation. The middle (LFP data) and bottom (EEG data) subplots illustrate the progression of cross-patient AUC values over time (solid black lines represent the 
mean AUC, and the grey shaded areas indicate ±1 cross-patient standard deviation). The shaded yellow region indicates the 500 ms region during which decoding 
performance reaches significant above chance level (AUC = 0.5), and the vertical yellow line indicates the end of this period, which is taken as the time point at 
which above-chance performance is achieved (C) Pre-movement decoding vs. decoding of movement execution: comparison of AUC values for GBDT models trained 
to detect pre-movement periods (from –500 ms to 0 ms relative to movement onset) versus movement execution periods (0 ms to 500 ms) using LFP data. All LFP 
channels are compared individually. This comparison assesses the model’s effectiveness for decoding neural activity immediately before movement initiation versus 
during movement execution. (D) Comparison between signal modalities: AUC values for GBDT models utilizing LFP and EEG data, illustrating the difference in 
decoding performance between the two neural signal modalities, highlighting the relative effectiveness of invasive (LFP) versus non-invasive (EEG) recordings in 
detecting pre-movement neural states.

Table 2 
Mean AUC value [95% CI] for decoding the [-500 ms, 0] pre-movement period 
with different models. Higher values indicate better decoding performance.

LR GBDT CNN FeatCNN

LFP 0.64 [0.60, 
0.67]

0.68 [0.65, 
0.70]

0.64 [0.60, 
0.68]

0.65 [0.61, 
0.68]

EEG 0.62 [0.59, 
0.65]

0.68 [0.65, 
0.71]

0.65 [0.61, 
0.68]

0.64 [0.62, 
0.67]
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were applied using values extracted from the rest period ([–4, –2] sec
onds relative to movement initiation). Additionally, we computed the 
average time-frequency decompositions separately for the top and bot
tom 50th percentile performers based on decoding accuracy to explore 
potential differences in modulatory patterns associated with classifica
tion performance.

To investigate the specific modulatory patterns associated with the 
pre-movement period, we computed modulation indices for individual 
frequency bands. The modulation index for a specific band was calcu
lated by comparing the power spectral density (PSD) estimates in that 
band during the pre-movement period with those during the rest period, 
averaged across trials: 

MIband =
1

ntrials

∑

trial

PSDtrial,band
pre− movement − PSDtrial, band

rest

PSDtrial, band
rest 

Modulation indices for each subject and band, along with the mean 
and 95 % confidence intervals, are depicted in Fig. 6A for both LFP and 
EEG signals. A negative modulation index corresponds to desynchroni
zation (decreased oscillatory activity) in the respective band during the 
pre-movement period compared to rest, while a positive modulation 
index indicates synchronization (increased oscillatory activity). Fig. 6B 
shows time-frequency decompositions from individual patients, illus
trating the variability in modulatory patterns observed across the 
cohort.

To assess the generalizability of modulatory patterns across patients, 
we trained logistic regression models under different training conditions 
and compared their out-of-sample performance. Specifically, we evalu
ated three training scenarios: 

1. Patient-Specific Training: Models were trained exclusively on data 
from the patient of interest.

Fig. 5. Cohort-level time-frequency decomposition of oscillatory activity time-locked to movement initiation. For each patient, the channel yielding the highest pre- 
movement decoding accuracy was selected, and the resulting spectrograms were averaged across patients. (Top) LFP signals recorded from the ventral intermediate 
nucleus (VIM) of the thalamus via externalised DBS leads. (Bottom) EEG signals. (Right) Patients are stratified into two groups based on their individual pre- 
movement decoding ROC-AUC scores. Upper subplots show time–frequency decompositions for the top-performing half of patients; lower subplots show the bot
tom half.
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2. Combined Training: Models were trained on data from the patient 
of interest supplemented with data from other patients.

3. Cross-Patient Training: Models were trained exclusively on data 
from other patients, without including any data from the patient of 
interest.

We then evaluated the performance of these models on the patient- 
specific test data. For both LFP and EEG signals, including data from 
other patients during training led to a degradation in decoding perfor
mance compared to patient-specific training (paired t-tests, p < 0.001 in 
both cases; see Fig. 7). Furthermore, models trained exclusively on data 
from other patients performed significantly worse than those trained on 

combined data (LFP: p = 0.011; EEG: p = 0.0017). These results suggest 
that modulatory patterns associated with pre-movement periods exhibit 
substantial inter-patient variability, limiting the generalizability of 
models across patients.

3.3. Contribution of oscillatory features to decoding

To elucidate the relative contribution of specific bands to decoding 
performance, we trained LR models using features extracted exclusively 
from individual canonical bands, as opposed to using all canonical bands 
simultaneously to drive the regression model. This approach allowed us 
to quantify the impact of each frequency band on decoding performance, 

Fig. 6. Cross-patient variability in the observed modulatory patterns. (A) Modulation indices for each band. Each dot represents an individual patient, and the blue 
bars represent the cross-patient mean and 95 % confidence intervals. Negative modulation indices represent desynchronization (decreased activity) during the pre- 
movement periods, whereas positive indices represent synchronization (increased activity) relative to rest. (B) Individual time-frequency decomposition for a se
lection of patients, showcasing various modulatory patterns that are present in the dataset.
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benchmarked against an all-band model.
Fig. 8 presents the differences in AUC scores between models trained 

on individual bands with respect to a model with features from all bands. 
For every frequency band, relying on only a single band resulted in a 
degradation in decoding performance. The average decrease in AUC was 
of 18.8 % ± 8.5 % (mean ± standard deviation) compared to the all- 
band model. The smallest performance loss was observed in the low 
beta band (13–20 Hz), with an average AUC decrease of 15.25 % ±
9.9 %. The largest loss occurred in the high-frequency oscillation (HFO) 
band (200–500 Hz), with an average decrease of 23.01 % ± 6.22 %.

To assess whether different frequency bands made independent 
contributions to decoding performance, we examined how well models 
trained on individual bands predicted the performance of an all-band 
model. In practice, we regressed the AUC values from single-band 
models against the AUC values of the all-band model, as shown in 
Fig. 9. In this framework, each single-band model’s AUC serves as an 
independent variable, and the all-band model’s AUC is the dependent 
variable. If a given frequency band contributes unique information, its 
standalone AUC should explain a nontrivial portion of the variance in 
the all-band model’s AUC, even after accounting for other bands.

Our linear regression analyses confirmed that certain bands made 
statistically significant unique contributions. For example, the AUC from 

the low-beta (13–20 Hz) model alone explained 20 % of the variance in 
the all-band model’s AUC (R² = 0.20, p < 0.05), while the gamma 
(30–100 Hz) model explained 17 % (R² = 0.17, p < 0.05). These co
efficients indicate that both low-beta and gamma bands carry informa
tion not fully subsumed by the other bands. Notably, the low-beta and 
gamma AUCs themselves were poorly correlated (R² = 0.05), implying 
that they capture distinct neural signatures.

To evaluate whether combining these complementary bands 
improved performance beyond their individual effects, we fit a multiple 
regression using both low-beta and gamma AUCs as predictors of the all- 
band AUC. This combined model accounted for 48 % of the variance (R² 
= 0.48), a substantial increase over either band alone. The significant 
increase in explained variance when both predictors are included in
dicates that low-beta and gamma power provide complementary (i.e., 
nonredundant) information for decoding.

4. Discussion

4.1. Decoding performance is driven by a spectrum of frequencies

In this study, we investigated the relationship between modulations 
in canonical frequency bands and the ability of our trained systems to 
detect pre-movement periods. Our findings suggest that contributions 
from different frequency bands are both individually relevant as well as 
relatively independent, indicating that different frequency bands cap
ture distinct neural dynamics associated with pre-movement periods. By 
leveraging the complementary information from multiple frequency 
bands, models can achieve superior decoding performance compared to 
using any single band alone. Our results highlight the importance of 
incorporating a spectrum of frequency bands in decoding models to 
capture the complex neural signatures underlying motor preparation 
and initiation. The additive contributions from different bands support 
the notion that neural processes involved in movement are distributed 
across multiple oscillatory activities.

These findings align with previous literature highlighting the 
importance of multi-band analyses in decoding neural signals. In [39], 
authors used microelectrodes recordings from the subthalamic nucleus 
of PD patients to decode a proxy for motor performance. Consistent with 
the findings shown here, they reported superior decoding performance 
when models were trained on a broad spectrum of frequencies compared 
to individual bands. Similarly, [40] and [24] emphasised the simulta
neous contributions of multiple frequency bands in subthalamic and 
thalamic LFPs, as evidenced by the weights assigned by machine 

Fig. 7. Patient-specific decoding performance under three training schemes: (1) trained solely on the patient’s own data, (2) trained on the patient’s data plus other 
patients’ data, and (3) trained exclusively on other patients’ data. Including data from other patients during training reduced test-set AUC, demonstrating limited 
cross-patient generalizability of movement-related modulatory patterns.

Fig. 8. Impact of using individual frequency bands on decoding performance. 
Distribution plots show the loss in decoding performance (AUC difference) 
when models are trained using features from a single canonical frequency band 
compared to a model using all bands. Negative values indicate lower AUC for 
single-band models relative to the all-band model.
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learning algorithms to features from various bands. Khawaldeh et al., 
[41] further demonstrated that including a broad range of frequency 
bands significantly improved the prediction of clinical movement 
impairment scores in Parkinson's disease patients when compared to 
using only the canonical beta band.

For the specific task studied here—the detection of periods leading 
up to movement initiation—we find that utilising multiple frequency 
bands simultaneously enhances decoding performance. These results 
support the multi-band, machine learning-based approach to neural 
decoding that has been proposed in the literature [29,42,43].

Our study also underscores the potential limitations of focusing 
solely on canonical frequency bands or predefined biomarkers. The 
variability in modulatory patterns across patients suggests that indi
vidualised models, which account for patient-specific neural dynamics 
across multiple frequency bands, offer better performance. This high
lights the importance of data-driven approaches in developing adaptive 
deep brain stimulation systems and other neurotechnological 
interventions.

4.2. Inference-time computational cost

In the context of aDBS, signal processing pipelines that incorporate 
machine learning-based components present translationally exciting 
opportunities [43]. However, the computational environment within 
which aDBS can be feasibly implemented outside of the clinic remains 
constrained due to limitations in hardware resources and power con
sumption [44]. Therefore, efforts to develop algorithms intended for 
aDBS applications should take these considerations into account to 
ensure that the systems are practical for real-world deployment.

Estimating the computational complexity of algorithms imple
mented in high-level scripting languages such as Python or MATLAB is 
non-trivial, as these implementations may differ significantly from 
implementations optimised for the embedded systems that would be 
used in implanted devices. Nonetheless, providing reference values for 

the computational requirements can offer valuable insights into the 
feasibility of different algorithms in computationally constrained 
environments.

To assess the computational demands of our models, we bench
marked the time required to make a single inference-time pre
diction—that is, to process time-series signals and produce a model 
output. Benchmarks were performed on an idle server equipped with an 
AMD EPYC 7402 CPU. Forward passes were run 1000 times, and the 
median value across those runs was compute and is reported here. This 
benchmarking provides an approximate measure of the computational 
efficiency of each algorithm during real-time operation.

The feature extraction step, when using the full feature set, required 
187 ms (ms) per prediction. Within this, the estimation of spectral 
power features—which drive most of the performance of the feature- 
based models (see 4.2) —took only 5 ms. The time estimates for the 
forward pass of the different algorithms are outlined in Table 3.

When using the full feature set, which includes time-domain statis
tics, autoregressive coefficients, cepstral coefficients, and spectral fea
tures, the feature extraction step dominated the computational cost, 

Fig. 9. Scatter plots and best-fit linear regression lines showing the relationships between decoding performance (AUC values) of models trained on individual 
frequency bands and the all-band model. (top) All-band model vs. low beta band model. (bottom) All-band model vs. gamma band model. (right) Low beta band 
model vs. gamma band model.

Table 3 
Benchmarked time [in milliseconds] required for an inference-time prediction.

LR GBDT CNN FeatCNN

Full Feature Set
Manual Feature Extraction 187 187 N/A 187
Model Inference Time 0.06 0.2 1.0 1.25
Total Time 187.06 187.2 1.0 188.25
Spectral Feature Set Only
Manual Feature Extraction 5.0 5.0 N/A 5.0
Model Inference Time 0.06 0.2 1.0 1.25
Total Time 5.06 5.2 1.0 6.25

Abbreviations: LR = Logistic Regression; GBDT = Gradient-Boosted Decision 
Trees; CNN = Convolutional Neural Network; FeatCNN = CNN with Manually 
Extracted Features; N/A = Not Applicable.
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requiring 187 ms for each prediction. The LR and GBDT models had 
minimal inference times of 0.06 ms and 0.2 ms, respectively, resulting in 
total inference times of approximately 187 ms. In contrast, the CNN 
model, which operates directly on the raw time-series data without 
manual feature extraction, had a total inference time of 1.0 ms. The 
FeatCNN model, which combines the CNN with manually extracted 
features, requires both the feature extraction time (187 ms) and the CNN 
inference time (1.25 ms), which led to a total inference time of 
approximately 188 ms.

When using only the spectral feature set, the feature extraction time 
was significantly reduced to 5 ms. Under this configuration, the total 
inference times for the LR and GBDT models decreased to approximately 
5 ms, whereas the CNN's inference time remained at 1.0 ms, as it does 
not rely on manual feature extraction. The FeatCNN model's total 
inference time reduces to approximately 6.25 ms.

4.3. Limitations

This study benchmarked the ability to decode upper-limb move
ments in the milliseconds preceding movement initiation using multiple 
machine learning algorithms and feature sets. While the findings pro
vide proof-of-feasibility, several limitations must be acknowledged.

4.3.1. Sample size and inter-patient variability
The relatively small cohort (n = 11) limited statistical power and 

generalisability. Marked heterogeneity in modulatory patterns across 
patients contributed to variability in decoding performance, and 
patient-specific models consistently outperformed cross-patient de
coders. This heterogeneity likely reflects a combination of factors, 
including differences in lead placement within VIM/ZI/PSA and indi
vidual functional neuroanatomy. While cross-patient decoding is an 
important translational goal, particularly for reducing calibration 
burden in adaptive DBS systems, the present dataset was insufficient to 
support robust feature alignment or domain-adaptation strategies aimed 
at compensating for inter-patient variability. Mapping patient-specific 
oscillatory features into a common representational space likely re
quires larger cohorts, accounting for explicit anatomical localisation of 
recording contacts, and dedicated transfer-learning or normalisation 
frameworks. In the absence of these prerequisites, cross-patient models 
in this study primarily served to illustrate the degree of patient speci
ficity in pre-movement neural signatures, rather than to propose a 
deployable solution. The limited number of trials per patient, con
strained by the acute postoperative recording window (mean ± SD =
67.2 ± 38.8 trials; range: 16–112), restricted the feasibility of learning 
invariant representations across individuals. Larger, multi-centre data
sets will be essential for developing and validating cross-patient 
decoding schemes that can support generalisable aDBS 
implementations.

4.3.2. Model interpretability
While we employed established algorithms (logistic regression, 

gradient-boosted decision trees, convolutional neural networks), model 
interpretability was limited. The absence of significant correlations be
tween single-band modulation indices and decoding accuracy suggests 
that non-linear or distributed neural relationships may be driving clas
sification. Future work incorporating explainable machine learning 
methods and feature attribution techniques could provide deeper insight 
into the neural mechanisms of movement preparation and initiation.

4.3.3. Real-time validation
All analyses were conducted offline, albeit using a signal processing 

pipeline compatible with online application (forward-only filtering and 
causal normalisation). The absence of true real-time testing means we 
cannot report operational metrics such as sensitivity, specificity, and 
false-trigger rates in a streaming clinical environment. Such tes
ting—particularly in freely moving patients—remains necessary for 

assessing clinical feasibility and ensuring safety when developing 
adaptive DBS schemes.

4.3.4. Multimodal integration
We analysed thalamic LFPs and scalp EEG independently, but our 

dataset was too limited to reliably characterise the potential benefit of 
integrating subcortical and cortical signals. Prior work has shown that 
connectivity within the thalamo-cortical network relates both to voli
tional movement and to tremor expression. Increased coherence be
tween the thalamus and motor cortex is associated with increased 
tremor severity [45,46], and measures of connectivity between these 
structures are modulated around the onset of volitional movement [47]. 
These observations support a physiological model in which 
cortico-cerebellar drive routed through VIM/PSA facilitates movement 
when appropriately timed, but can also contribute to pathological os
cillations within the cerebello-thalamo-cortical loop. Future studies with 
larger cohorts should test multimodal fusion (e.g., combining cortical 
EEG with thalamic LFPs) to leverage these cortico-subcortical in
teractions and potentially enhance both the robustness and lead time of 
pre-movement decoding.

4.3.5. Task specificity
The experimental tasks used to elicit movements were specific and 

may not encompass the full range of motor activities encountered in 
daily life. This could limit the applicability of our models to more 
naturalistic settings. Expanding the repertoire of tasks and incorporating 
more ecologically valid movement paradigms could improve the models' 
relevance and utility in real-world scenarios.

4.3.6. Decoding performance and translational implications
Although decoding performance was statistically above chance for 

both pre-movement and execution phases, absolute values remain 
modest in a subset of patients. We do not claim these are sufficient for 
immediate clinical deployment. Instead, our findings should be inter
preted as an early translational step: identifying patient-specific pre- 
movement neural correlates and demonstrating their feasibility for 
decoding in a constrained postoperative setting. Moving toward a 
robust, anticipatory aDBS system will require (i) larger, more diverse 
datasets collected under naturalistic conditions, (ii) rigorous real-time 
evaluation, (iii) optimisation of feature extraction and classification to 
maximise reliability, and (iv) exploration of alternative recording sites, 
such as motor cortex ECoG, which in some contexts outperforms 
subcortical LFPs for early movement decoding [27]. By establishing the 
presence and variability of these early correlates, this study provides an 
important foundation for future development of early movement-based 
aDBS strategies for tremor disorders.

4.4. Conclusion

We have shown that thalamic LFPs recorded from externalized DBS 
leads in tremor patients contain reliable pre-movement signals, enabling 
above-chance decoding of impending upper-limb actions. In our cohort, 
patient-specific classifiers detected movement onset as early as 430 ms 
before EMG onset using thalamic LFPs—and 840 ms before EMG onset 
using scalp EEG. Individualized, patient-specific decoders outperformed 
cross-patient models, reflecting the inter-subject variability in thalamic 
oscillatory patterns; this finding confirms that a “one-size-fits-all” 
approach will likely fail to capture the unique spectral fingerprints of 
each patient’s tremor network. We also found that no single canonical 
band suffices: combining features across multiple frequency bands 
improved decoding accuracy, highlighting that oscillations at different 
frequencies carry complementary information.

Taken together, our results highlight three contributions: (1) a 
validation that thalamic LFPs—available from clinically implanted DBS 
leads—can potentially serve as a real-time, pre-movement biomarker in 
ET and other tremor disorders; (2) a demonstration that patient-specific, 
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multi-band decoders are needed to accommodate individual differences 
in recorded thalamic signals; and (3) a benchmarking of classical (lo
gistic regression, GBDTs) versus deep-learning architectures, establish
ing a baseline for future, more refined algorithms. These insights 
contribute towards the development of personalized, pre-emptive aDBS 
systems that initiate stimulation before tremor emerges. More broadly, 
our work illustrates how invasive LFP sensing and EEG can accelerate 
the development of adaptive neurostimulation and brain–machine in
terfaces in clinical practice.
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[27] R.M. Köhler, T.S. Binns, T. Merk, G. Zhu, Z. Yin, B. Zhao, M. Chikermane, 
J. Vanhoecke, J.L. Busch, J.G.V. Habets, K. Faust, G.-H. Schneider, A. Cavallo, 
S. Haufe, J. Zhang, A.A. Kühn, J.-D. Haynes, W.-J. Neumann, Dopamine and deep 
brain stimulation accelerate the neural dynamics of volitional action in Parkinson’s 
disease, Brain (2024) awae219, https://doi.org/10.1093/brain/awae219.
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